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UTILITY

How DO YOU FEEL now about earning an extra dollar? An extra ten dollars?
Would you feel the same if you had just inherited a million dollars from a
rich unknown relative? Such nonconstant preference (for money or any
other attributes pertinent to evaluating decision consequences) is the sub-
ject of the modern theory of utility. This theory plays a key role in decision
analysis. We first discuss the general concept of utility, and then review
more formally the central theorem of utility analysis known as Bernoulli’s
principle or, as it is often called, the expected utility theorem. Finally, we
treat several aspects of the empirical scaling and algebraic representation
of preference or utility.

4.1 CONCEPTS OF UTILITY AND NONLINEAR PREFERENCE
We will focus attention on preference for money outcomes because
money is such a convenient common denominator of many aspects of
consequences in farm and business decisions. However, the ideas de-
veloped are equally applicable to other measurable attributes. _
To illustrate the concept of utility, consider the following starkly sim-
“ple decision problem with two acts and only two subjectively equally likely

states (Table 4.1). Possible outcomes are shown as doll ins o

TabLE 4.1. Simple Decision Problem

0, P(6;) a4 .. &

$ $
04 0.5 200 1000
0, 0.5 0 —~800
Expected money value 100 100

The expected money value of both acts is identical at $100, so that if
money payoffs measure consequences for us adequately, we should feel
fairly indifferent between choosing a, or . But suppose you are faced with
this choice, would you be indifferent between g, and g, ? Our guess is that
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66 CHAPTER FOUR

_you would prefer g,, although there is certainly nothing inherently right or

wrong in either choice. It is simply a matter of personal evaluation. For
most, the potential disaster of losing $800 will outweigh the desirability of
possibly gaining $1000. Others may be able to afford the adventure more
easily and may aspire to the purchasing power inherent in gaining $1000.
Whatever the choice and for whatever reasons, nonindifference il-
lustrates that for you money payoffs do not ‘‘te]l the whole story’’ in eval-
uating consequences. That the whole story should be properly told is im-
portant in risky decision making. Because risky choice implies choice
between probability distributions of consequences, mental balancing of a
number of possible consequences simultaneously is required. In contrast,
in decision making under subjective certainty it is only necessary to rank
consequences to determine the most desirable choice. Compared to riskless
choice, risky choice is intrinsically more difficult. In appraising risky
alternatives, utility analysis provides the practical means whereby pref-
erences are crystallized and consistent choice simplified. It should be
noted, however, that although risky decisions are more difficult, all of us

make them quite painlessly most of the time (although some of the possible

consequences, e.g., of road-traversing decisions, are not too painless!).

We shall use the concept of utility in a conditionally normative man-
ner. Having determined the decision maker’s preferences for relatively un-
complicated risky consequences, these will be employed via a utility or
preference function to aid his decision making in more complex situations,
thereby ensuring consistency between the decision maker’s preferences and
his choices. In this sense utility analysis is conditional on expressed pref-
erences. As we will soon see,la utility function is simply a device for assigning
numerical utility values to consequences in such a way that a decision
aker should act to maximize subjective expected utility if he is to be con-
sistent with his expressed preferences. This implies the use of Bernoulli’s
principle or, as it is otherwise known, the expected utility theorem.

4.2 BERNOULLI'S PRINCIPLE

Daniel Bernoulli postulated his principle well over 200 years ago in
recoqmtlon of the fact that an extra dollar is worth more to a poor man
thanto a rich man. But its potential went unrecognized until the work of
von Neumann and Morgenstern in the 1940s. They showed that_Ber-
noulli’s principle is a logical deduction from a small number of postulates
or axioms that many people agree are reasonable, at least to the extent that
they would wish their own choices to conform with them. More recently,
the axioms have been formulated in a variety of ways and under a variety
of names, and several people have provided alternative and increasingly
elegant proofs of the theorem.
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The following set of three axioms is a sufficient basis for deducing
Bernoulli’s principle for the case of risky prospects with single-dimensioned
consequences. For risky prospects with multidimensioned consequences, a

slight but reasonable extension of the axioms is necessary (Fishburn,
1970). By a risky prospect we mean an act or a possible choice that has a
probability distribution of outcomes. The jth risky prospect will be denoted
by a;.

1. Orderi'ng and transitivity. A person either prefers one of two risky prospects & %G,
a, and g, or is indifferent between them. This presumption that people £1Y &,

can order prospects is not trivial, as perhaps is illustrated by even the G
simply structured prospects we have already discussed. The logical ex-
tension of ordering is to transitivity of orderings of more than two pros-
pects, e.g., aj, @, and a;. This implies that if a person prefers a; to
a, (or is indifferent between them) and prefers a, to a; (or is indifferent
between them), he will prefer q; to a; (or be indifferent between them).
Experimental psychologists have demonstrated that subjects are not al-
ways perfectly transitive in their choices, particularly where discrimina-
tion between prospects is difficult, such as when alternatives are com-
plex. Human imperfections and limitations such as these provide all the
more reasons for formalizing preferences via decision analysis so as to
minimize inconsistencies.

2. Continuity. If a person prefers a; to a;, to a3, a subjective probability
P(a,) exists other than zero or one such that he is indifferent between
a; and a lottery yielding a; with probability P(a;) and a; with prob-
ability 1 — P(a;). This implies that if faced with a risky prospect in-
volving a good and a bad outcome, a person will take the risk if the
chance of getting the bad outcome is low enough. Continuity seems to
be a reasonable requirement to demand of an orderly thinking person,
but the axiom may give operational difficulties when the prospects con-
sist of disparate alternatives. For example, it has been argued that the
axiom breaks down when the unfavorable outcome is very bad, e.g.,
death. And yet we risk death every time we cross the street or drive a

" car, and often for meager reward.

3. Independence. If a; is preferred to a,;, and a3 is any other risky prospect,
a lottery with ¢; and a; as its outcomes will be preferred to a lottery with
a, and a; as outcomes when P(a) = P(a). In other words, preference
between a; and g4, is independent of a;. Again, only the sort of practical
difficulties of comprehension that lead to_intransitivity seem likely to
cause problems with this axiom. It says that preferences persist inde-
pendently of successive probability resolutions in evaluating compound

lotteries.
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Bernoulls’s principle may be deduced from such axioms and may be

contfnuitv. and i'ndepéndenéé;' this function U associates a single real num-
with anv riskv prospect and has the followin rop-
£rties, where we denote the utility value of a; by U(aj).

1. If a; is preferred to a,, then U(a,) > U(a,) and vice versa, -~ - - -

2-~The-utility-of a risky prospect is its expected utility value. This is ob-
tained by evaluating the expected value of the utility function in terms-of
the risky prospect’s consequences, i.e.,

U@) = E[U@)]. . (4.1)

the expectation being based on the decision maker’s subjective distri-
bution of outcomes. In the case of discrete outcomes

U(aj) = ZiU(aj I ei)P(ei) (4.2)
and in the case of a continuous distribution of outcomes
Ulg) = fU(a;| ©)f(0)d(O) (4.3)

Higher moments of utility, e.g., its variance, are not relevant to decision
making. Note furthermore that the axioms logically imply use of the de-
cision maker’s subjective probability distribution for utility evaluation of
the risky prospect’s outcomes. Thus the axioms lead to both personal
probability and Bernoullian utility.

3. The scale on which utility is defined is arbitrary, analogous to a tem-
perature scale. In particular, the properties of a utility function that are
relevant to choice or decision analysis are not changed under a positive
linear transformation; e.g., the function U* will serve as well as the func-
tion U where U' = aU + b, a > 0. There is thus no absolute scale of
utility and, tempting as they may be at times, comparisons of utility
values between individuals are quite meaningless. Similarly, it makes no
sense to speak of one prospect yielding, e.g., twice as much utility as
another prospect to a person. We can only say that one prospect exceeds
the other in utility.

‘Bernoulli’s principle provides the means for ranking risky prospects in
order of preference, the most preferred being the one with the highest (ex-
pected) utility. It thus brings together in an explicit way the decision
maker’s degrees of belief and his degrees of preference—which, of course,
are the important subjective inputs in a decision analysis. This process will
be illustrated in Chapter 5, but first we must examine methods for eliciting
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the utility functions of decision makers. Before doing that, we emphasize
again the remarkable nature of the expected utility theorem. It says first
that if a person accepts the perfectly reasonable axioms of ordering and
transitivity, continuity, and independence, this necessarily implies the
existence of both a utility function that reflects his preferences for conse-
quences and a subjective probability distribution that reflects his personal
judgment about the chances he faces. Second, it says that he should choose
between risky prospects to maximize his expected utility. If you accept the
axioms, you must also logically accept the criterion of maximizing expected
utility. Moreover, the theorem implies a unified theory of utility (pref-
erence) and subjective probability (degree of belief). That such a simple
and reasonable set of axioms could involve such powerful implications is

surely amazing.

4.3 ELICITATION OF PREFERENCES

Elicitation of preferences is as easy or as difficult as choice between
simple risky prospects. Some people find such choice easy, while others
experience great difficulty in making ‘“‘public” their choices between risky
prospects. Interviewers need to be sympathetic to a slow respondent or to
one experiencing difficulty. A few helpful words to make a hypothetical
situation more subjectively realistic are often useful. However, an inter-
viewer must take care not to intrude his own preferences into the ques-
tioning. We have found that it is nearly always possible to elicit preferences
from a decision maker whose attitude is not hostile. We have also found
that interviewers learn best by doing and that they improve very rapidly
with a little experience.

Unidimensional Utilities

Consequences that can be represented by a single attribute are the
simplest to elicit. This is the case of a single dimension of utility so that the
utility function has only one argument. A variety of operational procedures
has been used for elicitation, the best of which involve choice between
two-state risky prospects and systematic manipulation of some conse-
quence component(s) until indifference is reached. Experience has shown
that manipulation of probabilities while keeping consequences fixed is not
very satisfactory because of the difficulties people have in mentally grap-
pling with probabilities other than those involving only a single decimal
digit. In addition, some people exhibit preference for particular probabil-
ity values (as “favorite numbers” as it were) and this distorts the utility

asgessment if probabilities are varied rather than consequences.
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As with probabilities, it is best to phrase utility questions in terms of
two equally likely states; thus both the methods we suggest are based on
using the (ethically neutral) probability 0.5.

ELCE METHOD

The simplest recommended method for elicitation is based on con-
sidering an Equally Likely risky prospect and finding its Certainty Equiva-
lent (ELCE). Before outlining the ELCE method we therefore need to

explain the concept of certainty equivalence. As the name implies, a_cer-
tainty equivalent is the amount exchanged with certainty that makes the de-
cision maker indifferent between this exchange and some particular risky
prospect, For example, a particular manager might be indifferent between
(1) taking a risky prospect having a 0.4 chance of gaining $10.000 and
a 0.6 chance of losing $2000 and (2) a sure prospect giving a gain of

$1560. His certainty equivalent for the risky prospect is thus $1560. A cer-
tainty equivalent accounts simultaneously for the probabilities in the risky
prospect and the preferences for the consequences.

Since we are concentrating on decision problems expressed in finan-
cial outcomes, it is useful to compare a certainty equivalent (CE) with the
expected money value (EMV) of a prospect. When the CE is less than the
EMYV, the decision maker is said to display an aversion to risk; if his CE
is greater than the EMV, the decision maker is said to exhibit risk pref-
g?ence. The difference between the mean of a risky prospect and its CE
(i.e., EMV — CE in the case of a money prospect) is called the risk premium
for the prospect. The case where CE = EMV (i.e., the risk premium is
zero) is the special and relatively rare case of indifference to risk.

'The concept of risk premium is illustrated in Figure 4.1. The concave
curve represents the utility function of a (risk-averse) manager who, as one
of his alternatives, is faced with a risky prospect involving a possible gain
of $2000 with probability 0.6, or a possible loss of $3400 with probability

U($2000)f- —~————m e o — — — c

U-$1030)z————— —

(@]

Utility

premium

U{-$3400)F~ A

| .
—$3ﬁltoo -$1030$160 $ 2000
(CE) (EMV)

Fic. 4.1. Illustration of the concept of risk premium
for a risk-averse decision maker.
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0.4. The EMV of this risky prospect is thus —$160. However, the ex-
pected utility of the risky prospect is (0.4)U(-$3400) + (0.6)U($2000),
which corresponds on the utility axis to the point B on the straight line AC
such that AB/BC = 0.6/0.4. Point B, reading to the money axis, also cor-
responds to the EMV. of the prospect. On the utility axis, point B cor-
responds to point D which, reading back to the utility curve AC and down
to the money axis, tells us the expected utility of the prospect is (approxi-
mately) U(—$1030). While the EMV of the prospect is —$160, because of
his risk aversion the risky prospect is only equivalent to a sure —$1030 for
our manager, i.e., his CE for it is —$1030. The difference of $870 between
the EMV and his CE is our manager’s risk premium for the risky prospect.

In using the ELCE method, the first step in dealing with preferences
for a single attribute is to find the CE for a hypothetical 50/50 lottery with
the best and the worst possible outcomes of the decision problem as the two
risky consequences. The next step is to find the CE for each of the two 50/
50 lotteries involving the first-established CE and the best and worst pos-
sible outcomes. This process of establishing utility points is continued un-
til sufficient CEs are elicited to plot the utility function. Figure 4.2 depicts
the type of recording sheet we have found most useful in using the ELCE
method. It also shows the linked nature of the sequence of 50/50 lotteries
used. The CEs, denoted with an asterisk, should not be directly requested.
Rather, a series of sure payoffs should be presented for each of which the
respondent is asked to express his preference (yes or no) relative to the
current 50/50 lottery. In this way the questioning can “‘zero in’’ upon the
CE. We have found it best not merely to present the series of 50/50 lot-
teries verbally but also to pencil the numbers on a pad in a form such as
given in Table 4.2. Here we have used + (=) to indicate that the sure pay-
ment is (not) preferred. In practice, instead of recording the whole series
of trial CEs (1), (2),..., we would use an eraser and just show a single
potential CE at a time.

TasLE 4.2. Series of 50/50 Lotteries

50/50 PaSyL:rrlZnt Successive Iterations of Sure Payment
Lottery (1) (2) 3) (4) (3) (6)
$10,000
$4000 $1000 $3000 $2500 $2250 $2300
0 (+) (-) (+) (+) (=) (=)

The check questions indicated in Figure 4.2 are most important to
keep the expression of preferences consistent with inner preferences and




72 CHAPTER FOUR

Ql
(o,b) = ¢c*

$__$ ¢

Arbitrary
utility L/
Q2 scale Q3
(o, c) = d* | ¢ c,b) = e*
$ $_ 3 $_ 5 %
=g
- o
Q4 Q5 s Q6 a7
(o, d)= F* (dc)z g* lc,e) = h* le,b) = i*
$$_$_ $_$_ s Lo $_ & $_ $__ & ¢

Steps: (1) Set the range a ($ worst) to 4 (§ best) for
which preference is to be estimated.
(2) In Q1, find the CE c¢* of the 50/50 lottery

(a, b).

(3) In subsequent questions successively bi-
furcate the utility range into equal pref-
erence intervals.

(4) Graph points defining the curve as they
are found.

(5) If checks reveal significant inconsistency,
do again from the start.

Checks: After Q31is (d,e) = ¢?
After Q61is (g, k) = ¢?
After Q71is (f,1) = ¢?

F16. 4.2. Scheme for using the ELCE method of elicit-
ing a decision maker’s utility curve.

one with another. Where checks do not correspond closely, it is necessary
to return to the first question and repeat all of them until consistency is
obtained. Judgment of consistency and adequate closeness is greatly fa-
cilitated by concurrently plotting the certainty equivalents after each ques-
tion, as indicated in the first quadrant of Figure 4.3. For this purpose an
arbitrary scale is required and can be set by assigning arbitrary utilities
U(a) < U(b)toaand b where a < b. For example, U(a) = 0 and U(b) =
8 (or 100 or 1.0) are convenient for plotting purposes. The utility values of
the CEs are determined on this scale by direct application of Bernoulli’s
principle to each indifference relationship. For the example of Table 4.2,
(0.5)U(a) + (0.5)U(b) = U(c* = $2300), and substituting the arbitrary
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Utility 6

$ thous

‘% = plotted certainty equivalents for gains
O = initial certainty equivalents for losses
A = revised certainty equivalents for losses

Fic. 4.3. Elicitation plot of the utility curve for gains
as per|Figure 4.2 |(first quadrant) and ex-
tensions to utility for losses (third quadrant).

scale values gives U(c*) = (0.5)(0) + (0.5)(8) = 4; similarly, U(d* =
$900) = 2, etc., as plotted in Figure 4.3.

Depending on the degree of accuracy deemed appropriate, the degree
of consistency apparent in the emerging sketch, and the degree of im-
patience perceived in the respondent, it may be quite adequate to cease the
interview after successfully passing the check question following ques-
tion 3 of the ELCE method. It is quite easy to draw through the five
points a smooth curve that will be determined after question 3, although
it is even easier when nine points are determined, as they are following
question 7. At whatever stage the interview is terminated, consistency will
be appraised by the smoothness of a curve passing as close as possible to
all the determined points. Typically, the curve will be concave (from be-
low), reflecting the fact that most people are averse to risk. Since it seems
that most risk-averse people become less so as they become wealthier, this
additional typical feature imposes some constraints on the form of the
curve, which (as discussed in Section 4.4) can also be exploited in
elicitation.
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Before we leave the ELCE method, one commonly encountered dif-
ficulty should be mentioned. When eliciting utility functions for losses as
well as gains, it is frequently observed that the curve obtained after an
initial cycle of questioning reveals a convex shape for losses implying an
attitude of risk preference that may be superficial and false. Seemingly, our
responses to hypothetical situations involving losses are not very reliable.
This difficulty is usually avoided by working with assets rather than gains
and losses (positive and negative increments to present assets), and for this
reason we recommend structuring decision problems and preference inter-
views where possible in terms of net assets. However, where risk preference
for losses is apparent, it should be checked and, if inappropriate, the util-
ity curve corrected to be a more accurate representation of attitudes that
are probably risk averse for both gains and losses. ‘

Suppose the questions in Figure 4.2 are extended to encompass money
losses. One way of linking the utility segment for losses to the already de-
rived segment for gains is to find payoff x in the 50/50 lottery, (b, x) = a;
i.e., ($10,000, x) = $0. Suppose the farmer’s first response is to select x =
—$5000 so that on the arbitrary scale U(—$5000) = —8. Analogously
with the previous question 1, the interval (0, —8) is now split by finding the
CE for the 50/50 lottery (a,x) = y. Suppose indifference is initially de-
termined at ($0, — $5000) = —$1800, i.e., a risk premium of —$2500 —
(—$1800) = —$700. These new points x and y are added to Figure 4.3 in
the third quadrant; when the smooth utility curve is extrapolated (by the
broken line), it is seen to be convex, implying risk preference for losses.

Is this risk preference plausible and reasonable? The best way of
checking such convexity is to repeat some gain questions conditional on a
loss already having been incurred; e.g., to check the convexity implied
by point y (at —$1800), ask the farmer to suppose ‘he has just incurred a
loss of $5000. What then would be his CE for the 50/50 lottery ($5000, $0):
Let this be $1500, i.e., a risk premium of $1000. Correcting these pay-
offs for the just-lost $5000, the lottery is seen to be equivalent to ($0,
—$5000) = ($1500 — $5000) = —$3500, which contrasts markedly with
the earlier answer of —$1800 and exemplifies the inconsistencies of the first
round of questions. Plotting this revised CE would indicate a concave seg-
ment between —$5000 and $0. However, since this is probably on a dif-
ferent scale from the curve in the first quadrant, this is not shown or
Figure 4.3. But is the —$5000 point consistent and correct on the “old’
scale? Very likely not if this latest evidence of risk aversion for losses is any
guide. What we should do now, after having explained the farmer’s earlies
inconsistencies to him, is to return to the search for x and to check the ap-
parent risk attitudes by rephrasing the questions in the style “Suppose now
that you had just paid out a sum of $x,...” and elicit CEs for the equiva
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lent lotteries. In this way we can expect to emerge with a curve that prob-
ably looks much more like a concave extrapolation of the segment in the
first quadrant, implying risk aversion over the whole range of outcomes
considered. The revised curve has been sketched on the assumption that,
on renewed reflection, x = —$2500 and y = —$1640.

ELRO METHOD

A shortcoming of the ELCE method, and one that may sometimes be
serious for people with a strong aversion to gambling per se, is that pref-
erence is expressed through certainty equivalents. An alternative method
has been devised that overcomes this difficulty, although at the cost of a
more complicated questioning procedure. The method is based on prefer-
ences between acts with Equally Likely but Risky Outcomes (ELRO).

Suppose we are interested in deriving a utility function for money out-
comes over the range a to z, a < Z. We will normally need at least five
utility values to be able to graph a‘smooth function. We therefore start the
ELRO method by selecting a reference interval, involving two money out-
comes x and y somewhere near the middle of the range a to z, with x <y
and y — x approximately equal to one-tenth of z — a. This should give us
an ample number of points for our graph, although at this stage we cannot
be sure of this. If we find we end up with too few points, we must set a
narrower reference interval and start again. The next step is to set a scale
for our utility function by defining U(y) — U(x) = 1 (or any other arbi-
trary utility value). Similarly, we need an arbitrary origin for which it is
convenient to define U(a) = 0. .

We now present the decision maker with the hypothetical 50/50 lot-
tery given in Table 4.3. As before, the value marked with an asterisk (& in

TasBLE 4.3. First

TabLE 4.4. Second

Hypothetical Hypothetical
Lottery Lottery
6; P(6)) a a2 0; P(6,) 4 a2
0, 0.5 x y 0, 0.5 x y
0, 0.5 b* a 0, 0.5 c* b

this case) is varied until indifference is found between the risky prospects
a; and a,. Then, by Bernoulli’s principle, 0.5U(x) + 0.5U(b) = 0.5U(y) +
0.5U(a), which can be rearranged as U®) — U@ = U(y) — Ux).
However, as defined above, U(y) — Ux) =1 and U(a) = 0. Hence
U(b) = 1. The hypothetical lottery in Table 4.4 uses this newly estab-
lished value of & in place of a to find a further indifference value ¢.
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By similar reasoning to that above, it can be shown that U(c) = 2
We now have the utilities of three money consequences, a, b, and ¢, anc
from this point on the questioning can proceed in a simpler fashion. The
sequence of further lotteries presented to the decision maker is given ir
Table 4.5. In each case the entry marked with an asterisk is varied unti.

TabLE 4.5. Sequence of Further Lotteries

Lottery 3 Lottery 4 Lottery 5

6,‘ P(O,) a, ar q ar (1] ar Etc
0, 0.5 a b b ¢ ¢ d
0, 0.5 d* ¢ e* d f* €

indifference is established. The sequence is extended until a money value
greater than or equal to z, the upper limit of the range of interest, is
reached. For each lottery in the sequence the utilities of three values have
previously been established, so the utility of the remaining amount can be
calculated. In fact, it is easy to show that on the scale we are using, U(d) =
3, U(e) = 4, U(f) = 5, etc.

Check questions can be included in the ELRO procedure as they were
for the ELCE method. For example, the subject should be indifferent be-
tween the alternatives in Table 4.6. To see why, note that we have

TABLE 4.6. Alternatives

Offered
O; P(O,) a az
91 0.5 a 4
0, 0.5 d b

established U(a) = 0, U(b) = 1, U(c) = 2, and U(d) = 3. Then by
Bernoulli’s principle we have U(gq) = (0.5)(0) + (0.5)(3) = 1.5 and
U(a) = (0.5)(2) + (0.5)(1) = 1.5. Consistency of judgment can also be
assessed by plotting each utility point as for the ELCE method.

he of Multidimensional Utilities

Money is not everything; and the consequences of many decision
problems are, unfortunately from an analytic viewpoint, not well rep-
resented in terms of only a single attribute such as monetary gain or loss.
Large organizations such as corporations and governments must typically
consider several dimensions in assessing consequences. Failure to do so
would doubtless make for a short life for any such organization. At the
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same time, because simultaneous consideration must be given to both the
probabilities of various consequences and to tradeoffs between different
levels of the various attributes, it is much more difficult for decision mak-
ers to think about risky alternatives involving more than one attribute.

We will outline three methods of multidimensional utility assess-
ment—the benchmark approach, the “quasi-separable” utility function ap-
proach, and the additive utility function approach. We will also briefly
indicate the possible relevance of lexicographic utility orderings in situa-
tions involving multidimensional consequences.

BENCHMARK APPROACH

The essence of the benchmark approach (Raiffa, 1968; von Winter-
feldt and Fischer, 1973) is that for every multiattribute consequence, a
consequence is found that is indifferent to it and has constant values in all
dimensions except one that is preferentially independent of the others (in
the sense that preference for values in that attribute are independent of
constant values in the other attributes). For example, suppose we are con-
cerned with consequences characterized by three attributes x, y, and z. We
will use subscripts to denote particular values of x, y, and z. For a given
decision maker, attribute x is preferentially independent of the others
if when the consequence (x;, y;, z,) is preferred to (x,, y1, z1), then
(x1, ¥ 2j) will always be preferred to (x,, y, z;) for all values of y; and z;. In
other words, x is preferentially independent of y and z if the decision
maker’s preferences for values in x are independent of constant values in y
and z; if his preferences for x conditional on particular levels of y and z
change as y and z vary, then x is not preferentially independent.

If at least one of the attributes is not preferentially independent of the
rest, choice between multiattribute consequences is purely a matter of the
decision maker’s intuition and cannot be formalized. Most commonly,
however, this will not be the case, and the benchmark (or some other
formalized) approach can be used.

