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Risk in the Farm Model

5.1 INTRODUCTION

Agricultural production is typically a risky business. Farmers face a variety of
N price, yield, and resource risks which make their incomes unstable from year
to year. In many cases, farmers are also confronted by the risk of catastrophe.
Crops and livestock may be destroyed by natural hazards such as hurricanes,
floods, fire, or drought.

The types and severity of the risks confronting farmers vary with the
farming system, and with the climatological, policy, and institutional setting.
Nevertheless, agricultural risks seem to be prevalent throughout most of the
world, and they are particularly burdensome to small-scale farmers in develop-
ing countries.

Numerous empirical studies have demonstrated that farmers typicaily
! behave in risk-averse ways (e.g., Binswanger 1980 and Dillon and Scandizzo
: 1978). As such, farmers often prefer farm plans that provide a satisfactory
level of security even if this means sacrificing income on average. More secure
plans may involve producing less of risky enterprises, diversifying into a
greater number of enterprises to spread risks, using established technologies
rather than venturing into new technologies and, in the case of small-scale
farmers, growing larger shares of family food requirements.
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Ignoring risk-averse behavior in farm planning models often leads to
results that are unacceptable to the farmer, or that bear little relation to the
decisions he actually makes. To resolve this problem, several techniques for
incorporating risk-averse behavior in mathematical programming models have
peen developed in recent years. We shall review a number of these develop-
ments in this chapter, but will focus particularly on those methods that have
proved useful at both the farm level and the aggregative sector model level.

52 PRINCIPLES OF DECISION MAKING UNDER RISK

In a risky world a farm plan no longer has a known income each year. Rather,
there are many possible income outcomes and, in the mathematical program-
ming context, the actual outcome each year depends on the realized values of
all the ¢;, a,;, and b; coefficients in the model.

Conceptually we can think of each farm plan (to be denoted by the vector
X,) as having a probability distribution of income f(T,). If the number of
possible outcomes of 7, is finite then we can arrange the decision problem in

! U N .
the form of a payoff matrix as shown in Table 5.1. :

A state of nature consists of a particular set of outcomes of all the ¢;, a,;,
and b, coefficients in the model, and these values determine 2 level of income
for each alternative farm plan. In farm planning a state of nature typically
corresponds to a particular type of year, .g., a wet or dry year, or a high-price
or low-price year. o o

Not all states of nature need be equally likely, and each may be assigned a
probability p,. Knight (1921) distinguished between risk and uncertainty on
the basis of the state of knowledge about such probabilities. According to his
definition if the probabilities are known, the decision problem is one of risk. In
contrast, if the probabilities are unknown, the problem is one of uncertainty.
This distinction is not particularly useful in farm planning since data for
estimating incomeé distributions are usually restricted to relatively small time-
series samples, or to subjective anticipations held by the farmer. In either case
one can only form estimates of the possible income outcomes and their
associated probabilities. We use the word risk in this book to describe this

more general state of ambiguity.

Table 5.1 An lllusirative Payoft Matrix

‘State of nature

Alternative. _

farm plans s S ... Sy
XX Yy Ya ... Yy
X Y1 Y22 o Yor

X, G Yo o Yy
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The decision problem for the farmer is to rank farm plans on the basis of
their income distributions, and to select the one that best meets his goals. But
given that an income distribution is a multivalued outcome, (Y, Y,7) on
‘what basis can they be ranked? -Many alternative decision mles and theories
have been developed in the literature to- provide ways of ranking- income
distributions. ‘These alternative methods typically use some:measure of the
variability, or spread, of the income distribution to provide a measure of risk,
but some are more quantifiable than others. We shall restrict our coverage to
the more quantifiable decision rules that have proved practical and useful in
mathematical programming models.

The most established decision theory in economics is the expected
utility theory (or the Bernoulli principle). Developed by von Neuman and
Morgenstérn (1944) this theory asserts a set of (reasonable) axioms about how
an individual ought to order risky prospects, and then deduces the existence of
an ordinal utility function U(Y') which associates a single real number to any
value of income Y. Furthermore, given any two farm plans X, and X;, the
theory predicts X, will be preferred to X; only if ElUY)] > E [U( Y;)], where
E denotes the expected value. That is, X1 1s preferred to )(2 if the expected, or
avelrage, value of utility over all possxble income outcomes is Jarger for X, than
X,.

- Compliance with the behavioral axioms of this theory does not restrict an
individual’s utility function U(Y) to any particular functional form. Rather, a
functional form can be chosen that best describes an individual’s behavior.
Because the theory predicts that risky prospects will be ranked by their
expected utility, the choice of a functional form also determines the risk
preferences of the individual. Suppose, for example, that a farmer’s utility
function is best described by the quadratic function

U(Y)=or +gY: 4(51)

where a and B8 are constants. The relevant decision rule for ranking nsky farm
plans for the farmer is then

E[U(Y)] = aE[Y] + BE[YZ] .
| — aE[Y] + (BE(Y?] - BE[Y] ) + BE[Y) A
= aE[Y]} + BV[Y] + BE[Y]® A (5.2)

where V[Y] denotes the variance of Y. By this rule the farmer should rank
farm plans solely in terms of their expected (mean) income E[Y] and their
variance of income V[Y]. If a« > 0 and B8 < O, then the farmer will prefer
plans having higher expected income and lower variances of income. Or, put
another way, for a given level of mean income, the farmer will prefer the farm
plan that has the lowest variance of income.

Quadratic utility functions are one of many possible functional forms,
each of which leads 1o its own decision rule for ranking risky farm plans. The
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problem facing the analyst is to choose the functional form that best describes
a farmer’s behavior. One of the exciting features of the expected utility theory
is that methods of measuring an individual’s utility function can be con-
structed from its axioms. Measurement requires playing a series of carefully
designed gambling games with a farmer, the outcomes of which provide a
series of observations along his utility function U(Y). Regression analysis can
then be used to provide the best fitting functional form as well as a set of
estimates for its parameters. Several successful attempts to elicit individual
utility functions have been reported in the literature (see Anderson, Dillon,
and Hardaker, 1977, for a review). In many of these cases, quadratic utility
functions appear to fit the data as well as most other functions (e.g., Officer
and Halter, 1968). = '

Such elicitation of uuhty funcnons is not always practical, and many
analysls S1mply assume a_functional form that is computationally convenient.
Then, in the absence of knowledge about the values of the function’s parame-
ters, a farm model may. be solved for alternative parameter values, and the set
of farm plans obtained oﬂ'ercd to the farmer so that he can make the final
choice. Another approach is'to derive a set of plans correspondmg to some
past year and to select the parameter values that provide the closest match
between the model’s prediction and the farmer’s actual farm plan.

Not all the’ ‘decision rules proposed in the literature for risk analysis are
consistent with the behavioral axioms of the expected utility théory. Some
rules have been proposed because of their intuitive appeal, or because they
have particularly aitractive computational or data requirements that are
valuable in applied modeling work Such decision rules include the safety-ﬁrst
rules and game theory models. .

Our discussion has focused on income risk. In pnnmple, all risks involv-
ing ¢;, a;;, or b; coefficients translate into income risk; and the use of a single
‘utlhty funcuon U( Y) provides an integrated behavioral approach for selecting
optimal farm plans. However, many modeling approaches treat risk in the
objective function (the c coefficients) separately from risk in the constraint set
(the a,; and b, coeﬂicwms) We shall largely follow this convention here,
though where apphcable we show how the two types of risk can be integrated
into a single measure of income risk.

