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Abstract

Communication between cells pervades the development and physiology of
metazoans. In animals, this process is carried out by a relatively small num-
ber of signaling pathways, each consisting of a chain of biochemical events
through which extracellular stimuli control the behavior of target cells. One
such signaling system is the Hedgehog pathway, which is crucial in em-
bryogenesis and is implicated in many birth defects and cancers. Although
Hedgehog pathway components were identified by genetic analysis more
than a decade ago, our understanding of the molecular mechanisms of sig-
naling is far from complete. In this review, we focus on the biochemistry and
cell biology of the Hedgehog pathway. We examine the unique biosynthesis
of the Hedgehog ligand, its specialized release from cells into extracellular
space, and the poorly understood mechanisms involved in ligand reception
and pathway activation at the surface of target cells. We highlight several
critical questions that remain open.
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INTRODUCTION

The Hedgehog signaling pathway is a key communication system between metazoan cells. It
is involved in all stages of an animal’s life, from embryonic development to maintenance and
regeneration of adult tissues. Thus, understanding Hedgehog signaling is crucial to understanding
animal development and physiology and, beyond that, to harnessing its power in disease treatment
and regenerative medicine.

In this review, we focus on the molecular mechanisms used by cells to send and receive
Hedgehog signals (Figure 1). We follow the Hh ligand (Hh), from its unique biosynthesis, through
its secretion from producing cells, to its reception by target cells. The bulk of the evidence that
we cite comes from three model organisms in which the Hedgehog pathway is best understood:
the fruit fly Drosophila melanogaster, the house mouse Mus musculus, and the zebrafish Danio rerio.
Although Hedgehog signaling operates in all these organisms, evolutionary divergence has re-
sulted in the expansion of certain protein families. For example, whereas fruit flies have one gene
coding for one Hh, mice have three and zebrafish have six (see sidebar titled Hedgehog Ligand
Homologs).

To avoid confusion, in cases in which the functional mechanism is conserved between ho-
mologs, we refer to the whole set by a single name and a single discussion. So, by Hh we designate
all Hh homologs and discuss them as a unit. In cases in which the functional mechanism is known
to, or is suspected to, diverge between homologs, we draw special distinction. This often occurs
in the discussion of vertebrate and invertebrate homologs.

In addition to differences between homologs in different species, there appear to be some
differences in the pathway’s behavior in different tissues of the same organism. We note such
differences when appropriate, but, as our goal is to outline the general principles of the pathway,
the reader is advised to consult species- or tissue-specific literature for further details.
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HEDGEHOG LIGAND HOMOLOGS

Whereas the genome of the fruit fly has a single gene coding for Hh, hedgehog (hh), higher organisms have several.
For example, the mouse has three orthologous Hh genes: Sonic hedgehog (Shh), Desert hedgehog (Dhh), and Indian
hedgehog (Ihh). In zebrafish, due to a genome duplication event, there are as many as six paralogs: sonic hedgehog
a (shha), sonic hedgehog b or tiggywinkle hedgehog (shhb/twhh), indian hedgehog a (ihha), indian hedgehog b or echidna
hedgehog (ihhb/ehh), qiqihar hedgehog (qhh), and desert hedgehog (dhh). Sequence conservation and biochemical studies
show that all these paralogous ligands are processed similarly, being modified with both palmitoyl and cholesteryl
moieties. Thus, the differences between paralogs appear to be in the timing and location of expression. A number
of excellent reviews summarize tissue-specific expression patterns and functions of these proteins (Ingham et al.
2011, Jeong & McMahon 2002, Varjosalo & Taipale 2008).

Lipoprotein
particles:
protein–lipid
complexes that
transport lipids
systemically;
composed of a lipid
core surrounded by a
phospholipid
monolayer and
apolipoproteins

Heparan sulfate:
a negatively charged
linear polysaccharide

Heparan sulfate
proteoglycan
(HSPG): a class of
glycoproteins
consisting of a protein
core attached to
heparan sulfate chains

G protein–coupled
receptor (GPCR):
a class of seven-pass
transmembrane
proteins that activate
heterotrimeric
G proteins in response
to ligand binding

OUTLINE OF THE HEDGEHOG SIGNALING PATHWAY

Like other signaling pathways, the Hedgehog pathway consists of a chain of molecular events
through which a signal produced by a cell (referred to as the sending cell) controls the behavior of
another cell (termed the receiving cell). The sending cell synthesizes Hh and enables its extracellu-
lar release in a diffusible form. Once Hh leaves the sending cell, it travels through the extracellular
milieu, reaching the surface of the receiving cell. There, Hh interacts with its coreceptor(s) and
receptor Patched (Ptc), triggering an intracellular signal transduction cascade, which ultimately
results in specific changes in gene expression. The mechanisms underlying Hh synthesis, release
from cells, transport, and reception are remarkably complex and subject to numerous regulatory
interactions.

Hh is modified with two lipids at its termini: an N-terminal palmitoyl moiety and a C-terminal
cholesteryl moiety. The lipid modifications, particularly the cholesteryl moiety, render Hh highly
hydrophobic, resulting in strong retention on the plasma membrane of sending cells. This feature
of Hh would make it a poor intercellular signaling molecule were it not for a set of factors dedicated
to its release. In both flies and vertebrates, the transmembrane protein Dispatched (Disp) is
required for Hh release, likely by facilitating its extraction from the plasma membrane. Following
interaction with Disp, Hh moves into the extracellular space, complexed with a chaperone. The
chaperone ensures Hh solubility by shielding the hydrophobic cholesteryl and palmitoyl moieties
from the aqueous environment. With its lipid appendages safely sequestered, Hh and its associated
chaperone are then free to diffuse away from sending cells. A number of factors have been described
as Hh chaperones, from the Scube family of proteins, to lipoprotein particles, to Hh itself.

Movement of Hh between cells is regulated by numerous factors, including extracellular matrix
components [such as negatively charged heparan sulfate proteoglycans (HSPGs)] and cell surface
proteins (Cdon/Ihog, Boc/Boi, Gas1, Hhip). In addition to regulating Hh spreading, Cdon/Ihog,
Boc/Boi, and Gas1 also facilitate Hh reception as coreceptors. The cell surface protein Ptc ulti-
mately acts as a receptor for Hh.

In contrast to most other ligand–receptor pairs, Hh represses rather than activates Ptc upon
binding. Peculiarly, this repression of Ptc results in pathway activation. This is because unliganded
Ptc inhibits the G protein–coupled receptor (GPCR)-like protein Smoothened (Smo) (Ingham
& McMahon 2001), an essential activator of the cytoplasmic steps of Hedgehog signaling. When
bound to Hh, Ptc no longer represses Smo, which leads to Smo activation. How Ptc represses
Smo and how Hh represses Ptc are major open questions in the field. Once activated, Smo sets in

www.annualreviews.org • Sending and Receiving Hedgehog Signals 147

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
17

.3
3:

14
5-

16
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
T

ex
as

 T
ec

h 
U

ni
ve

rs
ity

 -
 L

ub
bo

ck
 o

n 
01

/0
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CB33CH07-Salic ARI 2 September 2017 13:10

1

2

3 4
5

6

4

Extracellular space

Multimeric Hh

Lipoprotein
particles

Primary
cilium

Scube

Hhip

Cdon
Boc

Disp 

HSPGs Gas1

Smo

Off state 

On state 

Ptc

Receiving cell

Nucleus 

SuFu

Cytoneme

Extracellular vesicle

Cholesterol

Palmitate

Frizzled-like CRD

Heparan sulfate

Transmembrane
helix

Six-bladed beta
propeller FnIII-like domain

EGF-like domain

GPI
anchor

GFRα-like domain

Ig-like domain

Cytoplasm

ER

Sending cell

Hhat/Ski 

HhN HhC

Hh

Proteasome

HhC

Gli

148 Petrov ·Wierbowski · Salic

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
17

.3
3:

14
5-

16
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
T

ex
as

 T
ec

h 
U

ni
ve

rs
ity

 -
 L

ub
bo

ck
 o

n 
01

/0
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CB33CH07-Salic ARI 2 September 2017 13:10

Hint/Hog: a protein
domain homologous
to self-splicing inteins
and to the C-terminal
domain of Hh proteins

motion the downstream steps in signal transduction, causing activation of the Zn-finger family of
transcription factors that mediate all transcriptional effects of the Hh pathway, the Gli1–3 proteins
in vertebrates, and the Ci protein in flies. The mechanisms involved in Gli/Ci regulation have
been reviewed elsewhere (Huangfu & Anderson 2006). Below, we discuss the mechanisms of Hh
synthesis, release, transport, and reception in more detail.