We will first consider the simplest case where consequences can be
adequately described by just two attributes. Suppose these are measured
by x and y and that x is preferentially independent of y. The :th conse-
quence is defined as the pair (x,, y;). For example, in a commercial farming
situation x might measure annual net profit and y might measure annual
net peak indebtedness; or in a peasant farming context x might measure
consumption of nonfarm goods and y might measure consumption of farm
production such as grains, etc. Now we select a ““benchmark’ level of y,
say y*, where this is chosen as a value that is easily conceptualized, such
as the “normal” annual peak indebtedness. The approach to dealing with
multidimensional consequences consists of relating any consequence back
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to the benchmark. In the two-dimensional case we must find the value of
x;, denoted by x;}, which when paired with y* makes the decision maker
just indifferent between this hypothetical consequence and a particular
consequence (x; y;). Obviously, this will not be too easy a task and will
involve asking a series of questions such as, Now, on very careful considera-
tion, would you rather have (x;,y;) or (x;,y")? where x!is used to de-
note some trial estimate of xF. It is not all that easy to respond to such
questions, as a little introspection readily reveals.

With two-dimensional consequences it is feasible and often worth-
while to systematize the procedure of trading off one attribute for another
by developing an empirical indifference map. The precision sought in such
an exercise will, as always, depend on the requirements of a particular
analysis but may often not be too demanding. Elicitation can be aided by
imposition of the usual features ascribed to indifference curves such as
smoothness, convexity, and nonintersection. In this way a rough but rea-
sonable indifference map might be sketched from a dozen or so points
spanning the preference region of interest in a decision analysis. The re-
sult may look something like that depicted in Figure 4.4, where the series
of points marked g, b, ¢ are the elicited combinations of x and y that plot
out the indifference curves 44, BB, and CC respectively.

An indifference map such as that of Figure 4.4 permits interpolation
of the benchmark equivalent of any consequence. For example, as illus-
trated in Figure 4.4, the consequence D can be seen by interpolation to
have a benchmark equivalent of (xj, y*). Once the x} equivalence is de-
termined, it remains to complete the final phase of elicitation, namely, the
scaling of preference for the x}. This can be executed in the conventional
ways noted earlier, but phrasing the questions (of, say, the ELCE method)
conditional on y being set at the benchmark level y*. In this way it is pos-
sible, albeit in a somewhat roundabout way, to associate a single utility
value with any (x; y;) pair, and so to proceed to resolve the analysis in

y

Fic. 4.4. An elicited indifference map for conse-
quences with attributes x and y.
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terms of expected utility. Thus for the jth act g; with the two-dimensional
consequence (x;;, ;) occurring when ©; prevails, we have

Ula) = T:U(g] ©)P(6,) = ;U (xy; 3) P(6)
= XUy ) PO) = UGS yT)P(O) (4.4)
where U(x} | y*) denotes the utility value for x}; derived from the utility
function U(x | y*) for attribute x conditional on attribute y being held

constant at the benchmark value y*.
As an example, suppose we have to choose between acts ¢, and a; with

TaBLE 4.7. Two-dimensional TasLE 4.8. Equivalent
Consequences Consequences
43} ap a a
0; x ¥y x ¥y 0; xt yt xt y*
0, 33 180 100 15 0, 51 120 11 120
0, 190" 70 150 155 0, 110 120 190 120

two-dimensional consequences specified as in Table 4.7. Taking y* = 120
as our benchmark, suppose our set of equivalent consequences is ascer-
tained to be as shown in Table 4.8. With use of the ELCE or ELRO
method, the utility function U(x | y = 120) for x with y held constant at 120
can then be determined. Applying equation (4.4), we have

U(a) = UBL |y = 120)P(6,) + U(110 |y = 120) P(6,)
Ua) = Ul |y = 120)P(6,) + U190 |y = 120)P(02)

Finally, comparison of U(a; ) and U(a;) indicates which act maximizes ex-
pected utility.

The same basic-approach can be applied to multidimensional conse-
quences when more than two attributes are involved although, under-
standably, the specification of tradeoffs becomes correspondingly more
difficult. Thus suppose we are concerned with consequences characterized
by four attributes w, x, y, and z. If only one attribute (say w) is preferen-
tially independent of the others, benchmark values are defined for x, y, and
z (say x*, %, and z*) and for every consequence (w;, xi, ¥iy 2;) an outcome
(w¥, x*, y*, z*) is found that is indifferent to it. Because only w is pref-
erentially independent, this determination of indifference has to be made in
a single step by simultaneous tradeoff across the other attributes. If two
attributes (say w and x) are preferentially independent, indifference can
be established for each consequence (w;, x;, y; 2;) relative to the benchmarks
x*,y*, and z* by a two-step procedure of establishing indifference first
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with some consequences (w{, x;, y*,z*) and then of this consequence
with (wi*, x*, y*, z7).

Simplest of all is the case where all (or all except one) the attributes
are preferentially independent. In this case, if there are n attributes and
thus n — 1 benchmark values, we can proceed via a sequence of n — 1
tradeoffs, each involving only tradeoffs between two attributes. This is
much simpler for decision makers than having-to make simultaneous trade-
offs involving three or more attributes. Thus if w, x, and y (or w, x, y, and z)
are preferentially independent, we can use the three-step procedure of
establishing (w, x;, y;, 2;) indifferent to (w}, x;, ;, z*) indifferent to (w;*,
x;, 3%, 2" ) indifferent to (wi**, x*, y*, z*). Again then, a conditional
preference function U(w | x*,y*, z%) can be determined and used for eval-
uation by carrying out expected utility analysis along the lines of equation
(4.4). :

Utility scaling of multiattributed consequences is still more difficult
when some or all of the attributes are qualitative in nature. The method
described above can be adapted for use in such cases if each dimension
of the qualitative consequences can be categorized into a number of or-
dered classes, e.g., true or false; good, fair, or poor. Failing this, each
multiattributed consequence must be scaled directly. Such scaling may be
facilitated by first ranking the consequences in order of preference and
then assigning utility values of, say, zero and one to the worst and best
outcomes respectively. Each other multiattributed outcome can then be
scaled by considering a lottery of the form given in Table 4.9. In this lot-
tery a is the most preferred multiattributed consequence and z is the least

TaBLE 4.9. Lottery for
Scaling
Multiattributed
Outcomes

0; P(6;) @ a

61 p a [
0, 1 —p 2z ¢

preferred, while ¢ is any other multiattributed outcome to be assigned a
utility value. The probability p is varied until indifference between a, and
a is established so that U(c) = pU(a) + (1 — p)U(z). Hence U(c) = b.
Note, however, that this method is vulnerable to biases caused by pref-
erence for particular probability values, as discussed above in relation to
elicitation of unidimensional utilities.
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“QUASI-SEPARABLE’’ UTILITY FUNCTION APPROACH

The procedures for estimating multidimensional utilities outlined
above become tedious if there are many possible consequences, each hav-
ing more than a couple of attributes. They have the advantage, though, of
requiring only relatively weak assumptions about indepehdence between
particular attributes. However, if the two assumptions of joint preferential
independence and utility independence (sometimes called weak and strong
conditional utility independence respectively) can be made, the analysis of
large problems (involving say hundreds of possible consequences each with
many attributes) can be much simplified through use of the ‘quasi-
separable” utility function approach developed by Keeney (1968, 1972,
1973a). The essence of this approach is that it uses the above assumptions
to enable decomposition of the multiattribute utility function into com-
ponent parts.

To explain the meaning of joint preferential independence and utility
independence, consider consequences with attribute dimensions xy, x, . . .,
x,. Attributes x; and x; are jointly preferentially independent of the other at-
tributes if the location and shape of the decision maker’s indifference
curves for combinations of x; and x; are independent of the level of other
attributes. The easiest way to check this requirement is by direct question-
ing of the decision maker: first, to establish two or more consequences
differing only in x; and x; such that he is indifferent between them and,"
second, to check that this indifference is not upset when the levels of the
other attributes are changed.

Attribute x; is utility independent of the other attributes if the decision
maker’s preferences for lotteries involving only x; with other attributes held
constant do not depend on the level of the other attributes. A convenient
way to check this requirement is to see whether the decision maker’s cer-
tainty equivalent for 50/50 gambles between particular values of x; (say
x¥ and x;, representing the most desired and least desired levels of x;
respectively) stays constant as the levels of the other attributes are
changed. If so, x;is utility"independent of the other n — 1 attributes. While
utility independence implies preferential independence, the reverse is not

true.

Given that the requirements of joint preferential and utility inde-
pendence are met for all n attributes, the utility function U(x, xa, ..., X,)
can be specified as a function fsuch that

Uxi, %2, - -5 %) = flUI (), Uz (x2), - . ., Un(xa)] (4.5)

where U, (x;), scaled from zero to one, is a utility function over the ith at-
tribute and depending only on that attribute. When scaled from zero to
one, the function f is either of the additive form
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Uy - 2) = 2, kUi(x) (4.6)

or of the multiplicative form

U(xl,xz,...,x,,) = {H [Kk,U,(x,) + 1] - 1}/1{ (47)

where £; is a scaling factor between zero and one for U; (x;) and K is another
scaling constant. Because of the scaling requirements, the £; values deter-
mine K. If > k; = 1, then K = 0 and f takes the additive form of equation
(4.6). If 3°k; # 1, then K = 0 and f takes the multiplicative form of (4.7).
As shown by Keeney (1974), these 1mp11cat10ns follow from the specific
quasi-separable form of (4.5), which is

Uxy, %2, - - x)_ZkU(x +1{Z D kU (x) Ui (x)

i=1 j>i
FE2D. DD kikikaUs () Uy (%)) Un () + * -
i=1 j>i m>j
+ k0 T kUi (4.8)
i=1

For Yk = 1sothat K = 0, (4.8) reduces immediately to the additive form
of (4.6). When 3 k; = 1 so that K = 0, multiplication of each side of (4.8)
by K, followed by the addition of one to each side and factoring of the
right side, gives the multiplicative form of (4.7).

All of this looks quite complicated, but the essence is that instead of
trying to assess the n-dimensional utility function U(xy, xa, ..., %)
directly (a virtually impossible task), it is only necessary to assess n one-
dimensional functions U;(x;) and the n scaling factors ;. These &; values
represent the utility assigned to a consequence with all its attributes except
the ith set at their least preferred amount within the relevant range and the
ith set at its most preferred amount within the relevant range. ‘

To determine £;, we elicit from the decision maker the probability p;
such that he is indifferent between (1) the consequence with x; at its most
preferred amount and all other attributes at their least preferred amount
and (2) a lottery with chance p; of yielding the consequence with all at-
tributes at their most preferred amount and a chance 1 — p; of yielding the
consequence with all attributes at their least preferred amount. The value
of p; must equal k; as shown by the following simple example. We will
again use x* and x; to indicate respectively the most and least preferred
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levels of x; within the relevant range. Suppose there are three attributes
x;, X2, and x3. To determine, say, k,, we elicit p; such that

Uxt, x3,x3) = pUGE a8, 58) + (1 = p)UGT, %2, %5)

Hence U(x¥, x5 ,x5) = pp since scaling of the utility function from zero
to one implies U(x{, x¥, x¥) = 1 and Ulxy, x5, x3) = 0. From equation
(4.7) we have

KU(xF, x7,x5) + 1 = KR U (F) + 1IERU(x2) + 1] [KkUs(x3) + 1]

so that, again by virtue of the scaling of the utility functions from zero to
one, Kpy + 1 = Kk + 1 since U(x¥) =1and Uy(x7) = 0 = Us(x3).
Therefore, p; = ki, or for the general case, p; = k; and 0 < k; < 1 since
necessarily 0 < p; < 1. Use of (4.6) gives the same result.

If Yk = 1, it is necessary to determine K. To do this, consider equa-
tion (4.7) with each attribute set at its most preferred level. We have

Ulxk, xt,x3) = {H (KkUi(x#) + 1] - 1}/!{

which reduces to
K+ 1= (Kk + DKk +1)... Kk, + 1) (4.9)

since U(x¥, x¥,x¥) = 1 =U;(x¥*). Given the already ascertained k; values,
we can solve the above equation for K, making use of the fact (Keeney,
1972) that if >k > 1, we must have —1 < K < 0; and if X k; < 1, then
0 <K< .

As an example of the “quasi-separable” utility function approach to
multiattribute problems, suppose we are acting as decision analysts for a
person considering the purchase of a farm. He has narrowed the choice to
three alternatives a;,a;, and a3 and is concerned with the following

attributes: A

x, = average annual net return on equity capital assessed at market value
(%)
x; = initial equity (%)

x; = distance from the capital city (km)
x; = driving distance from the beach (km)

Of these attributes only x; is uncertain, and it will vary according to
whether long-term conditions for agriculture are good (0,), fair (6,), or
poor (0,)—taking into account questions of climate, international markets,
technological change, etc. Our client judges these x possibilities as shown
in Table 4.10 with x,, x;, and x, being fixed within each alternative for
each type of economic circumstance.
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TaBLE 4.10. Multiattribute Payoff Matrix for Property
Purchase Decision Problem

a a; as
6, PO) x1 x x3 x¢ xm X x3 x4 X X X3 x4
0, 0.2 12 60 80 160 7 80 220 40 12 96 300 200
0, 0.5 7 60 80 160 5 80 220 40 10 96 300 200
O, 0.3 5 60 80 160 1 80 220 40 8 96 300 200

Looking at the data of Table 4.10, we can readily agree that to make a
choice is not easy if real account is to be taken of all the attribute dimen-
sions. Our first step is to establish whether the attributes are jointly pref-
erentially independent and utility independent for our client. For joint
preferential independence we have to check if the tradeoffs between any
two attributes are independent of the levels of other attributes. In the
present case we have six pairs (xy, x2), (x1, x3), (%1, x4), (x2, x3), (x2, x4), and
(x3, x4) to check. As the .procedure is the same for any pair, consider
(x2, x3) as an example.

To begin, we ask questions to find the level of initial equity x, such
that the combination of equity and some distance to the city (say x; =
200 km) is indifferent to, say, the combination (x, = 60, x; = 100), in both
cases the level of the other attributes being held constant at a desirable
level (say x; = 12, x, = 40). In other words, given that the average return
on equity and distance to the beach are fixed at 129, and 40 km respec-
tively, what initial equity percentage in combination with a distance to the
city of 200 km would be indifferent to an equity level of 609, and a dis-
tance of 100 km to the city? Suppose after considering various values, our
client chooses an initial equity of 70%. This same questioning is then re-
peated but with x; and x, at less preferred levels. (say x; = 1 and x, = 200).
If the answer is again 709, initial equity, we may conclude x, and x; are
Jointly preferentially independent. We will assume that after applying this
procedure to all the attribute pairs, we are able to conclude they are all
Jointly preferentially independent to our client (though they may not be to
us).

For utility independence we have to check each attribute individually,
using the same procedure for each. Consider x,, distance to the beach. We
first set the other attributes at convenient levels (say the most desirable
ones so that x; = 12, x, = 96, x; = 80) and using the ELCE or ELRO
method elicit the conditional utility function for x, over its relevant range
from 40 to 200 km. Then we set the other attributes at their least desirable
levels of x; = 1, x, = 60, x3 = 300 and again elicit the conditional utility
function. This procedure may be repeated with x;, x,, and x; set at various
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other levels. If the conditional function U(xs|x;, x5, x3) remains un-
changed as x;, x;, and x; vary, then x, is utility independent. Again suppose
that each attribute is found to be utility independent for our client. How-
ever, if we found x, to be utility interdependent with some other attribute
(say x;), we could use the benchmark method to put these two inter-
dependent attributes onto one utility scale (say for x; conditional on some
benchmark level of x;) and then continue using independent procedures for
(x1, x2), and (x5 | x7).

In the process of successfully checking for utility independence, we
have ascertained a utility function for each attribute. These individual
functions, scaled from zero to one and drawn as a graph or fitted al-
gebraically, are the required functions U; (x;) of equation (4.8). Suppose
they are as depicted in Figure 4.5.

To estimate the £; scaling values, consider net return on equity, x;, as
an example. We have to elicit the probability p; such that our client is
indifferent between (1) the consequence with x; at its most preferred level
and the other attributes at their worst level—i.e., the consequence (x{ =
12, x5 = 60, x5 = 300, x; = 200)—and (2) the lottery with a chance p;
of yielding the consequence with all attributes at their preferred level—
ie. (x¥ = 12, x¥ = 96, x¥ = 80, x} = 40)—and a chance (1 — p;) of
yielding the consequence with all attributes at their worst level—i.e.
(x7 = 1,x5 = 60, x5 = 300, x; = 200). Suppose this value of p; is 0.6.

- ™
x | Annual net x { Initial
- return on o equity
> equity >
1 L 1 L
0I . 6.5 12 CGO 78 96
X' (°/o) Xz (°/o)
| |
- Aq
£ = |
i) Distance =¥ | Distance ~
= to city to beach
o 1 N o 1
80 180 300 40 120 200
x3 {km) X4 (km)

Fic. 4.5. Utility functions for individual attributes in a
multiattribute decision problem using the
quasi-separable approach of equation (4.8).
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Therefore, as shown above, k&, = 0.6. Repeating this process for the other
attributes, suppose we elicit the set of ; values shown in Table 4.11.

TaBLE 4.11. Set of £; Values

Attribute k;
x; = returnonequity .. 0.6
x, = initial equity 0.4
x3 = distance to city 0.3
x4 = distance to beach 0.3

Since the sum of these £; values is not equal to one, we know the utility
function is multiplicative rather than additive and we must determine the
value of K as per equation (4.9). Thus we know X is the solution to

K +1 =[K0.6) + 1][K(0.4) + 1][K(0.3) + 1][K(0.3) + 1]

or, equivalently, 0.0216K? + 0.234K* + 0.93K + 0.6 = O such that —1 <
K < Osince 3"k > 1. Solving this equation gives K = —0.79. The required

multiattribute utility function can therefore be specified as per equation
(4.7) as

U(xy, x2, x3, %) = {[1 = 0.474U; (x))][1 = 0.316U;(x;)]
[ = 0.237Us (x3)][1 — 0.237U, (x,)] — 1}/ ~0.79

where the single-attribute utility functions U;(x;) are as depicted graphi-
cally in Figure 4.5. Reading U, (x;) values from the graphs [in larger prob-
lems it would be better to fit U;(x;) algebraically and use a computerized
approach] and substituting into the above utility function, we obtain the
utility values under each state of nature for our client’s three alternatives.
These U(g; | ©;) values are as listed in Table 4.12. The expected utility of
each act is then found in the usual way as U(aj| 0,) P(0,). As shown in
Table 4.12, these utility values indicate a, as the optimal choice in pref-
erence to a; in preference to q;.

Tasre 4.12. Utility Evaluation of Property
Purchase Decision Problem

9,- P(G,) ay az as

0, 0.2 0.82 0.91 0.81
0, 0.5 0.76 0.86 0.80
0, -0.3 0.68 0.67 0.77

Expected utility 0.75 081  0.79
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ADDITIVE UTILITY FUNCTION APPROACH

The approach most used in evaluating multidimensional conse-
quences has been the additive utility function of equation (4.6). It is by far
the simplest approach since it only involves determination of the uni-
dimensional utility function U;(x;) for each attribute x; and the scaling
factor k; associated with each U;(x;). For instance, each attribute dimen-
sion x; is scaled as in the quasi-separable approach by eliciting the utility
function 0 < U;(x;) = 1 for each x;. Then the most preferred of the set of
preferred values x¥, x¥, ..., x¥* ... is given a & value of one, and the most
preferred value for each of the other attribute dimensions is scaled between
zero and one against the rating of unity given to the most preferred of the
preferred values. These ratings are k;s. Alternatively, procedures can be
used that find £; implicitly while the U;(x;) are being found (Fishburn,

1967).
Though the necessary requirements for an additive utility function to

be true will rarely be met, the assumption of additivity may not be too bad
since what is required of the multidimensional utility function is the power
to discriminate between alternative acts aj, a,...,4;.... In by far the
majority of multidimensional situations, as shown by Yntema and Torger-
son (1967), main (i.e., additive) effects tend to swamp interaction (i.e.,
multiplicative) effects. Thus while an additive utility function will not ac-
curately specify U(a;), it will generally serve reasonably well to discrimi-
nate between acts in much the same way as would a more correct but far
more compficated nonadditive function (Huber, 1974a). For example, if
we apply the linear utility function

4
Uxr, xz, %3, %) = 2, kLU (%)
i=1

to the multiattribute property purchase problem discussed above, using
k! = k;/>k; so as to scale the utility function from zero to one and read-
ing U, (x;) values from Figure 4.5, the expected utilities of the three alterna-
tives a;, a,, a3 are respectively 0.59, 0.71, and 0.61. The recommended
choice would still be a, in preference to a; in preference to a;.

LEXICOGRAPHIC UTILITY

Lexicographic utility orderings prevail when we have multiattribute
situations in which the decision maker is not prepared to allow tradeoffs
between attributes. Rather, he attaches dominant priorities to attributes in
some specified order reflecting a hierarchy of wants. In terms of the
Bernoulli axioms this implies nonacceptance of the continuity axiom.
Instead of being measurable as a single real number, the utility of an act
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with multidimensional consequences must then be expressed as a priority-
ordered vector showing the expected utility in each attribute dimension.
Choice proceeds on the basis of a lexicographic comparison of these
priority-ordered vectors. For example, it has been suggested that some
farmers evaluate alternatives on the basis of a top priority survival goal

~ (requiring actual payoff to exceed some critical level with some specified

probability) and a profit-maximizing goal. Only if alternatives are equal in
terms of the safety-first survival requirement would choice hinge on a con-
sideration of the expected utility of profit.

Suppose that our client in the property purchase problem above is not
prepared to allow tradeoffs between the four attribute dimensions. Instead
he places them in a dominant priority order of annual net return x;, initial
equity x,, distance to the city x;, and distance to the beach x,. Reading
individual attribute utility values from Figure 4.5, we have the utility pay-
off matrix of Table 4.13. Our client’s choice thus rests between the three
lexicographically ordered (expected) utility vectors '

Ula) = (0.83;0.00; 1.00; 0.50)
Ula) = (0.50;0.93; 0.54; 1.00)
Ulas) = (0.96; 1.00; 0.00; 0.00)

Comparison of these vectors on the basis of the required dominant priority
of x; over x, over x; over x, indicates a; is the preferred choice since
0.96 > 0.83 > 0.50. For choice to hinge on the least priority attribute xy,
each vector must have equal utility values for x; (e.g., 0.96), for x, (e.g.,
1.00), and for x5 (e.g., 0.54). If this was so, a, would be the preferred act.

TaBLE 4.13. Lexicographic Utility Vectors for Property
Purchase Decision Problem

2 a as
6, P@O) U UL, U U U U U U U U U
0, 0.2 1.00 0 1 05 085 093 054 1 100 1 0 O
0, 0.5 08 0 1 05 067 093 054 1 098 1 0 O
O, 0.3 067 0 1 05 000 093 054 1 091 1 0 O
Expected utility 083 0 1 0.5 0.50 093 054 1 09 1 0 0

4.4 CONSTRAINTS ON THE UTILITY FUNCTION .

Little mention has been made of any general properties that we might
find desirable to impose on an elicited preference curve. If we always pre-
fer more money to less, it follows from the first property of Bernoulli’s
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principle that utility increases monotonically with money or, equivalently,
that the marginal utility for money (i.e., the first derivative of the utility
function) is strictly positive. This feature must be actively borne in mind
when empirical recourse is made to otherwise perhaps innocuous looking
algebraic representations such as U(x) = x + bx* b < 0, which reaches a
maximum at and has negative marginal utility beyond x = —1/24. At best,
such a function could only represent preferences for x < —1/25.

Apart from his response to elicitation questions, a decision maker may
wish to ensure that his utility function expresses certain qualitative aspects
of his preferences. For example, he might suggest a general aversion to risk
with specific regions of preference for risk corresponding perhaps to par-
ticularly important aspiration levels. Friedman and Savage (1948) and oth-
ers have postulated variously shaped utility functions to rationalize
observed simultaneous participation in insurance and lottery markets.
However, except for providing a general frame of reference for checking an
elicited function, it is not clear how such qualitative assessments may be
incorporated in utility analysis. If they really exist, such qualitative aspects
will be reflected in the elicited utility curve.

As a generalization, most people seem to be averse to risk over the
range of payoffs appropriate to their usual managerial decision making.
Recall that this means that for any risky prospect, the risk premium
(EMV — CE) is positive. Visually, this implies that the utility curve of a
risk-averse person displays diminishing marginal utility (i.e., the second
derivative is negative).

When the argument of a utility function is specified to be wealth or
asset position rather than gains or losses, it is often possible to specify some
additional constraints regarding risk aversion. Consider facing a risky pros-
pect involving an equally likely gain or loss of $100. ‘Suppose you were
prepared to pay up to $20 to avoid facing this prospect, in which case your
risk premium = EMV — CE = 0 — (-20) = $20. Now, if you were
rather wealthier than you are currently, would you be prepared to pay the
same sum to avoid this fixed-size lottery? If you would pay less (and this
would put you in the same category as most people), this indicates decreas-
ing risk aversion with increasing wealth.

In eliciting utility curves for wealth or net assets, it is useful to de-
termine qualitatively if aversion to risk is decreasing. If it is, the curve can
be readily checked by computing the implied risk premiums for a sequence
of symmetric equally likely “‘lotteries’ involving pairs of increasing asset
positions and by checking that they diminish.

More formally, Pratt (1964) has shown that degree of risk aversion
can be measured by a coefficient 7 (W), defined as the negative ratio of the
second and first derivatives of the utility of wealth function U(W); i.e.,




90 CHAPTER FOUR

(W) = -U,(W)/U (W) (4.10)

where the subscripts denote derivatives and W denotes wealth or assets.
The Pratt coefficient is the simplest measure of curvature that is not
changed by an arbitrary positive linear transformation of the utility func-
tion. Also, since (W) is a pure number, it allows interpersonal compari-
sons of the degree of risk aversion at particular wealth levels. The Pratt
coefficient is positive for risk aversion; and for decreasing risk aversion
r(W) diminishes with increasing wealth, i.e., , (W) < 0. Only a few func-
tional forms can répresent utility with these characteristics (e.g., U =
log, W; U = W* 0 < ¢ < 1). In particular, it should be noted that the
quadratic utility of wealth function (U = W + 6W? b < 0) even over its
range of respectability, implies increasing rather than decreasing risk aver-
sion. Constant aversion to risk implies a particular class of utility func-
tions U(W) = 1 — ¢=¥, where ¢ > 0 is Pratt’s measure of risk aversion.
This negative exponential utility function was the form employed by
Freund (1956) in one of the earliest agricultural applications of utility
analysis.