5.3 MEAN-VARIANCE (E, V) ANALYSIS

The expected- income-variance criterion assumes that a farmer’s preferences
among alternative farm plans are based on expected income E[Y] and -
associated income variance V[Y). By oonventlon, this is referred to as the E,V
decision rule.

‘As we have seen, an E,V decision rule results from expected utillty
theory if a farmer has a quadratic utility function for income U(Y). Unfor-
tunately, a quadratic uuhty function is characterized by increasing absolute
risk aversion, as well as having a maximum value beyond which the marginal
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utility of income actually declines. It has therefore been rejected as untenable
by many theorists (e.g., Pratt, 1964). Despite this, the quadratic vtility function
can still provide an excellent second-order approximation to more desirable
functions (Levy and Markowitz, 1979). '

An alternative derivation of the E, V decision rule follows if the utlluy
function is of the exponental form U(Y)=1— ¢~ #” and income Y is
normally distributed (Freund 1956). In this case

E[U(V)] = EL¥] - 1/28V]Y] 53)

where B is a risk-aversion parameter. It might be expected that since farm
income is often an aggregate of many independent sources of revenue and cost
risks, then by the central limit theorem, it should be approximately normally
distributed. And in many cases it is not p0551ble to reject this hypothesis given
the length of time series data available on farm incomes.

The computational advantages of the E, V model must be offset against
its theoretical limitations. It can be solved by quadratic programming or by -
linear programming approximating techniques. Utility functlons with .pre-
ferred theoretical properties often have expected values that are difficult to
evaluate numerically, and higher order polynomials that might be used to
approximate more desirable functions can lead to nonconvex programmmg
problems.

Given an E, V expected utility function, then for a risk averse farmer the
iso-utility curves will be convex when plotted in E, ¥ space (Figure 5.1). That
is, along every iso-utility curve the farmer would prefer a plan with higher ¥
only if E were also greater (i.c, dE/V > 0), and this compensation must -
mcrease at an increasing rate with increases in ¥ (i.e., dE2/ avi> 0).
~ The farmer should then rationally restrict his chonce to those farm plans
for which the associated income variances are minimum for given expected
income levels. The problem facing the farm analyst is to develop the set of
feasible farm plans having the property that variance ¥ is minimum for
associated expected income level E. Such plans are called efficient E, ¥ pairs

£ . Iso-'ullllt,y curves
"I ] i
/ ro
fo) Efficient E-V
Increasing ;1 ;
utility 5 A Boundary
//, / 1’ .
,’Opltmai /7 /
Farm Plan z P,
/, /
- _Z : Set of all
slada feasible farm plans
\\\\\\

0 v Figure 5.1 The optimal £, V {farm plan
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and they define an efficient boundary over the set of all feasible farm plans
(segment OQ in Figure 5.1).

Given a set of efficient farm plans the acceptability of any partlcular plan
to an individual farmer will depend on his preferences among various expected
income and associated variance levels as described by his E, V' utility func-
tion. When this function can be measured, a unique farm plan can be
rigorously identified which offers the farmer highest utility. This is the efficient
farm plan P in Figure 5.1. :

When the parameters of the expected utility function are not known, then
the best alternative seems to lie in obtaining the set of efficient farm plans and
allowing the farmer to make the final choice. This approach is also more
flexible in avoiding too rigid a specification of the utility function and perhaps
compensates to some extent for situations where income variance is not the
best measure of uncertainty. Further, if other socioeconomic factors enter the
utility function in addition to E and V, the farmer is free to choose the plan he
most prefers in relation to a ml.l]llpllClty of goals.

5.4 QUADRATlC PROGRAMMING

The efficient E, V set of farm plans can be derived with the aid of quadratlc
programming. Consider a short-run planmng problem in which only the ¢
coefficients are stochastic. In this case farm overhead costs are constant and
the income distribution of a farm plan is totally specified by the total gross
margin distribution.

Let X; denote the level of the _]lh farm activity, and let o, dcnote the
covariance of gross margins between the. jth and kth activities ( .« will be the
variance when j = k). Then the variance of- total gross margin (and hencc
farm income) is2 :

V=Y LX X9 (5.4)
j ok

Equation (5.4) shows that the variance of total gross margin is an
aggregate of the variability of individual enterprise returns, and of the.covari-
ance relationships between them. Covariances are fundamental for efficient
diversification among farm enterprises as a means of hedging against risk
(Markowitz 1959, Heady 1952). Combinations of activities that have nega-
tively covariate gross margins will usually have a more stable aggregate return
than the return from more specialized strategies. Also, a crop that is risky in
terms of its own variance of returns may still prove attractive if its returns are
negatively covariate with other enterpnises in the farm plan.

To obtain the efficient E, V set it is required to minimize ¥ for each
possible level of expected income E, while retaining feasibility with respect to
the available resource constraints. The relevant programming model to achieve
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this is as follows:

J

min ¥’ = ZExxkg,‘ . O (58)
R : - i
such that - , .
LEX = S (5.6)
J : T
Ya,;X,<b, ali (5
J : o
“and o
X >0, allj O (58)

where ¢, denotes the expected gross margin of the jth activity, and A is a
scalar. Smce (5.5) is quadratic in the Xs the model must be solved by a
quadratic programrmng algorithm.,
The sum X¢, X, is expected total gross margin- £, and which is set equal to
a parameter A. By varying A over its feasible range through parametric
procedures (see Sections 2.8 and 6.4), a sequence of solutions is obtained of
increasing total gross margin and variance until the maximum poss1ble total
gross margin under the resource constramts has been attained. This maxlmum
‘value corresponds to the standard linear programming problem of maximizing
expected total gross margin subject to constraints (5.6) to (5.8). Solutions are
~obtainied for critical tummg points in the solution basis such that for the
current total gross margin E, determined by A, the variance V is minimum.
These basic solutions are suﬁicxent to defirie the entire efficient E, ¥ boundary
since efficient plans ‘for intermediate levels of E can always be derived by
linear interpolation on the adjacent turning point solutions.
To illustrate, consider the farm linear programming problem in Table 5.2.
'Expected total gross margin is to be maximized subject to land and labor
constraints and to a rotation constraint which requires that the area planted to
X, and X, cannot exceed the area planted to X; and X;. The optimal solution

Table 5.2 An INlustrative Farm Model for Risk Programming

_ Crop activities (ha)
Row X, X, X X, RHS -
Expected gross
margin {pesos) 253 ° 443 284 516 Maximize
Land (ha) 1 1 1 1 < 200
Labor (hours) 25 36 27 87 < 10,000

Rotational require-
ment (ha) -1 1 -1 1 50
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Table 5.3 Activity Gross Margins and Their Variances
and Covariances

Crop activities
. 4 X, X, X
Gross margins (pesos / ha)
Year 1 - 292 -128 420 579
Year 2 179 560 187 639
Year 3 114 648 366 379
Year 4 247 544 249 924
Year 5 426 182 322 5
Year 6 259 850 159 569
Average 253 443 284 516
Covarlances (pesos) .
X, 11,264 - 20,548 1,424 —15,627
X; ~ 20,548 125,145 - 27,305 29,297
X3 1,424 ~27,305 10,585 -10.964
Xq -15,627 29,297 -10,984 93,652

to this problem calls for 27.45 hectares of X,, 100 hectares of X;, 72.55
hectares of X, and provides an expected total gross margin of 77,996 pesos.