BIOSYNTHESIS OF THE HEDGEHOG LIGAND

Hh is the only protein known to be covalently modified with palmitoyl and cholesteryl moieties.
These posttranslational modifications are essential for the function of Hh and can occur indepen-
dently (Buglino & Resh 2008, Chen et al. 2004), although whether in vivo they affect each other’s
efficiency is unclear (Creanga et al. 2012).

Hh is first synthesized as a two-domain precursor, comprising an N-terminal signaling
domain, HhN, and a C-terminal Hint/Hog intein domain, HhC. The HhN domain is preceded
by a signal sequence, which targets the precursor for cotranslational translocation into the lumen
of the endoplasmic reticulum (ER). Removal of the signal sequence by a signal sequence protease
leaves a conserved cysteine as the first amino acid in HhN, a residue critical for the palmitoylation
reaction (Pepinsky et al. 1998). Palmitoylation is catalyzed by an ER-resident, membrane-bound,
O-acyltransferase termed Skinny hedgehog (Ski) in flies (Amanai & Jiang 2001, Chamoun et al.
2001, Chen et al. 2004, Lee & Treisman 2001, Micchelli et al. 2002) and Hh acyltransferase
(Hhat) in vertebrates (Buglino & Resh 2008, Konitsiotis et al. 2014). Hhat/Ski catalyzes a thioester
exchange reaction between the thiol group of the N-terminal cysteine and palmitoyl-CoA. The
cysteine thioester thus formed is thought to rearrange spontaneously via an S-to-N shift, whereby
the Nα-amine of the cysteine attacks the neighboring thioester, resulting in a stable amide
linkage between the palmitoyl moiety and HhN. Specificity of Hhat for HhN is encoded by a
short, conserved sequence in HhN that follows the acceptor cysteine; as few as the first six amino
acids of HhN are sufficient for Hhat-catalyzed palmitoylation (Buglino & Resh 2008).

Cholesterol modification is unique to Hh and is accomplished autocatalytically by the intein-
like activity of the HhC domain of the Hh precursor (Porter et al. 1996a,b). In a first step, the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Key biochemical and cellular events in the Hedgehog signaling pathway. (�) In sending cells, the Hedgehog ligand (Hh) is synthesized
as a precursor, with an N-terminal signaling domain (HhN, green) and a C-terminal domain (HhC, purple). (�) Hh undergoes
maturation in the endoplasmic reticulum (ER). Through the self-splicing activity of HhC, HhN is cleaved from the precursor and is
covalently modified with cholesterol on its C terminus. HhC is then cleared by ER-associated degradation. HhN is also palmitoylated
on its N terminus by the Hhat/Ski acyltransferase. (�) The dually lipidated mature ligand (Hh) is released from sending cell
membranes by the synergistic action of Dispatched (Disp, orange) and an extracellular chaperone. Potential chaperones include Hh
itself, lipoprotein particles, and the Scube family of proteins (top left) as well as extracellular vesicles (bottom left). (�) Hh moves through
the space between sending and receiving cells (center) either as a diffusible signal (top) or associated with cellular extensions known as
cytonemes (bottom). Extracellular Hh movement requires heparan sulfate proteoglycans (HSPGs, teal ) and is controlled by the Hh
coreceptors Cdon, Boc, and Gas1, as well as by the secreted protein Hhip. (�) In the absence of ligand, the Hedgehog pathway is
inactive (top right, background cell): The Hh receptor Patched (Ptc, purple) is concentrated in the primary cilium, whereas the
downstream transducer Smoothened (Smo, red ) is sequestered in intracellular compartments (top right, background cell). (�) The
pathway is activated upon Hh binding to Ptc, a process that requires the assistance of the Hh coreceptors. Hh binding directly inhibits
Ptc, relieving its repression of Smo. Ptc bound to Hh then exits the cilium and is degraded while Smo accumulates in the cilium in the
active form. Smo then causes activation of Gli transcription factors ( purple) by relieving their inhibition by the cytoplasmic
sequestration factor SuFu ( gray). Active Gli proteins subsequently move to the nucleus and drive transcriptional activation of
Hedgehog pathway target genes. Other abbreviations: CRD, cysteine-rich domain; EGF, epidermal growth factor; FnIII, fibronectin
type III; GPI, glycophosphatidylinositol; Ig, immunoglobulin.
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Protein disulfide
isomerase (PDI): an
ER-resident enzyme
that remodels disulfide
bridges to help protein
folding in the
secretory pathway

thiol group of a catalytic cysteine located at the junction between HhN and HhC reacts with
the preceding amide bond, forming an internal protein thioester, which serves as a C-terminally
activated form of the HhN domain. In a second step, the 3β-OH group of a cholesterol molecule
reacts with the thioester, cleaving the Hh precursor into cholesterylated HhN (in which cholesterol
is attached to the C terminus of HhN via an ester linkage) and free HhC. The rate of the intein
reaction is independent of Hh precursor concentration, suggesting that the reaction happens in cis
(Porter et al. 1995). The structure-activity relationship for the modifying sterol shows significant
flexibility, and many sterols besides cholesterol can drive Hh modification, as long as they possess
a 3β-OH group (Cooper et al. 1998, Mann & Beachy 2000). Binding of the HhC intein to
cholesterol is suspected to occur but has not been demonstrated. The presumed sterol-binding
site is likely located within the last 60 residues of HhC, as HhC lacking this portion can undergo
the first step (internal thioester formation), but not the second step (cholesterol attachment), of
the modification reaction (Hall et al. 1997).

Interestingly, autocatalytic cleavage of the Hh precursor by HhC requires the activity of protein
disulfide isomerases (PDIs) (Chen et al. 2011). PDIs are ER-resident enzymes that remodel disul-
fide bridges between cysteine residues to help protein folding in the secretory pathway (Wilkinson
& Gilbert 2004). In the case of HhC, the catalytic cysteine first forms a disulfide bridge with an-
other conserved cysteine in HhC; this bond may be required for proper folding of the HhC
domain. PDIs then reduce the disulfide bond, making the thiol group of the catalytic cysteine
available for the first step of the autoprocessing reaction.

HhC does not appear to have signaling activity, and its only function appears to be in HhN
cholesterylation. In fact, after the autoprocessing reaction is completed, free HhC is cleared by
ER-associated degradation (ERAD) (Chen et al. 2011). It is unclear how HhC is recognized as a
substrate for ERAD, given that ERAD generally recognizes misfolded proteins. Disulfide bridge
reduction, which precedes the autocatalytic reaction, may render HhC structurally unstable such
that it is recognized by the ERAD machinery and degraded. Interestingly, the HhC domain
can target the entire Hh precursor for ERAD. Thus, Hh precursor processing competes with
Hh degradation in the ER, which has implications for the etiology of developmental diseases
associated with mutations in the human SHH gene (Chen et al. 2011). These mutations reduce
Hh signaling by impairing Hh cholesterylation, thus favoring Hh precursor degradation over Hh
secretion. It remains to be determined whether competition between cholesterylation and ERAD
plays a role during normal Hh signaling, perhaps as a mechanism by which cholesterol levels in
the ER control the amount of generated ligand.

