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Engaging undergraduate students in scientific research promises
substantial benefits, but it is not accessible to all students and is
rarely implemented early in college education, when it will have the
greatest impact. An inclusive Research Education Community (iREC)
provides a centralized scientific and administrative infrastructure
enabling engagement of large numbers of students at different
types of institutions. The Science Education Alliance-Phage Hunters
Advancing Genomics and Evolutionary Science (SEA-PHAGES) is an
iREC that promotes engagement and continued involvement in sci-
ence among beginning undergraduate students. The SEA-PHAGES
students show strong gains correlated with persistence relative
to those in traditional laboratory courses regardless of academic,
ethnic, gender, and socioeconomic profiles. This persistent in-
volvement in science is reflected in key measures, including proj-
ect ownership, scientific community values, science identity, and
scientific networking.
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E ngaging undergraduates in scientific research is educationally
advantageous, regardless of the students’ career aspirations
(1-3). Several well-established models, each with benefits and
challenges (4), provide this engagement. In apprentice-based re-
search experiences (AREs), students, typically in their later col-
lege years, perform research under the direct supervision of an
experienced mentor. An ARE can provide a high level of training,
but the opportunities are constrained by laboratory space and
supervisory capacity, imposing high-stakes selection for a relatively
small number of students (5). Course-based research experiences
(CRES ) represent a second model; in this case, students conduct
research as a class. In comparison with AREs, well-designed CREs
can engage more students earlier in the curriculum (6), which is
expected to have higher impact (7, 8). However, developing au-
thentic research activities suitable for a CRE is challenging. A
drawback of both models is that they largely exclude the 40% of
US undergraduate students who attend 2-y colleges or 4-y colleges
with limited research infrastructures (9).

A third model is the inclusive Research Education Community
(iREC), in which a common scientific problem is addressed by
students at multiple institutions that are supported by a central-
ized scientific and programmatic structure. Because of the cen-
tralized support, the iREC presents three advantages over other
models. (i) The iREC is inclusive, because it is designed for stu-
dents with few prerequisites, thus emphasizing the exploration of a
student’s potential rather than selection based on past accom-
plishments. (i) The iREC presents students at all types of insti-
tutions with the opportunity to participate in authentic research,
including at schools with little or no investigator-driven research.
@ii) The iREC encourages growth, because the programmatic
costs per student decrease as more students participate.

www.pnas.org/cgi/doi/10.1073/pnas.1718188115

The centralized scientific and programmatic structure of the
iREC encourages the development of a collaborative community,
in which the students interact with one another both within the
same institution and across institutions. The sense of community is
strengthened in several ways: all of the schools pursue the same
scientific problem, instructors from different institutions regularly
come together in training workshops and faculty meetings, and
students and faculty are presented with opportunities to share their
findings with one another [e.g., the Science Education Alliance—
Phage Hunters Advancing Genomics and Evolutionary Science
(SEA-PHAGES) annual symposium]. In these ways, the student’s
cognitive experience mirrors that of an experienced researcher, and
the social community aspects of scientific practice are apparent.
Because iRECs require robust centralized programmatic structures
that support the study of suitable research topics (10), iRECs are
rare (5). Examples include the Genomics Education Partnership
(11, 12), Small World Initiative (13, 14), and the SEA-PHAGES
program (15).

The special characteristics of the iREC make it a particularly
strong candidate for enhancing science education early in a student’s
career, with the long-term outcome of enhancing engagement
and student persistence in the sciences. The iREC educational

Significance

The Science Education Alliance-Phage Hunters Advancing Ge-
nomics and Evolutionary Science program is an inclusive Re-
search Education Community with centralized programmatic
and scientific support, in which broad student engagement in
authentic science is linked to increased accessibility to research
experiences for students; increased persistence of these students
in science, technology, engineering, and mathematics; and in-
creased scientific productivity for students and faculty alike.
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approach, fully implemented in the SEA-PHAGES program,
provides a testing ground to explore the outcomes of this ap-
proach in terms of scientific productivity, student engagement, and
student persistence in science, technology, engineering, and
mathematics (STEM). Here, we report the combined impacts of
research productivity and student persistence of the SEA-
PHAGES program. The synergy between research authenticity
and student engagement suggests that the iREC model could play
a transformative role in science education.

Results

SEA-PHAGES Program Infrastructure. The SEA-PHAGES program
seeks to understand viral diversity and evolution taught as a two-
term laboratory course research experience. The first term is focused
on bacteriophage isolation, purification, and DNA purification,

electron micro-

PHAGES faculty teams (purple box).

and the second term focuses on genome annotation and bio-
informatic analyses of the isolated phages (Fig. 1). Because the
phage population is vast, dynamic, old, and consequently, enor-
mously diverse (16, 17), the probability that a student will isolate a
phage with a new genome or with previously unidentified genes is
high (18, 19). When coupled with the technical simplicity of phage
isolation, rapid and cheap sequencing capabilities, and powerful
bioinformatic tools, SEA-PHAGES presents an accessible and
discovery-rich research experience.