- The farmer considers that this plan is too risky because X, and X,, while
very profitable on average, have highly variable gross margins. Gross margins
for each crop are available for the past 6 years (Table 5.3), and these have

‘been used to calculate the gross margin variances and covariances in the

bottom part of the table. The variances for X, and X, are 125,145 pesos, and
93,652 pesos, respectively, and these are clearly much [arger than the variances
of X; and X; (11,264 pesos and 10,585 pesos, respectively).?

Using a quadratic programming algorithm, the set of efficient E, ¥ farm
plans was obtained (Table 5.4). There are four basic solutions in all, and the
last one is the linear programming solution. Low levels of E correspond to
lower levels of risk, and X, (a low-variance crop) figures prominently in Plan I.

Table 5.4 The Efficlent E, V Farm Plans for the Example Problem

Baslic solution

Farm plan 1 : i i ' v
E (pesos) 62,609 77,142 77,354 77,996
V (million pesos) 214 436.1 448.7 5005
X, (ha) 68.67 , 4.32 — _
X; (ha) 2826 37.21 36.14 27.45
X5 (ha) 88.23 - 95.68 100.00 100.00
X4 (ha) 14.85 62.77 63.85 72.55
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Figure 5.2 The efficient £, V frontier for the example problem.

In contrast, X, (a high-variance crop) is only present in Plan I at substantially
reduced amounts. Interestingly, the areas of X, and X; do not change much in
the solutions, even though these are the highest and the lowest variance crops,
respectively. This result illustrates the important role that covariances play in
determining efficient E,V solutions. The gross -margins of X, and X, are
negatively covariate (the covariance is —27,305 pesos), and when grown
together their aggregate gross margin is consnderably stabilized.

Figure 5.2 portrays the efficient E, V frontier for the farm problem. As is
often the case in practice, the frontier is initially steep showmg that E can be
increased without much increase in V. But as reasonable levels of income are
attained, the frontier quickly becomes fiat. Additional E is then costly to
obtain in terms of increased ¥, and only farmers who are less concerned about
risk will choose points on the frontier near the linear programming solution.

5.5 LINEAR PROGRAMMING APPROXIMATIONS

The E, V model has proved popular in farm planning analysis, but the need to
use a quadratic programming algorithm is often troublesome. Available com-
puter codes with the necessary parametric option typically can only handle
problems of limited dimensions, and som¢ of these suffer severely from
computer rounding errors if the number of basis changes is large.! To
overcome this problem, several methods have been proposed for obtaining
approximate solutions to the E, V problem through linear programming.

5.5.1 Separable Linear Programming

Thomas et al. (1972) proposed using separable linear progfamming. Equation
(5.4) can be disaggregated into its variance and covaria_ncc terms as follows:

V= sz 2+ Z ZXXkojk
kwj j
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where o; 2 denotes the variance of returns from the jth activity. Each of the X7
terms can be linearized using the separable linear programming procedures
described in Section 4.7.

A problem remains in linearizing the cross-products X;X,, and Thomas
et al. seek to solve this through the following trick. Define new variables Z,,
and Z;,, such that Z,,‘1 0.5 (X, + X,)and Z, = 0.5 (X, — X,). It follows

that XX =Z — Z}“, and hence

V= ZXZ F+ E Z(zjzu Zj2/<2)°jk (5-9)

: k+J ¥

Thomas et al. then suggest linearizing the Z? terms using the same separable
linear programming procedures as used for the X? terms.

The approach suffers from the large number of linearizing activities that
need to be added to the model. More importantly though, the objective.
function ¥V (which is to be minimized) is no longer convex in all its variables.
Since variances are always positive. then the term X, Xo ’a? is-always convex.
However, the remaining terms in (5.9) cannot all bc convex because the Z J,d
and Z3 k2 variables are of opposite signs. This means that the problem can
only be solved by mixed integer linear programming algorithms.

5.5.2 The Marginal Risk Constralned Linear
Programmlng Model

Chen and Baker (1974) developed Marginal Risk Constrained Linear Pro-
grammmg (MRCLP) as another computanona] alternative to. quadratlc pro-
gramming. The motivation behind their method derives from the observation
that an optimal solution to the quadratic programming problem (5.5) t.hrough
(5.8) must satisfy the condition

aE[.U(Y_)] ‘
a2y ax, =0

for all X; > 0. That is, no activity will be activated beyond the level at wmch
its. margmal expected utility has declined to zero.

Taking equation (5.3) as the relevant expected utility function, and
substituting (5.5) for V[Y] and (5.6) for E[Y], then

JE{U(Y)]
“ox, T ALXen

7

The MRCLP model is specified as:

max Z = )¢, X,

7
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such that
¢, = BL Yoo 20, all jfor which X, # 0
and

ZaUX < b, all i
X;>0, allj

The model is simply the standard linear programming problem (which maxi-
mizes expected income) to which has been added a set of marginal risk
constraints. Unfortunately, the marginal risk constraints entail an “if” condi-
tion; they are only to be imposed for those activities that enter the basis. The
problem cannot be solved as a single linear programming problem, and Chen
and Baker developed a multistage approach that involves solving a sequence of
linear programming problems. However, when completed, they claim the
results are numerically very close to those obtained by quadratic program-
ming.

5.53 The MOTAD Modet

Another linear programming alternative for E, ¥ analysis that has been widely
used in practice was developed by Hazell (1971). This approach is most
relevant when the variance of farm income is estimated using time series (or
cross-sectional) sample data.’ In this case the measure of income variance
used in quadratic programming is only a statistical estimate of the true
variance. As such, there is no reason why alternative estimates of the variance
should not be used, and particularly those that can be calculated from linear .
estimators. Hazell proposed using variance estimates based on the sample
Mean Absolute Deviation (MAD).
If sample data and classical procedures for estimating variances and
covariances from samples are used, the estimated income variance in the
quadratic programming model (equation 5.4) becomes®

V= Z ZXXk[(l/T - 1) Z ( “‘Ej)(ck: - Ek)]- (5.10)

t=1

Here t = 1 to T denote T sample observations, and c;, is the gross margin of
the jth activity in the rth year with sample mean gross margin ¢,.

Taking the summation over ¢ to the left and factoring, the estimated
variance becomes

V=Q/T- 1)2[):c,,x,._ ZE’Xf'r
=(1/T-1)XL[y,-¥) (5.11)
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That is, the variance of farm income for a given farm plan can be estimated as
an aggregation of the sample variances and covariances of the individual
activities (5.10), or it can more simply be obtained by calculating the farm
income Y, corresponding to each sample observation on the activity gross
margins and estimating the variance of the single random variable Y (5.11).

This transformation allows the MAD estimator of the variance of Y to be
used. The MAD estimator is

2

V= F{(I/T);mcj,xj - 2Ej)(j|}
- F{(l/T));Ix - ?|}2 (5.12)

where the expression in the curly brackets is the sample MAD, and F is a
constant that relates the sample MAD to the population variance.” Specifi-
cally, F = Tw/2(T — 1), where = is the mathematical constant.