Dual-lipid modification makes Hh highly hydrophobic and therefore tightly associated with
cell membranes. This property seems at odds with the ligand’s well-established role in long-range
signaling, raising two key questions: (a) How is Hh released from sending cells, and (b) how does
Hh move between cells? In the next two sections, we describe how these processes are executed
on a molecular level.

HEDGEHOG LIGAND RELEASE FROM CELLS

The Role of Dispatched

The transmembrane protein Disp is required for Hh-dependent tissue patterning, acting specifi-
cally in sending cells (Burke et al. 1999, Caspary et al. 2002, Etheridge et al. 2009, Kawakami et al.
2002, Ma et al. 2002, Nakano et al. 2004). Importantly, Disp is not required for Hh-dependent
responses in receiving cells (Amanai & Jiang 2001, Ma et al. 2002, Tian et al. 2005), indicating
that it has no role in downstream signal transduction. In the absence of Disp, sending cells express
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Glycophosphati-
dylinositol (GPI):
a glycolipid attached
posttranslationally to
the C terminus of
certain proteins that
anchors them to the
plasma membrane

Resistance–
nodulation–division
(RND):
a class of multipass
transmembrane
proteins found in
bacteria and
eukaryotes; in
gram-negative
bacteria, RND
proteins form trimers
that localize to the
inner bacterial
membrane and use the
proton-motive force
across it to expel toxic
ions or small
molecules from cells

Extracellular
vesicles: implicated in
transport between
cells; can be derived
from intraluminal
vesicles of
multivesicular bodies
(exosomes) or formed
by budding from the
plasma membrane
(ectosomes)

Cytonemes: thin,
actin-based cellular
projections that help
relay signaling
molecules between
sending cells and
receiving cells

and process Hh correctly, but Hh accumulates on their surface (Burke et al. 1999, Kawakami et al.
2002, Ma et al. 2002), indicating a defect in ligand release. Interestingly, Disp is not required for
signaling between sending cells and immediately adjacent receiving cells, indicating a functional
distinction between juxtacrine and long-range Hh signaling processes.

Cholesterol modification of Hh is necessary and sufficient for Disp-dependent release (Burke
et al. 1999, Ma et al. 2002, Nakano et al. 2004, Tian et al. 2005). Furthermore, Disp acts specifically
on cholesterol anchors, as transmembrane- or glycophosphatidylinositol (GPI)-anchored variants
of Hh are not released by Disp (Burke et al. 1999). Consistent with this specificity, cross-linking
experiments using Hh modified with photoreactive cholesterol show that Disp interacts directly
with the cholesteryl moiety (Tukachinsky et al. 2012). How Disp participates in Hh mobilization
from membranes is unclear. An attractive model is that, in a first step, Disp acts catalytically
to extract the cholesteryl anchor from the lipid bilayer. This mechanism is consistent with the
homology between Disp and RND pumps of gram-negative bacteria (Ma et al. 2002, Tseng et al.
1999), which use the energy of the proton gradient across the periplasmic membrane to expel
lipophilic small-molecule substrates from cells. Then, in a second step, Disp transfers Hh to
an extracellular chaperone, ensuring that the cholesteryl anchor is moved without exposure to an
aqueous environment; this is reminiscent of the handoff of cholesterol from Niemann-Pick disease
protein C2 (NPC2) to Niemann-Pick disease protein C1 (NPC1) during cholesterol egress from
lysosomes (Kwon et al. 2009).

It has been proposed that, in addition to playing a role in Hh release, Disp functions in Hh
trafficking and sorting within sending cells, although the mechanism is unclear. Different studies
report that Disp localizes Hh to either the apical surface (Gallet et al. 2003) or the basolateral
surface (Callejo et al. 2011) of sending cells or that it directs Hh to either location indiscriminately
(Burke et al. 1999, Etheridge et al. 2009). Disp was proposed to localize to the basolateral surface
(Callejo et al. 2011), mediated by a region in its intracellular tail (Etheridge et al. 2009).

Although Disp may mediate Hh extraction from cell membranes, this activity is insufficient to
allow for Hh release and transport between cells. This function is accomplished by extracellular
Hh chaperones, which function downstream of Disp and solubilize Hh by shielding its lipid
modifications. The first chaperones we discuss are the Scube family of vertebrate proteins. Next,
we discuss Hh multimerization as a mechanism by which Hh may act as its own chaperone. We
then examine the role of lipoprotein particles and extracellular vesicles as Hh chaperones. Finally,
we discuss Hh transport at a distance along cellular projections known as cytonemes.

The Scube Family of Extracellular Chaperones

Genetic studies in zebrafish have identified the Scube family of secreted proteins as being impli-
cated in Hedgehog signaling (Hollway et al. 2006, Johnson et al. 2012, Kawakami et al. 2005, van
Eeden et al. 1996, Woods & Talbot 2005). Scube proteins are vertebrate specific, and most animals
have three paralogs: Scube1–3. Because of functional redundancy, the paralogs are individually
dispensable, but collectively they are strictly necessary for Hedgehog signaling in vivo. Epistasis
analysis of Scube2 in zebrafish shows that it acts upstream of Hh reception, although transplanta-
tion experiments between wild-type and Scube2-null fish embryos indicate that neither sending
nor receiving cells require Scube2 for proper signaling, provided that some Scube2-expressing
cells are present in the affected signaling domain. These data suggest that Scube proteins act
non-cell-autonomously between sending and receiving cells.

Scube proteins are composed of nine epidermal growth factor (EGF)-like repeats, a spacer,
three cysteine-rich domains (CRDs), and a CUB domain. Biochemical experiments revealed that,
in the presence of Disp, Scube2 enhances the release of Hh into aqueous solution (Creanga et al.
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2012, Tukachinsky et al. 2012) and that the CRDs and CUB domain are necessary for this activity.
Scube2 interacts directly with the cholesteryl anchor of Hh (Tukachinsky et al. 2012), suggesting a
simple mechanism for how Scube proteins solubilize Hh. It remains unclear how Disp and Scube2
cooperate during the handoff of Hh from the former to the latter.

Because Scube proteins are vertebrate specific, an open question is whether there exist function-
ally analogous proteins in invertebrates. One promising candidate is Drosophila Shifted, a secreted,
EGF-like domain–containing protein required for long-range signaling by Hh (Glise et al. 2005,
Gorfinkiel et al. 2005). Alternatively, the vertebrate and invertebrate pathways for Hh release
may have diverged during evolution such that vertebrates use Scube proteins as Hh chaperones,
whereas flies use alternative mechanisms (see below).

Soluble Hedgehog Ligand Multimers

A long-standing model for Hh release proposes that Hh overcomes the insolubility conferred by
lipidation by acting as its own chaperone, forming multimers that shield the lipid moieties from the
aqueous environment. This model is based on the observation of high–molecular weight species
of Hh in media conditioned by Hh-expressing cells (Chen et al. 2004, Gallet et al. 2006, Goetz
et al. 2006, Palm et al. 2013, Zeng et al. 2001). As the species initially observed was approximately
120 kDa in size, roughly six times the molecular weight of Hh, it was proposed that Hh forms
a hexamer. However, the size of Hh species varies between different sources, from ∼150 kDa
for vertebrate Shh to greater than 600 kDa for Drosophila Hh (Chen et al. 2004). The wide
range of observed sizes suggests that high–molecular weight Hh species may represent complexes
between Hh and other proteins, rather than multimers of Hh. Determining the composition of
high–molecular weight Hh species should help answer this question.