Further qualitative restrictions on preferences, such as decreasing
aversion to size of risks as discussed by Zeckhauser and Keeler (1970), can
also be employed to circumscribe even more narrowly the field of algebraic
contenders with consequent impact on algebraic specification of empirical
utility functions for wealth. Algebraic forms suitable for specifying the
utility of gains and losses (x) are also rather restricted by the need to han-
dle losses satisfactorily. In particular, functions of the form U = f(log x) are
not defined for x < 0.

4.5 ALGEBRAIC REPRESENTATION OF THE UTILITY FUNCTION

It is often convenient to have utility functions for gains and losses ex-
pressed in algebraic form. Two particular situations where this is so can be
distinguished: (1) the case where an algebraic representation of a curve
smoothed through a set of elicited utility points is needed to permit the
utility value of any outcome in the range to be computed and (2) the case
where, in addition to the requirements above, knowledge of the algebraic
form of the fitted function enables easy calculation of the function’s de-
rivatives for use in certain analytical decision procedures described in
Section 4.6.

A number of procedures can be employed to meet the first case.
Perhaps the easiest, in terms of ready availability of suitable computer
routines, is to fit a polynomial function by least squares regression. Note,
however, that conventional tests of goodness of fit (such as R? values) are of
limited relevance since the purpose of the analysis is to establish the for-
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mula of a curve whose shape has been specified, not to approximate a re-
lationship revealed by a set of data embodying a random component. Con-
sequently, goodness of fit may best be judged by plotting the fitted function
and assessing visually how well it matches the elicited utility values. In
some cases a good fit can be obtained by use of spliced polynomials, as
described by Fuller (1969).

In the second case, where a mathematically tractable function is re-
quired, more care is needed in choice of an appropriate functional form.
Qualitative constraints on the form of the function should be considered as
well as the requirements for the decision analysis to be performed sub-
sequently. Again least squares regression may often be the most convenient
estimation procedure to use, but in this case the analyst may have to be
satisfied with a less close fit to the utility points. Subjective visual appraisal
again is the best test of goodness of fit, but in some applications sensitivity
analysis may be called for to evaluate the consequences of using different
algebraic forms for the utility function.

As a practical matter, if algebraic specification is needed, the essential
aspect is to obtain an estimate that is (subjectively) judged to fit the elicited
utility points satisfactorily over the relevant range of gains and losses. A
variety of different functional forms may be suitable (e.g., polynomial,
logarithmic, or exponential), in which case the easiest to manipulate
should be used. Often this will imply the use of a polynomial of second or
third degree.

Polynomial Specification

The use of a polynomial to represent the utility function for gains and
losses can often be justified on the grounds that it is a Taylor series ap-
proximation to the unknown true utility function over the relevant range.
Thus if U(x) has a finite ath derivative U, (x) for all x and U,_;(x) is
continuous everywhere, Taylor’s theorem states that for any x* and every
x = x*a point { exists in the interval joining x and x* such that U(x) may

be approximated within a specified bound of error as

Ulx) = Ulx*) + Z) [Ue(x*)(x = x*) /] + U, (§)(x — x*)/n!
k=1
(4.11)

Collecting like powers of x, U(x) may thus be approximated as a
polynomial

Ulx) = ag + anx + opx? + asx® + + - - (4.12)

Since U(x) is only defined up to a positive linear transformation, equation
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(4.12) may be written as
U(x) = x + bx? + cx’ + -« - (4.13)
Further, by the expected utility theorem we have

U@) = E(x + bx*> + ex>+ -+ +) = E(x) + BE (x*) + ¢cE(x®) + - - -
(4.14)

so that utility can be expressed relative to a risky prospect with a conse-
quence x following some probability distribution f(x). For any such ran-
dom variable, E(x") can be expressed in terms of the first » moments
about E (x). For example if M, (x) denotes the #th moment E[x — E(x)]*
about the mean, the first three terms of (4.14) can be written as

U(x) = E(x) + b{M,(x) + [E(x)]*}
+ cofMs(x) + BE(x)My(x) + [E@)P} + - -+ (415)

This expression approximates the utility of any risky prospect f(x) as a
function of its mean and its moments about the mean. Often this will be
more convenient than direct use of the probability distribution as implied
by (4.3). As explained in Section 4.6, an alternative approach based on the
Taylor series expansion of U(x) about E(x) is also possible and often
useful.

If a polynomial such as equation (4.13) is to be fitted, which will often
be a good first step to obtain a continuous functional form for U(x), the
question arises as to how many terms should be included. What degree
should the polynomial be? An immediate answer is that as many powers of
x should be used as are needed to fit the elicited utility points satisfac-
torily. On a pragmatic basis, such a procedure then specifies how many
moments of f(x) are taken into account by the decision maker, who may
also be presented with a variety of f(x) distributions to ascertain which
moments are relevant to him. If he considers only mean and variance, i.e.,
E(x) and M,(x), a quadratic polynomial is relevant; if skewness is also
considered so that M;(x) plays some part in his choices, a cubic poly-
nomial is relevant. As an empirical matter, it seems that the ith moment
is more influential than the ( 4+ 1)th and that, for most decision makers,
moments beyond the third one play no great role in choice. Also, par-
ticularly if the utility points follow an S-shaped pattern, it may often be ex-
pedient to fit a pair of spliced quadratic or cubic polynomials.

If the utility function is quadratic, we have

U(x) = x + bx? (4.16)
and the restriction dU/dx > 0 necessitates

x> —=1/2b if b>0 x < —-1/2b if b <0
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Within these ranges, x is the certainty equivalent of all risky prospects
whose utility is equal to U (x). The second derivative of the quadratic shows
that b > 0 implies increasing marginal utility as x increases; b < 0 implies
decreasing marginal utility as x increases; and if & = 0, U(x) is linear and
marginal utility is constant as x increases.

If x is a risky prospect, the quadratic may be written as

U(x) = E(x) + b[Ex)]* 4+ bM2(x) (4.17)

where M, (x) is the variance of x. Since M,(x) is necessarily positive and
U/ dM,(x) = b, increasing marginal utility for x (e, b > 0) implies
that variability in x is attractive. Conversely, diminishing marginal utility
for x (i.e., b < 0) implies that variability in x is disliked. Thus if 4 > 0, the
decision maker is a risk preferrer; if b < 0, he is a risk averter; if b = 0, he
is risk indifferent.

The expected value of the risky prospect x is E£(x). In the quadratic
case its utility is

UIE(x)] = E(x) + blE®)] (4.18)

Comparison with equation (4.17) shows Uf(x) — ULE(x)] = bM;(x).
Since M, (x) is necessarily positive, with quadratic preference the utility
of a risky prospect is greater than, equal to, or smaller than the utility of
its expected value according to whether the decision maker is a risk pre-
ferrer, risk indifferent, or a risk averter. As would be expected on more
general grounds, these relations imply that the certainty equivalent of a
risky prospect will, with the quadratic, be greater than, equal to, or
smaller than its actuarial or mean value E(x) according to whether risk
preference, indifference, or aversion respectively prevails.
A similar type of relationship can be derived for the cubic function

U(x) = x + bx* + cx® (4.19)

For dU/dx to be positive over the whole range of the cubic function, it must
have 3¢ — 62 > 0. If these restrictive requirements are met, the shape of
the function necessarily involves an initial stage of decreasing marginal
utility followed beyond the inflexion point at x = —b/3¢ by a final stage of
increasing marginal utility. If marginal utility is first increasing and then
decreasing, the only cubic functions that can be used will not be increasing
everywhere; i.e., their relevant range will be restricted. However, such
patterns of changing marginal utility are unlikely to be encountered in
careful practice.

Though simple polynomial utility functions (particularly the quad-
ratic) have often proved useful in empirical application, they have been
strongly criticized on three theoretical grounds. First, polynomials are not
everywhere monotonically increasing. Operationally, however, this is sel-
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dom a problem. Empirical utility functions are estimated over a particular
range of gains or losses, and no one would recommend their use beyond
that range. Nor would anyone with his wits about him use a polynomial
approximation outside the range where it is monotonically increasing.

Second, a polynomial of degree n implies that only the first n moments
of the probability distribution of outcomes are taken into account. Thus
the quadratic allows only the mean and variance of a risky prospect to play
any part in choice. This can never lead to error if the decision maker’s
utility function is “‘truly’’ quadratic or if the risky prospect’s distribution is
normal. Otherwise, use of the quadratic may lead to error, but not neces-
sarily so. While the utility of each risky prospect may be wrongly assessed,
the overall set of prospects may still be correctly ranked depending on how
influential the higher moments are.

Third, polynomial functions for utility of wealth fail to meet the intui-
tive requirement of decreasing risk aversion with increasing wealth. While
this may be a significant fault in utility of wealth functions, it is not too
serious in terms of utility functions for gains and losses about a given
wealth position because we can rationalize a risk-averse polynomial utility
function for gains and losses as simply a local approximation of a de-
creasingly risk-averse utility function for wealth. To see this, we write the
utility of wealth in the manner of equation (4.11) as a‘Taylor series ex-
pansion about a given level of wealth (say current wealth W) as

UW) = UWo) + U(Wo)(W — Wo) + Us(Wo)(W — Wo)*/2!
+ Us(Wo)(W — W)*/30 + « - - (4.20)

Recognizing that W — W, = x (the extent of gain or loss from current
wealth), if we now make the particular positive linear transformation of
subtracting U(W,) and dividing by U, (W,), we have U(W) expressed as

a function of x, U (x), where

Ux) = x + [Up(Wo)/Ur(Wo)1x*/2 + [Us(Wo) / Ur(Wo)]%*/6 + - - -
| (4.21)

This utility function is precisely analogous to the standardized polynomial
of equation (4.13) but with b = [Uy(W,) /U (W,)]/2, which, from (4.10)
we see is equivalent to b = —r(W,)/2; i.e., b equals minus half the Pratt
coefficient evaluated at current wealth. As current wealth increases, de-
creasing risk aversion will be appropriately reflected in the local poly-
nomial utility function expressed in terms of gains and losses. Operation-
ally, this poses no difficulty since, with use of the ELCE or ELRO method
U(x) can be easily obtained directly at a particular point in time and
wealth for a given decision maker. From a practical point of view, the ap-
proach fits in well with the pragmatic procedure of regarding a polynomial
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as an approximation to the unknown true utility function, recognizing that
a new utility function for gains and losses should be assessed whenever the
decision maker’s asset situation changes significantly.

Relative to equation (4.21), note further that if the derivatives beyond
the second are sufficiently small to be ignored, the utility function ap-
proximation will be quadratic.

Quadratic Utility and (E, V) Analysis

With U(x) quadratic, discussion is often presented in terms of mean-
variance or (as it has come to be designated) (E, V') analysis. Of course, E
is E (x) and V'is M,(x). For convenience, we will write equation (4.17) as

U=E + bE* + bV (4.22)

Equation (4.22) implies a utility surface in the three dimensions U, E, and
V. For constant values of U, the function can be represented by a series of
isoutility contours or indifference curves in (E, V) space. Thus on setting
U(x) equal to some constant U¥, rearrangement gives

V - U*b - E/b — E* (4.23)

as the (E, V) locus of all mean-variance combinations that yield the same
level of utility. Corresponding to the relevant range of the quadratic, the
relevant range of the isoutility loci is E 2 —1/2b for b >0, and E =
—1/2b for b < 0, with V = 0in both cases. Note also that the intercept
of an isoutility curve with the E axis (i.e., where V = 0) is the certainty
equivalent of all mean-variance combinations on that indifference curve. If
the isoutility curves are drawn in mean-standard deviation space (i.e., with
axes measuring E and V°%), they will be concentric circles with the center
atE = —1/2b, V = 0. .

The decision maker’s tradeoff or substitution rate between mean and
variance is given by the slope of the isoutility (E, V') curve, which is

dE/dV = —b/ (1 + 2bE) (4.24)

Since (1 + 2bx) = dU/dx and must be positive, its expected value (1 +
2bE) must be positive also. Hence dE/dV will be positive, zero, or negative
within the relevant range according to whether b is negative, zero, or posi-
tive. As is intuitively obvious, a risk averter will need increases in mean
value to compensate for increased variance if his utility is to remain
unchanged.

The second derivative of the isoutility curve is

PE/dV? = [2b%(1 + 2bE)"*1(dE/dV) (4.25)

The term in square brackets is always positive, and dE/dV is positive or
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Fic. 4.6. The (E, V) indifference or isoutility curves
forU = E + bE? 4 sV.

negative over the relevant range according to whether & is negative or posi-
tive. Hence for a risk averter the (E, V') indifference curves have increasing
slope (i.e., the tradeoff rate increases) as V increases, and for a risk pre-
ferrer the (E, V') indifference curves have increasing negative slope as V
increases. The greater the degree of risk aversion or preference (i.e., the
greater | b | is), the steeper the indifference curves.

The above relationships are portrayed diagrammatically in Figure
4.6: (a) with risk aversion, (b) with risk indifference, and (c) with risk
preference. In each case three isoutility or (E, V) indifference curves are
shown for utility levels U > @ s y®.

Just as the quadratic utility function may be depicted in (E, V) space,
so also may the set of risky prospects from which a choice is to be made.
These prospects will have moments beyond the second, but in the context
of (E, V') analysis such higher moments are assumed irrelevant to choice.
When depicted in (E, V) space, the preferred risky prospect is indicated
as the one that lies on the highest isoutility curve. Consider, for example,
the alternative prospects 4, B, and C shown in Figure 4.6. For the risk
averter 4 is optimal, B is optimal with risk indifference, and C is optimal
for the risk preferrer. More detailed discussion of the depiction of risky
prospects in (E, V') space is deferred until discussion of portfolio analysis
in Section 7.1,

4.6 UTILITY ANALYSIS USING MOMENTS OF DISTRIBUTIONS

The approach of depicting decision problems and preferences in terms
of moments of probability distributions is more general than revealed
above in our discussion of polynomial utility functions.

If utility depends only on a single attribute, the utility function can be
respecified as an expected utility function defined in terms of the moments
of the probability distribution of the single attribute. In the case of multi-
dimensional consequences, the utility function can be respecified in terms
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of a single conditionally referenced attribute as outlined in Section 4.3."
This “moment method”” is exactly equivalent to the direct method for some
utility functions; for others it serves as a fair but useful approximation. The
computation of most decision analyses is substantially reduced through
using the moment method, particularly when many states must be con-
sidered. In consequence, even when it provides only an approximation in
utility evaluations, the moment method deserves attention for the increased
feasibility it can impart to analytical procedures.

The basis of the moment method is a Taylor series expansion. We take
first the utility function for gains and losses U(x) as in equation (4.11), but
with x* = E(x) so that the expansion is taken about the mean. Thus we

have

U(x) = UIE®)] + GIE®)][x — E(x)]

+ IE@)]x — E®))?/2! + U[EX)]lx - Ex)/3 + - -
(4.26)

Using the expected utility theorem and taking the expectation of equation
(4.26), the utility of the risky prospect x is

Ux) = UIEx)] + UGIE®]E[x — EX)] + UL E(x)]
- Elx — E@1¥/2 + ULIE®]E[x — E()P/6 + - - -

Recalling that E[x — E(x)] = 0 and that the kth moment about the mean
M,(x) = E[x - E (x)]%, this equation can be written as

Ux) = UIE®] + IE@) My (x)/2 + UIEX)]IM3(x)/6 + - - -
. (4.27)

Thus the utility of a risky prospect x is equal to the utility function eval-
uated at the mean of x plus a series of products of moments of x, cor-
responding derivatives of the utility function and inverse factorials, other
than that involving the first derivative. The approximation is better for
“tight” distributions (i.e., for those with relatively small variance) and
improves with the number of terms included. The number of terms it is
necessary to retain in any application depends on the individual problem
and especially on the closeness of the utilities of alternative acts.

It is usually found that because U, [E(x)]/k! becomes smaller at a
rather faster rate than M, (¥) becomes larger as £ increases, terms beyond
those involving the third moment add insignificantly to the precision of the
approximation of equation (4.27). More specifically, it seems that terms
beyond the first three add insignificantly to the precision of the approxima-
tion when Pratt’s coefficient of risk aversion does not exceed a magnitude
of the order of one tenth of the inverse of the standard deviation of the
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risky prospect’s probability distribution. Accordingly, we will only use
products up to the term involving M;(x) in the following examples in which
equation (4.27) is applied to several algebraic forms of utility functions.

Quadratic. 'The quadratic function is the simplest nonlinear form to
manipulate, but it has already been indicated as having some limitations
both as an empirical and as a theoretical utility function. By a suitable
positive linear transformation, any quadratic is equivalent to U = x 4 bx?
where, for risk aversion, 4 < 0. Its derivatives are Uy =1 4 2bx, U, = 25,
and the third and beyond vanish so that substituting into equation (4.27)
provides the exact expected utility function involving only the mean and
variance,

U= UE®] + 26My(x)/2 = E(x) + b[E(x)]* + bV (x) (4.28)

where, to accord with standard notation, V (x) = M,(x). This is precisely
the result obtained earlier in (4.17).

Cubic.  All polynomial functions lead to simple results analogous to
that noted for the quadratic. A kth order polynomial leads to an expected
utility function involving moments only up to the kth since corresponding
derivatives beyond this vanish. The cubic case serves to illustrate this
fact: U =x+4 bx> + x> has U, =1 + 2bx + 3cx?, U, = 2b + 6cx,
and Us = 6¢. Substitution into equation (4.27) gives

U= UE®] + [2b + 6E@) ]V (x)/2 + 6cMs(x) /6
E(x) + b[EMX)] + c[EW]® + 6V (x) + 3¢E(x) V (x) + cMs(x)

E@) + {LEW] + V() + c{[E@] + 3E(x) V (x) + My(x))
(4.29)

The foregoing polynomial functions are potentially useful for encoding
preferences for gains and losses; but as noted in Section 4.4 they have
various limitations as utility of wealth functions. The converse situation
applies for the following three nonpolynomial functions, and accordingly
we will specify them as utility of wealth functions. The connection with
moments of returns on gains and losses is preserved by defining [as we did
in discussing equation (4.20)] the random variable wealth W as the sum of
(known) wealth before a decision W, and the gain or loss outcome x of a
risky decision problem (i.e., W = W, + x). It follows that EW)=w, +
E@x), V(W) = V(x), My(W) = M, (x), etc., so that in expanding about
E(W), (4.27) holds if everywhere E(x) isreplaced by W, + E(x).

Logarithmic. The utility function U = log, W -has derivatives U, =
YW, U, = ~1/W? and U, = 2/W?>, so expected utility can be approxi-
mated by
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log, E(W) — (1I/[EW)}} V(W) /2 + {2/[E(W)PP} M5(W)/6
log,] Wo + E(®)] — (1/2)V (x)/[Wo + E(®)]?

+ (1/3)Ms(x)/[Wo + E(x)7P (4.30)
Note that the ratio of moments in the second term is the square of the co-
efficient of variation of wealth and in the third term is a measure of rela-
tive skewness.

Power. A utility analog of the Cobb-Douglas response function is
U= W*0 < ¢ < 1, with derivatives U; = WL Uy = c(c — )W 2,
and Us = ¢(c — 1)(c — 2)W* 3, so expected utility can be approximated
using the wealth variant of equation (4.27) as
U= (W, + E®] + clc — D[Wo + E@)]*V (x)/2

+ el = 1) = 2)[Wo + E@)]) > M3(x)/6 (4.31)

U

]

Negative exponential. The constant risk aversion function U =1 —
¢~¥ has derivatives U, = ce~?, Uy = —c% ™", and U; = ¢’¢~". As long as
the risk aversion coefficient ¢ is small relative to the variance and higher
moments (say, so that ¢?V (x) < 0.01), expected utility may be approxi-
‘mated by

U=1— ¢ EW _ 2= EM Y (W) 2 4+ P~ EW M (W) /6
o1 = W EWI 4 2V (x)/2 — *Ms(x)/6] (4.32)

Such Taylor series approximations will be most useful for analysis of
problems featuring continuous random variables or many states, as shown
in Chapters 6 and 7. The approach is also of general use in the evaluation.
of limits to the value of information as discussed in Section 5.3. Since the
only moment changed by subtracting a cost of information is E (x), the use
of a Taylor series expansion can provide a ready means of obtaining good
approximations to information value limits.

4.7 SUMMARY REMARKS

The idea of encoding a decision maker’s preferences in the form of a
utility function is a simple one, but it is very important for ensuring con-
sistency of preference in conditionally normative analyses of choices. We
have presented some practical suggestions for eliciting utility functions,
and with use of such techniques we see little difficulty in dealing with non-
linear preference of individuals. An “individual” might also refer to a
group of decision makers acting in complete accord on the basis of agreed
common preferences. Unfortunately, for other more realistic group deci-
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sion situations the approach we have adopted cannot be simply applied.
% We explain why in Section 5.8.

Observation at the individual level has wider implications. The bulk of
empirical evidence so far gathered suggests that most decision makers are
risk averse. Generalizing from such empirical observations leads to at least
two important and related statements about nonelicited preference and ap-
praisal of individual economic efficiency. First, we could never establish
preferences for all the decision makers in a community, and the mind
boggles even at determining the utility functions of all the farmers in one
village. But if we can be fairly safe in assuming that most decision makers
are risk averse, it obviously makes no sense to assume, say, an unqualified
goal of profit maximization in an analysis intended to aid attainment of
farmers’ goals. The neoclassical theory of the firm with its assumptions
of certainty and linear utility is inadequate for normative analysis of risky
production where preference for profits is nonlinear. An approach involv-
ing decision analysis methods is clearly more appropriate. If for some rea-
son individual preference cannot be determined, an arbitrary assumption
of a theoretically sound decreasingly risk-averse utility function for assets
(such as “Everyman’s function” U = log, W) is more defensible than ar-
bitrarily assuming linear preference and ignoring risk.

A closely related issue concerns the descriptive use of economic theory
founded on the notion of certainty. For instance, it has been a popular
pastime of agricultural economists to estimate empirical production func-
tions to judge resource-use efficiency in a profit-maximizing sense. This
frame of reference may have some relevance from a national point of view,
but in the light of our comments there is no reason why a farmer should
want to operate at any position other than his subjective utility-
maximizing position. Without special encouragement this may diverge
from an average profit-maximizing position or some other perhaps claimed
as optimal by purveyors of new technology.

PROBLEMS

4.1. First determine your utility function and then that of a friend for money
gains and losses in the range from —$500 to $500.

@ 4.2. (a) If Xdenotes net return per technical unit (e.g., per hectare or per sow),

«¢_ under what conditions will U (kX) = kU (X) where £ is a constant? What

\~ # does this imply about the way in which financial payoff matrices must
” be expressed for decision analysis? '

" (b) In the neoclassical theory of the competitive farm firm, fixed costs play

no role in determining the optimal level of inputs for profit maximiza-

tion. Show that if the farmer’s aim is to maximize utility with respect to
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net profit, fixed costs must be taken into account in determining optimal
input levels if he is not indifferent to risk or is not constantly risk averse.

(c) It is sometimes argued that while we can say U(4) is greater than U(B)
if A is preferred to B, it is fallacious to say A4 is preferred to B because
U(A) is greater than U (B). What comment would you make?

4.3. Afarmer’s utility function for money gains and losses is approximately rep-
resented by U(X) = 2.05X — 0.01X% (X £ 80), where X denotes
thousands of dollars. The farmer is currently wondering whether to spend
more on fertilizer for his 1000 ha of crop than last season’s $4/ha. Pertinent
information is shown in the following payoff matrix of possible dollar profits
per hectare.

Possible Actions
Type of Spend Spend Spend Spend
Season Probability $4/ha $8/ha $12/ha $16/ha
: (§/ha)

Poor 0.1 -8 -12 —16 -20

Fair 0.2 -2 - 8 -12 —16

Good 0.5 2 4 6 8

Excellent 0.2 12 20 24 24
(a) How much should the farmer spend on fertilizer?

(b) What is his risk premium for each of his possible acts?
(c) Verify that the expected utilities when computed by the moment method
are identical with those estimated by the direct method.

4.4, Plot the utility function specified in Problem 4.3 for the range —20 < X <
30 and show graphically the risk premium for the possible action of spending
$16/ha on fertilizer.

4.5. If you were offered a choice between bets A4 and B which would you choose?
Bet A: You win $1,000,000 for sure.

Bet B: You win $5,000,000 with probability 0.10.
You win $1,000,000 with probability 0.89.
You win $0 with probability 0.01.
Now choose between bets C and D.
Bet C: You win $1,000,000 with probability 0.11.
You win $0 with probability 0.89.
Bet D: You win $5,000,000 with probability 0.10.
You win $0 with probability 0.90.
This problem is known as Allais’ paradox (Borch, 1968). ‘

If you chose bet A4, you should have also chosen C. Prove this. If you
chose bet B, you should have also chosen bet D. Prove this. Comment on the
role of utility analysis as a ineans of achieving consistency in choice relative to
given preferences in complicated decision problems.

4.6. She’llbejake Ltd., the construction subsidiary of Gundy Pastoral, does sub-

contracting on government beef-road contracts. The construction company’s
utility function is approximately represented by U(X) = 2X — 0. 01X2,
(X £ 100), X being thousands of dollars.
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4.7.

4.8.

4.9.

4.10.