The attraction of the MAD estimator is that if we substitute (5.12) for
(5.5) in the guadratic programming model, then a linear programming model
can be derived. Let the deviation of farm income from its mean in year t be
denoted by Z;* if it is positive, and by Z," if it is negative. Then

ZF - Z7 =YX, - 1.5 X;, ally {(5.13)

J J -
Note that Z;" and Z; are both nonnegative in this formulation, so they
measure the absolute size of the deviation in income from its mean. Further,
only one of them can be greater than zero each year; the deviation cannot be

positive and negative at the same time.®
Now, A

2(ZF+27)

measures the sum of the absolute values of the income deviations for a farm
plan, so the MAD estimator of the variance becomes

I7=\F{(1/T)¥(Z,+ + z,')}z.

Since F/T? is a constant for a given farm problem, we can divide V
through by F/T? to obtain

W= (TY/F)V = {g(z: +'z;)}2'
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It is also permissible to take the square root of W, since the ranking of farm
plans by W72 is the same as the ranking by W. We then have the following
lmear programmmg alternatwe to the quadratic problem (5.5) through (5.8).

mmWV2 E(Z+ +Z7) (5.14)..
such that
Y (cp—E)X,—ZF +27 =0, alis (5.15)
J
and
Lg% =\ (5.16)
_);Ja,. X <b, ali (5.17)
X, é;‘ [Z7 20, allj (5.18)

Since the objective function in the model is the Minimization Of the Total
Absolute Deviations, Hazell called it the MOTAD ‘model.

This model can be solved by parametric linear programming (see Section
6.4) to obtain the efficient E, V' set of farm plans. Once these pians have been
obtained the variancé of their income can be calculated using the MAD
estimator ¥V = (F/T})W. Alternatively, if the variances and covariances of the
activity gross margins are calculated, then the classical estimator in equation
(5:10) can be applied to the known activity levels. The latter is to be preferred
statistically since it has a smaller sampling variance (Hazell 1971, p. 58). It also
avoids any errors that may arise from usmg Fisher's constant F when the
income distributions are not normal.

A more compact version of the MOTAD model can be obtained. Note
that the sum of the negative income deviations below the mean, ¥,Z,, must
always be equal to the sum of the positive deviations above the mean E,Z,*. It
is therefore sufficient to minimize either of these two sums and to multiply the
result by 2.0 to obtain W'/2 This is easily done in the following MOTAD
model (where we have chosen to minimize the sum of the negative deviations).

min 0.5W1/2 = ZZ‘ (5.19)

such that

T, — &)X, +27 20, alr | (5.20)
j

and subject to (5.16) to (5.18).
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Table 5.5 A MOTAD Model for the Example Problem

-Crop activities (ha) Negative deviation counters (pesos)

Rows X, X, Xy X. 2Zy Z; Zi Zy Zy Z; RHS

Objective function

(pesos) 1 1 1 1 1 1 Minimize
Expected total gross .

margin (pesos) 253 443 284 516 =X
Land (ha) 1 1 1 1 < 200
Labor (hours) 25 36 27 87 . < 10,000
Rotational

requirement (ha) -1 1 —1 1 <0

Risk rows (pesos)

‘Year 1 33 —570 136 63 1 >0
Year 2 -74 117 -97 123 1 >0
Year 3 -138 205 82 —137 1 . >0
Year 4 -6 10t -35 408 1 20
Year5 173 —26% =38 —-510 1 >0

Year 6 6 408 -124 53 : 1 20

To- illustrate, Table 5.5 shows the lincar programming tableau for a
MOTAD formulation of the farm problem in Table 5.2. Note that the entries
for the crop activities in the risk rows—corresponding to equation (5.20)—are
activity gross margin deviations from their sample means. These deviations
must always sum to zero for each activity.- :

The results obtained by solving this problem through parametric linear
programming are given in Table 5.6. There are five basic solutions in all, and
the last one again corresponds to the standard linear programming problem of
maximizing expected income. The income variances reported in the table were
calculated using equation (5.10) after the optimal farm plans were obtained.

- The MOTAD model typically provides an efficient set of farm plans that
is very similar to the results obtained by quadratic programming. In Table 5.7
the quadratic programming and MOTAD model solutions for the example

Table 5.6 The MOTAD Model .R'o‘su'lte for the Example Problem

‘Basic Solution’
~ .Farm plan B "n n \Y v
£ (pesos) 62769 73574 77,329 77.529 77,996
V (million pesos) 221 12626 - 459.8 4749 500.5
X, (ha) 72.26 32.85 1815 16.59 —
X, (ha) . 2680 2803 2846 26.80 27.45
X3 (ha) 83.92 " 81.64 " 80.85 83.41 © 100.00

X4 (ha) ' - 17.02 57.48 7184 - - 73.20 72.55
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Table 5.7 A Comparison of Resuits Obtained with the Quadratic Program
and MOTAD Models for the Example Problem '

Farp plan Model” i I in v
E (pesos) 62,609 77,142 7735 . 77996
V (million pesos) Q 21.4 436.1 448.7 500.5
M 22.0 448.9 461.6 500.5
X, (ha) Q 68.67 432 — —
M 72.08 19.83 18.83 —
X, (ha) Q 28.26 37.21 36.14 27.45
M 26.73 28.44 28.25 27.45
X5 (ha) Q 88.23 95.68 100.00 100.00
M 83.M 80.89 81.17 100.00
X, (ha) Q 14.85 62.77 63.85 72.55
: M 16.97 70.84 71.78 72.55

*Q denotes the quadratic problem solutions which occurred at changes in basis, M denotes the
corrasponding MOTAD model solutions for the same ievels of £.

problem are compared. The results are shown for the values of E correspond-
ing to the basic solutions. of the quadratic programming results reported in
Table 5.4; the MOTAD farm plans were calculated by linear interpolation on
adjacent basic solutions shown in Table 5.4. There are some discrepancies
between the crop areas but these are not sufficient to have any marked effect
on the corresponding variances. In fact, the E, V pairs are almost identical for
the two models..

This similarity in results may seem surprising given that the sampie MAD
is a less efficient estimator of the population variance than the sample variance
(Fisher 1920, Hazell 1971). However, the selection of efficient E, V' farm plans
only requires that the MAD be efficient at ranking alternative plans. Even if
the estimate of V is incorrect for each farm plan, it is still possible to correctly
rank them to identify the plan with the smallest value of ¥ for each level of E.
In a Monte Carlo simulation study of the MAD’s ranking abilities, Thomson
and Hazell (1972) found that the sample MAD is almost as good as the sample
variance in ranking farm plans with normally distributed incomes, especially
when the sample sizes are small. They also found that the MAD may
sometimes outperform the sample variance when income distributions are
skewed.

5.6 MEAN-STANDARD DEVIATION (E,c) ANALYSIS

Closely related to the E, ¥V model is the mean-standard deviation (or E, o)
model. Since o is the square root of V, the efficient E, o set of farm plans is
identical to the efficient E, ¥ set. It can therefore be obtained by quadratic
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Figure 5.3 Relationship of efficient £, Vand E, L Sets.

programming, or by linear programming alternatives such as MOTAD. One
simply calculates the value of o after the efficient farm plans have been
obtained.

A useful decision rule rationalized by Baumol (1963) is the expected
gain-confidence limit (E, L) criterion, where L = E — ¢o and ¢ (taken to be
positive) is a risk-aversion parameter. Baumol argued that not all the plans in
an efficient E,V set are reasonable for a prudent individual. In particular,
plans with lower E and V are not always more secure than plans with higher £
and ¥V when the probability of a significant income shortfall is calculated.