A direct role for Disp in the production of Hh multimers has not been established. Some studies
propose that the multimeric Hh isolated biochemically may correspond to the large punctate
structures in which Hh is observed by microscopy in vivo; such studies indirectly suggest a role
for Disp in multimer release, as the large punctate structures appear to depend on Disp (Burke
et al. 1999; Gallet et al. 2003, 2006; Porter et al. 1996a; Tabata & Kornberg 1994; Taylor et al.
1993). However, the structures may consist not of Hh multimers, but rather of Hh clustered by
Hh-binding proteins (Vyas et al. 2008).

Hedgehog Ligand Release by Lipoproteins and Extracellular Vesicles

Hh can be efficiently released from cells by lipoprotein particles (Palm et al. 2013, Panáková et al.
2005), an effect perhaps driven by the interaction between lipids in the particles and lipid moieties
of Hh. This interaction is not specific for Hh, as lipoproteins also release other lipidated ligands,
such as Wnt proteins (Panáková et al. 2005). It is unclear, however, what role lipoproteins play
in Hedgehog signaling, as they do not appear to be required for signaling in vivo (Panáková et al.
2005). It also remains to be determined whether and how release of Hh by lipoproteins requires
Disp. Unexpectedly, Hh released by lipoproteins has low activity in signaling assays (Palm et al.
2013), and exogenous addition of lipoproteins inhibits Hh signaling. These findings raise the
question of how Hh released on lipoproteins overcomes this inhibition.

Recently, several groups have proposed that, at least in flies, Hh is released loaded on extra-
cellular vesicles (Gradilla et al. 2014, Matusek et al. 2014, Parchure et al. 2015). Supporting this
model, in wing disks, punctate structures with extracellular Hh colocalize with CD63, a marker of
extracellular vesicles (Gradilla et al. 2014). Immuno-electron microscopy of wing discs (Gradilla
et al. 2014) and of high-speed pellets from Hh-conditioned media (Matusek et al. 2014) reveals
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Endosomal sorting
complex required for
transport (ESCRT):
a set of cytoplasmic
protein complexes that
cooperate to drive
membrane budding
away from the cytosol,
including biogenesis of
multivesicular bodies

Multivesicular
bodies:
endosomes containing
intraluminal vesicles
generated by inward
budding of their
limiting membrane

Glypican: a major
class of HSPG that is
membrane associated
via a GPI anchor

vesicles containing Hh, Disp, and the Hh coreceptor Ihog. Such vesicles also contain exosomal
markers and components of the endosomal sorting complex required for transport (ESCRT).
Furthermore, disruption of specific ESCRT proteins affects long-range Hh signaling in the wing
disc and causes apical accumulation of Hh in sending cells. Although there is no agreement on the
cellular compartment—plasma membrane or multivesicular bodies—from which these extracel-
lular vesicles are derived, different studies propose a potential trafficking function for Disp in the
biogenesis of Hh-containing exovesicles (Callejo et al. 2011, D’Angelo et al. 2015). Further study
is required, particularly in vertebrate systems, to ascertain a role for Disp in the production of such
extracellular vesicles and to confirm whether the isolated Hh-containing vesicles have signaling
activity.

Hedgehog Ligand Transport Along Cytonemes

Cytonemes are long and thin (up to 200 μm in length but only ∼0.2 μm in diameter) actin-
based cellular extensions (Ramı́rez-Weber & Kornberg 1999). Cytonemes have been proposed to
mediate Hh transport to distant cells on the basis of the observations that they project from the
basal surface of sending cells in the Drosophila wing disc and that they host Hh, Disp, and Ihog
(Callejo et al. 2011, Gradilla et al. 2014). Unlipidated HhN and inactive Disp are absent from
cytonemes. Furthermore, functional experiments show a correlation between cytoneme length and
range of Hh signaling, consistent with the idea that cytonemes mediate Hh transport. A recent
study supports the claim that Hh is transported on cytonemes in vertebrates as well (Sanders et al.
2013), suggesting that this mechanism is general.

Although cytonemes may provide a solution to the problem of Hh transport at a distance, it is
unclear how Hh moves from the cytonemal membrane to the surface of the receiving cell. It is not
known whether Hh chaperones are implicated in this step. In Drosophila, Hh-positive exovesicles
may associate with cytonemes and move along them (Gradilla et al. 2014), suggesting a role for
vesicles in releasing Hh from cytonemes. Another possibility is that Hh transfer from cytonemes to
receiving cells is similar to Hh movement between cells during juxtacrine Hh signaling, a process
that remains poorly understood mechanistically.

HEDGEHOG LIGAND TRANSPORT

The Role of Heparan Sulfate Proteoglycans

On the way to distant receiving cells, Hh must traverse a dense extracellular environment. This
transport process is thought to be facilitated by HSPGs (Bellaiche et al. 1998, Han et al. 2004,
Lin et al. 2000, Rubin et al. 2002, The et al. 1999), which are glycoproteins containing one or
more heparan sulfate glycosaminoglycan chains (Sarrazin et al. 2011). The role of HSPGs in
Hedgehog signaling was discovered by examining mutants lacking specific glycosyltransferases
and polymerases, enzymes responsible for heparan sulfate synthesis and transfer. For example,
Hedgehog signaling is severely attenuated in fruit fly mutants lacking the glycosyltransferase tout-
velu (ttv) or the UDP-glucose dehydrogenase sugarless (Bellaiche et al. 1998, Gallet et al. 2003,
Häcker et al. 1997, The et al. 1999). Similar results are observed in tissues lacking exostoses, which
are vertebrate homologs of ttv (Lin 2004, Lin et al. 2000).

Further evidence for the importance of HSPGs in Hedgehog signaling comes from examining
mutants lacking the HSPG protein scaffold. In Drosophila, a cell-bound HSPG, the Dally-like
glypican, is required for signaling in vivo and in vitro and has non-cell-autonomous as well as cell-
autonomous roles (Desbordes & Sanson 2003, Gallet et al. 2008, Lum et al. 2003, Yan et al. 2010).
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FnIII: fibronectin
type III

In vertebrates, the glypicans GPC1, GPC4, and GPC6 promote Hedgehog signaling, whereas
GPC2, GPC3, and GPC5 appear to inhibit signaling (Campos-Xavier et al. 2009, Capurro et al.
2008, Williams et al. 2010).

It is thought that HSPGs promote Hedgehog signaling by facilitating Hh transport between
cells. This model is supported by two observations. First, Hh accumulates on the surface of cells
in the absence of heparan sulfate synthesis (Bellaiche et al. 1998, Gallet et al. 2003, Han et al.
2004). Second, Hh binds heparan sulfate glycosaminoglycans (Chan et al. 2009, Chang et al. 2011,
McLellan et al. 2006, Rubin et al. 2002, Whalen et al. 2013) with low-micromolar affinity.

The extent of coordination between Hh release and transport is unclear. Specifically, whether
and how Hh chaperones interact with HSPGs and other components of the extracellular milieu
are open questions.