CHAPTER FOUR

(a) Suppose She’llbejake is considering bidding on a contract. Preparation of
a bid would cost $8000, and this would be lost if the bid failed. If the bid
succeeded, She’llbejake would make $40,000 net gain. If She’llbejake
Jjudges the chance of a successful bid as 0.3, what should the company
do?

(b) What chance of a successful bid would make the company indifferent
between bidding and not bidding for the contract?

Comment on the following statements: .

(a) Because it can take a broad view and weather any resultant financial
storm, the government should be indifferent to risk in appraising al-
ternative investment projects.

(b) Since most farmers are risk averse, they will use variable inputs at sub-.
optimal levels from the point of view of maximizing expected profit. It
would therefore be in the national interest to subsidize variable inputs
such as fertilizer.

(c) Asafarmer becomes wealthier, he will operate his farm more intensively.

(d) The familiar S-shaped curve showing the rate of adoption of new agri-
cultural techniques is explained by the fact that a few farmers are risk
preferrers, while the bulk are risk averse.

(a) What are the implications of the fact that the uniqueness of the utility
function is defined only up to a positive linear transformation?

(b) What influences do you think might lead to a change in a person’s
utility function?

~ (c) Might it be said that every utility function is lexicographic to some

extent?

The management of Gundy Pastoral Company is considering the estab-
lishment of a cattle feedlot on the outskirts of Darwin. While the project
looks quite profitable with a gross margin of $30 per head and a fixed cost of
$20,000 over the relevant range of throughput, there would be a significant
olfactory pollution problem. How would you go about ascertaining the man-

agement’s utility for various alternative feedlot sizes if consequences were to

be evaluated in terms of both annual profit and pollution? The range of sizes
being considered is from an annual throughput of 1000 head up to 8000 head.
In purely physical terms (without taking account of the effect on Gundy

Pastoral’s public image) it is thought that the olfactory pollution problem
would treble with every doubling of annual throughput.

Suppose the property purchase decision problem of Section 4.3 had also in-
volved the following alternatives:

a4 as

9,- X1 X2 X3 X4 X1 X2 X3 X4

0, 12 90 100 200 96 80 150
0, 6 90 100 200 96 80 150
O3 1 920 100 200 96 80 150

—~ N W

(a) What should be our client’s order of preference across the five alterna-
tives?




UTHLITY 103

(b) What if the relevant k; values were k; = 0.3, k, = 0.2, k3 = 0.1, and

ky = 0.3?

(c) What if our client had a lexicographic ordering with dominant priorities
of x4 over x; over x over x37
4.11. Comment on the algebraic implications and draw a graph of each of the
following utility functions where W represents wealth and the functions are
proposed for 0 < W < 1000.
(a) U(W) = (W + 1000)°
(b) U(W) = —(1,000 — W)?
(c) UW) = log, W
(d) U(W) = log, (W + 100)
€ UW) =1 — ¢ "N
) Uw)=who<p<1,8=05
4.12. (a) Plot the (F, V) and (E, V' 1/2) indifference systems implied by the util-

ity function of Problem 4.3.

(b) Consider a risky prospect that yields a gain of $6150 with probability

0.8 and a gain of $11,500 with probability 0.2.

(1) Calculate the first three moments of payoft from this prospect.

(2) Scale the utility-of-gain function U = x — (5)107°x* so that
U(6150) = 90 and U(11,500) = 150 and use the moment method
of approximation to compute the expected utility of the prospect.

(3) Scale the utility-of-wealth function U = log 1o W with initial wealth
Wy = 50,000 so that U(Wy + 6150) = 90 and U (W, + 11,500) =
150 and use the moment method of approximation with the first
three moments to compute the expected utility of the prospect. (Re-
call that the first derivative of U = a + blog oW is U, =
0.43436/W.)

It
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CHAPTER SIX
PRODUCTION
UNDER RISK

IN THIS CHAPTER, which could just as well be entitled “Risky Response
Analysis” or “Resource Allocation under Risk’’, we blend the (riskless)
neoclassical theory of crop and livestock production (Heady and Dillon,
1961) with the concepts of decision theory developed in earlier chapters.
Our purpose is to explore the impact of risk on agricultural producers who
are utility maximizers and face production functions exhibiting diminish-
ing returns. Needless to say, we will establish that risk generally has a sig-
nificant impact on the way resources should be allocated—a result that
raises serious questions about the relevance of any theory of production
that specifically ignores risk.

Agricultural firms typically are competitive, face known input “prices
but uncertain product prices, and face uncertainty in some of the factors
that influence the quantity and quality of the output they produce. Such
firms usually produce several crop and/or livestock products through the
control of many inputs or decision variables. For simplicity we will first
discuss the case of a firm using a single variable input to produce a single
product whose level of output and price are uncertain. Extension to more
complex cases is at least conceptually simple. Discussion of this is followed
by an outline of empirical procedures pertinent to the evaluation of risky
input-output decisions. Some policy implications arising from the risky
nature of agricultural production are then covered.

Throughout, we will assume a production function exhibiting di-
minishing returns and will follow the approach of setting up risky decisions
on resource use in the context of expected utility maximization. This im-
plies the straightforward application of Bernoulli’s principle and is a de-
liberate attempt at analytical consistency. Other approaches to resource
allocation under risk, not recognizing the basic axioms of preference under
risk, have been suggested. For instance, Day et al. (1971) and Roumasset
(1976) have discussed risky decisions on input and output levels for the
firm in the context of safety margins and bounds on the probability of loss.

160
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Such approaches generally imply a lexicographic ordering of preferences.
We will return to these safety-first notions in our discussion of chance-
constrained programming in Chapter 7. Here, however, we will stick to the
expected utility maximization model. As our analysis shows, consideration
of the classical production function in a unidimensional utility context
leads us to some easily appreciated economic implications of production
risk. In general these results are as intuition would suggest: if a producer is
risk averse, risk acts as a friction to production and induces a lower level of
resource use than would otherwise prevail; if a producer prefers risk, the
reverse occurs.

6.1 ONE-FACTOR ONE-PRODUCT CASE

Our notation and initial assumptions are as follows: the level of the
firm’s single input decision variable is denoted by » and its assumed known
price per unit by p,; the uncertain level of output is denoted by y and its
uncertain price per unit by p,; fixed costs are denoted by F. Thus the ran-
dom variable profit, denoted by x to accord with the notation of earlier
chapters, can be defined as

x=py—po-F (6.1)

where y is some function of ».

We will again assume that the decision maker’s preferences for risky
profits are encoded in the utility function U = U(x). The optimal level of
the decision variable is found according to Bernoulli’s principle as the
value of v that maximizes expected utility where expectations are taken
over the distributions of y and p,. Note that the distribution of y will gen-
erally be conditioned by v since y is some function of v and that, under the
reasonable assumption of perfect competition among agricultural pro-
ducers, p, will be independent of .

For all but trivial or unrealistically restrictive specifications of the re-
sponse and probability functions, utility maximization cannot proceed
directly. Two alternative approaches may be employed. Numerical ex-
plorations of the decision variable’s range for stochastically simulated
values of y and p, could be used to generate achievable values of expected
utility. In this way we could approximate the value of the decision variable
v that maximizes U(x) given the uncertainty in y and p,. Alternatively
and of direct interest to us here, the problem can be approximated by
means of the moment method of Section 4.6—especially when Taylor series
terms involving the third and higher derivatives can be ignored. Analysis
is further simplified by the reasonably realistic assumption that output y
of the individual firm and product price p, are stochastically independent
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(i.e., the probability distribution of one does not depend in any way on that
of the other). Under these several simplifying assumptions, the mean of
profit is given by

E(x) = E(pyy — pv — F) = E(p)E(y) — pv — F
E(p)g() — pv = F (6.2)

where g(v) = E(y) is an empirical function relating the mean of y to ».
Likewise, the variance of profit is given by

Vi) = Vipy — po — F)
[E@)V ) + [EQIPV () + V(B) V()
= [E(p)I*h (@) + [g@)*V (p)) + V() k() (6.3)

where 4 (2) = V (y) is an empirical function relating the variance of y to ».
By Taylor series approximation from equation (4.27),

U=UE®X]+ U[E(x)]V(x)/2 (6.4)

Maximization of this expected utility with respect to », even under simple
functional relationships for g(v) and 4 (v), is usually messy and best done
numerically with the aid of a computer. However, the logic of the opera-
tion can be seen as follows. The first-order condition for a maximum of
U = UlE(x), V (x)] is that the derivative

dU/dv = [U/JE (x)|[dE(x)/dv] + [0U/3V (x)1[dV (x)/dv]  (6.5)
is equal to zero which implies
0 = dE(x)/dv + {{0U/3V (x)]/[0U/AE (x)1}dV (x)/dv (6.6)

In this expression, the ratio of square-bracket terms measures the rate of
utility substitution between E(x) and V (x). That this is so can be seen by
considering an isoutility curve in (E, V') space. Along such a curve, utility
in terms of E(x) and V (x) is constant so that its total differential dU is
zero. The differential dU is related to the differentials dE (x) and dV (x)
through the partial derivatives of utility with respect to E (x) and V (x) as

dU ="[0U/JE (x)]dE (x) + [aU/aV (x)]dV (x) (6.7)
which is simply rearranged for dU = 0 as
[dE(x)/dV (x)]y = —[9U/aV (x)1/[8U/IE (x)] (6.8)

Magnusson (1969) has called this expression, which is the negative of the
curly bracket term in equation (6.6), the risk evaluation differential quotient
(REDQ). We will discuss this quantity in more detail after completing our
analysis of (6.6).
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Expressions for dE (x)/dv and dV (x)/dv can be obtained from the
middle forms of equations (6.2) and (6.3). Substituting these expressions
into (6.6), we have

0 = E(p)dE(y)/dv — p, — REDQUIE(p)]* + V(p)}:
dV (y)/dv + 2V (b)) E())dE(y)/dv)  (6.9)

This expression can be explained most simply by making the further as-
sumption that p, is not random but has a fixed value so that E(p,) = p,
and V (p,) = 0. Equation (6.9) then collapses to

b = pdE(y)/dv — REDQ|[p2dV (y)/dv] (6.10)

which says that the optimal level of » occurs when the marginal factor cost
(i.e., input price) is equal to the value of the marginal expected product
minus a marginal risk deduction that depends on the utility function and the
marginal variance of revenue. The additional complexity of (6.10) relative
to the condition for profit maximization under certainty (that marginal
value product equals marginal factor cost) is readily apparent and epito-
mizes the analytical costs of attempting to bring uncertainty explicitly into
normative analysis of factor use. The same effect can be seen by rearrang-
ing (6.10) to give

by = pdv/dE(y) + REDQpIdV (y)/dE (y) (6.11)

which says optimality is achieved when marginal revenue is equal to mar-
ginal cost (with respect to changing expected output) plus a marginal addi-
tion due to risk. '

Consider now some of the additional complexities introduced by ac-
counting for risk. For simplicity, we continue to concentrate on equation
(6.10) with its assumption that only y is stochastic. One way of rearranging
(6.10) is to expand the variance term. By definition, V(y) may be written
as V(y) = E(y*) — [E(y)]* so that, with permissible differentiation
within the expectation operator under some continuity and convergence
properties that typically hold good,

dV(y)/dv = 2[E(ydy/dv) — E(y)E(dy/dv)]
which, by the definition of covariance, can be written as
dV (y)/dv = 2Cov (y, dy/dv)

i.e., dV(y)/dv is equal to twice the covariance between output and
marginal product, and may be substituted into (6.10) to yield

po = pdE(y)/do — REDQ[2p; Cov (y,dy/dv)] (6.12)

The covariance between output and marginal product may be posi-
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tive, zero, or negative; and determination of its sign and magnitude is an
empirical matter. Figure 6.1 illustrates crudely both the positive and the
negative covariance cases at input levels v* and »** respectively by pre-
senting three sample response curves from a population of risky response
curves. At »* the slope of the response curves increases with increasing
level of output, suggesting a positive covariance and correlation; the con-
verse situation is depicted at »**. It is a personal issue whether one finds it
simpler to conceptualize the covariance just mentioned or to conceptualize
the variation of V' (y) with v, i.e., the marginal risk dV (y)/dv. Since we find
the latter simpler to interpret, our remarks are biased accordingly.

Marginal products Sampled
(stopes) | risky

response
Increase Decrease curves

{as level of output
increases)

Negative
covariance

Output

I

| Positive |

| covariance |

o 1
> 2

Input (v)

F1G. 6.1. Sketch suggestive of positive and negative
cases of covariance between output and mar-
ginal product.

Returning to equation (6.10) and ignoring for the moment the term
involving REDQ and 4V (y) /dv,

b = pydE(y)/dv (6.13)

i.e., optimality is achieved when the factor price equals the value of the
marginal expected product. This relationship is depicted by the intersec-
tion of the two unbroken lines in Figure 6.2 and clearly has a strong anal-
ogy with the riskless criterion of achieving optimality in resource use by
equating marginal value product with factor price. We can ignore the term
dropped in (6.13) only if either REDQ = 0 or dV(y)/dv = 0; i.e., if
either the decision maker is neutral toward risk or if the level of risk (i.e.,
variance of output) is not influenced by the decision variable (assuming
still that output price is not risky). Thus if a process has risky output but
with a constant level of risk, decision making on resource use will effec-
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F1G6. 6.2. Schematic representation of marginal quan-
tities in the single-input risky production
situation corresponding to equation (6.10).

tively be the same as under certainty; the only difference is the use of E(y)
instead of y. , .

In general, however, REDQ) and the marginal risk cannot be ignored.
To this extent the picture that emerges will differ from that described by
equation (6.13). What happens depends on the signs and the rates of
change of REDQ and marginal risk as v changes. As we have already dis-
cussed in introducing Cov ( y, dy/dv), the nature of marginal risk is not very
amenable to naked contemplation and must be assessed empirically. Be-
yond noting that it typically will be positive, we cannot be sure if it in-
creases or decreases with v.

We can make rather better progress with the REDQ) term, especially
if we are prepared to make some arbitrary assumptions about the pref-
erences U = U (x). For instance, with risk aversion we have dU/3V (x) < 0
which, combined with the usual requirement of dU/JdE(x) > 0, implies
REDQ > 0 for the ‘““normal’ case of aversion to risk. In the particular
case of risk-averse quadratic preference

U=E(x) + b[E(x)* + V()] b<O0
so that taking partial derivatives and substituting into equation (6.8) gives
REDQqua = —b6/[1 + 26E(x)} (6.14)

which is positive within the relevant range of E(x) < —1/2b. As noted in
the context of absolute risk aversion in Section 4.4, REDQ for the quad-
ratic increases with E (x) and also with » if dE (x) /dv > 0, which is rather
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counterintuitive. With constant marginal risk and quadratic preference,
the marginal risk deduction REDQ[p2dV (y)/dv] is indeed a deduction
and increases with . This is depicted by the lower broken curve in Figure
6.2 where the broken lines represent the right side of (6.10), i.e., marginal
expected revenue corrected for risk under various preference assumptions.
The intersection of these broken curves with the marginal cost line gives
optimal levels of input corresponding to the solution of (6.10) for each pref-
erence assumption. The lowest of the broken curves in Figure 6.2 depicts
the quadratic case and progressively becomes more distant from the un-
broken marginal expected revenue line as input increases. »

Such counterintuitive results are avoided by using alternative pref-
erence functions such as the logarithmic function that we have earlier
shown to be decreasingly risk averse. From Section 4.6 the (E, V') approxi-
‘mation of the log function is given by

U = log [Wo + E(x)] = 0.5V (x)/[Wo + Ex)}?
and the corresponding risk evaluation by
REDQ, = 0.5[Wo + E()]/{[Wo + EM)]* + V()]  (6.15)

which is positive and diminishes with respect to E(x) and also v if dE (x)/
dv > 0, providing that the coeflicient of variation, [V )]/ [Wo + E(x)],
is less than one. The highest broken line in Figure 6.2 depicts the risk-
corrected marginal expected revenue curve under logarithmic preference
and constant marginal risk.

The second-order condition for a solution to be a maximal solution is
that d2U/dv? < 0. We have deliberately avoided discussion of this ques-
tion; however, it is given extensive attention by Magnusson (1969). The
conditions are not only complex to derive but are also rather obscure in the
absence of several very specific assumptions and, we believe, are not too
important in practice for analysts who are aware of the need to check that
indeed maximal and not minimal solutions are found. Moreover, since
any serious empirical work will probably resort to numerical exploration
of conditional expected utility surfaces, the second-order conditions will
automatically be taken into account. Likewise, the question of boundary
conditions (i.e., constraining optimal inputs to the nonnegative and
“sensible”” range) will probably not cause any difficulties in empirical
work, so we have ignored these too.

We have thus far not specified on what bases v, y, x, etc., are mea-
sured. Implicit in writing U = U(x) is the notion that variations and
achievements of x are the only elements of the producer’s decision problem
that impinge on his preferences and satisfactions. In most cases of dealing
with the farm firm, x should be some aggregate measure of net financial
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gain or net change in equity. It follows that if x denotes total net change,
account must be taken of the total quantities of input and output and not
merely of quantities expressed on a per machine, per man, per hectare,
etc., basis.

Many empirical relationships relevant to risky production analysis
will be expressed on some alternative basis; e.g., crop response and var-
iable inputs may be expressed in mass per unit area. In such cases it is
necessary to aggregate the process to find the impact on the firm by intro-
ducing the size of the enterprise. For instance, if y and v are in kg/ha, F is
in $/ha, and the enterprise consists of 4 ha of the process presently being
discussed, the profit function should be written as x = A(p,y — pv — F),
where p, and p, are prices in $/kg. It follows that the right sides of equa-
tions (6.2) and (6.3) for E (x) and V(x) should be multiplied by 4 and A?
respectively, so that the first-order condition of (6.10) becomes

Ap, = Ap,dE(y)/dv ~ REDQ[(Ap,)’dV (y)/dv] (6.16)

Our difficulties are not yet completely resolved since we have so far
shirked detailed discussion of the fixed cost F, which is assumed completely
independent of output. It is apparent from equations (6.8) and (6.16) that
fixed costs may exert an influence in the determination of optimal » only
through their effect of reducing E (x) and in turn, with decreasing risk
aversion, of increasing REDQ). These fixed costs are the current manifesta-
tion of sunk costs. In a theoretical sense F is therefore the value of an
annuity that could have been acquired had the sunk costs not been sunk.
Abstracting from the uncertainties inherent in finding and realizing such
an annuity, our difficulty devolves to identifying what costs are ‘“‘sunk”
with respect to the decisions being considered. Two possible approaches
are: (1) Given that this process is to be operated, what is the best level of
v? (2).Given a conditional optimal level of v, should this or some other
process be run? The costs regarded as fixed and sunk may well differ be-
tween these cases.

Consider the following simple problem in risky response analysis. A
farmer, whose relevant risk preferences for profits, x are approximately
encoded in U = x — (3)107°x%, is intending to grow 100 ha of maize. The
empirical relations specifying the risk he believes he faces are depicted in
Figure 6.3 and given by

E(y) = 5000 + 325N — 0.125M? (6.17)
V(y) = 700,000 + 10,000 (6.18)

where E and V denote the mean and variance operators respectively and
y = kg/ha of maize priced at $0.04/kg and NV = kg/ha of nitrogen priced
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F1G. 6.3. Graphical depiction of empirical maize-
response data of equations (6.17) and (6.18).

at $0.30/kg. These empirical equations correspond to g(») and k(») of
equations (6.2) and (6.3) respectively and are regression estimates based
on eight years of observations from a maize-nitrogen experiment. They
exemplify what is called a ‘“gross relationship’’ in Section 6.3. Assuming
that fixed costs amount to $100/ha, how much nitrogen should our farmer
use per hectare?

Solution is approached most simply by substituting into equation
(6.16) the given parameters, the derivatives of (6.17) and (6.18), and the
result of (6.14). This gives

(100)(0.3) = (100)(0.04)(32.5 — 0.25XN)

— {(3)(107*)/[1 = (2)(3) (10~°) E(x)]}[(100) (0.04)}* (10,000) (6.19)
Even for this simple case of constant marginal risk, algebraic solution of
(6.19) to find the optimal level of N is not trivial because E(x) appears in

the denominator of the curly bracket term and, since E(x) is a quadratic
function of N, (6.19) is cubic in . However, graphical solution of the style
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Fi1c. 6.4. Graphical solution of .the maize-fertilizer
problem of equation (6.19).

sketched in Figure 6.2 is simple and is illustrated in Figure 6.4. This in-
dicates an optimal /N of about 65 kg/ha, which is about two-thirds of the
100 kg/ha rate that maximizes expected profit. Obviously, in this particu-
lar case risk constitutes a substantial friction relative to resource use in
the risk-free situation. With the assumed level of risk aversion the marginal
risk deduction ranges from about $12/ha at N = 0 to about $48/ha at
N = 100. Rather less dramatic risk deductions are implied by some alter-
native assumptions about preference. For instance, assuming that U =
log, (100,000 + x) produces an optimal level of N of about 98 kg/ha that
is only trivially different from the risk-indifferent solution.

6.2 SOME EXTENSIONS OF THE SIMPLEST CASE
Our introductory model of production under risk can be extended in
several ways, either singly or in combination. For simplicity we choose to
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survey the possible extensions by a quick listing of one-at-a-time exten-
“sions.

Beyond the Mean and Variance

In using the moment method to reach pragmatic solutions of our more
general problem, we cut short the Taylor series specification of the utility
function so that it included only the mean and variance of profit. This can
be rationalized by assuming that derivatives of the preference function
beyond the second are very small or that higher order moments of the dis-
tribution of x are relatively small. In reality, however, skewness or the ef-
fect of the third moment about the mean will often be important to a deci-
sion maker. In our present context the effect of skewness can be appraised
as follows.

From the Taylor series of equation (4.27)

U = UE®)] + UIE@V(x)/2 + Us[E®)]Ms5(x)/6 (6.20)

if we ignore terms involving derivatives beyond the third. To proceed with
our risky response analysis, we need to supplement the empirical relation-
ships E(y) = g(v) and V(y) = h(v) with the empirical relationship M;(y) =
{(»). To maintain simplicity, we will again assume that p, is certain. Then,
analogously to (6.5), the first-order condition for maximum utility is de-
fined by dU/dv = 0 where
dU/dv = [0U/IE (x)|[dE (x)/dv} + [9U/aV (x)][dV (x)/dv]

+ [0U/ M5 (x)][dM 3 (x)/ dv] (6.21)

or
0 = dE(x)/dv — REDQdV (x)/dv
+ {[0U/ M5 (0))/[0U OE (x)}dM (x)/ dv (6.22)
Analogously to the earlier definition of REDQ, we can define the

marginal skewness quotient (MSQ) as

MSQ = [dE(x)/dM3(O)luve -
—[0U/3M5(x))/18U/IE (x)] (6.23)

and rewrite (6.22) with substitution from the profit equation (6.1) as

p» = pydE(y)/dv — REDQ[p;dV (y)/dv]
— MSQ[p;dM;(y)/dv] . (6.24)
which is identical to (6.10) except for the subtraction from the right side

of a marginal skewness allowance. Though it is essentially an empirical
question, it seems intuitively reasonable that yield will generally tend to
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become less negatively skewed with increasing ». This implies dM 3 (y)/dv >
0. Likewise, utility may be expected to increase with M;(x) so that, from
(6.23), MSQ would be negative. On these grounds, therefore, we may ex-

~ pect the effect of accounting for skewness to be opposite in direction from
that earlier speculated as typical in the case of accounting for variance
effects. The greater the degree of positive skewness or the less the degree
of negative skewness, i.e., the greater is M;(x) or the less the tail of the
probability distribution of x extends to the left, the more attractive will be
the production process and the greater the optimal level of input, other
things being equal.

Several Decision Variables

Our earlier assumption of dealing with only a single variable factor
of production served to keep the algebra relatively uncomplicated and to
make the effects of risk relatively transparent. Exactly analogous results
obtain for more general production relationships involving £ decision vari-
ables v;, ..., v;, ..., v;. Rather than develop these in the same detail as
employed above, we choose merely to present the result. Thus correspond-
ing to equation (6.10), for the :th decision variable we have

pi = p,0E(y)/dv; — REDQ[p28V(y)/d0] i=1,...,k (6.25)

which is identical to (6.10) except for the addition of subscripts and the in-
clusion of partial derivatives.

Solution for the optimal vector of y; involves the simultaneous solution
of these k invariably nonlinear equations and may not prove to be straight-
forward, perhaps involving several boundary solutions. Similarly, the
second-order conditions for a maximum solution are rather more complex
than for the single-factor case. In practice, however, the easiest method of
seeking a solution will usually be to follow a systematic numerical explora-
tion of the expected utility surface (in £ + 1 dimensional space); such a
procedure will automatically take care of boundary and second-order
conditions.

Nonindependence of Output and Its Price

While the output price p, was being treated as risky in Section 6.1,
we made the simplifying assumption that the distributions of p, and y were
stochastically independent. This was defended as being realistic since
under the competitive conditions that characterize farming, and ignoring
such subtleties as the influence of poor seasons on price premiums for
quality, there will be little dependence between the yield and price that an
individual farmer experiences. This would not be true for situations where
all farming areas of a country tend to experience the same climatic condi-
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tions at the same time, so that droughts, hurricanes, etc., tend to influence
the whole nation rather than isolated areas. Accordingly, it is worth look-
ing briefly at the effect of nonindependence in our simple case. Since we are
currently defining utility only as a function of mean and variance, the
dependence between p, and y is captured through the simple correlation
between them denoted by the coefficient p. If we were to be concerned with
skewness as well, it would be necessary to consider the co-third moments
also.