- If income is normally distributed, then for a specific value of ¢, say ¢,,
L = E — ¢,6 identifies a particular fractile of the income distribution for each
farm plan. For example, if ¢ = 1.65, then L = E — 1.650 identifies the 5%
income fractile. A 5% income fractile is the value of income which, for a given
income distribution f(Y), will be exceeded 95% of the time. Baumol argues
that a prudent individual (with risk parameter ¢ ), should always select a farm
plan that has the maximum value of E for a given value of L = E — ¢,0. The
set of such farm plans comprises the efficient E, L set.

Figure 5.3 shows the relationship between the efficient E,V set and an
efficient E, L set of plans. For any given ¢, say ¢g, L = E — ¢o0 has a direct
one-to-one correspondence with the efficient E, V frontier. Points on L and
the efficient E, V frontier having the same value of ¢ also correspond to the
same farm plan. Thus points 4 and B correspond to the efficient E,V farm
plan having standard deviation o, and mean income E,.

Baumol’s efficient E, L criterion requires that decision makers choose
plans that have the largest value of E for given L. In Figure 5.3 this clearly
restricts choice to those plans lying to the right of W. To see this consider
plans C and A. Both have identical values of L, and hence are equally risky in
terms of the probability of the same low income L,. But plan A has a hlgher
expected income E, (ie, E, > E)). : : S
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A popular adaptation of the E, L criterion Is to assume that a farmer
simply maximizes L given his risk aversion parameter ¢. Thus in Figure 5.3, a
farmer having ¢ = ¢ will choose the plan associated with W. There are two
rationalizations for this decision criterion, -

If income is normally distributed, then for a specific value of ¢, say ¢y,
maximization of L = F ~ $o0 leads to selection of the farm plan having the
largest. value of the corresponding income - -fractile. Figure 5.4 shows two
income distributions, J(Y)) and f(Y,), corresponding to two farm plans X;
and X,; both distributions are assumed to be normal. The fractiles correspond-
ing to a = 0.05 are shown as L, and L,. In each case 5% of the area under the
probability distribution lies to the left of the indicated fractile (the shaded
areas). } - o S 4
If the two plans are ranked on the basis of the L = E — 1.65a criterion,
then X, will be chosen because L, > L,. This is equivalent to choosing the

E Increasing utility/ Iso-utility lines

+«———Efficient E, o frontier .

[

Feasible farm
plans

Figure 5.5 The efficient £, tarm plan.
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plan that has the largest income Y, such that Pr{Y, < Y;} = 0.05. This
formulation of the problem has been rationalized by Chames and Cooper
(1959), Kataoka (1963), and Sengupta and Portillo-Campbell (1970).

An alternative justification for maximizing L = E — ¢o arises when a
farmer has an expected utility function E[U] = E — ¢éo. If the farmer is risk
averse, then ¢ > 0 and the iso-utility curves are linear and upward sloping in
E, o space (Figure 5.5). Once the efficient E,o frontier is known, then
knowledge of the risk aversion parameter ¢ leads to identification of the
optimal farm plan P (Figure 5.5).

One attractive feature about the L = E — ¢o criterion is that ¢ is a
number with an intuitive interpretation. For example, if income is normally
distributed, then a ¢ value of 1.65 corresponds to the level of risk aversion
tolerated by statisticians (or economists!) when performing one-tail, 5% con-
fidence tests on selected hypotheses. If Sir Ronald Fisher had a2 ¢ parameter
of 1.65, should we expect rational farmers to be much different?

The ¢ parameter can be estimated from direct elicitation of farmers’ risk
preferences. Using experimental methods, Dillon and Scandizzo (1978) ob-
tained an average ¢ value of 0.9 for a sample of farmers in northeast Brazil,
Moscardi and de Janvry (1977) imputed an average ¢ value of 1.12 for farmers
in the Pueblo Project in Mexico. This value was derived from actual decision
data and the first-order conditions for maximizing £ — ¢o over an estimated
production function.

Several researchers have also imputed values of ¢ by solving farm models
for their efficient E, o set of plans and selecting the value of ¢ that leads to the
closest fit between the actual and predicted farm plans. Various ways of
measuring the closeness of fit have been used, such as the mean absolute
deviation of the differences in crop areas. This method of estimating ¢ has
been more common with' sector models than with individual farm models.
Hazell et al. (1983), Simmons and Pomareda (1975), and Kutcher and Scan-
dizzo (1981) have reported ¢ values ranging from 0.5 to 1.5 when derived in
this way for aggregate models in Mexico and Brazil. Brink and McCarl (1978)
reported ¢ values derived for individual farmers in the U.S. Corn Belt. They
obtained values of less that 0.25 and concluded that risk preferences were not
important. ' ' _

There are two major problems with this approach to estimating ¢. First,
in using ¢ as a fine-tuning device to validate the model, there is a real
possibility that ¢ may be biased by model misspecification and data €ITOrS.
Second, if farmers have access to risk-sharing institutions such as crop
insurance or futures markets, then their farm-planning decisions will not
reflect their real risk preferencm Unless these risk-sharing possibilities are
included in the model, ¢ is likely to be underestimated. This may explain the
low ¢ values obtained by Brink and McCarl.

As a decision criterion, the E, 0 model is subject to the same theoretical
criticisms as the E, V approach. However, Tsiang (1972) has argued that the
E, o criterion is a good approximation to more desired decision criteria if the
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risk taken is “small” relative to the total wealth of the farmer. While this
condition may easily be met for many commercial farms, it probably is not
satisfied for small, subsistence farms in.developing countries.

5.7 GAME THEORY MODELS

Following early studies by Swanson (1959), Walker, Heady, Tweeten, and
Pesek (1960), and Dillon and Heady (1961), all the risks and uncertainty
facing a farmer can be summarized as a composite “nature” component. Thus
defined, nature can be considered an opponent in two-person zero sum
games,® who, perhaps randomly rather than willfully, may financially undo a
farmer in his selection of a farm plan. Many different decision criteria have
been suggested to aid in selection of a farm plan, each superimposing its own
uuhty assumptions on the model. The most commonly used decision criteria
are the Wald maximin and the Savage regret.'?

5.7.1 The Maximin Criterion

This criterion is based on the pessimistic view that whatever farm plan the
farmer chooses, nature will do her worst and select the state of nature that
.minimizes the farmer’s income from that plan. To nllustrate, consider the
“following payoff matrix: :

State of nature
Farm plan 8, S, S,
X, 100 40 80

X; 50 60 30

The farmer may choose between farm plans X; or X,; and for each plan there
are three possible states of nature. The maximin criterion assumes that if the
farmer selects plan X,, then nature will select state' S, and income will be 40.
On the other hand, if the farmer selects X,, nature will select S; and income
will be 30. Under these circumstances, the appropriate strategy for the farmer
is to select the plan that has the largest (maximum) outcome under the worst
. (minimum) state of nature; the maximin strategy. In our illustrative problem,
the maximin strategy is to choose X, since its worst possible payoff is 40.
Mclnerney (1969) developed a linear programming model to derive the
maximin solution for a constrained farm planning problem. Define M as the
(unknown) worst possible outcome of farm income, then his model is

max M (5.21)

such that

Y X zM, alt (5.22)
j
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ind
Ya,X;<b, ali. (5.23)

1
X, M=>0  allj (5.24)

Formulation of the model depends on identification of a finite number of
tates of nature. The model is therefore suitable when time series data are
vailable on the activity gross margins, or when the gross margin outcomes for
clected bad years can be elicited from farmers.