Hhip: An Extracellular Hedgehog Ligand Antagonist

Whereas HSPGs facilitate extracellular Hh transport, the vertebrate protein Hhip antagonizes
it (Chuang & McMahon 1999, Holtz et al. 2015, Kwong et al. 2014). Initially believed to be a
transmembrane (Chuang & McMahon 1999) or GPI-anchored protein (Bosanac et al. 2009), Hhip
was recently shown to be secreted and to associate with the extracellular matrix by binding HSPGs
(Holtz et al. 2015). Hhip is composed of a basic CRD, a six-bladed beta propeller domain, and
two EGF-like repeats. The CRD mediates binding to HSPGs, whereas the beta propeller domain
binds vertebrate Shh (Bishop et al. 2009, Bosanac et al. 2009) with low-nanomolar affinity. The
Hhip-binding surface of Shh overlaps with the surface thought to interact with the Ptc receptor,
explaining why Hhip acts as a negative regulator of Hh signaling via ligand sequestration.

THE FUNCTION OF CORECEPTORS IN HEDGEHOG
LIGAND RECEPTION

On the surface of receiving cells, Hh must ultimately bind to its receptor, Ptc. This process is facil-
itated by a set of membrane proteins known as Hh coreceptors, consisting of the immunoglobulin
superfamily (IgSF) members Cdon/Ihog and Boc/Boi (Okada et al. 2006, Tenzen et al. 2006, Yao
et al. 2006, Zhang et al. 2006) and the GPI-anchored protein Gas1 (Allen et al. 2007, Lee & Fan
2001, Martinelli & Fan 2007). IgSF coreceptors are found in both invertebrates (Ihog and Boi)
and vertebrates (Cdon and Boc), whereas Gas1 is present only in vertebrates.

Coreceptors are collectively necessary for Hedgehog pathway activation (Allen et al. 2011,
Camp et al. 2010, Yan et al. 2010, Zheng et al. 2010), but due to redundancy, they are individually
dispensable. Further evidence for the role of coreceptors comes from experiments showing that
their overexpression induces a cell-autonomous increase in Hh signaling both in vivo (Allen et al.
2011, Martinelli & Fan 2007, Tenzen et al. 2006) and in cell culture (Yao et al. 2006, Zhang
et al. 2006). Importantly, cell-autonomous pathway activation depends on Hh, suggesting that the
coreceptors facilitate ligand reception rather than promote downstream signaling through other
mechanisms.

The IgSF coreceptors are type I transmembrane proteins. Their extracellular domains are
composed of a variable number of Ig-like repeats, followed by fibronectin type III (FnIII) repeats.
Binding between IgSF coreceptors and ligand is mediated by FnIII repeats. Surprisingly, Hh binds
different FnIII repeats in different IgSF orthologs. For example, Hh binds to the first FnIII repeat
in fruit fly Ihog (Yao et al. 2006, Zheng et al. 2010) and to the third FnIII repeat of vertebrate Cdon
and Boc (Okada et al. 2006, Tenzen et al. 2006, Yao et al. 2006). Orthologous IgSF coreceptors
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also differ in cofactor requirement for Hh binding: Ihog requires heparan sulfates (McLellan et al.
2006), whereas Cdon and Boc require calcium (McLellan et al. 2008).

Gas1 is a GPI-anchored membrane protein that consists of two CRDs (Cabrera et al. 2006,
Rosti et al. 2015) followed by a flexible linker (Stebel et al. 2000). In contrast to binding between
Hh and IgSF coreceptors, binding between Hh and Gas1 has not been thoroughly studied. A
Gas1 point mutant defective in Hh binding has been identified (Pineda-Alvarez et al. 2011).
Furthermore, mutagenesis experiments suggest that Gas1 likely binds a Hh surface different from
the one bound by IgSF coreceptors, Ptc, and Hhip (Martinelli & Fan 2009).

In addition to binding Hh, the coreceptors also bind Ptc in both vertebrates and invertebrates.
This interaction depends on the second FnIII repeat in Ihog (Zheng et al. 2010) and on the first and
second FnIII repeats in Cdon/Boc (Izzi et al. 2011). Gas1 also binds Ptc, but which part of Gas1 is
involved has not been defined. On the Ptc side, coreceptor binding requires the first extracellular
loop of Ptc. Cdon/Boc and Gas1 appear to bind to the same site on Ptc, indicating that Ptc is bound
either to an IgSF coreceptor or to Gas1 (Izzi et al. 2011). Interestingly, coreceptor binding to Ptc
does not depend on Hh, suggesting that the coreceptors and Ptc may form a holocomplex, which
may be the functionally relevant form of the Hh receptor in vivo (Zheng et al. 2010). Cdon and
Boc, however, have not been observed at the primary cilium (Song et al. 2015) where Ptc localizes
in vertebrates, suggesting that at least these two coreceptors are not constitutively associated with
Ptc.

Experiments in Drosophila (Yao et al. 2006, Zheng et al. 2010) and mammalian cell culture
(Martinelli & Fan 2007) show that coreceptors synergize with Ptc to promote Hh binding to cells.
Ligand binding in the presence of both a coreceptor and Ptc is considerably greater than the sum
of binding when only one is present; more strikingly, Drosophila Ptc does not bind ligand in the
absence of Ihog (Yao et al. 2006). This synergistic binding activity requires both the Hh- and Ptc-
binding domains of the coreceptor (Zheng et al. 2010), matching the requirements for coreceptor-
mediated promotion of Hedgehog signaling in vivo (Song et al. 2015, Tenzen et al. 2006, Zheng
et al. 2010) or in vitro (Bae et al. 2011). However, the mechanism underlying coreceptor-mediated
binding of Hh to Ptc remains subject to debate. One complicating issue is that Ihog and Boi are
required for proper surface presentation of Ptc (Zheng et al. 2010). In the absence of affinity
measurements, it is thus unclear whether the observed synergistic binding represents an increase
in affinity, as expected for a stable heteromeric coreceptor–Ptc complex, or an increase in the
number of available binding sites, as expected if coreceptors promote Ptc localization to the cell
surface.

Available data on the interaction between coreceptors, Hh, and Ptc suggest that different
coreceptors have different mechanisms for promoting Hh signaling. Ihog/Boi (Beachy et al. 2010;
McLellan et al. 2006, 2008) and Gas1 (Martinelli & Fan 2009) bind Hh through sites that do not
overlap with the ligand’s putative Ptc-binding site, consistent with formation of a ternary complex.
In contrast, Cdon and Boc bind a site on Hh that overlaps with that bound by Ptc, and the FnIII
domain of Cdon competes with Ptc for Hh binding (McLellan et al. 2008). These observations
suggest that Cdon and Boc may compete for ligand with Ptc rather than directly facilitate Hh–
Ptc binding. Thus, Cdon/Boc may facilitate Hh–Ptc binding indirectly, concentrating Hh on the
membrane of receiving cells and thus increasing the likelihood of its productive interaction with
Ptc. Consistent with such a mechanism, a chimeric coreceptor consisting of the first and second
FnIII repeats of Cdon and the third FnIII repeat of Boc does not bind Ptc and yet promotes
ectopic signaling in vivo (Song et al. 2015), raising the intriguing possibility that IgSF coreceptor
function may be independent of physical association with Ptc.

Due to cell-autonomous and non-cell-autonomous effects, Hh-binding proteins like Ptc and
the coreceptors affect Hh signaling in vivo in complex ways by affecting the distribution and
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FEEDBACK IN HEDGEHOG SIGNALING

Transcriptional feedback controls are characteristic features of many signaling pathways. In the case of the Hedgehog
pathway, most feedback control mechanisms are negative, limiting the magnitude of the evoked response. A number
of positive regulators of the pathway [such as the vertebrate coreceptors Cdon, Boc (Tenzen et al. 2006), and Gas1
(Allen et al. 2007)] are transcriptionally inhibited by Hh stimulation; conversely, the negative regulators Ptc1
(Capdevila et al. 1994, Marigo & Tabin 1996), Ptc2 (Motoyama et al. 1998b, Rahnama et al. 2004), and Hhip
(Chuang & McMahon 1999) are upregulated by signaling. Interestingly, all these feedback-regulated proteins bind
Hh. Thus, this feedback regulates the sensitivity of responding cells to ligand and shapes the Hh morphogen
gradient (Chen & Struhl 1996, Gallet & Therond 2005, Holtz et al. 2013, Torroja et al. 2004).