Programmatic support and scientific support are critical for
success of an iREC. The SEA-PHAGES program elements include
the development and publication of detailed experimental proto-
cols, two 1-wk faculty training workshops in (i) phage discovery and
(i) bioinformatics, curated databases of students’ results, archiving
of collected bacteriophages, continuous system-wide assessment,

'Students have a positive |
impression of science

P

~——»{Students submit
DNA for_
P rtunents obtain__——Wr1sequencing

) —_ "4 P
'scope images —_aa
/ E;uvflfgicsu:tlaea;? ‘. —— — tstydents feelowner- ———— Studems see how they! e
y el 4 = :shlp of their research - 1|nt0 the scientific ﬁsc'ence classes
/ samples ; W communlly
samples ‘ ’_ %

Students learn how
to isolate/purify and
maintain phage

Instructors become
familiar with basic
research skills,
processes and
procedures

T 1

phage genomes

A4

A
'Students process
\genomes in
Phamerator

‘ A | ik
\ Students learn \ B a—
A aseptu: " 7,

*\_ [techni

™~ bioinformatics

— >

" |tific process skills

Students learn how
to extract and amplify
phage DNA and run
gels

Instructors develop and prepare for inquiry-
|based lab activities in SEA-PHAGES

Students are able

) ¥ to interpret their
Students annoiafe TN results and data

#Students gain scien-

4
Students see them-
selves as scientists

<

\
Students become more
interested in science

v 4

|Students engage| |
with the scientific’ | 2
oommunlty /

P
Students think
like sclentnsts

N ¥
i . _L Yl S
~___ [Students see them- s
selves as capable :
scientists
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green boxes, respectively). SI Appendix, Fig. S1 shows the entire model.
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scientific exchange in online forums, and an annual symposium. All
of the SEA-PHAGES faculty meet in a biennial faculty retreat, and
faculty also participate in advanced genome annotation workshops.
In addition, Science Education Alliance faculty teams contribute to
quality control of both sequence data and genome annotation (Fig. 1).
Two databases facilitate coordination of the scientific and pro-
grammatic data (phagesdb.org and https://seaphages.org, respectively).

Because of the potential complexity of SEA-PHAGES, we used
systems-level methods (20, 21) to construct a detailed pathway map
(Fig. 2 and SI Appendix, Fig. S1) that relates program activities to
short-, medium- and long-term outcomes in SEA-PHAGES. The
full model (SI Appendix, Fig. S1) captures all of the program ele-
ments and how they connect to outcomes, and a modest subset
illustrates the pathways linking course design with student persis-
tence (Fig. 2). This model is helpful for facilitating program de-
velopment, designing additional iRECs, and providing a
framework for assessment strategies.
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SEA-PHAGES Program Scale and Costs. The initial investment in
iREC administrative and programmatic structure facilitates pro-
gram growth. The SEA-PHAGES program has grown by addition
of 7-25 institutions each year, and over its 9-y development, it now
includes over 100 institutions (Fig. 34 and SI Appendix, Table S1),
spanning R1 universities to community colleges (Fig. 3B and SI
Appendix, Table S1). The 104 schools joining in the first 8 y
showed a strong propensity to continue for multiple years in the
program, and the probabilities for remaining after 3, 4, or 5y are
97, 89, and 87%, respectively; continuation rates are not signifi-
cantly different for schools joining in different years. The mas-
sively parallel approach enabled inclusion of over 4,000 students in
academic year 2016-2017 (16,300 total over 9 y) (Fig. 34), 80% of
whom were in their first or second year of study. Although scal-
ability of undergraduate research programs often presents sub-
stantial challenges (1), an iREC promotes cost efficiencies,
because the program administration expenditures are nearly in-
dependent of the number of students involved; thus, as the
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Program participants and research productivity from the SEA-PHAGES program. (A) Numbers of SEA-PHAGES institutions and students (blue and yellow bars,