The maximin criterion is very conservative, and it often leads to farm
Jans with such low total gross margins on average in relation to overhead
osts and family income needs that the criterion would not be acceptable.
Jevertheless, the idea of minimizing the worst loss is appealing, and, unlike
he E. V and E, 6 models, higher incomes in favorable years are not penalized
iy this decision criterion.

To render the maximin criterion more useful, Hazell (1970) and Maruyama
nd Kawaguchi (1971) independently suggested adding the expected income
quation

E‘-}'Xj = A (5.25)

5 the model, and parameterizing A to obtain an efficient £, M set of farm
lans. The farmer could then choose the most favorable combination of £ and
4 for his purposes, knowing that for any level of E, the ptan offered has the
ninimum worst possible loss.

When plotted against the £, M axis, the efficient boundary is shaped as
hown in Figure 5.6. The efficient E, M boundary is always concave, and the
naximum attainable value of M is the value obtained from Mclnerney’s

A A Efficient E, M frontier

Feasible farm
plans

igure 5.6 The efficient E, M frontier.
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Table 5.8 A Maximin Tableau for the Example Problem

Crop activities (ha) or&':e
X, X, ) X, M RHS

Objective function

(pesos) » , 1 Maximize
Expected total gross _

margin (pesos) 253 ‘443 284 516 =A
Land (ha) : 1 119 < 200
Labor (hours) 25 36 27 87 - £ 10,000
Rotational requirement

(ha) . . -1 1 -1 1 ) <0
Risk rows (pesos)

‘Year 1 292 -128 420 579 -1 20

Year 2 179 560 187 639 | =20

Year 3 114 648 366 379 -1 =20

Year4 : 247 544 249 924 ' -1 >0

Year 5 426 ~ 182 322 5 -1 >0

Year 6 ' 259 850 159 569 -1 >0

model (plan 4 in Figure 5.6). The last solution (plan B) is always the standard
linear programming solution in which E is maximized.

Only farm plans represented by segment AB in Figure 5.6 are rational for
a farmer to.consider. Any plan to the left of A (e.g., plan C) has the same
value of M as a plan to the right of 4 (plan D), but its expected income E is
smaller (E. < E}).

To illustrate, Table 5.8 is the tableau of the maximin model for the farm
problem presented in Section 5.4. Solutions to the model for parametric
. increases in E are shown in Table 5.9. In this case the first nonzero solution
has the largest value of M, and hence is the solution to Mclnerney's original
model. This solution entails almost a 20% sacrifice in expected income
compared to the maximum expected income attainable (solution V). On the
other hand, income in the worst possible case is 60% larger.

Table 5.9 The Maximin Results for the Example Problem

Basic solution

Farm plan | | 11} v Vv
E (pesos) 65,316 70,364 73,267 75,182 77,996
M (pesos) 60,455 55,872 51,909 47,264 37,559
X, (ha) 86.32 114.19 100.00 100.00 —
X, (ha) 30.69 38.41 49.77 23.53 27.45
X, (ha) 55.77 - - - 100.00

X4 (ha) 27.20 47.40 50.23 76.47 72.55
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5.7.2 The Savage Regret (or Minimax) Criterion

This criterion is based on the assumption that a decision maker wishes to
minimize the regret (or remorse) that he experiences when, after having made
a decision, he is able to compare the outcome with what he could have
achieved had he had perfect foresight.!! For example, suppose that the tth
state of nature will prevail. If the farmer could correctly anticipate all the
activity gross margins corresponding to that state (¢;,, j =1 to n), then he
would adopt the farm plan that maximizes income

Z"p X;
rid

Let this maximal value of income be denoted by Y,*. However, since the
farmer rarely (if ever) has perfect foresight, he is likely to adopt an alternative
farm plan that leads to a realized income Y,. The difference Y,* — Y, measures
the regret that the farmer might expenence once the consequence of his
decision is known.

Given this measure of regret, the Savage regret criterion-focuses on the
largest of these regrets over all states of nature, and calls for selection of the
plan having the minimum value of the maximum regret (the minimax crite-
rion).

Hazell (1970) proposed the following linear programmmg adaptauon of
the minimax criterion. for farm plannmg ' :

" minR (5:26)
subject to | '
- ch,xj <R, s (5.27)
and
Za,,x, <b, allj (5.28)
Zc X, =X (5.29)
i
X,R>0, allj (530)

Here R 1s the largest regret for a farm plan over all states of nature, and the
farm plan to be chosen is that which has the minimum R. By including the
expected income equation (5.29), A can be parameterized to provide an
efficient E, R set of plans. Each plan in the set has the property that, for its
given level of E, it is the plan having the minimum largest possible regret the
farmer could experience.

When plotted against the E, R axes, the ef’ﬁcnem E, R boundary is always
convex (Figure 5.7). Plan A has the minimum possible value of R, and plan B
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is'again the linear program solution that maximizes E. Only efficient plans
Iying on segment 4B are rational for a farmer to consider. Any efficient plan
10 the left of 4 is dominated by an efficient plan lying to the right of 4, For
example. D dominates C because it has a larger value of E for the same value
of R. . S '

To solve model (5.26) through (5.30) it is first necessary to calculate ¥,*
for each state of nature by solving a series of linear, programming problems.
An obvious limitation of the model is that the ¥,* values must be recalculated
for any experiment involving changes in the model ¢, a;,. or b; coefficients.

fable 5.10 A Minimax Regret Tableau tor the Example Problem

Crop activities (ha) L;::Tt
X, X, X,y X, R RHS

Objective function

(pesos) . 1 Minimize
Expected total gross '

margin (pesos) . 253 443 28B4 516 = A
‘Land (ha) 1 1 1 1 = 200
Labor (hours) 25 a6 27 - 87 < 10,000
Rotational require- . .

ment (ha) -1 1 -1 1 <0
Risk rows (pesos)

Year 1 292 128 420 579 1 > 96.190

Year 2 179 560 187 639 1 2 80,431

Year 3 114 648 366 379 1 = 101,400

Year 4 247 544 249 Q24 1 > 108,159

Year 5 426 182 322 5 1 > 85.200

Year 6 259 850 159 569 1 z 110,900
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Table 5.11 The Minimax Regret Results for the Example Problem

Basic solution
Farm pian I H n v v Vi vi Vit

£ (pesos) 5999 16217 20189  43.833 69.945 74379  75.795 77.996
A (pesos) 101.341  §7.730  83.373 58,909 32,459  36.484  40.050 47.641

X, (ha) 8.62 2260 27.78 28.97 58.26 8273 78.21 -

X, (ha) 8.62 15.87 16.10 24.14 3510 41.87 24.38 27.45
X, (ha) — - - 29.15 66.25 17.27 21.79 100.00
- X, (ha) — 8.72 11.68 33.97 40.39 58.12 75.62 72 55

Table 5.10 shows the tableau of the minimax regret model for our
example problem. The parametric solutions for increases in E are given in
Table 5.11. Plan V has the smallest possible value of regret R. hence only
plans V through VIII are rational for a farmer to consider. '

5.7.3 Features of Game Theory Modeis

G_a‘lhe theory decision criteria such as the maximin and minimax rules are
attractive because they require less information about possible gross margin
outcomes than the E.V or E.s models. For example. they do not use
information about the relative frequency (or probability) of occurrence of each
state of nature. This means that large time series samples of activify gross
margins are not important once the relevant states of nature are enumerated.
Also. the maximin criterion only uses irformation about unfavorable gross
margin outcomes. so there is no point in including states of nature in the
mddel in which none of the activity gross margms are significantly smaller
than their means.