On dropping the assumption of independence but assuming that b
and y are normally distributed, equations (6.2) and (6.3) become respec-
tively

E(x) = E(p,)E(y) + Cov(p,,y) — pv — F (6.26)

Vi) = [E(p)IV(y) + [EDPV(p,) + V(p,)V(5)
+ 0oV (B) V(9) + 2E(p)ENV(p)V(MI**}  (6.27)

It seems reasonable to assume that the distribution and hence the moments
of p, are not influenced in any way by the level of the decision variable .
Even with this assumption, substitution of the derivatives of (6.26) and
(6.27) into (6.6) yields the cumbersome expression:

b = E(p,)dE(y)/dv + Cov(p,, dy/dv)
— REDQ{[E(p,)1?dV (y)/dv + 2E(y)V(p,)dE(y)/dv
+ V(p,)dV(y)/dv + p’V(p,)dV(y)/dv
+ 20°E(p,) IV (p,)V(9)]°*dE(y)/dv
+ PPE(p)E(») [V (p)1°*[dV () /d0)/ 1V ($)]°%) (6.28)

The influence of the correlation coefficient on the optimal conditions is
quite pervasive. At the same time it is virtually impossible to comment on
the general implications of p for decision making about » without some very
specific assumptions about the signs and magnitudes of the several terms
in equation (6.28). Beyond noting the complexity of the expression, we can
distill one interesting result from (6.28) by assuming risk neutrality; i.e.,
REDQ = 0. Even risk-indifferent decision makers should not simply set
p» = E(p,)dE(y)/dv to find their optimal ». Under nonindependence they
need to adjust expected price times marginal expected product by the
covariance term Cov(p,, dy/dv). Once again it is an empirical question
as to whether this is a positive or negative correction.

Risky Factor Prices _

A further way of generalizing our simple model is to allow for risk in
factor price. We have not done this in the belief that agricultural decision
making typically proceeds with fairly certain knowledge of the prices to be
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paid for factors. Turnovsky (1969) has shown that under rather general
conditions, demand for a factor responds negatively to increases (1) in its
expected price, (2) in the variance of its price, and (3) in the decision
maker’s aversion to risk. Such extension of the analysis to risky factor
prices is also reviewed briefly by Magnusson (1969).

Response Efficiency over Time

All agricultural response processes necessarily involve the effluxion of
time. Indeed, it is the passing of time that permits the intrusion of uncer-
tainty into agricultural production. The models of production we have
used in this chapter have abstracted from the influence of time and treated
response as if it was instantaneous. Dillon /(1976) has demonstrated that
in a riskless world the influence of time on response efficiency can be both
pervasive and complex, and that like risk aversion it constitutes a friction
to resource use. Complexity is further increased if the dimension of risk is
added to that of time because, among other complexities, a multiperiod
preference function is required. Such considerations are discussed in
Chapter 8, though not in the context of response theory models.

Several Products

We have avoided discussion of multiproduct production for two good
reasons. First, from a somewhat different slant Chapter 7 deals with this
topic in considerable detail. Second, to pursue the ideas of Section 6.1
cast in a multifactor multiproduct setting with flexibly defined production
relationships is to flirt with algebraic folly that achieves little in the way of
nicely transparent results. It is sufficient to note that compared to the risk-
less multiproduct case, risk aversion implies that optimal resource use will
favor less risky products relative to more risky ones and that overall re-
source use will be decreased. With this generalization we can terminate our
discussion of extensions to the simplest case.

6.3 EMPIRICAL ANALYTICS

Our discussion of risky response analysis has not yet tackled the esti-
mation of several types of quantitative relationships we have been presum-
ing to exist. In fact, there have been only a few reported attempts to quan-
tify most of the risky relationships discussed. Most of the response analysis
literature (e.g., Heady and Dillon, 1961) is (often implicitly) concerned
only with specification of expected response functions that give E(y) as

some function of the decision variables vy, vs, . . ., vx. A few people (Colyer,
1969; Doll, 1972; Fuller, 1965; McArthur and Dillon, 1971) have at-
tempted to estimate V(y) = A(v, v2,.--, v;), and some have also at-
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tempted specification of M3(y) = (v, 04,..., ;) (Anderson, 1973; Day,
1965). However, little success has been reported with the most general
risky specification D(y) = f(v) where D(y) denotes every aspect (e.g.,
fractiles, parameters, etc.) of the probability distribution of y, although the
efforts of Anderson (1974b) and de Janvry (1972) marginally fall into this
category. ’

Analytical Approach

We can identify two broad approaches to specifying the intrusion of
risk into productive processes; one is analytical, the other somewhat gross.
In the analytical model the production process is conceptualized in terms
of a three-way categorization of input variables. The three types of vari-
ables are classified as follows:

1. Input variables that are under the producer’s control, i.e., decision vari-
ables. These are denoted by »;,1 = 1,2,..., k.

2. Input variables that are outside the producer’s control and are stochas-
tic and whose values are unknown at the time of decisions about the v;.
These are denoted by 5] = 1,2,

3. Input variables that are outside the producer’s control but whose values
are known at decision time. These are denoted by ¢.,, w = 1,2,..., m.
They may involve variables that are fixed (such as soil type) and
stochastic variables that are realized and known at decision time (such
as fallow rainfall).

Using the above notation for input variables, the production function
can be specified as

y =f(z)1,...,vi,...,v,,;sl,...,sj,...,s,;q1,...,qw,...,qm) (6.29)

where the g, variables, being given, serve merely to condition the response
of y to the »; and s; variables. The uncertainty associated with y in this
specification arises solely from the influence of the 5; variables.

In terms of equation (6.29) we can think of the analytical approach to
risk specification of the production process as a two-step procedure of
first describing the effect of the »; and s; variables in the process (i.e., mea-
suring the production or response function) and, second, assessing the
Joint probability distribution associated with the s; variables. Agricultural
processes are typically influenced by so many stochastic variables that it is
virtually impossible for such an empirical procedure to be carried out suc-
cessfully. At best, therefore, the approach might be called pseudoanalyti-
cal. A particular danger is the likelihood of omitting some of the variables
through empirical difficulties (not to mention the risk of functional mis-
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specification), thereby understating the extent of risk faced by the decision
maker.

In his empirical work along the above lines, de Janvry (1972) com-
bined several rainfall variables into a single weather index, which prob-
ably had the effect of underestimating the risk involved. Likewise, Byerlee
and Anderson (1969) confined their attention to a single uncertain factor
of production: the amount of growing-season rainfall. The empirical rela-
tionship they determined for wheat response to nitrogen and growing-
season rainfall was

(Yy — ¥o) = 1.37N — 0.0836V* + 0.0421Ns; — 0.00286.Ns1¢,

where N is applied nitrogen in kg/ha; s5; is growing-season rainfall in mm;
g1 is soil nitrogen measured at planting time in ppm; and ¥y — 7, in kg/ha
is yield with applied W, less yield with zero applied N. The stochastic
variable 5; ranged from about 75 to 375 mm (mean about 200 mm) and
thereby leads to corresponding variation in response to JV. However,
through the neglect of other uncertain factors (such as frost incidence) and
the imperfection of a blunt measure like growing-season rainfall in describ-
ing the intraseason plant-moisture regime, this relationship doubtless
underestimates the risk inherent in this crop-fertilizer response process.

An advantage of employing a pseudoanalytical approach of the type
outlined above is that valuation of additional information on one or more
of the uncertain factors may be possible. The Bayesian framework for
determining the EVPI and EVSI is applicable as long as the role of the
uncertain factor(s) in the process can be quantified and appropriate priors
and likelihoods attached. Byerlee and Anderson (1969) give an example of
such evaluation based on linear preference. They show that under risk in-
difference a necessary condition for information on the s; variables to have
a positive economic value is that they interact with the v; variables in other
than a purely additive manner. However, under a nonneutral attitude to
risk, information (i.e., probability modification) bearing on the extent of
risk faced will in general (even in the additive case) have a positive value
that can be compared with its cost.

Gross Approach

The inescapable difficulties in the pseudoanalytical approach make
the alternative ‘“‘gross” approach relatively attractive when the emphasis
is on resource allocation rather than on valuation of information. In the
gross procedure, we simply compound all the variation, without identifying
the effect of individual sources like the s;, and quantify the composite
probability distributions so that they may be functionally related to the
decision variables. The empirical illustration of Section 6.1 concerning
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risky response of maize to nitrogen fertilizer as per equations (6.17) and
(6.18) is an example of the gross approach. Generally it will be quite suf-
ficient to restrict attention to E(y), ¥ (y), and perhaps M;(y) in order to
undertake most of the decision analyses discussed in this chapter. Such
moments may come directly from subjective assessments, using the
methods outlined in (2.1) and (2.2) of Section 2.3; or they may be based on
pertinent historical data accepted as reasonable.

When there are sufficient data, say 10 or more observations, the sug-
gested moment-estimation formulas of R. A. Fisher are applicable; viz., for
the set of observations yy, y,, .. .., y, define

%=;y’£ j=1,...,4

Sy =< — Zf/”
S3 =& — 3Z1%2/n + 223 /0
Sy = K — 4213/ /n + 6212, /n — 321/

so that

E(y) = Zi/n
Viy) = $2/(n - 1)
Ms(y) = n83/[(n — 1) (n — 2)]

and, if required,

Mi(y) = nl(n + 1)S,
= 3(n = 1)S83/n)/l(n = 1)(n = 2)(n — 3)] + 383/(n ~ 1)?

These calculations are illustrated in a gross approach to the analysis of
some broiler feed-trial response data in Table 6.1.

When data are sparse (say n < 10), we are on much less firm ground
to make good estimates of moments beyond the mean. The best suggestion
we can make is to revert to the sparse-data smoothing rule elaborated in
Section 2.4. Application of this rule will yield smooth CDFs from which
moments may readily be calculated (as in Anderson, 1973, 1974a). An il-
lustration is provided by the sparse fertilizer-response data plotted in Fig-
ure 6.5 and the smooth CDFs sketched through these data.

Moment computation can in general be done most conveniently by
first breaking these curves into a large number of discrete elements and
then calculating the moments using the probability. elements and the as-
sociated midpoints of the probability intervals. However, if only the mean
and variance are required, it is preferable to employ the much simpler
procedure of reading off the respective 0.05, 0.5, and 0.95 fractiles and
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TasLE 6.1. Example of Moment Calculations for Gross Approach to
Risk Specification of a Broiler-Feed Response Function
Based on Feed-Trial Data

A: Observed Weight Gain (kg) per 30 Broilers on 18%, Protein Ration

Group of 30 Kg feed per 30 broilers
broilers 30 60 90 120
1 13.26 24.33 32.85 45.78
2 13.47 23.01 32.13 44,61
3 13.35 24.39 34.26 43.08
4 13.22 24.21 35.46 40.92
5 13.71 24.06 33.15 39.69
6 13.53 24.06 31.02 4317
7 13.53 24.78 34.65 42.54
8 13.56 23.67 32.58 44,64
9 13.53 23.28 32.64 44.97
10 13.68 23.64 33.21 41.64
11 13.44 23.49 33.96 39.51
12 13.65 23.73 32.70 45.90
B. Calculation of Moments of Weight Gain (G)*
<1 . 286.65 398.61 516.45
22 . 6,580.19 13,256.71 22,281.56
<3 - 163,769.53 441,412.70 963,628.83
s . 3,916,904.09 14,715,562.92 41,772,929.13
A} - e 15.878 54.843
S e ce 3.221 —34.446
Ss ce o 56.071 454.753
E(G) 13.50 . 33.22 43.04
V(G) 0.0202 e 1.4435 4,986
M,(G) - -=0.0007 c. 0.3514 —3.758
M4 (G) —0.0009 e 6.2511 45,979

*Statistics not shown are deleted to allow practice computations in Problem 6.3.

using equations (2.1) and (2.2). Applying this method to the 0, 18, and 36
kg P/ha curves of Figure 6.5 gives expected yields of 1380, 1930, and 2070
kg/ha respectively and corresponding standard deviations of 630, 800, and
780 kg/ha.

Once we have such moments conditioned on particular combinations
of the decision variables, it is necessary to relate these to the decision
variables. Usually this can be done quite successfully via least-squares
regression. In other applications, especially those involving stochastic
dominance orderings as discussed in Chapter 9, it becomes necessary to
relate the whole probability distribution to the conditioning decision
variables; and unless rather specific families of distribution are fitted, this
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is a demanding task that we will not take up at this point (see Anderson
1974b, Section 3.2).

We can attempt to summarize the considerations involved in a choice
between analytical and gross approaches most conveniently by means of a
schematic chart. Figure 6.6 depicts the broad options open to an analyst
attempting to quantify production risks on the basis of experimental re-
sponse data. Although seemingly complex, it still represents a simplifica-
tion of the real situation because partial failures to quantify the effects of
subsets of the respective variables are not accommodated in this gen-
eralized scheme.

Before parting from the gross approach we should note another of its
useful applications. Where pertinent time-series data on both risky outputs
and prices are available, the gross method may be applied to the condi-
tional total revenue data (i.e., output times price). This will avoid the
necessity of accounting for price and output effects separately, which may
introduce additional complexity as indicated by the discussion of non-
independence in Section 6.2. Such use of the gross method parallels that
given earlier in connection with enterprise net revenues in Section 2.3.

6.4 POLICY IMPLICATIONS

Compared to its members, society or the state can take a long-term
view and has a very diverse portfolio of activities. On these grounds it may
be argued that as a corporate entity the state should be indifferent to risk
relative to the allocation of resources within small sectors of the economy
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Fic. 6.6. Scheme for empirical efforts in risky response
analysis based on experimental data.

(Arrow and Lind, 1970). Assuming this view, the state would wish indi-
viduals such as farmers to operate so as to maximize expected profits which
(barring support measures like subsidies and tariffs) will correspond to the
social optimum. Our discussion throughout this book has emphasized the
individuality of efficient utility-maximizing operation. Taking the state’s
view, it is pertinent ta ask what measures might be considered to encourage
individuals to make their decisions more in line with the criterion of ex-
pected profit maximization. Given the wide-ranging measures already in
force in most states to interfere with resource allocation, any such ap-
praisal must be rather tongue in cheek since in reality the situation is
inexorably second best.

Product Bounties
The state could attempt to induce resource use at the expected profit-

maximizing level by providing either input subsidies or output bounties or
some combination of these to producers. First consider a bounty of $B/
unit of output. For simplicity we ignore the fact that both bounties
and subsidies will inevitably have unfortunate distributional implications
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since large producers receive greater assistance than small producers.
Under such a scheme the profit equation (6.1) of our simplest model be-
comes

x=(py+B)y—po—F (6.30)

so that the decision maker’s preference U(x) and action » can now be in-
fluenced by government through manipulation of B. A purely benevolent
government might simply determine the amount of B such that the utility-
maximizing level of » now corresponds with the expected profit-maximizing
level in the absence of the bounty. Even this simplest of schemes founders
on practical difficulties because of the individuality of at least the risk
evaluation and probably the marginal risk also, and because of the ad-
ministrative desirability of maintaining the same bounty rate across all
producers. .

Discussion will be clearer if a few more symbols are introduced. A
single superscript asterisk denotes utility maximization and a double
superscript asterisk denotes expected profit maximization. A single super-
script b denotes utility maximization under a bounty scheme. The pro-
ducer’s optimal return without the bounty is given by

x* = pT* — po* - F (6.31)
and his optimal return under a bounty scheme is given by
xb = (py + B))’b - pvvb - F (632)

if product and input prices are uninfluenced by the bounty, as would be
the case in the (unlikely) event that demand for y and the supply of » were
perfectly elastic. The cost of the scheme to the state for this producer is
the random variable By’ which averages BE (y*). The producer’s monetary
gain from the bounty is x* — x* which will make some positive contribu-
tion to the producer’s utility if it is positive, as it will be most of the time.
For this one producer, the state measures its gross gain by the expectation
of x* — x* and its net gain G, by deducting the average bounty cost and
the average administration cost per producer M as |

G = E(x*) — Ex*) — BE(y*) — M (6.33)

This gain can then be compared with the gains from other forms of
state intervention in the economy so as to aid decision making on the al-
location of the state’s limited budget. It may well be that this type of
participation of the state in the risk bearing of farmeérs is not very attrac-
tive when judged in these terms.

An example of such a calculation is readily obtained from McArthur
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and Dillon’s (1971) analysis of utility-maximizing stocking rates of sheep
on pasture. Among other results, they give information of the type pre-
sented in Figure 6.7. This depicts the optimal decision variable, v sheep/
ha, as a function of price per unit of output (wool) p,. Under their assump-
tions about the size (405 ha) and technology of a typical sheep farm, the
utility-maximizing v* is 15.25 sheep/ha when p, = $0.99/kg and the
corresponding v that maximizes expected profit is »** = 15.56 sheep/ha.
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Fic. 6.7. Utility-maximizing and expected profit-maxi-
mizing stocking rates in relation to product
price.

Figure 6.7 gives us the additional information that, other things being
equal, the utility-maximizing rate would rise to this same level of 15.56 if
the output price rose to $1.034/kg. Thus a bounty of $0.044/kg would en-
courage resource use at the expected profit-maximizing level in the sense
that o* = v**.

A bounty of B = $0.044/kg can be evaluated under our assumptions
by substitution of the pertinent expected values into equations (6.31),
(6.32), and (6.33). This indicates an average annual cost to the state of
BE (y*) = $1040 for the typical producer, which can be compared to the
state’s gross gain for this producer of E(x*) — E(x*) = $1044. Thus with
zero administration costs (M = 0) the social net gain G for this farm is
only about $4. Even ignoring the (possibly high) costs of -administration,
such a scheme would not appear to be very attractive. In practice this small
apparent gain would also have to be further discounted because the de-
mand for y and the supply of » will in general not be perfectly elastic.
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Input Subsidies

When analysis of risky production decisions is approached via the
graphical procedure introduced in Figures 6.2 and 6.4, based on equation
(6.10), it is much simpler to appraise possible government participation
in individual risk bearing through the use of input subsidies rather than
output bounties. For instance, suppose the government is considering
whether to encourage the “‘average’ decision maker of Figure 6.4 to in-
crease his use of nitrogen from the utility-maximizing level of ¥ = 65 to
the expected profit-maximizing level of N' = 100. To ascertain the required
fertilizer subsidy, it is only necessary to determine the input cost level that
intersects with the broken line representing the risk-corrected marginal
revenue curve at N = 100. This occurs at a level of —$18, which is equiva-
lent to a farm price of —$0.18/kg of nitrogen. Thus if the government of-
fered a subsidy ($5/kg) of $0.30 + $0.18 = $0.48/kg of nitrogen (which is
equivalent to subsidizing fully the marginal risk deduction), the utility-
maximizing rate with the subsidy—u’ in notation analogous to equation
(6.32) —would be approximately N = 100. We must say approximately
because in this example the REDQ depends on expected profit E(x°),
which will be adjusted by the subsidy receipts of the individual.

The producer’s return is defined analogously to equation (6.32) by

x*=py = (pp — S)v' = F (6.34)

and the state makes subsidy payments of Sv° per producer for an expected
societal gain of

G =Ex)—E@x*) - S - M (6.35)

where costs of administering the subsidy payments are denoted by M.
Such administrative costs are likely to be lower than bounty administration
costs because payments can be made through relatively few input manu-
facturers. We can see something of the likely magnitudes of such gains by
considering the maize-fertilizer example of Section 6.1. The subsidy pay-
ment on the assumed 100 ha of crop would amount to $4800 and the cor-
responding “gain” to the state as defined by (6.35) would amount to
$650—again under the simplifying assumptions of zero administrative cost
and perfectly elastic supply of nitrogen fertilizer and demand for maize.
While this is a rather higher apparent return on the state outlay, it may
still be much lower than for other opportunities open to the state.

Other Policy Measures :

The complexity of risk analysis doubtless explains why such provi-
sions as income averaging for taxation purposes and price and income
stabilization schemes provided by some governments to assist in the risk
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bearing of farmers are somewhat blunt in their effects. More precise tailor-
ing of measures to individual requirements would probably be an adminis-
trative nightmare. However, it is important to emphasize that risk can
indeed have considerable impact at the individual producer level. The
practical difficulties of quantifying this impact across many producers
should not obscure the fact that most people are not indifferent to risk.
Policies formulated on the naive basis that risk can simply be ignored may
well prove inappropriate when risk does play an important role. Much
more research is required to identify those situations where the assessment
of risk is desirable, the tracking of its implications is worthwhile, and
pertinent policy measures are feasible.

PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

(a) Derive expressions for the REDQ for the following preference functions:
U=x— (2)107°x%
U = log,(100,000 + x)
U = (100,000 + x)°°
U=1— exp[-(100,000 + x)/5000]

I

(b) What alternative results are obtained in the numerical example of Sec-
tion 6.1 when each of these preference functions is used?

Discuss the implications for marginal risk and marginal skewness effects
of the following empirical relationships extracted from Anderson (1973):

E(y) = 17 + 0.150 — 0.0014,°

V(y) = 36 + 2.6v — 0.0250
as(y) = — 0.6 + 0.004

where M3(y) = as(y)[ Ve

Consider the broiler-feed response data of Table 6.1.

(a) Compute the missing statistics.

(b) Sketch E(G), V(G), M3(G), and M(G) as functions of feed con-
sumption. Comment on the regularity or otherwise of these relationships
and on the general implications for risk-averse optimization of feeding.

Take a production process with which you are familiar and list the factors
that make it risky. Review the feasibility of (a) quantifying their influence in
the process and (b) specifying the distributions of the risky factors, including
any statistical dependencies.

Consider a particular risky farming enterprise of your choice. Argue in an
analytical way a case for or against government intervention in the farmer’s
role of risk bearing.

Consider the following response data relating to production of nonirrigated
wheat and its response to nitrogen. All variables are in kg/ha.
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6.7.

6.8.

6.9.

6.10.

6.11.

CHAPTER SIX

1800 + 15N — 0.08N?2
280,000 + 20,000V — 100N?

E(y)
V(y

Assume that p, = $0.07/kg, py = $0.30/kg, that fixed costs amount to $50/

ha, and that 100 ha of wheat are involved in the decision.

(a) Does this process seem more or less risky than that described in the ex-
ample of Section 6.1?

(b) If the farmer’s preferences are described approximately by U = x —
(3)10~°x2, what rate of N should he use?

(c) In what way does a higher level of fixed costs influence the utility-
maximizing rate of ¥ ?

Consider agam the empirical example of Section 6.1 and add the assumption

that the maize yield distributions are normal and thus completely deter-

mined by the mean and variance equations. It follows also that profit from

the process is normally distributed. Compute and compare the probabilities

of achieving negatwe proﬁts (i.e., a loss) at the Utlllty maximizing and

expected profit-maximizing rates of fertilizer.

Extend the analysis of Section 6.1 under the assumption that output price is
certain but input price is risky. Note also the practical conditions under
which such a situation might be encountered.

Explore the implications for risky decisions involving two fertilizers, given the
following relationships for nonirrigated wheat production:

E(y) = 1200 + 92N + 42P — 0.076/N* — 0.69P* + 0.15NP
[V (»)]*° = 400 + 8.5V + 18P — 0.070N% — 0.49P% + 0.18NP

All variables are measured in kg/ha and the factor additional to that con-
sidered in Problem 6.6 is elemental phosphorus which is priced at pp =
$0.50/kg.

McArthur and Dillon (1971) present the following equations for mean and
variance of net income of a wool producer:

E(x) = A{S[(M — dS)R — C] — F}
V(x) = (dAS’R)*a}

farm area

variable cost per sheep

fixed cost per unit area

maximum wool cut per sheep

stocking rate of sheep per unit area

reduction in wool cut per sheep per unit increase in §
= wool price per unit weight of cut

= variance of a climatic index

where

It

i

A
Cc
F
M
S
d
R
o:
(a) How might such equations be employed to assist producers in selecting
a hest stocking rate?
(b) Deduce the effect on optimal stocking rate of one-at-a-time increases in
C,F, M,and R. )
Add to the empirical example of Section 6.1 the assumptions that maize price
is uncertain, E(p,) = 0.04, V' (p,) = 0.0001, and that price and yield are
normally and independently distributed.
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(a) What is the optimal rate of N under the quadratic preference assump-
tion?
(b) Using Monte Carlo sampling, determine empirically the CDF for re-
turns at the optimal level of V.
6.12. Repeat Problem 6.11(a) with the additional assumption that there is a nega-
tive correlation between p, and y of —0.3.
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WITH PREFERENCES
UNKNOWN

OuR approach to decision analysis has been based on the assumption that
the preferences of an individual decision maker could be obtained, quanti-
fied, and employed directly in the analysis. Sometimes we have sidestepped
the elicitation process and have simply assumed a particular algebraic
representation. Likewise, we have sometimes arbitrarily assumed param-
eters to quantify the extent of risk aversion. Our rationale is that so far our
purpose has been to exemplify methods that are applicable when prefer-
ences can be elicited and described.

There are many occasions (perhaps a majority) in agricultural man-
agement when analysts, for reasons of cost or expediency, cannot obtain
appropriately elicited preferences. Arbitrary assumption of a preference
function in such circumstance is clearly unsatisfactory since subsequent
decision analysis can then only yield a “correct’”” answer by chance! All is
not lost, however, without such arbitrary recourse. As we show in this
chapter, provided something about preference may be presumed, it is pos-
sible to proceed some distance toward a conventional identification of the
best decision.

In this second-best of worlds, we must sacrifice the pursuit of an opti-
mal decision. Instead, we have to search for an efficient set of decisions in
the sense that decisions in the set are undominated and hence admissible.
We can only hope that this set will be small or closely confined. With all
else equal, the more that can be assumed about preference, the smaller the
efficient set will tend to be. It should come as no surprise that if nothing
can be assumed about preference, nothing can be done to identify decisions
that are efficient.

281
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9.1 CONCEPTS OF STOCHASTIC EFFICIENCY

Our discussion of stochastic efficiency will proceed as we progressively
introduce more and more restrictive preference assumptions while attempt-
ing to retain defensible generality in the validity of the assumptions.