respectively) participating by academic year (fall semester). (B) Carnegie Classifications of SEA-PHAGES participating institutions. Assoc/Other, associate’s colleges, and
others; Bac/A&S, baccalaureate colleges—arts & sciences; BadDiverse, baccalaureate colleges—diverse fields; M1-M3, larger, medium, and smaller master’s colleges
and universities, respectively; R1-R3, doctoral universities with highest, higher, and moderate research activity, respectively. (C) Numbers of phages isolated and
genomes sequenced (pink and aqua, respectively) by academic year. (D) Numbers of peer-reviewed SEA-PHAGES publications as Genome Announcements (Gen Ann)
and other peer-reviewed papers (Papers) (S/ Appendix, Table S2). (E) Citations of SEA-PHAGES papers, showing all citations and nonself-citations.
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number of participating institutions increases, the cost per student
decreases. For the SEA-PHAGES program, the current adminis-
trative costs per student (~$500, encompassing all of the support
items in Fig. 1) are 33% lower than 2 y previously, and additional
program growth will extend the cost-effectiveness. The low per
student cost enables the iREC to be delivered to large numbers of
students early in their undergraduate careers, thus encouraging
students to explore science in a relatively low-risk “gateway” expe-
rience. The iREC can introduce the student to research at a better
time and at a much lower cost than the more traditional ARE. For
those students who find research to be something that they want to
explore further, the iREC can provide a stepping stone to sub-
sequent AREs and should facilitate a more productive research
experience. We note that the instructional and material costs at
SEA-PHAGES participating institutions are greater than for tra-
ditional laboratories but are commensurate with other CREs.

SEA-PHAGES Research Productivity. The authenticity of the research
conducted in an iREC is critically important, not only for addressing
scientific questions but because it also influences the cognitive ex-
periences of student participants (22, 23). In the SEA-PHAGES
program, research productivity is reflected in the numbers of
phages isolated (~10,000 in total) (Fig. 3C) and sequenced (~1,400)
(Fig. 3C), representing substantial proportions of the total numbers
of all phages isolated and sequenced to date (24, 25). These findings
are reported in over 70 peer-reviewed publications (Fig. 3 D and E

and SI Appendix, Table S2) (including 40 short Genome An-
nouncement papers), many with student and SEA-PHAGES fac-
ulty coauthors. The availability of archived and sequenced phages
for experimental manipulation by the scientific community at large
provides a valuable resource for gaining insights into bacteriophage
biology (24, 25). This research productivity compares favorably with
that of one to two NIH RO1 grants (26, 27).

Impact of SEA-PHAGES on Student Intention to Persist in STEM. A key
iREC educational goal is for students to share the experience of the
professional research scientist, including the thrill of discovery, col-
laboration within a community, and advancing scientific knowledge
relevant to the broader community. These psychosocial elements are
strongly linked to educational persistence (28-31) and benefit all
students, regardless of their intended area of study. Using the psy-
chometric Persistence in the Sciences (PITS) assessment tool (28), we
compared 2,850 students taking either SEA-PHAGES or nonresearch
traditional laboratory courses at a total of 67 institutions. PITS en-
compasses five survey components: project ownership (with content
and emotion categories), self-efficacy, science identity, scientific com-
munity values, and networking, each measuring psychological com-
ponents that correlate strongly with a student’s intention to continue in
science (22, 28). We also collected information on academic perfor-
mance, socioeconomic status, and other demographics (SI Appendix).

To separate the influence of the type of course taken from other
variables, including the possibility of student self-selection of
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40of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1718188115

Hanauer et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718188115/-/DCSupplemental/pnas.1718188115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718188115/-/DCSupplemental/pnas.1718188115.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1718188115

L T

z

1\

=y

SEA-PHAGES or traditional laboratories, we used propensity
score matching (32) (Fig. 44). We observed large and significant
differences in five of six categories (all except self-efficacy, which
assesses students’ confidence in their abilities to function as sci-
entists) (Fig. 44), reflecting substantial gains by SEA-PHAGES
students. Of the measures used, self-efficacy is the one most
closely related to the primary goals of the typical nonresearch
traditional laboratory, which are to develop confidence in labora-
tory procedures and skills. The overall pattern of the PITS mea-
sures shows significant increases in multiple aspects of the research
experience (project ownership, science identity, science community
values, and networking) but little difference in student confidence
in laboratory procedures and skills (i.e., self-efficacy). Because the
experiments in SEA-PHAGES have greater uncertainty and are
directed by the necessities of authentic science, it is reassuring that
we did not observe a reduction in self-efficacy compared with
traditional laboratories. SEA-PHAGES and traditional laborato-
ries both encourage student development of procedural confi-
dence, but SEA-PHAGES adds an authentic research experience
that promotes continued engagement in science.