One of the perceived adv amages of the E. V" and E. ¢ models is that they
take explicit account of the covariance relations between activity gross margins.
Game theory models can also incorporate these covariances. but only on an
implicit basis. We have already seen in Section 5.5 that. when using samiple
data on activitv gross margins. the variance of total farm income can be
“expressed either as an aggregation of the sample variances and covariances of
the individual activities or as the variance of total farm income ), evaluated
for each of the sample observations. The same information about the relation-
ships among activity gross margins is contained in both approaches. but the
latter depends on retaining the vearly observations as mutually exclusive sets
of activity gross margin outcomes. In other words. it is not permissible o
combine activity gross margnm from different vears in the same state of nature.
This is an important consideration if the gross margin ouicomes for any state
of nature are to be elicited directly from the farmer. For example. construction
of a worst possible state of nature using the lowest gross margin that the
farmer can recall for-each activity may be verv misleading. because it
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is unlikely that the worst possible outcome for every activity would oocur at
the same time.

5.8 SAFETY-FIRST MODELS

The risk models we have considered so far are concerned with increasing a
farmer’s utility by minimizing an appropriate measure of the variability of
farm income. Safcty-ﬁrst models have a different perspective. They are de-
signed to help a farmer insure that he attains the minimum income necessary
to meet his fixed costs (including credit repayment), and to meet his family’s
living costs each year. Safety-first models are most appropriate where the risk
of catastrophe is large, either because of an inherently risky environment, or
because the farmer is poor and has minimal reserves to fall back on in a bad

year.

5.8.1 Roy’'s Satety-First Criterion

One of the earliest safety-first models was proposed by Roy (1952). Given that
-some minimal income Y, is required for the farm family to-survive, Roy’s
criterion calls for selection of the farm plan that minimizes the probability that
income Y, could fall below Y,. That is, choose the plan such that Pr{Y, < Yy}
is minimum.

Roy’s criterion is not easily mcorporated in a mathematlcal programmmg
model. However, if farm income is normally distributed, then the optimal plan
is identifiable as a member of the efficient E,V set. In fact, it is the plan
corresponding to the point of tangency between Y, and the lower conﬁdence
limit L = E ~ ¢o that has its maximum at E = Y, (plan 4 in Figure 5. 8) If
the efficient E, ¥ set of plans is first derived, the optimal plan for Roy’s
criterion can be identified by plotting lower confidence bands for different
values of ¢ on graph paper until the required tangency with Y, is attained.

E, L

§Efﬁcient EV frontier

v o Figure 5.8 Roy's safety-first criterion.
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5.8.2 Low’s Safety-First Model

Low (1974) has proposed a mod1ﬁcaﬂon of the maximin game model that
selects the farm plan that has an income equal to or greater than ¥, in every
state of nature, and which maximizes expected income E. The model is defined

as follows:

max E = )¢, X, (5.31)
J
subject to
Y, X;2 Y, alli¢ L (532)
j
and
B Ya,X <b, ali (5.33)
J _ ‘
X,20, alj (5.34)

The model has the same solution as the maximin model (5.21) through (5.24) if
Y, happens to equal the maximum attainable value of M. It will also produce
the standard linear programming solution for maximum E if Y, is sutﬁmently
small that none of the constraints in (5.32) are binding. ‘

A difficulty with Low’s model is that there may not be a feasible solution
if ¥, is large relative to the maximum attainable £ and/or if the farmer is
operating in a high-risk environment. An alternative approach is to treat Y as
a-target (as in goal programming) and to seek the farm plan that deviates the
least from this target. : :

5 8.3 Target MOTAD

One mode]l formulation that does this is Tauer’s (1983) target MOTAD
model.}? This model is formulated as follows:

max E = 3¢, X, : (5.35)
subject to .
):c X,—Z <0, al:r (5.36)
and ) _
ZP:ZF =X . | (5.37)
Zau <b,  alli (5.38)

-x z-zo all j, 1. (5.39)
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Table 5.12 A Target MOTAD Tableau for the Example Problem

" Crop activities (ha) Negative devlaudn_s from the target

Rows X, Xy, Xy Xy 2y 2y 2Zy 2Zy Zy 2Zy RHS
Objective function

(pesos) 253 443 284 516 Maximize
Land (ha) 1 1 1 1 ' < 200
Labor (hours) 25 36 27 87 < 10,000
Rotational requirement '

{ha) -1 1 -1 1 <0
Expected shortfail :

from target (pesos) 0.167 0.167 0.167 0.167 0.167 0.167 = A
Risk rows (pesos)

Year 1 292 —128 420 579 1 2= 55,000

Year 2 179 560 187 639 1 > 55,000

Year 3 114 648 366 379 : 1 = 55,000

Year 4 247 544 249 924 1 =z 55,000

Year 5 426 182 322 § 1 = 55,000

Year 6 . 259 850 159 569 1 > 55,000

The Z~ variables in (5:36) measure the value of any deviations in income
below the target. These deviations are collected in (5.37) and multiplied by the
probabilities of the states of nature in which they occur (the p,) to give the
expected sum of the deviations below the target income.

The model is set up to maximize E subject to achieving a satisfactory
level (determined by A) of compliance with the target income. By parameteriz-
ing A, a set of efficient farm plans is obtained which, for any given level of
compliance with the target income (as measured by L,p,Z; ), have the
maximum possible value of E. A farmer who is most concerned about survival
might well choose the plan having the smallest possible value of L, p,Z;. But
other farmers might prefer plans with higher levels of E providing X,p,Z,”
remains reasonably small.

A linear programming tableau for the target MOTAD model is shown in
Table 5.12 using our example problem. In this case, we have stipulated a target

Table 5.13 The Target MOTAD Results for the Example Problem

: _ Basic solution
Farm plan | " m v
E (pesos) 71,003 73,585 75,182 77,996
A (pesos) 0 644 1;289 2,907
X; (ha) 111.07 100.00 100.00 —
X5 (ha) 40.91 45.40 23.53 27.45

X5 (ha) - — — 100.00
X, (ha) 48.02 54.60 76.47 72.55
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income of 55,000 pesos. Also, in the absence of any additional information
about gross margin-outcomes.other. than the 6 years of sample data, the states
of nature are treated as equally likely in the model. The results are shown in
Table 5.13.