Although these feedbacks are known to have important roles in Hh-mediated patterning during embryogenesis,
understanding their full effect will require quantitative study. Appropriate methods need to be developed to measure
the distribution of Hh and that of its binding partners in time and space, as well as cellular responsiveness to Hh.
Quantifying these parameters and then integrating them with the cellular movement characteristic of developing
tissues are major challenges, yet such developments promise to yield key insights into the mechanisms of metazoan
development and to provide clues to the evolution and diversity of metazoan body plans.

potency of Hh. This complexity is compounded by transcriptional feedback control of the expres-
sion of these proteins. For more information, see sidebar titled Feedback in Hedgehog Signaling.

THE ROLE OF PATCHED IN HEDGEHOG SIGNALING

Ptc inhibits Smo, and Hedgehog signaling is triggered when Hh binds and inhibits Ptc, thereby
derepressing Smo. The biochemical basis for these inhibitory interactions remains poorly under-
stood. We discuss some recent findings pertaining to these processes.

Patched Repression of Smoothened

Initial models for Ptc function proposed that it inhibits Smo through direct binding and that
ligand-induced disassociation of the complex results in Smo derepression (Goodrich & Scott
1998, Murone et al. 1999, Stone et al. 1996). This model was largely abandoned after it was found
that Ptc and Smo have distinct subcellular distributions (Corbit et al. 2005, Denef et al. 2000,
Huangfu & Anderson 2005, Rohatgi et al. 2007). In the absence of Hh, Ptc is distributed over the
entire plasma membrane in Drosophila cells or is concentrated in the primary cilium in vertebrate
cells. In unstimulated cells, Smo is degraded (in the case of Drosophila Smo) or is sequestered in an
endomembrane compartment (in the case of vertebrate Smo). Upon pathway stimulation by Hh,
Ptc is endocytosed and degraded, leading to Smo accumulation over the entirety of the plasma
membrane (Drosophila) or just in cilia (vertebrates).

Currently, it is thought that Ptc acts as an ion-driven pump to inhibit Smo activity, perhaps
by transporting a metabolite. This model is consistent with two observations. First, Ptc shares
some similarity with bacterial RND permeases, which use proton gradients across the plasma
membrane to pump toxic substances out of cells (Li & Nikaido 2009, Tseng et al. 1999). Second,
small amounts of Ptc are sufficient to inhibit Smo, suggesting that Ptc acts in a catalytic manner
(Ingham et al. 2000, Taipale et al. 2002).
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Ptc and bacterial RND proteins share a conserved topology, with 12 transmembrane helixes
(TMs) and an extracellular domain consisting of two large loops (loop 1 between TM1 and TM2
and loop 2 between TM6 and TM7). Although the primary sequence of Ptc and RND proteins
diverges substantially, TM4 harbors a conserved GxxxDD motif, where x symbolizes amino acids
A/V/G/L/I. Crucially, the first aspartate residue of the motif is required for function in both Ptc
and RND proteins (Su et al. 2006, Taipale et al. 2002, Yu et al. 2003). In the case of RND pumps,
the aspartate is part of a proton relay network. Protonation/deprotonation of the aspartate side
chain is coupled to conformational changes in the rest of the protein such that substrates are bound
or released, coupling proton conductance to substrate pumping (Pos 2009, Seeger et al. 2006).
Bacterial RND permeases are trimers, and Ptc also appears to form oligomers. This is indicated
by the observations that Ptc monomers coimmunoprecipitate with each other (Lu et al. 2006) and
that loss-of-function Ptc mutants act as dominant negatives toward wild-type Ptc ( Johnson et al.
2000, Martı́n et al. 2001).

The hypothesis that Ptc functions as an ion-driven small-molecule pump to inhibit Smo is
attractive because it is also consistent with the idea of Smo regulation by an endogenous metabo-
lite. It has been proposed that, in vertebrates, Ptc uses the energy of a proton gradient to expel
vitamin D3 or provitamin D3 from cells and that vitamin D3 or provitamin D3 would then bind
and inhibit Smo (Bijlsma et al. 2006, Roberts et al. 2016). Although it is formally possible that Ptc
regulates Smo by supplying it with an inhibitor, this model conflicts with a number of observations.
First, there is no proton-motive force across the plasma membrane of vertebrate cells. Second,
other reports did not confirm inhibition of vertebrate Smo by vitamin D3 or provitamin D3
(Sever et al. 2016, Wilson et al. 2009). Third, vertebrate Smo appears to require a small-molecule
activator rather than an inhibitor (Cooper et al. 2003).

Another model, based on studies in flies, proposes that Drosophila Ptc inhibits Drosophila Smo
by regulating trafficking of lipoprotein-derived lipids (Callejo et al. 2008, Eaton 2008, Khaliullina
et al. 2009, Panáková et al. 2005). Specifically, Ptc would mediate the export of a lipid factor that is
necessary for inhibition and/or degradation of Smo. This model is consistent with the observation
that, in Drosophila, Smo levels are low in the presence of Ptc and rapidly increase upon pathway
stimulation (Denef et al. 2000, Zhu et al. 2003). The model is also consistent with the fact that the
C-terminal tail of Drosophila Ptc, which is necessary for its endocytosis ( Johnson et al. 2000, Lu
et al. 2006), is also important for Drosophila Smo repression. A key prediction of this model is that
endocytosis of Ptc is necessary for Smo repression; however, blocking endocytosis does not result
in pathway activation (Torroja et al. 2004). Also significant is that modulating lipoprotein levels
affects Drosophila Smo levels but is accompanied by only a modest effect on Hedgehog target gene
expression (Callejo et al. 2008, Khaliullina et al. 2009, Panáková et al. 2005).

On the whole, the mechanism by which Ptc represses Smo remains unclear. Any proposed
model would have to account for the observed conservation between Ptc and RND permeases
and for the high potency of Ptc as a Smo repressor. Additionally, a model for Ptc should be
consistent with established mechanisms of Smo regulation, such as the key role of the CRD of
Smo and its associated ligand(s) (see section titled Activation of Smoothened). The mechanism
of Smo regulation by Ptc may differ between invertebrates and vertebrates. One indication of
divergence is the differential requirement of the cytoplasmic tail of Ptc, which is required for
pathway repression in Drosophila but is dispensable in vertebrates (Harvey et al. 2014, Johnson et al.
2000). Some conserved residues are also differentially required for activity: D584 in Drosophila Ptc
is necessary for pathway repression, whereas the homologous D585 in mouse Ptc1 is dispensable
( Johnson et al. 2002).
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Inhibition of Patched by Hedgehog Ligand

Soon after the hh and ptc genes were identified and cloned (Goodrich et al. 1996, Hooper &
Scott 1989, Ingham et al. 1991, Lee et al. 1992, Nakano et al. 1989, Roelink et al. 1994, Tabata &
Kornberg 1994), it was discovered that Hh directly binds the extracellular domain of Ptc with low-
nanomolar affinity (Briscoe et al. 2001, Chen & Struhl 1996, Fuse et al. 1999, Marigo et al. 1996,
Pepinsky et al. 2000, Stone et al. 1996). The Ptc-binding surface of Hh is thought to overlap with
the surface that binds Cdon/Boc, Hhip, and the inhibitory antibody 5E1 (Beachy et al. 2010, Maun
et al. 2010). Binding to Ptc requires the globular part of Hh (residues around the pseudoactive
zinc hydrolase site) and a stretch of residues located within a 22-amino-acid extended N-terminal
peptide of Hh (Fuse et al. 1999, Hall et al. 1995, Pepinsky et al. 2000, Tukachinsky et al. 2016,
Williams et al. 1999).