First-Degree Stochastic Efficiency

The first concept of stochastic efficiency to be elaborated and the first
to be formalized—by Quirk and Saposnik (1962) and Fishburn (1964)—
rests on a most reasonable behavioral assumption that we have already
presumed in our discussion of Bernoulli’s principle in Section 4.2. This is
the basic idea that if x is the unscaled measure of consequence such as
profit, decision makers always prefer more to less of x. More formally, this
is nothing but the assumption of a monotonically increasing utility func-
tion wherein the first derivative is strictly positive, i.e., U;(x) > 0.

The initial efficiency concept (viz., that of first-degree stochastic ef-
ficiency) needs to be stated in terms of cumulative probability functions.
Consider the case of a pair of continuous CDFs F; and G, defined within
the range [a, b] and respectively associated with two acts or risky prospects
F and G. Recall, for instance, that Fj is related to its PDF f (x) by

R
FI(R)=f f(x)dx BCRY)

F is said to dominate G in the sense of first-degree stochastic dominance (FSD) if
Fi(R) = Gi(R) for all possible R in the range [a, b] with at least one strong inequal-
ity (i.e., the < holds for at least one value of R). This efficiency criterion, like all
those to be discussed subsequently in this section, is transitive; if F domi-
nates G and G dominates H, F must dominate H.

In graphical terms (as illustrated in Figure 9.1) this rule means that a
first-degree stochastically dominant CDF curve must lie nowhere to the left

Cumulative Probability

(o}
Uncertain Quantity

Fic. 9.1. Illustration of FSD (F; dominates G4 but not G7).
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of a dominated curve. Distributions that are dominated in this sense are
said to be stochastically inefficient and, conversely, those (in general inter-
secting) distributions that are not so dominated are said to be stochasti-
cally efficient of first degree (FSE). Inefficient distributions are those that
would never be preferred by Bernoullian utility maximizers when con-
fronted with the set of efficient distributions. Among the efficient set,
identification of the single most preferred distribution depends on knowing
more about preference than is so far assumed. The central result here also
holds in converse; viz., if F is preferred to G by all utility maximizers with
U,(x) > 0, then F dominates G in the sense of FSD.

Discrete distributions are also accommodated in such concepts of ef-
ficiency and dominance. Suppose that x takes only a finite number of val-
ues x;, 1 = 1,...,n, all in the interval [4, ]. A mass function f(x;) can be
attached with the x; arranged in ascending order, and thus a CDF is de-
fined as B

Fi(R) = P( < R) = D f(x) (9.2)

all
X = R

and FSD is defined as before except that now the inequality needs only
be examined at the discrete x; values.

We have already encountered a special case of this discrete distribu-
tion rule as early as Section 1.2 when concepts of dominance were initially
introduced. Reconsider the simplest conceivable discrete payoff table
(Table 9.1) where A > B, C > D:

TasLE 9.1. Discrete Payoff

Table
P(O;) : a1 a
P(©,) A B
P(0,) C D

We would have said earlier simply that a; dominates a, and that, accord-
ingly, a, can be eliminated from the decision analysis. Such dominance
can now be seen as a special case of FSD if the cumulative mass functions
for the two acts are sketched as in Figure 9.2. The a; cumulative mass func-
tion lies nowhere to the left of that for a; and so dominates it in the sense
of FSD. This is a rather special case of dominance because since the same
set of states applies to all the acts, the dominance relation is uninfluenced
by the allocation of the probabilities between the states.

First-degree stochastic efficiency is of importance historically and also
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F1c. 9.2. Sketch of a special case of FSD.
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didactically as a basis for introducing the general notion and subsequent
extensions. As an empirical matter FSE is perhaps not so important be-
cause, generally speaking, relatively few acts (distributions) can be elimi-
nated in this way. A related consideration is that it tends to be the rule
rather than the exception that CDFs from different families and indeed
CDFs from the same family intersect at least once, thereby predisposing
against the chance of identifying any FSD. At is therefore of significant
operational advantage to seek more restrictive concepts of efficiency so that
rather larger numbers of feasible actions can be discarded to leave a
smaller efficient set. This is done by the second concept of stochastic effi-
ciency to be introduced.

Second-Degree Stochastic Efficiency

Second-degree stochastic efficiency (SSE) provides a basis for elimi-
nating distributions from the FSE set that are inefficient or dominated in
the sense of second-degree stochastic dominance (SSD). The rule for iden-
tifying cases of SSD was discovered independently by Fishburn (1964),
Hanoch and Levy (1969), Hadar and Russell (1969), and Hammond
(1968) and depends only on the additional behavioral assumption that the
decision maker is averse to risk. In terms of the utility function over the
range [a, b] of possible payoffs, the presumption is that the function is not
only monotonically increasing but also strictly concave. As has been elabo-
rated in Section 4.5, this is equivalent to assuming that U;(x) > 0 and
U,(x) < 0.

The ordering rule must again be stated in terms of cumulative prob-
ability functions and can be understood most intuitively in terms of CDFs.
A distribution function F; dominates another G if it lies more to the rlght
in terms of differences in area between the CDF curves cumulated from the
lower values of the uncertain quantity. This is depicted in the upper dia-
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1.0

Cumulative Probability

Uncertain Quantity

SSD Cumulative

Uncertain Quantity

Fic. 9.3. Illustration of SSD where CDFs cross twice (area 4 > area B).

gram of Figure 9.3 where the area marked 4 exceeds the area marked B.
Such a relationship is assessed most succinctly by defining a further type
of cumulative function that measures the area under a CDF over the range
of the uncertain quantity. For instance, define the SSD cumulative for a
distribution F; as

R

F,(R) = f Fy (x)dx (9.3)
Then the distribution F is said to dominate G in the sense of SSD if F2(R) <
G, (R) for all possible R with at least one strong inequality. Such a case of domi-
nance is depicted in the lower diagram of Figure 9.3 where F; dominates
G, but not H, by SSD. Pairwise comparison of distributions in this man-
ner means that they can be sorted into two sets. Dominated distributions
are revealed as inefficient in that they would never be preferred by risk-
averse utility-maximizing decision makers. The remaining undominated
distributions constitute the SSE set, e.g., the acts corresponding to F;
and H, of Figure 9.3. Analogously to the FSE case, identification of choice
within this set depends on knowing more about preference than merely
that an unquantified aversion to risk exists.
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A version of the SSD ordering rule is applicable to discrete distribu-
tions. In the notation introduced for equation (9.2) define Ax; = x; — x;_y;
and if x, is the highest value taken by x, the analog of F, is defineéd by

FZ (xr)

ZF1(x,-_1)Ax,- r=2,...,n
i=2
Fy(x1) =0 . (9.4)

Then for SSD we need to have F,(x,) < G,(x,) for all r < n with at least one
strict inequality. These calculations are simply exemplified by the illustrative
decision problem of Section 5.2. The calculations are summarized in Table
9.2 and indicate that both acts are SSE. Actually, with greater familiarity
with the efficiency rules, this should occasion no surprise. One of the
mathematical features of all the ordering rules we have discussed and will
discuss is that a necessary condition for one distribution to dominate
another is that its mean not be less. A second necessary condition for
dominance is that the smallest value of a dominant distribution cannot be
less than the smallest value of a dominated distribution. Thus knowing
that a, has a lower smallest value and a higher mean than q;, it is unneces-
sary to make the calculations of Table 9.2 to come to the conclusion that
both acts are efficient in the FSE and SSE senses.

TasLE 9.2. Efficiency Analysis of the Example of Section 5.2

x; (ranked payoffs) 6150 6800 11500
f(x:) (a; probabilities) 0.8 0 0.2
g(x;) (ay probabilities) 0 1.0 0
Fi(x;) (cumulative probabilities) 0.8 0.8 1.0
Gy (x;) (cumulative probabilities) 0 1.0 1.0
Ax; (payoff first differences) Ce 650 4700
Fy(x;) (SSD cumulatives) 0 520 4280
Gy (x;) (SSD cumulatives) 0 0 4700

We have attempted to give as much generality as possible to the dis-
cussion by saying nothing about the nature of the distributions except
whether they are continuous or discrete. The cost of this generality is the
implied chore of checking through all the steps of the efficiency criteria
discussed. Whenever necessary and possible, such checking is best done
graphically for continuous distributions and in tabular layouts like Table
9.2 for discrete distributions. Unfortunately, this work can become exceed-
ingly tedious when large numbers of distributions must be reviewed in the
necessary pairwise fashion. Then it is desirable to resort to electronic com-
putational procedures such as discussed in Section 9.2. Another way of
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simplifying the review procedures depends on severely restricting the types
of probability distributions that are analyzed.

Perhaps the theoretical distribution most commonly used in decision
analysis is the normal distribution. Its efficiency analysis is relatively
" simple. Recall that all normal distributions apply to the range [ —, +].
Unless a pair of distributions has identicgl variance, the normal CDFs will
intersect somewhere within the range. “This means that, in general, FSD
is not a possibility for normal distribution;{/A normal distribution can
only be dominated by another in this sense when it has a lesser mean and
precisely the same variance. We could, however, speak of ‘“‘approximate
FSD”’ by ignoring very low probability CDF intersections, and this has
been pursued by Anderson (1974b, pp. 167-68). The SSD case is rather
more interesting than FSD for normal distributions, and the ordering rule
here devolves to simple comparisons among the parameters of the specified
distributions. Specifically, a normal F dominates a normal G in the sense of SSD
if Ep(x) 2 Eg(x) and Ve(x) £ Ve (x) with at least one strong inequaliiy, where
E is the expectation operator and V is the variance operator.

The above rule is nothing other than the (E, V) criterion we met in
the discussion of portfolio selection in Section 7.1. Thus with normally
distributed variables, the (E, V)-efficient set (or frontier) is equivalent to
the SSE set. Naturally, (E, V) analysis is not confined to portfoliolike prob-
lems. For instance, we could return to the maize-nitrogen example of Sec-
tion 6.1 and conduct an (E, V) analysis of the data in equations (6.17) and
(6.18) and the paragraph that follows these equations. With the additional
assumption that maize yields are normally distributed, the (E, V)-effi-
cient range of rates of nitrogen is from 0 to 100 kg/ha. This wide range re-
sults from the fact that variance of yield increases linearly over the entire
range and expected profit increases monotonically from 0 to 100 kg/ha
where negative marginal expected profit sets in.

Mean-variance or (E, V) analysis has the great virtue of simplicity.
As we have seen in Section 4.5, it is applicable in the case of quadratic
utility functions. However, when we are prepared to assume only that deci-
sion makers are averse to risk, the (E, V) rule can only be applied properly
to random variables that belong to the same family of distributions; and
the family is characterized by two parameters, each of which is an indepen-
dent function of the mean and variance. The normal is clearly such a
family. However, the log-normal family of distributions has two param-
eters that are not independent of its moments, so in this case the (E, V)
criterion is an incorrect way -to identify the SSE set (Philippatos and
Gressis, 1975). In fact, the appropriate criterion is a closely related one,
as proved by Levy (1973a). A log-normal F dominates a log-normal G in the sense
of SSD if Ep(x) > Eg(x) and Vr(log x) < Vg(log x) with at least one strong
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Fic. 9.4. Three ways in which G can be more prone to low outcomes than ¥ when F
and G are simply related. ’

inequality. The log-normal distribution is sometimes encountered in port-
folio-type problems and also in oil and water drilling decision problems.

Simplification of the identification of efficient sets of prospects along
the lines just discussed has been developed from some slightly different
angles by Hammond (1974). He deals particularly with families of dis-
tributions whose members have CDFs that do not intersect more than
once, i.e., are ‘“‘simply related” (e.g., the normal). He also develops the
concept of proneness to low outcomes and defines an SSD-dominated dis-
tribution as one that has a lesser mean and is more prone to low outcomes.
A normal distribution is more prone to low outcomes if it has a greater
variance. Hammond’s results are especially useful in graphical analysis
with known means since proneness to low outcomes can then be readily
identified. Figure 9.4 depicts three ways in which G can be more prone to
low outcomes than F. Note that in the third graph F and G are initially
coincident.

Third-Degree Stochastic Efficiency

It is generally accepted that aversion to risk is the “norm” for be-
havior of the great majority of agricultural (and other) decision- makers.
Consequently, and because of the practical impossibility of eliciting every
decision maker’s utility function, we believe that the derivation of SSE
sets is of considerable practical importance. We are on much thinner ice
when we attempt to go further in narrowing down the efficient set because
more restrictive general assumptions about preferences are required. One
further generalization seems worth risking to give us a third and final con-
cept of stochastic efficiency.

The concept of third-degree stochastic dominance (T'SD) rests on an
additional assumption about the underlying utility function, viz., that the
third derivative is positive, U;(x) > ¢/ This restriction is implied by the

/strongly intuitive requirement that as people become wealthier, they be-
come decreasingly averse to risk, It is a necessary but not a sufficient con-
dition for decreasing risk aversion (in the sense elaborated in Section 4.4).
We also speculated in Section 6.2 that Us(x) > 0, thereby predisposing




DECISION ANALYSIS WITH PREFERENCES UNKNOWN 289

(Hanson and Menezes, 1971) to a preference for positive skewness in dis-
tributions of returns. The TSD ordering rule, due to Whitmore (1970) and
Hammond (1974), is a logical extension of that for SSD and requires the
definition of a further type of cumulative function, namely the area under
the SSD cumulative function:

R
F3(R) =f F, (x)dx (9.5)

The distribution F dominates G in the sense of TSD if F3(R) = G5 (R) for all
possible R with at least one strong inequality and if F2(b) = G,(b), where b 1s
the upper range, or equivalently, Ep(x) Z Eq(x).

Removal of TSD-inefficient prospects from consideration leaves the
third-degree stochastically efficient (TSE) set, which cannot be larger than
the SSE set. However, our limited experience suggests that the SSE and
TSE sets may generally be very similar. Perhaps this experience may be
overly colored by analysis of distributions that are fairly symmetric,
whereas we would expect the TSD rule to come into its own when distribu-
tions of diverse skewness are compared. Our empirical experience may
offer one reason for underplaying the importance and usefulness of TSD.
A second reason might be a lack of faith in the validity of the underlying
behavioral assumptions implied by specifying Us (x) > 0. We will encoun-
ter a third reason in Section 9.2 when the added computational task is
confronted. The added cost may not cover the marginal benefit of identify-
ing only a slightly smaller efficient set.

A discrete version of the TSD ordering rule has been inferred by
Porter et al. (1973) and requires a new discrete cumulative function,

2,...,n

Fy(x) = (1/2) 2 [F2 () + Fa(xi0)]Ax 7

F3(x;) =0 . (9.6)

Then F dominates G in the sense of TSD if F3(x,) = Gs(x,) for all r = n with
at least one strong inequality, and F (x,-1) S Gy(x,-1). This rule can be con-
veniently illustrated by means of a simple numerical example based
broadly on a maize insect-control problem discussed by Anderson (1974b).
Suppose the decision is between two insecticidal programs F and G, and
the payoffs and probabilities are assessed as reported in Table 9.3. The
efficiency analysis is summarized in Table 9.4, which reveals that the ac-
tions are clearly distinguished by resort to the third-degree rule but are in
fact separated at the SSD stage. This means that any utility-maximizing
decision maker with (decreasing) aversion to risk, if faced with the problem
as depicted, would opt for treatment F.
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TaBLE 9.3. An Insecticidal Decision Problem

Low-Cost Expensive
Level of Treatment Treatment
Infestation Probability G F
(8/ha)
Low 0.2 27 23
Medium 0.5 24 ) 22
Severe 0.3 15 21
EMV 21.9 21.9

TaBLE 9.4. Efficiency Analysis of the Insecticide Problem

X; 15 21 22 23 24 27
fx:) 0 0.3 0.5 0.2 0 0
2(x;) 0.3 0 0 0 0.5 0.2
Fi(x;) 0 0.3 0.8 1.0 1.0 1.0
Gy (x;) 0.3 0.3 0.3 0.3 0.8 1.0
Ax; 6 1 1 1 3
G, (x;) 0 1.8 2.1 2.4 2.7 5.1
Fi(x;) 0 0 0.15 0.85 2.45 13.25

G (x;) 0 54 7.35 9.60 12.15 23.85

Except for the discussion below of efficiency in relation to specific
families of utility functions, the third-degree case is as far as we propose
to go in search of stochastic efficiency criteria. Vickson (1975) has devel-
oped a stronger ordering rule (DSD) based on the behavioral assumption
of decreasing absolute risk aversion, but this is presently restricted to dis-
crete random variables and is computationally most demanding. It seems
that further attempts to narrow the efficient set of prospects would need
to call on general behavioral assumptions that are not readily defensible.
For instance, Anderson (1974b) has suggested a rule for fourth-degree
stochastic dominance and Hammond (1974) has explored high order
dominances based on CDFs that intersect a specified number of times.

¥ Convex Stochastic Efficiency

Although there seems little merit in pursuing fourth and higher degree
stochastic efficiency, this is not to suggest that work toward further re-
finement and exploitation of the notions of dominance and efficiency is
stagnant. Indeed, the topic is of such importance that it is bound to attract
the continued attention of decision theorists. For example, Fishburn
(1974a) has generalized the dominance results and rules in a most inter-
esting way. He is especially concerned with a particular class of linear
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(convex) combinations of probability cumulatives (note, not random vari-
ables) wherein the weights {\,} are nonnegative and sum to unity, viz.,
A\ = 0and >7_1N\; = 1. His convex generalization of the FSD and SSD
ordering rules may then be crudely stated as follows. Under the FSD (SSD)
behavioral assumption(s), if some convex combination of several CDFs 2.0,
N[Fi(x)); dominates in the sense of FSD (SSD) the same convex combination
of several other CDFs 3°1_1 Ni[Gy (%)), then UlF, (x)]; > UlG, (x)); for at least
one of the i, ¢ = 1, ..., n. The last phrase of this statement asserts that for all
the relevant utility functions (e.g., all risk-averse functions in the case of
SSD), the utility of some (at least one) of the F distributions must be
greater than the utility of the corresponding G distributions; thus these one
or more G distributions must - be strictly not preferred, i.e., must be
dominated.

The trick is to identify just which distributions are dominated. In
general, this is not possible without knowing more about preference than
we are able to assume. There is, however, a special case that offers scope
for operational identification of such dominated distributions at the cost
of reducing the power of the rule. The device used is to take one member
of a set of n prospects and to suppose it to consist of n — 1 identical pros-
pects labeled G. Convex combinations of the remaining (n — 1) F prospects
can be examined for dominance with respect to the combinations of the
(n — 1) G prospects (which are exactly the one G prospect itself). The pro-
cedure is illustrated in Figure 9.5 for the case of FSD among two rectangu-
lar distributions and one other distribution. Without the convex general-
ization, we would say that all three distributions (F1)1, (F1)2, and G; lie

Cumulative Probability

Fic. 9.5. Anillustration of convex FSD.
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in the FSE set. However, many convex combinations of (F;); and (F),,
including A; = A, = 0.5, clearly dominate (G;); = (G;)2, so G; should
be eliminated from the FSE set.

The above simplistic example gives something of the flavor of the ad-
ditional power that the convex generalization gives to reducing the size
of efficient sets. Our speculation is that in typical practical efficiency
analyses, the generalization will have a rather small impact on diminishing
the size of efficient sets—especially until such time as easily applied com-
putational routines are available. This seems to be some time away be-
cause of the difficulties of searching for dominant convex combinations.
Perhaps the best possibilities lie in applying the concept and theorems of
Fishburn (1974b) to discrete distributions. Work with convex combina-
tions of theoretical continuous distributions is complicated by the fact
that the combination distribution does not belong to the same family as a
common family of parent distributions such as the normal. For example,
in Figure 9.5 (F); and (F}), are rectangular distributions, but the depicted
convex combination is clearly not rectangular.

Other extensions of concepts of stochastic efficiency are also sure to
be developed. Fishburn (1974a, b) has employed his convex extensions to
explore efficiency in decisions based on voting by several people. Another
important extension concerns the development of stochastic efficiency
concepts for multiattributed choice situations (Levy and Paroush, 1974a;
Kihlstrom and Mirman, 1974), of which an important special case con-
cerns multiperiod choice problems such as portfolio selections (Levy,
1973b; Levy and Paroush, 1974b). The portfolio problem continues to
receive attention by theorists searching for more general results concern-
ing stochastic efficiency (Hadar, 1971; Hadar and Russell, 1974a,b). The
concepts of efficiency have also been applied to the problem of measuring
equality of income distributions (Atkinson, 1970).

¥ Utility Family-Specific Efficiency

To complete our survey of concepts of efficiency, a final and more
restrictive approach is briefly mentioned. Hitherto our only preference as-
sumptions were about the signs of the first three derivatives of the utility
function. It will come as no surprise that efficient sets may be greatly com-
pacted if rather more specific assumptions are introduced about the util-
ity function, e.g., that the function belongs to a particular family of func-
tions such as the exponential family. The simplest family to study is the
quadratic, and here we follow the presentation of Hanoch and Levy (1970)
who also examine efficiency for the cubic family of utility functions.

Recall from Section 4.4 that the quadratic utility function

U(x) = x — bx? b>0
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is only increasing for x < 1/2b = K, so we might conveniently linearly
transform the function to

U(x) = 2Kx — x* K>0x< K
which in turn leads to the expected utility function
U =2KE(x) — [E(x)" + V (x)]

Then given two prospeéts x, and x, with means p;, u, and variances o,
o3 respectively, x; would be preferred if and only if

Ux,) — Ulxy) = 2KAp — (Ap? + Ad?)
= 2Au(K — @) — Ac? >0 (9.7)

where Ap = p — pgy B = (1 + #2)/2, Ap? = pf — 3, and Ac® =of -
2. Since we are presently assuming that we know only that preference is
quadratic, we do not know the value of K. However, we know that it would
not be sensible to speak of quadratic utility unless K exceeded the upper
range x, of all the considered distributions. Thus if x,, is known, it can be
substituted for K to give one empirical efficiency criterion:

20p(x, — ) — Ad® > 0 (9.8)

Use of this criterion—as would use of that of expression (9.7) if K were
known—would lead to a probably rather smaller efficient set than the
simple (E, V)-efficient set since x, is less than the infinitely large value im-
plied by distributions such as the normal. In less desirable, but perhaps
most frequently encountered circumstances, x,, may not be known; and we
may be able to assume only that K > pup, where pu,, is the largest mean of
the considered distributions. The criterion then becomes

280p(p — B) — Ad? > 0 (9.9)

Practical applications of these criteria may sometimes be through
pairwise review of distributions. Then the x, and u, values used in each
comparison can be respective maxima from the pair under consideration.
With x, unknown and g, > u,, substitution of p, for u, in expression (9.9)
yields the simple pairwise criterion:

(Ap)? — Ad® > 0 (9.10)

For example, consider the case where u; = 20, o? = 100, uz = 10, and
¢} = 25, which reveals no dominance in the (E, V) sense. With quadratic
utility and application of criterion (9.10), (Ap)? — Ag* =100 — 75 = 25 >
0, so that in this sense the second prospect is dominated. In general, use
of (9.9) will yield smaller efficient sets than will pairwise application of
(9.10).
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Hanoch and Levy (1970) also present further refinements of the
quadratic case based on additional considerations such as symmetry of
distributions, constraints on skewness, etc., but we will not elaborate these
since they seem of limited generality. The other major attempt to explore
efficiency by appeal to a specific utility family is Hammond’s (1974) work
on the negative exponential family of constant risk aversion utility func-
tions. Briefly, several of the ordering rules he suggests depend on a limit
being placed on the extent of aversion to risk, appeal to the constant risk
aversion function as an analytic utility function, and finally, orderings
based on his earlier discussed notions of simple relatedness and proneness
to low outcomes. This is exemplified by his Corollary 3.1, which may be
useful for narrowing down efficient sets under the circumstances specified.
Suppose that F and G are simply related and that F is preferred to G under a constant
risk aversion of level ¢; then if F is more prone to low outcomes than G and risk
aversion ( as measured by Pratt’s coefficient of absolute risk aversion) is less than or
equal to c, F is always preferred to (dominates) G.

9.2 ASSESSMENT OF STOCHASTIC EFFICIENCY

Among the concepts of efficiency surveyed above, several are very easy
to implement and present no real problems in practical applications of
any scope. These are the rules expressed in terms of a few simple param-
eters of the reviewed distributions, such as the (£, V) rules for normal and
log-normal cases and the quadratic utility criteria. However, various com-
putational difficulties are inherent in most of the other rules. These dif-
ficulties and some suggested solutions are briefly discussed here. We will
segregate our discussion of continuous and discrete distributions since they
present somewhat distinctive problems.

Our discussion of the ordering criteria has so far emphasized that, in
general, assessment of stochastic efficiency must proceed by pairwise com-
parisons among prospects not so far eliminated from the efficient set. If all
the prospects considered are ‘“‘pure prospects,’” this process says little
about the efficiency of possible mixtures of pure prospects. The only way
of establishing the efficiency or otherwise of such mixtures is to specify the
distributions pertaining to the mixtures and to test these as for other pros-
pects. Considerable practical difficulty is usually encountered in distribu-
tional specification for mixed prospects, and the Monte Carlo program-
ming technique described in Section 9.3 is one approach to overcoming
this difficulty. The only simple case is in dealing with mixtures or linear
combinations of random variables (not of probability cumulatives as is
involved in assessing convex stochastic efficiency) that are normally dis-
tributed. In this case, equations (7.1) and (7.2) serve to define the param-
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eters (E, V) of the distribution for any specified mixture that may, depend-
ing on the degree of correlation present between the component variables,
dominate some of the pure prospects (e.g., some crop monocultures may
be dominated in the sense of SSD by some diversifications).

For a small numerical example, consider the following three uncor-
related normal distributions described by their means and variances:
F ~ N(20,100), G ~ N(10,25), and H ~ N(15,50). All three distribu-
tions are seemingly in the SSE set because there is no (E, V) dominance.
However, a (0.6, 0.4) mixture of F and G implies the distribution ¥ (16, 40),
which dominates H in the (E, V) sense so H should be eliminated from
the SSE set if such a mixture is a possibility that should be considered.