Because students were not randomly assigned at all 67 institu-
tions, it is plausible that the SEA-PHAGES courses could be
disproportionately populated with students interested in pursuing
science. To test this, we compared students declaring the highest
possible intent to stay in science and observed similarly strong
gains by SEA-PHAGES students (Fig. 4B). The surprisingly low
scores—correlating with poor persistence (28)—from students
with high intent to study science who are taking traditional non-
research laboratory courses resonate with national concerns about

science education (9). A simple interpretation is that students
keen on pursuing science interests were discouraged by their ex-
periences in traditional laboratory courses.

iREC Inclusion Promotes Broad Student Success. To examine the in-
clusive nature of the iREC, we compared student cohorts known to
have poor science persistence early in college careers (33, 34),
particularly first generation college students (Fig. 4C), women (Fig.
4D), underrepresented minorities (Fig. 4E), and underrepresented
men (Fig. 4F). The broadly shared gains by SEA-PHAGES stu-
dents strongly support the conclusion that the iREC model pro-
vides authentic research experiences (Fig. 4 C-E) to all students
with similar advantages. We also find that student responses are
similar for different types of institutions (Fig. 54)—with small
additional project ownership gains at community colleges relative
to other schools—and we hypothesize that the supportive iREC
programmatic structure (Fig. 1) facilitates success at institutions,
such as community colleges, that typically do not have robust
investigator-driven research activity. Students with different socio-
economic backgrounds (Fig. 5B), academic performance (Fig. 5C),
gender (Fig. 5D), and ethnicity (Fig. SE) also score similarly,
reinforcing the inclusive nature of the iREC as exemplified by the
SEA-PHAGES program. Finally, to confirm that students reliably
self-report their intention to persist in the sciences, we measured
the average numbers of science courses taken by subsets of stu-
dents in each of the three subsequent terms after their introductory
laboratory course (Fig. 5F). The SEA-PHAGES students enrolled
in a consistently higher number of science courses than students
taking traditional laboratory courses (Fig. 5F).
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Fig. 5. Comparisons of student subgroups taking the SEA-PHAGES courses on their intent to persist in the sciences. The PITS survey responses for equally
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gender (D), or ethnicity (E). Multivariate ANOVA (MANOVA) showed only small differences for some groups (institution type, P < 0.049; grade point average,
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Discussion

We have described here the iREC model for promoting student
persistence in STEM education. The iREC, as illustrated by SEA-
PHAGES, focuses on scientific discovery within a community ac-
cessible by early career undergraduate students and a centralized
administrative structure that supports a broad range of institutions.
Furthermore, it enables student development regardless of de-
mographic or academic background. We propose that the iREC
concept could have a transformative impact on science education
when expanded to include additional research topics. We encour-
age research institutions to design and implement additional iREC
programs. We emphasize that the authenticity of iREC research
topics is important, not only for promoting student engagement
through project ownership but also for program sustainability and
acquiring financial support.

Several important questions arise regarding SEA-PHAGES pro-
gram implementation and iREC development in general. For ex-
ample, the SEA-PHAGES program spans experimental approaches,
including microbiology, molecular biology, imaging, and computa-
tional biology, and the contributions of each of these elements to
student persistence are unresolved. Furthermore, as yet, we know
little of how the iREC experience influences students’ choices in
enrolling for other STEM courses and laboratories or in pursuing
other research experiences. We also do not know how the SEA-
PHAGES experience influences student career choices after grad-
uation. Because early career students succeed in SEA-PHAGES,
regardless of background or experience, we predict that the benefit
of experiencing the process of discovery—yvs. the unfortunately too
frequent imposition of exercises for which the “right” answers are
already known—will be broadly accrued by all students, including
those who sample science via this iREC but who choose to pursue
nonscience careers. Layering iREC experiences through different
levels of the undergraduate curriculum could multiply their impacts.
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Although the initial costs of establishing an iREC administrative
structure can be substantial, they can be considerably less so if built
on an extant independently funded research program. After it is
operational, the program structure can support rapid expansion of
the numbers of institutions and student participants, thereby sub-
stantially reducing the costs/student. Defining the SEA-PHAGES
programmatic structure (Fig. 1), analyzing the relationships among
its component elements (Fig. 2), and documenting the research and
educational outcomes (Figs. 3-5) provide a path for future iREC
development. Widespread use of this model has the potential to
drive a major transformation of undergraduate science education.

Materials and Methods

The pathway model was constructed using previously described approaches
(20), and detailed methods are described in S/ Appendix. Program assessment
used the PITS survey tool and comprised five existing survey tools covering
project ownership, self-efficacy, science identity, scientific community values,
and networking, all of which measure different psychological components of a
research experience and have individually been used in a range of investiga-
tions of educational programs. Before usage in this data collection process, the
PITS survey was evaluated for its dimensionality, validity, and internal consis-
tency (28). The tool underwent psychometric evaluation and has been vali-
dated for usage in the assessment of research experiences. Details of the
survey cohorts, data, and statistical analyses are described in detail in S/ Ap-
pendix. This study was approved and supervised by the Institutional Review
Board of the Indiana University of Pennsylvania (14-302) and the University of
Pittsburgh Institutional Review Board (PRO14100567 and PRO15030412).
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