Palmitoylation of Hh is critical for Ptc inhibition, as shown by experiments in which palmi-
toylation was blocked by genetic inactivation of Hhat/Ski (Chamoun et al. 2001, Konitsiotis et al.
2014), by pharmacological inhibition of Hhat (Petrova et al. 2013), or by mutation of the accep-
tor cysteine in Hh (Goetz et al. 2006, Pepinsky et al. 1998). Consistent with these observations,
unpalmitoylated Shh is much less potent than palmitoylated Shh (Dawber et al. 2005, Kohtz et al.
2001, Lee et al. 2001). Additionally, a Shh mutant lacking palmitoylation and the first nine amino
acid residues (Shh�9) is completely inactive. Strikingly, Shh�9 binds Ptc with the same high
affinity as does palmitoylated Shh and, moreover, acts as a dominant-negative inhibitor toward
the latter (Williams et al. 1999). This finding indicates that the palmitoylated N-terminal peptide
of Shh is required for Ptc inhibition at a step downstream of high-affinity binding.

Recently, a short, palmitoylated N-terminal peptide of Shh was shown to be sufficient for Ptc
inhibition and Hedgehog pathway activation (Tukachinsky et al. 2016). The peptide inhibits Ptc
by direct binding, including a contact between the palmitoyl moiety and Ptc. This interaction is
separable from the high-affinity binding of Ptc to the rest of Shh, indicating a two-pronged contact
between Shh and Ptc, reminiscent of the interaction observed between palmitoylated Wnt and
Frizzled (Fz) ( Janda et al. 2012). Interestingly, although the palmitoylated peptide mimics Shh
by inhibiting Ptc, it differs from Shh in its effect on Ptc trafficking and turnover. Shh induces Ptc
endocytosis (Incardona et al. 2000) and degradation, whereas the palmitoylated peptide does not
(Tukachinsky et al. 2016). Thus, internalization and inhibition of Ptc are separable, and internal-
ization is dispensable for Ptc inhibition. This conclusion is consistent with in vivo experiments
that show that Ptc endocytosis is not required for pathway activation by Hh (Torroja et al. 2004).
Interestingly, Shh�9 induces Ptc internalization, but not pathway activation, suggesting that in-
ternalization alone is not sufficient for inhibition; perhaps internalization is not complete, and Ptc
left on the cell surface is sufficient for Smo repression.

The fact that Ptc bound to the palmitoylated peptide is inactive but not internalized suggests
that it may adopt a conformation distinct from unliganded Ptc (which is active and on the cell
surface) and from Shh-bound Ptc (which is inactive and internalized). Furthermore, the palmi-
toylated peptide does not bind point mutants of Ptc that cause Gorlin cancer syndrome and that
have greatly reduced activity; this observation is consistent with these disease mutants adopting a
conformation different from that of wild-type Ptc. Together, these results suggest the possibility
that Ptc, like RND permeases, undergoes conformational cycling as part of its Smo-repressing
function. In this model, inhibition of Ptc by Hh or by oncogenic mutations would result from
conformational trapping, which interrupts normal cycling.

Significantly, there are contexts in which palmitoylation of Hh is not absolutely required for
pathway activation, such as in some tissue explant experiments or in vivo (Kohtz et al. 2001, Lee
et al. 2001, Roelink et al. 1995); this dispensability may be due to the higher sensitivity of some
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Cyclopamine:
a natural steroidal
alkaloid antagonist of
Smo; named for its
cyclopia-causing
teratogenic effect

SANT-1: a synthetic
Smo antagonist

Vismodegib:
a synthetic Smo
antagonist developed
by Genentech for
treatment of basal cell
carcinoma; the first
FDA-approved
Hedgehog pathway
antagonist

SAG: a synthetic Smo
agonist

tissues to Hh. For example, in tissues expressing less Ptc, ligand-induced internalization, which
does not require ligand palmitoylation, may lower surface Ptc levels enough to trigger Hh pathway
activation.

In contrast to Drosophila, which has one Ptc gene, vertebrate genomes have two orthologs: Ptc1
and Ptc2 (Carpenter et al. 1998, Motoyama et al. 1998b). The two proteins are very similar in
sequence and behave similarly with respect to inhibition of Smo and response to Hh (Alfaro et al.
2014, Holtz et al. 2013, Klein et al. 2016, Lee et al. 2006, Zhulyn et al. 2015). However, Ptc1
is clearly the major regulator of Smo in vivo, as Ptc2 seems to be less potent and is expressed at
much lower levels than Ptc1 (Motoyama et al. 1998a,b).

ACTIVATION OF SMOOTHENED

Smo belongs to class F/class 6 of the seven-transmembrane (7TM) superfamily of receptors, which
includes Fz proteins. This class contains an N-terminal CRD, which, in the case of Fz proteins,
binds Wnt ligands. It has long been thought that Smo is regulated by an endogenous ligand, like
other 7TM receptors. Consistent with the existence of an endogenous ligand, vertebrate Smo
harbors at least two separable small-molecule-binding sites: one in the CRD and the other in the
7TM domain. A number of crystal structures of Smo homologs were recently published: some
of the isolated CRD (Huang et al. 2016, Nachtergaele et al. 2013, Rana et al. 2013), some of the
7TM portion of the protein (Wang et al. 2013, 2014; Weierstall et al. 2014), and one of the CRD
together with the 7TM domain (Byrne et al. 2016). These structures have shed light on ligand
binding and recognition by the two sites in Smo and on the nature of the endogenous ligand.

The Smo CRD fold is similar to that of the Frizzled 8 (Fz8) CRD. Both CRDs are stabilized
by five disulfide bridges, and both feature homologous hydrophobic binding grooves that serve as
ligand-binding sites. In the case of the Fz8 CRD, the groove is the binding site for the palmitoyl
moiety of Wnt ( Janda et al. 2012), whereas in the Smo CRD, the site binds sterols [such as
cholesterol and 20(S)-hydroxycholesterol] or sterol-like molecules (such as cyclopamine and 22-
azacholesterol) (Byrne et al. 2016, Huang et al. 2016, Nachtergaele et al. 2013, Nedelcu et al.
2013).

The transmembrane helices of Smo pack in a manner similar to that of class A/class 1 GPCRs.
The 7TM domain of vertebrate Smo harbors a second small-molecule-binding site, which can
be occupied by a large number of structurally diverse antagonists and agonists. Notable examples
of Smo antagonists that bind the 7TM site are SANT-1, cyclopamine, and vismodegib, the last
finding application in the clinic as an anticancer drug. An example of a 7TM-binding agonist is the
synthetic small-molecule SAG (Chen et al. 2002). Although crystal structures of the Smo 7TM
domain in complex with agonists and antagonists have been solved (Byrne et al. 2016, Wang &
Pernow 2002, Wang et al. 2013), it is not yet clear how these small molecules modulate Smo,
as no large conformational changes have been observed between agonist- and antagonist-bound
structures.