Discrete Distributions

With the exceptions mentioned above, discrete distributions are the
simplest for assessing stochastic efficiency. Examples of the mode of
analysis applicable have already been given in Figure 9.2 and Tables 9.2,
9.3, and 9.4. The method consists of assembling all the combined discrete
values of the random variable x for pairs of probability mass functions
f(x;) and g(x;) and arranging them in ascending order such that if 1 <
then x; < x;. If two or more x have the same numerical value, each is con-
sidered to be distinct and the rank allocated to ties is lowest for those as-
sociated with the potentially dominated distribution. This is the distribu-
tion that is more prone to low outcomes; e.g., it has a nonzero probability
for the lowest value of x when this is not tied.

Assessment of efficiency for discrete cases of great simplicity (e.g.,
few states and few distributions) is best done by the illustrated tabular
method (Table 9.4) rather than graphically. However, for less simple cases,
recourse to a computer. provides the most convenient method of assess-
ment. The program implemented can follow the tabular steps in a straight-
forward manner. There is considerable scope for imaginative programming
to make the intrinsically pairwise comparisons very “‘efficient” from the
viewpoint of computational cost. Excellent programs are available (Porter
et al., 1973), although these deal with very special cases of discrete dis-
tributions. These might be termed discrete sample distributions and con-
sist of a set of n sample observations (usually on an intrinsically continu-
ously distributed random variable), and a discrete probability of 1/n is
arbitrarily awarded to each observed value. Efficiency analysis is especially
easy when “discrete distributions” of equal sample size are compared.
These methods of using samples to ‘‘discretize” continuous distributions
have in fact been widely used to compare general stochastic efficiency
criteria with long-used criteria like (E, V') (Levy and Sarnat, 1971; Porter,
1973; Porter and Gaumnitz, 1972).
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Letting sample data ‘‘speak for themselves” in this way runs counter
to the standpoint we adopted in our discussion of probability assessment
in Section 2.3. Departure from such an essentially subjective standpoint
(i.e., emphasizing elicitation from the individual decision maker) can be
defended on the grounds that here we are concerned with less well-struc-
tured situations where the decision maker is presumably difficult to pin
down (at least insofar as preferences are concerned), so it may also be
difficult to elicit his personal probabilities. For consistency we logically
should pursue the inferential steps elaborated in Section 2.4 to transform
sample data into estimates of distributions, whether these are discrete or
continuous. However, let us now turn to the more challenging problems of
looking at efficiency in continuous distributions that are treated as con-
tinuous.

Continuous Distributions

Assessment of efficiency with only a few continuous distributions is '
probably best done as far as possible by graphical methods. This is espe-
cially convenient when distributions are available in graphical form (as
subjective distributions often will be) and is very easy for FSD checking
and for SSD checking where distributions are simply related. Graphical
methods are not so convenient when the SSD and TSD cumulative func-
tions must be defined. The required integrations can be carried out in such
an approach by either counting squares on ruled paper to estimate areas
under curves or by cutting out the cumulative areas and weighing them to
estimate areas. Sophisticated equipment like planometric instruments or
graphical-digital equipment could be used most advantageously but may
not be generally available to decision analysts. Usually, however, a com-
puter will be needed for expedient analyses of stochastic efficiency.

When the mathematical form of compared distribution functions is
known, several analytical possibilities are available. If they are from the
same family, there is a chance that the distributions are simply related so
that determination of relative proneness to low outcomes may fairly simply
indicate the composition of the SSE set. If the FSE set should be required
(and many analysts may feel that it is insufficiently interesting to be
worthy of identification), the known CDFs can be compared along their
range. This is undemanding if they are known to be simply related because
the comparison interval can be rather coarse. Otherwise, however, judg-
ment will be required as to how fine the intervals for comparison need to be.

Even with high-speed computers the infinite number of comparisons
implied in the ordering rules for continuous distributions cannot (and in-
deed need not in practice) be approached. Subsequent efficiency tests re-
quire new cumulative functions that in principle can be traced out by suc-
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cessive integrations of the known distribution functions. This might be
done analytically for relatively simple functions but more typically will
require numerical methods of integration. Whatever the method, it is clear
that an element of approximation and judgment is required in performing
a necessarily finite number of comparisons of the derived functions. Re-
course to numerical integrations will tend to make efficiency analysis of
large sets of prospects an expensive analytical procedure (at least in terms
of use of computer time), and this is one reason we do not take up such
methods here. The other important reason for not emphasizing such
methods is that all too frequently we will not know the mathematical form
of the distribution functions. Instead, we will typically have a set of smooth
curves representing CDFs of indeterminate mathematical form. It would
be possible to engage in a mathematical function-fitting endeavor, but this
is only a “best fit”’ (i.e., imperfect) procedure. If it leads to close-fitting
functions that are very convenient for efficiency analysis (e.g., normal, log-
normal, rectangular, etc.), it may be justified for its saving in analytical
costs. However, if inconvenient imperfectly fitting functions are to result,
the analytical route seems suboptimal.

The approach we recommend is to take the fact of limited accuracy
approximation to heart and settle for a mathematical approximation that
is most convenient for subsequent efficiency analysis. We suggest ap-
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Fic. 9.6. Illustration of linear-segmented CDFs.
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proximating each CDF by a predetermined number of linear segments,
each spanning an equal interval of cumulative probability (see Figure 9.6).
This is equivalent to representing the underlying PDF by a rectangular
histogram with rectangles of equal area. The great analytical advantage
is the simplicity of integrating a piecewise linear function to define the SSD
cumulative function, which then consists of quadratic segments that are
also easily integrated to define the subsequent TSD cumulative function.
Another advantage of this approach is the relative simplicity of the pair-
wise comparisons among functions of each type. The mathematical back-

ground to this approach is described fully by Anderson (1974b), and a
general purpose program for such review is given in Section 9.5. The pro-
cess works fairly efficiently in applications involving up to about 50 risky
prospects, but it may prove expensive on core size and processor time for
very large numbers of reviewed distributions. The transitivity of all the
efficiency criteria permits an analysis to be conducted by reviewing only a
few risky prospects at a time with the currently efficient prospects, per-
mitting progressive revision and enlargement of the efficient set. It must
be said that the precision of approximations in this method is controlled
largely by the number of linear segments chosen to describe each CDF
and a subjective balance must be reached between added precision and
added computational burden. Judgment about desired precision may well
be influenced largely by the shape of CDFs, especially in the lower tails
of the distributions.

Doubtless there will be many developments in methods for assessing
stochastic efficiency as the importance of the concept is recognized. Our
brief survey has been intended to indicate some general approaches that
seem to work fairly well. We can look forward to operational methods for
exploiting convex stochastic dominance. Meantime, our recommendation
for efficiency analysts is to search for and exploit any method that offers
convenience in operation and consistency in approach.

9.3 STOCHASTIC EFFICIENCY IN FARM PLANNING

Several examples of efficiency analysis of problems in agricultural
management were introduced in the methodological survey of Section 9.1.
Our intention here is to discuss some applications that demand computa-
tional assistance of the types reviewed in Section 9.2.

One important field of application of the concepts of stochastic ef-
ficiency is analysis of the impact of risk in agriculture when it is simply
impossible to elicit utility functions for the farmers involved. This is typi-
cally the case in agricultural research and development. For example, our
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first topic relates to the search for new wheat varieties that will be “effi-
cient” for large numbers of unidentified (mainly peasant) farmers.

Selection of Risk-efficient Crop Varieties

In this example, we illustrate the use of discrete sample data to ap-
proximate essentially continuous distributions.

Several methods have been used for identifying crop varieties that
have wide environmental adaptability. The basic data for such work are
usually obtained from nursery trials conducted in diverse environments,
sometimes across many countries, as in the collaborative nursery admin-
istered by the International Maize and Wheat Improvement Center
(CIMMYT, 1972). The analytical methods used have ranged from com-
parisons of meéan yields to comparisons of statistics based on regressions
of varietal yields on environmental indices. In the absence of specifically
and carefully elaborated criteria, there can be no one perfect method of
appraisal. In the present example we examine the question of adaptability
from the point of view of stochastic efficiency—believed to be relevant if
the ultimate purpose of identifying widely adapted varieties is to make
them available for adoption by farmers who generally are averse to risk.
As Finlay and Wilkinson (1963) have observed: ‘‘Plant breeders are in-
clined to ignore the results obtained in low-yielding environments (e.g.,
drought years), on the basis that the yields are too low and are therefore
not very useful for sorting out the differences between selections. This is a
serious error, because high-yielding selections under favourable conditions
may show relatively greater failure under adverse conditions.”

The notions of stochastic efficiency provide a useful framework for
posing the essentially empirical question of how different selections per-
form in diverse risky environments. The analysis is straightforward if it
makes good sense to speak of a world probability distribution of wheat
yields and if the selection of sites, cooperators, fields, and growing and
disease conditions is somehow representative of the relevant domain of
production. Unfortunately, for lack of more appropriate measures we are
forced to use yield as a surrogate for the argument of the implicit utility
function. This assumption, which involves ignoring differences in produc-
tion costs, is unavoidable in processing international nursery data since
each trial is in general grown under differing regimes of irrigation (where
practiced), tillage, fertilizers, and weed and pest control that are most dif-
ficult to cost. Attention is now concentrated on the data from a particular
nursery (CIMMYT, 1972) in which 49 varieties were compared in trials at
60 locations in 37 countries during 1969-70. For each variety, each trial
observation is regarded as a distinct component of the discrete sample
probability function of that variety. The pairwise comparison of 49 discrete
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actions involves up to (49)(48)/2 = 1176 FSD comparisons at each of up
to (60)(2) = 120 values of the uncertain yield. Such a computational bur-
den can be faced with equanimity only with the aid of a computer.

Complete identification of the efficient varieties is of little interest
here—details are given in Anderson (1974b)—so we identify the varieties
only by their rank in terms of mean sample yield. The results are sum-
marized in Table 9.5. The inclusion of the high-ranked varieties in the ef-
ficient sets is to be expected, but perhaps the more interesting result is the
inclusion of some relatively low-ranked varieties in the “risk-efficient”
SSE and TSE sets. The efficiency analysis obviously provides information
that should be useful to plant breeders. Perhaps such information would
be most useful at relatively late stages in breeding programs when ma-
terials of somewhat similar adaptation must be screened.

TabLE 9.5. Efficiency Analysis of World Wheat Yield Data

Set of Varieties Number in Set Rank Identifications*
Total considered . 49 1-49

FSE 27 1-19, 21-24, 26, 27, 34, 35
SSE 6 1,2,5,10, 27, 34

TSE 5 1,2,5, 10, 27

*Varieties are identified by their rank of mean sample yield.

Selection of Risk-efficient Fertilizer Rates

This fertilizer example builds on material described more fully by
Andeérson (1973, 1974a). The starting point is to use the 36 probability
distributions of unirrigated wheat yield estimated for each of the design
points of a 6 x 6 complete factorial. The treatments are for N at approxi-
mately 0, 22, 45, 67, 90, 112 kg/ha and for P at approximately 0, 9, 18, 27,
36, 45 kg/ha.

The estimation of the distributions, which reflect between-year
variability, was based on sparse data (see Section 2.4). Examples of these
distributions have been given in Figure 6.5, and more are shown in Fig-
ure 9.7 in linear-segmented CDF form in which all are subsequently
described. Each is described by 20 linear segments spanning equal prob-
ability intervals. Yield distributions were transformed to net revenue
distributions by the linear expression Ry = p, Vi — poNi — p,P;, where
R denotes revenue, 1 denotes yield, N denotes nitrogen applied, and P de-
notes elemental phosphorus applied, all per unit area; p,,\ p,, and p, are the
respective unit prices of ¥, N, and P; and the subscripts ij4 denote respec-
tively the 7th level of WV, the jth level of P and the kth fractile. Note that
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F1c. 9.7. Some examples of linear-segmented CDFs for wheat yields under differ-
ent fertilizer treatments.

fixed costs and area grown are not included in this expression since they
have no influence on the determination of stochastic efficiency.

The procedure for reviewing stochastic efficiency of continuous dis-
tributions outlined in Section 9.2 was applied to these 36 discrete actions
through the computer program of Section 9.5. Results are most easily dis-
played in Table 9.6 with rows and columns defined by rates of N and P
and the table entries by the degree of stochastic efficiency: zero denotes
dominated in the sense of FSD; FSE combinations of fertilizers are indi-
cated by an integer = 1; FSE combinations become candidates for SSE.
review and those that survive are indicated by an integer = 2 and in turn
become candidates for TSD review; those not then dominated are TSE and
are indicated by the integer 3. In the present case the SSE and TSE sets are
identical so that no “2” entries appear in Table 9.6.
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TasLE 9.6. Stochastic Efficiencies of Specified Fertilizer Combinations

P
N 0 9 18 27 36 45
(kg/ha)

0 0* 1 34 34 34 34
22 0 0 0 34 34 14
45 0 0 1 341, 1 1
67 0 0 0 1 1 1
90 0 0 0 1 1 1

112 0 0 0 0 1 1

*A zero entry denotes inefficiency according to FSD. The nonzero entries denote the
highest degree of efficiency attained, so that numbers 1, 2, and 3 indicate FSE, SSE, and
TSE respectively.

t+Members of the (E, V)-efficient set.

1 The discrete combination with greatest mean return.

These results indicate a fairly consistent pattern wherein (in this case
related to crop response on a red-brown earth) a necessary condition for
stochastic efficiency of any order is a reasonable dose of phosphorus. Nitro-
gen is indicated as being a rather risky proposal since most of the risk-
efficient combinations involve zero levels of N and the highest risk-efficient
rate of N is 45 kg/ha in this nonirrigated situation. Further, given the
consistent pattern of risk-efficient rates, it seems reasonable to interpolate
within the set. Making such an interpolation suggests that, after resorting
to specific assumptions about risk-averse preference functions as detailed
by Anderson (1973), all the risk-optimal rates fall in the interpolated effi-
cient set. This should not be surprising, although the specific risk-optimal
rates were computed by an approximate procedure using only the first two
moments of the yield distribution. In this particular example, as in others
from the field of portfolio analysis (Porter, 1973; Porter and Gaumnitz,
1972), it does turn out that the risk-efficient set corresponds very closely
with the (E, V)-efficient set, as indicated by the footnote to Table 9.6.

In decision problems involving continuous decision variables, it would
be convenient to conduct efficiency analyses in a manner broadly analo-
gous to those of continuous response analysis, so as to locate precise
bounds on efficient levels of the decision variable(s). Unfortunately, this is
impossible because, as the foregoing sections have illustrated, the analysis
of stochastic efficiency is intrinsically a discrete affair involving pairwise
comparisons of the cumulative probability or other derived functions. This
means that application of the efficiency principles to a problem that is in-
herercitly continuous must involve making the problem discrete in such a
way that the essence of the original problem is not lost. The alternative to
attempting to interpolate among discrete results is to follow a more famil-
iar analytical route and interpolate among the data. For example, if nor-
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mal distributions have been fitted to response data at several levels of a
continuous variable, an analysis might reasonably postulate smooth func-
tional relationships between the continuous variable and the distributional
parameters. Subsequent analysis for stochastic efficiency could proceed on
the basis of (discrete) predicted or interpolated distributions at levels of
the continuous variable other than those at which the observations were
available. The interpolation procedure could presumably be carried to
any desired intensity to effectively allow a continuous analysis. Such is
broadly the approach suggested here.

There are several possibilities for interpolating among data. For in-
stance, in the present example we could attempt to interpolate the co-
ordinates of linear-segmented approximating distributions for rates of
fertilizer on a finer grid than the 36 combinations analyzed above. Such
an approach has been illustrated for a single fertilizer decision variable
by Anderson (1974b). However, for present purposes we prefer to discuss
a less direct but we hope more general approach to the same problem.

Interpolation of distributions is here accomplished in two stages: re-
lating sufficient parameters of the 36 estimated distributions to the decision
variables N and P and fitting (interpolated) distributions by use of the
parameters predicted for any specified combinations of fertilizer nutrients.
The selected equations are reported below for the mean response E(y),
the variance of response V(y), the lower bound of yield A(y), and the up-
per bound B(y); N, P, and y are in kg/ha and numbers in parentheses are
respective standard errors of the regression coefficients.

E(y) = 1170 + 9.16/N + 42.4P — 0.0765N% — 0.695P* + 0.146/NP
R* =099 (19) (0.51) (1.38)  (0.0040)  (0.025)  (0.009)

V(y) = 164,200 + 10,700N + 26,500P — 88.6N? — 716P* + 1320NP
R? — 0.94 (67,070)  (1840) (4590)  (14.5)  (90.8) (31)

_A(y) = 106 — 433N — 0.76P + 0.040M? + 0.357P?
R* - 0.80 (62) (1.94) (4.8)  (0.016)  (0.104)

B(y) = 2840 + 10.0N + 63.5P — 0.137N% — 1.50P% + 0.831NP
R* = 0.94 (162) (4.45) (11.1)  (0.035)  (0.220)  (0.075)

For a given combination of ;N and P within the experimental range,
these equations predict with a fairly high degree of accuracy the mean and
variance of response and the upper bound of response. The lower bound
equation is unfortunately not so precise, reflecting the less consistent pat-
tern of the zero fractile with respect to & and P. These features of yield
distributions are readily transformed into the corresponding mean m, vari-
ance v, and bounds (g, b) of the relevant net revenue distribution. To fit a
beta distribution by the moment method, which presently seems most con-
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venient, it is first necessary to compute the mean and variance, denoted by
m* and v* respectively, of the corresponding standard beta distribution
(range 0 to 1). Hence, m* = (m — a)/(b — a) and v* = v/(b — a)? from
which the shape parameters ¢ and d (Mihram, 1972) can be found directly
as (c +d) = [m*(1.0 = m*)/v*] — 1.0and ¢ = (¢ + d)m*.

If the beta distribution could be readily integrated to yield the CDF
and successive cumulative functions, the analysis of stochastic efficiency
could proceed directly. However, such integrations are very tedious and as
argued earlier, the linear-segmented CDF approximation to the beta is
suggested as an adequate and expedient approach to completing the analy-
sis. Tabulations of the percentiles of the beta distribution are available for
integer values of ¢ and ¢ + 4 and for fractiles 0.05, 0.10, ..., 0.95 (Pratt et
al., 1965), reproduced in part in Appendix Table A.2. These intervals con-
veniently fit the use of 20 linear CDF segments of equal probability span.
For noninteger values of ¢ and d the fractiles, denoted here by f,, must be
interpolated (linearly seems adequate) from the fractiles of the four stan-
dard beta distributions with integer-shaped parameters that embrace the
noninteger values of ¢ and d. Fractiles for the respective fitted distribution
are then found through the transformation (6 — a) f; + a.

The above procedure is demonstrated by reviewing stochastic effi-
ciency first among 40 factorial combinations of N and P involving N' = 0,
20,...,80kg/haand P= 0, 5,..., 35 kg/ha. The results are summarized
in Table 9.7, using the same notation as in Table 9.6, and reveal that given
all the assumptions made, the combinations of fertilizers that are risk
efficient are again in the region near where N = 0 and P = 30 kg/ha. If
more precise information is required, it can be obtained by interpolation
on a finer grid in the determined region of interest. Happily, the efficiency
results of Tables 9.6 and 9.7 are remarkably compatible, given the very
different analytical approaches employed.

TasLE 9.7. Stochastically Efficient Fertilizer Rates on a
Relatively Coarse Grid of Interpolation

P
N 0(5)15 20 25 30 35
(kg/ha)

0 0* 1 3 3 3
20 0 0 3 3 3
40 0 0 1 1 1
60 0 0 0 1 1
80 0 0 0 1 1

*A zero entry denotes inefficiency according to FSD. The nonzero entries denote the
highest degree of efficiency attained, so that numbers 1, 2, and 3 indicate FSE, SSE, and
TSE respectively.
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Selection of Risk-efficient Farm Plans

In Chapter 7 we reviewed several alternative models for selecting
efficient whole-farm plans. The efficiency criterion that received most at-
tention was the (£, V) rule, and various methods for tracing out the (E, V)-
efficient frontier were reviewed for the case where either returns are nor-
mally distributed or utility is quadratic. We will now briefly explore how
our more general concepts of stochastic efficiency might be used in a farm
planning context. Here we take up the suggestion made in Section 7.5 that
the dominance rules can be used as the sorting criterion in Monte Carlo
programming. We would only want to use this more general criterion when
returns are other than normally or log-normally distributed. For brevity,
we will refer to the approach to be described as REMP (risk-efficient
Monte Carlo programming) (Anderson, 1976).

Monte Carlo programming (MCP) is chosen as the device for gener-
ating feasible plans because there is no guarantee that well-defined algo-
rithms such as mathematical programming routines will present feasible
plans that are in fact in the stochastically efficient set that is sought. Also,
MCP provides a degree of flexibility with which to accommodate the in-
trusion of a nonnormal risk specification in the model. This risk specifica-
tion is the important link missing between MCP—e.g., as developed and
programmed by Donaldson and Webster (1968)—and stochastic efficiency
analysis—e.g., as programmed in Section 9.5. Our general requirements
for the probabilistic specification are that (1) nonnormal (skewed, finite
range) marginal distributions be permitted for describing returns from
individual activities and (2) account be taken of statistical dependence that
inevitably exists between farm enterprise returns. We have seen in Section
7.3 how activity means, variances, and covariances are combined to give
the mean and variance of total gross margin and total net return. These
same methods are used here to capture the average and variability of
whole-farm performance. One neat feature is the easy way interdepen-
dence is simply accounted for by the correlation coefficients embodied in
the covariances.

The other general requirement of specifying arbitrary nonnormality
in marginal distributions of returns is not so easily handled, especially
since we must bear in mind the necessity of keeping track of such nonnor-
mality in linear combinations of the enterprise distributions. The latter
consideration makes for difficulty because there is a very limited number
of permissible linear operations on parameters of distributions. Our prag-
matic suggestion for meeting this requirement is to specify the upper and
lower bounds of the revenue distribution for each enterprise. This satisfies
both the finite range and asymmetry requirements neatly, and simple
linear combinations of these parameters also define the respective range
parameters of the distribution of total gross margin.
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Our suggestions so far have said nothing specific about the mathe-
matical form of the marginal enterprise distributions and have yielded just
four parameters (mean, variance, and upper and lower range) of the dis-
tribution of total gross margin. The general efficiency rules require effec-
tively complete specification of the distribution functions for reviewed
plans, so we need to infer such distributions from sets of the four computed
parameters. Again, as in the above example of efficiency analysis in fer-
tilizer decision making, we choose the very flexibly shaped beta distribu-
tion for this inferential step. The beta family contains distributions of very
diverse characteristics (Pratt et al., 1965, Ch. 9) and seems nearly ideal for
present purposes. A beta distribution is uniquely determined by the men-
tioned four parameters and is easily fitted to them. As described in the
fertilizer example, it also lends itself readily to linear-segmented approxi-
mations of the CDF (by use of the fractiles reported in Appendix Table
A.2) and thence to convenient computerized efficiency analysis.

We will illustrate the suggested REMP method by reference to a study
by Hazell (1971) that involved a vegetable farm planning problem solved
by quadratic risk programming and mean-absolute deviation linear pro-
gramming. We do not use our own farm planning example of Chapter 7
because it is strongly predicated on an assumption of multivariate nor-
mality. While Hazell’s enterprise data successfully pass goodness-of-fit
tests for normality (e.g., Shapiro and Wilk, 1965) at conventional levels of
statistical significance, at least two of his four distributions certainly do
not look very normal when processed as sparse data and plotted on normal
probability paper. The sparse data procedure of Section 2.4 was applied to
all four sets of Hazell’s returns data specifically to ‘“‘estimate” the values
of the range extremes for each distribution. One such curve is depicted by
the unbroken line in Figure 9.8. The broken line illustrates the beta fitting
procedure by depicting a fitted beta distribution with the same mean,
variance, and range as the smooth curve. Means, variances, and covari-
ances are supplied by Hazell (1971).

The estimated range data were added to the data of Hazell’s qua-
dratic programming formulation of his problem, and the new problem
solved as an MCP problem with stochastic efficiency sorting. Generated
plans not in the emerging TSE set were discarded and the computer in-
structed to proceed in this manner until 20 efficient plans were available.
This required only a total of 48 feasible plans (i.e., 28 were discarded).
The composition of these plans is of little interest to us here. However, it
is instructive to compare the plans with Hazell’s (E, V')-efficient frontier
computed by quadratic programming. The stochastically efficient plans
are represented by dots in Figure 9.9.

In terms of (E, V) efficiency, the stochastically efficient plans clearly
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pertorm poorly when compared with the (E, V)-efficient frontier. The ques-
tion must be asked as to what extent this apparently poor performance is
due to the very limited sample of plans considered. This is answered by
reviewing the same 48 pseudorandomly generated plans according to the
(E, V) criterion rather than the stochastic efficiency criteria. Only 10 of
these plans were (E, V) efhicient, i.e., undominated in (£, V) terms by
others of the 48 plans. These are represented by squares in Figure 9.9.
Note that there is considerable overlap between the efficient sets. It can be
seen that these 10 plans all lie relatively close to the efficient frontier, sug-
gesting that the result for the general efficiency sorting is not simply a
sampling problem.

It is completely inappropriate to condemn the nonnormal stochastic
efficiency sorting on the basis of (£, V) analysis. The results can be put in
a much more favorable light by presenting similar data with an alternative
measure of risk, as reported in Figure 9.10. Here risk is measured by the
maximum possible loss associated with each plan in both the (E, V)-effi-
cient and TSE sets. Each loss is the lower bound of the respective gross
margin distribution. Judged by this criterion, the stochastically efficient
plans appear generally much less risky (or more conservative) than the
(E, V)-efficient plans.