For vertebrate Smo, several lines of evidence suggest that the endogenous ligand is likely an
activating sterol. First, sterols are necessary for Smo activation, as shown by nonspecific sterol
depletion and by inhibition of cholesterol biosynthesis (Cooper et al. 2003). Second, some oxy-
sterols, such as 20(S)-hydroxycholesterol, activate Hh signaling at the level of Smo (Corcoran
& Scott 2006, Dwyer et al. 2007). Activation of Smo by sterols is mediated by their interaction
with the CRD (Nachtergaele et al. 2013, Nedelcu et al. 2013), and sterol binding to the CRD
correlates well with activation of the Hedgehog pathway. Finally, blocking sterol–CRD binding
by mutations in Smo (Byrne et al. 2016, Huang et al. 2016, Nachtergaele et al. 2013, Nedelcu
et al. 2013), or pharmacologically (Nedelcu et al. 2013), inhibits Smo activation by Hh.

www.annualreviews.org • Sending and Receiving Hedgehog Signals 159

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
17

.3
3:

14
5-

16
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
T

ex
as

 T
ec

h 
U

ni
ve

rs
ity

 -
 L

ub
bo

ck
 o

n 
01

/0
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CB33CH07-Salic ARI 2 September 2017 13:10

Although oxysterols, and particularly 20(S)-hydroxycholesterol, can activate Smo, they are
present in cells at much lower levels than is necessary for activation (Myers et al. 2013), making
them unlikely candidates for endogenous ligands. Recent studies indicate that cholesterol is the
endogenous activating ligand for vertebrate Smo. Cholesterol binds the Smo CRD and activates
Hedgehog signaling (Byrne et al. 2016, Huang et al. 2016); the binding constant for the Smo CRD–
cholesterol interaction is well within the range of endogenous cholesterol levels. Furthermore,
cholesterol, but not oxysterols, synergizes with Hh to activate Smo and Hedgehog signaling
(Huang et al. 2016). Finally, CRD mutants of Smo, which are resistant to activation by oxysterols,
remain sensitive to activation by cholesterol and to Hh (Huang et al. 2016, Luchetti et al. 2016).

An interesting question is whether the 7TM ligand-binding site of Smo is involved in Hedgehog
signaling, particularly because no endogenous ligands are known to bind to it. Mutants of the 7TM
site of Smo that completely abolish binding of several different synthetic ligands (both agonists
and antagonists) still respond to Hh and to sterols (Huang et al. 2016). Although a hypothetical
endogenous ligand might bind to the mutated 7TM site, these results suggest that the 7TM
site likely does not participate in Smo regulation during normal Hedgehog signaling. The 7TM
site, despite its doubtful physiological role, has proven very useful for developing highly potent
small-molecule inhibitors of Smo.

The case for a ligand for Drosophila Smo is less clear than for vertebrate Smo. Although the CRD
of Drosophila Smo is necessary for Hedgehog signaling (Aanstad et al. 2009), there is currently no
sterol that is known to be necessary and/or sufficient for activation. Glucocorticoids were proposed
to bind the CRD of Drosophila Smo (Rana et al. 2013); if so, functional experiments will be needed
to determine whether this class of molecules modulates Drosophila Smo activity. Alternatively, the
activating ligand for Drosophila Smo may not be a sterol, or else the protein may not require a
small-molecule ligand for its activation.

SUMMARY POINTS

1. The Hedgehog ligand is modified with both palmitoyl and cholesteryl moieties, causing
it to attach strongly to membranes.

2. The Hedgehog ligand requires the membrane protein Dispatched and extracellular chap-
erones for release from producing cells and for long-range signaling.

3. The Hedgehog ligand binds heparan sulfate proteoglycans, which are required for its
extracellular movement.

4. Extracellular distribution of the Hedgehog ligand is negatively regulated by its binding
to its membrane receptor, Patched, and to the secreted antagonist Hhip.

5. In the absence of ligand, Patched inhibits Hedgehog signaling by repressing the down-
stream seven-transmembrane protein Smoothened.

6. The Hedgehog ligand activates signaling by binding and inhibiting Patched, thus dere-
pressing Smoothened.

7. The coreceptors Cdon/Ihog, Boc/Boi, and Gas1 cooperate with Patched for ligand re-
ception and are collectively necessary for Hedgehog pathway activation.

8. Smoothened is activated by an endogenous ligand via its extracellular domain; in verte-
brates, the Smoothened ligand is cholesterol.
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FUTURE ISSUES

1. What is the mechanism of Dispatched-catalyzed Hedgehog ligand release?

2. What is the role of various factors proposed to function as extracellular chaperones for the
Hedgehog ligand? To what extent are different chaperones unique to model systems or
signaling contexts? How do these chaperones interface with downstream factors involved
in Hedgehog ligand transport and reception?

3. How can we employ cell culture, genetic, and biochemical approaches to study movement
of Hedgehog ligands in a more tractable, in vitro system?

4. How do Hedgehog coreceptors cooperate with Patched to facilitate ligand reception?
Do coreceptors perform redundant or unique roles?

5. What molecular features distinguish Hedgehog coreceptors from Hedgehog antagonists?
What determines whether a Hedgehog-binding protein potentiates or inhibits signaling?

6. How does Patched inhibit Smoothened? What are the substrate and source of energy
for Patched?

7. How is the Smoothened–cholesterol interaction regulated?

8. How does Smoothened couple to downstream Hedgehog pathway activation?
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Bae G, Domené S, Roessler E, Schachter K, Kang J, et al. 2011. Mutations in CDON, encoding a hedgehog
receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am. J.
Hum. Genet. 89(2):231–40

Beachy PA, Hymowitz SG, Lazarus RA, Leahy DJ, Siebold C. 2010. Interactions between Hedgehog proteins
and their binding partners come into view. Genes Dev. 24(18):2001–12

www.annualreviews.org • Sending and Receiving Hedgehog Signals 161

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
17

.3
3:

14
5-

16
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
T

ex
as

 T
ec

h 
U

ni
ve

rs
ity

 -
 L

ub
bo

ck
 o

n 
01

/0
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CB33CH07-Salic ARI 2 September 2017 13:10

Bellaiche Y, The I, Perrimon N. 1998. Tout-velu is a Drosophila homologue of the putative tumour suppressor
EXT-1 and is needed for Hh diffusion. Nature 394(6688):85–88

Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP. 2006. Repression of
smoothened by patched-dependent (pro-)vitamin D3 secretion. PLOS Biol. 4(8):e232

Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C. 2009. Structural insights into
hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat. Struct. Mol. Biol.
16(7):698–703

Bosanac I, Maun HR, Scales SJ, Wen X, Lingel A, et al. 2009. The structure of SHH in complex with HHIP
reveals a recognition role for the Shh pseudo active site in signaling. Nat. Struct. Mol. Biol. 16(7):691–97

Briscoe J, Chen Y, Jessell TM, Struhl G. 2001. A Hedgehog-insensitive form of patched provides evidence
for direct long-range morphogen activity of Sonic hedgehog in the neural tube. Mol. Cell 7(6):1279–91

Buglino JA, Resh MD. 2008. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic
hedgehog. J. Biol. Chem. 283(32):22076–88

Identifies Dispatched as
an RND family protein
necessary for Hedgehog
ligand secretion and
long-range signaling. Burke R, Nellen D, Bellotto M, Hafen E, Senti K-A, et al. 1999. Dispatched, a novel sterol-sensing

domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells.
Cell 99(7):803–15

Reports the crystal
structure of full-length
vertebrate Smoothened
in complex with
cholesterol.

Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, et al. 2016. Structural basis of Smoothened
regulation by its extracellular domains. Nature 535(7613):517–22

Cabrera JR, Sanchez-Pulido L, Rojas AM, Valencia A, Mañes S, et al. 2006. Gas1 is related to the glial
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