The above example serves more to illustrate a possible use of stochas-
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tic efficiency criteria than to reveal the potential for risk planning methods
of the REMP type. In fact, such methods can be useful for planning in a
policy context when governmental intervention in risk bearing is under
consideration. For example, Anderson (1975) has shown how stochastic
efficiency concepts and the REMP method can be deployed to examine the
impact of stabilization policy measures such as income tax arrangements
for fluctuating incomes. As with all efficiency analyses, however, there is
always a chance that the identified efficient sets will be of such large size
and diversity that any sort of precise policy or decision interpretation be-
comes impossible.

9.4 IMPLICATIONS OF STOCHASTIC EFFICIENCY ANALYSIS

Decision analysis must all too often be attempted with incomplete
information. In this chapter we have reviewed/what is possible when pref-
erences are unknown except for the most limited general information? As
we have shown, there is much that can be said, and this fact has implica-
tions for decision theory itself, for research and extension, and for national
agricultural policy.

Decision Analysis Methodology

We have emphasized that searching for efficiency without knowing
utility functions is very demanding in terms of probability specification.
Stochastic efficiency analysis can only be as good as the underlying prob-
ability specification, and when this is based on data analysis, there is
always an implicit inferential leap. Two specification problems seem to be
especially important. When simplification is sought through fitting con-
venient theoretical distributions, two inferential assumptions are required:
that the chosen family is applicable and that the fitted parameters are
accurate.

If complete and arbitrary CDFs form the basic data, the ordering
rules place great emphasis on the position of the lower tails of the distribu-
tions. The very nature of such tails precludes any great confidence being
attached to their specification. Questions of estimational risk (Kalymon,
1971; Frankfurter et al., 1971) and its impact have not been examined in
this context. Rather, the implicit philosophy has been that the best analy-
sis possible must simply use the best specification of probabilities that is
possible. A systematic sensitivity analysis may engender added confidence
if efficient sets are fairly robust to data variations. Then again, efficient
sets are likely to be sensitive to, say, variations in positioning the lower
tails of reviewed distributions. In this case we are either forced back to the
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philosophical position that our best is the best we can do, or we are forced
to declare that efficiency analysis is infeasible and futile.

While our review has been overtly subjectivist, we have not adopted a
Bayesian stance in discussing efficiency. Stochastic efficiency analysis
should properly be based on the best-judged estimates of distributions.
In many cases the best estimate will exist as a posterior distribution emerg-
ing from perhaps a sequence of probability revisions. Examples of Bayesian
updating of distributions in a related agricultural context have been pro-
vided by O’Mara (1971).

Finally, stochastic efficiency analysis has not reached the terminus of
its theoretical and empirical development. We can confidently look forward
to further useful developments that will contribute to the simplification of
decision analysis in the face of inadequate information.

Research and Extension

Increasingly, lip service has been paid to the notion that risk is an im-
portant aspect of agricultural technology. While this recognition is valu-
able in itself, a machinery that deals analytically with risk in the absence
of knowledge of farmers’ individual attitudes to risk has not hitherto been
exploited. Following the conclusion that efficiency analysis is a more or
less satisfactory process, what are the implications for agricultural research
and extension?

There seem to be some clear guides for research workers. Rather than
focusing on estimation of treatment means, whole probability distributions
should be explored and estimated to complement conventional ‘“‘average-
oriented” research if risk-averse users are to be well served. This implies
that “risk-oriented” research will be generally more demanding and more
expensive than ‘“‘average-oriented’ research. Seemingly, this is the price
one should pay for work that is potentially relevant in this context.

More particularly,: the appraisal of stochastic efficiency implies pin-
ning down the lower tails of probability distributions. This estimational
task suggests that agricultural innovations need to be evaluated and re-
ported under the bad as well as typical or average environmental condi-
tions that potential adopters face (e.g., with respect to moisture stress,
disease exposure, nutrient suboptimization, etc.).

To the extent that identifiable groups of potentially adopting farmers
face different “worst”’ conditions (if not also different ‘‘average’ or ‘“‘good”
conditions), efficient technological packages may differ among groups.
Consequently, risk-oriented research should deliberately span an appro-
priate range of environments and environmental conditions, which will
usually imply replication over space and time. In the short run especially,
there seems to be much unexploited scope for formal documentation of
research agronomists’ considerable experience of and largely unpublished
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knowledge of the tails (especially the lower) of relevant probability dis-
tributions.

People working in agricultural extension should also appreciate the
implications of stochastic efficiency analysis. Extension of technological
advice in risky agricultures will certainly be more effective if due recogni-
tion is given to the impact of risk and the importance of technologically
induced risk. Such extension will be simplified by dealing with farmers
grouped according to the worst environmental conditions faced, and its
success will be enhanced by promoting practices that are tailored to be
stochastically efficient (to at least the second degree) for the identified
groups. Moreover, in judging extension efforts, recognition that a recom-
mendation efficient in terms of average profit may not be risk efficient

should temper appraisal of programs.
If an extension effort is mounted on such a scale that it is possible to

elicit individual farmers’ attitudes to risk and perceived probability dis-
tributions, the analysis of stochastic efficiency would become redundant.
Until now, however, such a situation has apparently not been attained
anywhere—and nowhere does it seem to be an imminent prospect.

Perceptive practitioners of the arts of agricultural research and ex-
tension inevitably develop a keen intuition for the importance of risk in
most agricultural production. However, their formal training has usually
done little or nothing to equip them with an analytical apparatus for deal-
-ing directly with this aspect of their work. Clearly, educational programs
could do more to sensitize future practitioners to the impact of risk in
farming and, consequently, in research and extension. Particular attention
needs to be drawn to the fact that traditional experimental methodology is
inevitably addressed to estimating only average effects, responses, etc.,
and accordingly is only directly applicable to risk-indifferent farmer-users.
Likewise, probabilistically based educational programs can provide
farmers with valuable information on situations they may face under vari-
ous seasonal conditions. With such information, farmers could appropri-
ately modify their perceptions of risk inherent in various technologies and
their associated farm plans.

Applied agricultural research can be judged as potentially worthwhile
when it leads to new farming practices that are stochastically efficient rela-
tive to existing practices. If the new practices are also stochastically domi-
nant (minimally of degree three and most desirably of degree one), the
chance of the research being positively beneficial is correspondingly
greater. Of course, the cost of the research should enter the economic
evaluation. Conversely, if after a research program has been completed
and extended to the farming community and farmers’ prior (competing)
practices fall in the risk-efficient set, returns from the research must be
highly uncertain and may well be negative.
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Research planning in the context of stochastic efficiency appears to
be intrinsically difficult in at least two senses. First, only retrospective
analysis of efficiency is in any way straightforward. However, if research
is to be directed toward the development of stochastically efficient new
technologies, research planners necessarily must aim to identify tech-
nologies that are not only more profitable on the average but are also less
prone to low outcomes under unfavorable conditions. Second, to the extent
that new technologies embody considerable changes in the rate of utiliza-
tion of constrained farm resources, it is necessary to assess them in a con-
text of whole-farm planning, as illustrated in the REMP method. Tech-
nological assessment on a practice-by-practice basis is thus adequate only
for rather minor changes such as modifications in use of varieties and
fertilizer.

Agricultural Policy

Formulators of agricultural policy will generally suffer fewer “sur-
prises” in program results if their economic models of farmer behavior
include an adequate recognition of farming risks and farmers’ attitudes
toward them. The main pertinent policy instruments for influencing risk
have been crop insurance schemes, weather-oriented income tax arrange-
ments, and minimal price supports for agricultural products. Our discus-
sion of stochastic efficiency places a new slant on such schemes.

By focusing on values in the lower tails of distributions of yields and
prices rather than on values near the mean, considerations of stochastic
efficiency suggest that relatively low premiums or guarantees may still en:
courage significant adjustments to farmers’ actions. More specifically, a
crop “insurance” scheme that effectively truncates yield distributions
below a crossover point in the lower tails of two simply related varietal
distributions causes the variety that yields higher on the average to be
first-degree stochastically dominant. Ensuing adoption by farmers of the
now FSE variety could be in the national interest. Typically, a recom-
mended technological practice will dominate traditional practices if it can
be “insured” to the extent that under really poor eventualities farmers are
not disadvantaged by adoption. Effective truncation of the lower tails
of market price distributions through minimal—but low—price and in-
come supports may effectively ‘“‘take the risk out of”’ a program under
government sponsorship.

9.5 COMPUTER PROGRAM FOR STOCHASTIC

EFFICIENCY ANALYSIS

The subprograms listed below are written in the FORTRAN IV
language and perform the review of stochastic efficiency discussed in Sec-
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tion 9.2 and elaborated by Anderson (1974b). These programs are used by
defining a matrix of the coordinates of a set of CDFs and a corresponding
vector of numerical identifications and then calling the subroutine SD¢M
(which in turn calls the other listed subprograms SEL, CSUB, and
JASP2).

The dimensions specified in these programs presently permit up to 20
linear segments (equally spaced in probability) to describe each of up
to/40 CDFs. If 20 segments are used, 21 numbers are required to describe
the fractiles fo0, fooss---» fio and these should be in nondecreasing
order

The arguments of SD¢M are in turn:

NA = the number of distributions to be reviewed (presently < 40 but may
be increased by increasing the dimensions specified)

the number of points on each CDF (presently = 21 but may also
be increased)

F = a matrix in which distributions are described one per row for each
of the first N4 rows and the points on each CDF are stored in the
first NC columns of each row, with the zero fractile in the first
column

IN = a vector of numerical tags (e.g., 1, 2,..., NA) that respectively
identify the distributions stored in F

IE = ascalar indicator of use of ID when IE < 0

ID = a vector for indicating the prespecified stochastic inefficiency of cor-
responding distributions in F by setting the respective elements of
ID to +1 and all other elements to zero

JT = ascalar dummy argument that takes on the value of the number of
elements in the smallest stochastically efficient set

X = a vector of means of the NA distributions identified in IN. When
these are not supplied to the subroutine, the first element of X
should be set to zero whereupon the means are computed in the
subprogram.

NC

Listing of SD@M and Related Subroutines

SUBROUTINE SDOM(NA,NCsF,IN,IE,ID,JT,X)
DIMENSION F(40,21),5¢40,21),T(60,24),1D¢40),INC40) /X (40)

c MODIFY PREVIOUS STATEMENT IF MORE THAN 40 DISTRIRUTIONS
DIMENSION Z2(2/42) . .
c MODIFY PREVIOUS 2 STATEMENTS IF MORF THAN 20 SEGMENTS
c NS FQUAL=PROBABILITY LINEAR SEGMENTS ON (DF'S
NSaNC=1
DPaNS
c DPEELEMENT OF CUMULATIVE PROBABILITY
OPmY,/DP
NAY=NA~-9
c COMPUTE MEANS TF NOT SUPPLIED AND STORF IN X

TF(X(1) ,NE, 0.)60 TO 102
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DO 101 Ie1,NA
X(1)=0,
po 100 J=1,NS
100 XCI)EXCI)+F(Isd)
101 X(l)zDPt(X(l)+(F(I.NC)-F(I,1))*.5)
102 CONTINUE
1FC(IE.LT,0)G0 TN 104
DO 103 1=1,NA
103 I1D(1)=0
104 CONTINUE
¢ CHECK ALL CDPF'S ARE PROPER .
DO 105 I=1,NA
1FCIDCI) ,EQ.1)60 TO 105
p0 105 J=1,NS
1FCFCI,J41) ,GE, F(I,J))GN TO 105
COFE=DP#(J=1)
WRITE(Z,550)1,INCI),CDFE
550 FORMAT(1X,'PROSPECT*,I3," CALLED ', 14,' nEFECTIVE AROUT THE ',F5.3
*," FRACTILE',/ )
10(1) =1
105 CONTINUE
c MAKE ALL POSSIBLE COMPARISONS OF FSD(CDFIFUNCTINNS
pO 160 1C=1,NA1 .
IMeIC+1
DO 160 JCsIM,NA
IK=IC
JKsJC
c 1D INDEXES (=1 IF) PROSPECT I IS nOMINATED
IFCIDCIK) . EQ.1.0R,. INCIK) FQ. 1260 TO 160
1T=0
DO 110 L=1,nC
TFCFCIK, L) =F(IK,L))1146,110,115
110 CONTINUE
¢ IDENTIFY POTENTIALLY DUMINANT DISTRIRUTION AS 1K
116 CALL CSUBCIK,JK,IT)
115 L=L+
TFCXCIK) LT, X(JK)) GO Tn 155
PO 140 Ke=L,NC
1FC FCIK,K). LT.FQJK,KIIGD TO 155
140 CONTINUE
1DCJK) =
155 IFC(IT,EQ,0) 60.TO 16U
CALL CSUBCIX,JK,IT)
160 CONTINUE
CALL SEL(Y,NA/ID/NA,IN,JF)
JTIsJF )
IF(JF.LY, 2)GO TN 390
¢ THROW OUT DOMINATED ACTS
D0 200 1=1,)F
K=1D(I)
XC1)y=x(K)
po 200 J=1,nNC
200 F(I,Jd)= F(K,J)
C START S$SD REVIEW
00 205 1=1,JF
205 10(1)=0
c COMPUTE SSD FUNCTION AT SEGMENT ENPPOTNTS
DO 210 T=1,JF
s(1,1)=0,
DO 21V J=2, NC
A=)
210 S(1,4)= S(1,J=1)+ DP*(F(1,J)=F(I,Jd=1))%ca=1,5)
JFi=JF-1
c START PAIRWISE COMPARISONS
DO 260 1C=1,JF1
{MeIC+1
DO 260 JC=IM,JF
[k=1C
JKkaJC
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c

213
raK
215

220

225

230

235
240

245
230

251

252
253

SKIP DOMINATED ACTS ALREADY IDFNTIFFD
1IFCIDCIK) . FO,1,.0R, ID(JK) EQ, 1)60 TO 260
1Ta0
DO 215 L=1,NC
TFCFCIK, L) =F(JK,L))214,213,215
CUNTINUF
CALL CSUBCIK,JK,IT)

1222

IFOXCIK) LT X(JK)) GO Tn 255

DO 240 K=2,NC

D0 220 IX=17,NC .
TFCFQIK, IX) ,GT,FCIK,K))60 TO 225
CONTINUE

12=NC

60 TO 230

12s 1X-1
As12
RIz FCOIK,K)=FC(JK,12)

SCFES(JK,12)

TFCFQIK, 1X) EO F(JK,I12))IG60 TO 235

AND AVOID POSSIBLE 2ERND DIVISION
SCFES(IK,I17) 4, 54RI*#2%DP/ (F(JK, IX)=F(JK,12))+

ZRI«DP*(A=1,)

60 TO 235
RIZF(IK,K)=F(JK,12) _

LINEAR FXTRAPOLATION OF Jk SCOLLOPS FOR UPPER IK S FUNCTION
SCFaS(JK,12)+R]1

IF(S(IK,X) 6T, SCF)GO Tn 255§
CONTINUE

1F(I2,67,NC=1)G60 TO 250
1Z=]17+1

LINEAR EXTRAPOLATION OF IK FUNCTION FOR UPPFR Jx S FUNCTION
DO 245 IXx=172,NC
SCFeS{IK,NC) + F(JK,IX)=F(I1K,NC)
IF(SCF.GT,.SCJK,I1X))GO Tn 255
CONTINUE
CONTINUE
CHECK POSSTALE INTERSECTION AT OTHER THAN IK JOIN POINTS
MERGE
NC1sNC+1
NC2sNCw2
b0 251 I=1,NC"
JENC+I
2¢(1,J)=F(JK, 1)
2€2,J)=0,
U, DmECIK, 1)
2(2,1)=1,
CALL JASO02(NC2,7)
1H=0
JH=(Q
DO 252 M=1,NC2
TF(Z(2/M),EQ, 0, )IHEJH+
TF(Z(2/M) (EQ, 1. )IHSTH*
IFCIN.EQ,1)G0 To 253
CONTINUE
NC21=NC2-1
AlT=0
AJT=(
JECFCIK, TH#1) NE,FCIK s TH))ATTE,5#DP/ (FCIKsIH41)=FCIK,IH))
TFCFCQIK, JH$ 1) UNE FCIKIJH)IAITS,5DP/ (F(IK JH+1)=F(JK,JN))
AAARAJT=ATIT
1FC(AAA.EQ,0,.)G0 TO 2534
SOLN IS NON-QUADRATIC AND INTERSECTN WOU(D HAVE REEN PICKED UP PREV
BBB=2, ¥ (AITWF(IK,IH)=AJT#F(JK,JH)) + DPw(JH=TH)
CCCoDP*(IH=1)*F(IK,IH)=DP*(JH=T1)*F (JK, JH)I+S(JK/JH)=S(IK,TIH)
CCCumCCCH+AITHF (UK, JH)** 2 AITHF(IK, TH)w#2
RAD=BBBw#BBB=~4,.wAAA*CCC
IF(RAD.LT,0.)60 TO 2534
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c NO REAL SOLUTION SO MNVE ON TO NEXT SFGMENT
RAD=SQRT (RAD)
SOLY1=(=BBB+RAD) /2./AAA
S0L2=(~BBB=RAD)/2./AAR
IFCZCY,Me1) EQ,2(1,M))G0 TO 2534
c ONLY LOOK FOR INTERSECTIONS WITHIN RANGE
TFCSOLY_ LT, Z7C1,Me1) AND SOLY, 6T, ZC1, M), NR,.SOLZ.1T.2(1/Me1),
1AND,SOL2.6T7.2C¢1,M) GO TO 2555
c C BECAUSE CURVES INTERSECT, SO ND SSD
2534 CONTINUE
IF(M,EQ,NC21)GO TO 25¢4 .
MM+
1F(2(2:M) ,EQ, 0, )JHBJH*Y
1F(Z(2+/M),EQ,1,)IHR]IH*
IF(IH, EQ,NC.OR,JH,EQ NCYGO TO 254
GO TO 253
254 1DCJK)®q
GO TO 255
2555 CONTINUE
255 IFCIT.EQ,0)GO0 T0260
CALL CSURCIK,JK,IT)
260 CONTINUE
CALL SEL(2,JF+ID,NA,IN,JS)
JTaJs§
1IF(JS.LT,2)G0 TO 3v0
DO 300 1=1,48
Keipcl)
X(1)=X(K)
DO 300 Js=s1,NC
FCl,J)=F(K,J)
300 SCI1,J)=mS(K,J)
DO 305 121,48
308 1D(1)=0
c COMPUTE TSH FUNCTION AT SEGMENT ENDPOINTS
pO 310 1=1,JS
T(1,1)=0,
DO 310 J=2,NC
A=)
DIZF(I, J)=F(1,J=1)
310 TCI,J)2TC1,J=1)¢ ,5#nP*DIwDIw(A=2, 44 /3. )4DIws(],y=1)
JS1%JS=-9
pO 360 1C=1,JS51
IMsIC+1
DO 360 JC=IM,d$S
IKsIC
JK=sJC .
1FCIDCIK) ,EQ,1.0R. IDCJIK) FQ 1)GO TO 340
1T=0
DO 313 L=1,NC
IFCFCIK,L)=F(JK,L))344,343,345
313 CONTINUE
314 CALL CSUBCIK,JK,IT)
315 12Z=2
TFCXCIK) LT XCJK)) GO Tn 355
c SUBSIDIARY CHECK ON UPPER SSD FUNCTIOM FOR TSD
316 IFC(F(IK,NC) LT, FC(JK,NC))GOD TO 317
c EXTRAPOLATE JK
RIZSF(IK,NC)~F(JK,NC)
SCFeS(JK,NC)+RI .
IF(SCIK,NC).GT,SCF)YGO To 355
60 TO 318
c EXTRAPOLATE IK
317 SCFuSCIK,NCY+F(JK/NCI=F(IK,NC)
1IF(SCF.GT,.S(JK,NC))GO TO 355
318 CONTINUE
DO 340 k=2,NC
po0 320 ix=1z,NC
TFCFCIK,IX) 6T, F(IK,K))IGO TO 325
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320 CONTINUE
1Z=NC
GO TO 330
325 1Z=sIx-1
AZ12
RISF(IK,K)=F(JK,12)
TCFaT(JK,12)
24.5%RI*#2%Dpu(A=1,)+RI*S(IK,12)
IFCF(IK,IX) ,EQ,F(JK,IZ))G0 TO 335

¢ AND AVOID POSSIBLE ZERN DIVISION
TCF=s TC¥F +1./76.% RI®#34Dp/(FCIK,TX)=F(JIK,12))
GO TO 335

330 RI=a FCIK,K)=FCJK,12)
TCF= T(JK,12)+ _S*RI**2 + S(JK,]12)*RY
335 IFC(T(IK,K),.6T. TCFYGO To 355
340 CONTINUE
1F(12.6T, NC=1)GN TO 350
1Zm12#1
DO 345 IX=12z,NC
RI® F(IXK,IX)=FCIK/NC)
TCFs T(IKsNC) + ,S5*RI**2+ S(IK,NC)wR!
1F(TCF.GT, T(JK,IX))GO TO 355
345 CONTINVE
350 CONTINUE
IDCJK) =14
355 IFCIT.EQ,.0)GO Tn 360
CALL CSUBCIK,JK,IT)
360 CONTINUE
CALL SEL(3,4S:1ID,NA,IN,JT)

390 RETURN
END
SUBROUTINE SEL(IB,NR,ID,NA,IN,JF)
c REPORTS NUMERICAL TAGS NF STOCHASTICALLY EFFICIENT SETS
DIMENSION IN(40),INCLD)
JF=0

DO 170 I=1,NB

IFCIDCI) EQ.1) GO TO 170
JFuJF+1
1D(JF)=]
INCJFISINCD)

170 CONTINUE
1F(JF.EQ,0)RETURN
WRITE(Z,420)JF,1B
K=1
IF(JF.LE.5)G0 TO0 180

c ASSUME ASCENDING NUMERICAL LARELS

INDEINC2)=IN(Y)
PO 160 I1=3,4F
ITRINCE)«INCI=Y)
IFCIT LY, IND)INDSIT

160 CONTINUE
INSEIN(1)
DO 175 1=2,JF
Ks]=1
TFCCINCI)=INCK))  NE,_IND)GU TO 177

175 CONTINUE
130
K=JF

177 CONTINUE ,
1F(K.,EQR,1)Gn TO 180
WRITE(2,430) INS,IND,IN(K)
1FC(I,EQ.0)RFTURN

180 WRITE(2,410) (IN(J),JEK,JF)

410 FORMAT(3(1X,14,2315,/))

420 FORMAT(20X,13," EFFICIENT PROSPFCTYS NF NEGRFF',I3)

430 FORMAT(BX,23HINITIAL EFFICIENT PANGE,2X,15,1HC 12:1H) /14
RETURN
END

317
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SUBROUTINE CSUBC(IK,JK.IT)
c CHANGE SUBSCRIPTS FNOR RFVERSE COMPARISON
1TetK
1K= JK
JK=1T
1T=1
RETURN
END )
SUBROUTINE JASO2(N,X)
[ SORTS ON ROW 1 AND CARRIES ROW 2

DIMENSION X(2/N)
NimN=1
PO 20 I=1,N1
NIzN=]
PO 20 J=1,N1
TF(X(Y1/0)=X(1,J41))20,20,10

10 T=X(1.0)
$EX(2:J)
XC1,3)=X(1,J+1)
X(2,J)%X(2,0+1)
XC1,0¢1)=7
X(2,J0+1)=8§

20 CONTINUF
RETURN
END

PROBLEMS

9.1. Consider the following pair of prospects:

P(x;) X P(x;) X;
0.2 2 0.6 3
0.3 3 0.4 6
0.5 5 -

Are they both efficient in all senses of stochastic efficiency?

9.2. Three alternative rice production technologies have returns that are approxi-
mately normally distributed with parameters:

Standard

Technology Mean Deviation
A 1200 400
B 1000 300
T 500 100

Which technologies are SSE?

9.3. Two similar technological possibilities are open to maize growers in a region.
The distributions of yield (t/ha) are described by two sets of subjective

fractiles:

Fractile 0 0.25 0.5 0.75 1.0
Technology A4 0.75 1.25 1.5 2.0 3.5
Technology B 1.00 2.00 3.1 4.5 6.0
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Suppose the net value of grain is $100/t and the variable costs associated with
these technologies are $50/ha for 4 and $100/ha for B. Sketch the various
cumnulative functions required to review stochastic efficiency and declare if
any technology is uniquely efficient. (Hint: use linear-segmented CDFs.)

9.4. Examine the (E, V)-efficient frontiers generated by quadratic programming
and presented in Figures 7.4 and 9.9. If we now assume (an unspecified) risk-

averse quadratic utility function, can the efficient frontiers be further nar-
rowed?

9.5. “‘Stochastic efficiency analysis may rest on acceptable general assumptions,
but results are typically too vague to be useful.” Comment.

9.6. Prove to your own satisfaction that the SSD ordering rule is valid. [Consult-
ing Hadar and Russell (1969), for example, would assist considerably.]

9.7. Consider the following three distributions:

Family Mean Variance
Normal 10 10
Log-normal - 10 10
Poisson 10 10

What can be said of stochastic efficiency for a risk averter faced with these
alternatives?

9.8. Net returns x from using input », 0 £ v < 5.5, are normally distributed with
parameters

E(x) = 100 + 100 — 22
V(x) = 1000 + 100y — 20,°

What is the SSE range of »?

9.9. Rework Problem 2.9d (1) incorporating only the additional assumption of
aversion to risk.

9.10. In Problem 4.3 what fertilizer actions are TSE?

9.11. Suppose in Problem 5.4 that Midas accepts the free demonstration on three
trees and finds one is damaged. Does Midas have an SSE act open to it?

9.12. Reconsider Problem 5.10f. Is there a unique stochastically efficient recom-
mendation? Do stochastic efficiency concepts appear to have much applica-
bility in an extension context?
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