5.8.4 The Focus-Loss Model

A quite different approach to farm income security was developed by Boussard
and Petit (1967). Rejecting probabilistic approaches to-safety-first as impracti-
cal because of inadequate data and the need to assume normally distributed
risks, they turned instead to a concept of focal loss developed by Shackle
(1949, 1961). The focal loss of a risky activity is defined as the level of loss that
a decision maker would be “very surprised” to realize. In practice, Boussard
and Petit approximated focal loss values for different farm activities using
“decennial catastrophies,” i.e., the worst gross margin that might occur once.in
a decade. Given this “worst” gross margin (call it ¢}*) for each activity, and the
expected gross margin, ¢;, the focal loss is defined as f; = ¢; — cl, all . .
For any farm plan, a maximum permitted loss (call it LOSS) is defined as
the difference between expected total gross margin, X,¢;, X, and the minimum
income ( MINT) required to cover farm fixed costs, essential family living costs,
and debt repayment. That is, ‘ ‘

LOSS = }.¢;X; — MINI
j

Boussard and Petit then impose the requirement that no single activity
may have a total focal loss f;X; greater than 1/k of the maximum permitted
loss for the farm plan. These constraints are £, X; < 1/k (LOSS), all j. Table
5.14 shows a schematic tableau for the focus-loss model. '

The focus-loss model can be solved by standard linear programming
codes, and it requires relatively little information about possible gross margin
outcomes. There are two major disadvantages to the approach. First, it ignores

Table 514 A Focus-Loss Model

Crop activities >
Xy Xo X3 X, LOSS " RHS

Expected income &G © T g, Maximize
Minimum income 2, T ty ©C4 -1 = MiNI
. congtraint
Activify constraints
X . h ' -1/k =0
. ' 5 ~-1/k <0
X, - . [ -1/k <0

Xa f, -1/k <0
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-covariance relations between activity gross margins; the model assumes that
the focal loss of each activity can occur in the same year. Second, the focal loss
coefficients f; and the value-of k are inherently difficult to measure. e

5.9 RISK IN THE CONSTRAINT SET

So far we have assumed that all the o, ; and b, coefficients of a farm model are
deterministic. This is not-always a tenable assumption. Yield risks that affect
gross margins are also likely to affect activity labor and machinery require~
ments. Fluctuations in input costs affect the capital requirements of the farm
activities as well as gross margins. Independently of gross margin risks, a
farmer may also face risks in resource supplies; for example, seasonal labor,
water for irrigation, and forage supplies for livestock feed. .

Risk in the constraint set can significantly affect the feasibility of a farm
plan’in any one year. Consequently, in seeking to find better farm plans in
relation to a farmer’s income objectives, the analyst must be sure that the plan
w1ll also be feasible at an acceptable risk levd

5.9.1 Discrete Stochastic Progrmm,ing

Ideally, all the risks in the constraint set should be transferred into the
objective function of a model and a single risk decision rule applied. If
resources are freely tradable, then any stochastic discrepancies between
the resource requirements of ‘a farm plan and the rescurce supplies can be
captured in the objective function through buying and selling activities.

Implementation of this concept requires explicit consideration of all the
adjustments that should be made to a farm plan in each state of nature
to overcome.any infeasibilities. As a simple example, consider the Mayaland
example in Table 5.15.

The farmer, who can grow corn or beans, faces three possible states of
nature S, S,, and §;. Both the gross margins and the labor requirements of
corn and beans vary with the state of nature. To make the problem more
interesting, we also assume that the supply of labor depends on the state of
nature,

The relevant risk decision rule is arbitrarily assumed to be the maximin
criterion, hence the tableau is structured after Table 5.8. A new feature is the
introduction of labor rows for each state of nature, and of labor hiring and
selling activities in each of these states. These activities enable the model to
hire or sell different amounts of labor in each state of nature. Each of the
hiring and selling activities has an appropriate +1 or —1 entry in the relevant
labor row, and a wage entry which adds or subtracts from total gross margin
in the relevant state of nature. The variability in labor requirements and
supplies is therefore transferred into the gross margin rows, and the maximin
criterion is applied in the usual manner. Note that in calculating expected
income E, the relevant wage entries under the labor activities are weighted by
their probabilities of occurrence; in this case by equal weights of one third.
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Models of this type are known as dlscrete stochastic programmmg (Cocks
1968) or stochastic programmmg with recourse. A key assumption is that some
decisions (labor decisions in Table 5. 15) are made after the state of nature is
observed. This means that the farmer has scope for avoiding problems with
infeasibilities or underutilized resources that might otherwise arise. This as-
sumed sequencing of decisions is actually very descriptive of agriculture. A
farmer does have to commit some resources for planting crops at the begin-
ning of the growing season, but application of many inputs such as fertilizers,
pesticides, or irrigation water typically occurs after the farmer has had time to
gain new information about the season. As such, he can adjust the use of these
inputs in an optimal way. Rae (1971a, 1971b) has shown how discrete
stochastic programming can be used to model detailed sequences of decisions
in farming. '

The major difficulty of the approach is its hearty appetite for data, and
the fact that models rapidly become very large because of the need to have
separate rows and columns for many resources and activities in every state of
nature.

- When resources are not tradable, any risk in their use or supply cannot be
transferred into income risk through buying and selling activities. Discrete
stochastic programming models require the farm plans to be feasible for those

-resources in all states of nature. A’ similar result holds for more simplistic
stochastic linear programming models in which the constraint set is duplicated
for each state of nature.!® That is, the constraint set becomes

2e,X sb, aliz
J
Forcing feasibility under all circumstances is not to be generally recom-
mended. It leads to conservative farm plans that may be incompatible with a
farmer’s risk-aversion behavior.!* This is most likely to happen if the farmer
_has some recourse for resolving infeasibilities, but these options cannot be fully
specified in the model.

5.9.2 Chance-Constrained Programmlng

Practical alternatives to discrete stochastic programming models include
chance-constrained programming and goal programming (see Section 4.6). In
both cases it is recognized that feasibility cannot always be assured, and
that the best strategy is to,try to minimize the risk of infeasibility while
pursuing other income related objectives.

Chance-constrained programming, developed by Charnes and Cooper
(1959), expresses the feasibility requirements in probabilistic terms. A chance
constraint for the ith resource takes the form

Pr{Za,.ij < b,.} >1-a (5.40)
o




RISK IN THE FARM MODEL - ' 107

where a, is some prespecified probability (usually 10% or less). The constraint
requires that the total requirements for the ith resource should not exceed its
supply more than a percent of the time.

In order to incorporate (5.40) into a linear programming model, it is
necessary to convert it into a legitimate linear inequality constraint. This is
usually done by assuming that all the stochastic coefficients are normally
distributed. To illustrate the method, suppose that the a,; coefficients in (5.40)
are stochastic with means @;; and covariances cov(a,;, a;;), but that b, is
determnmstlc The sum ' '

i
_ Ea,-,X,-
j

(which we shall denote by Z,) is then a normally distributed random variable
with mean

E[Zi] = Zaijxj
J

and standard deviation

12
= | Z X, X,00v(ay, a,k)
i k.
Equation (5.40) then becomes:
Pr{Z,<b}>1-aqa; ; (5.41)

or equivalently
P"{(Zi - E[Zi])/ozi < (bi - E[Zi])/‘-’zi} 21—«

Now (Z, — E[Z])/e,; is a standardized normal random variable with mean
zero and standard deviation one, so tables for the cuamulative normal distribu-
tion can be used to find, for any «,, a constant K, such that '

Pr{(Z,- E[Z]) /0, < K.} =1~ (5.42)
!"Cémpa:ing (5.42) and _('5.41),' the chance ._(.:(')nst.rainf will be saﬁsﬁéd .fif-' -

K, = (‘bi — E[Zf])/"zi
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or equivalently, if E{Z;] + K,0,; < b,. For example, if a; = 0.05, then K,
1.65 and the constraint is E[Z X + 1. 65 0, <b, Subsmutmg in our full expres-
sions for E [Z ] and ¢,;, the chance constraint (5 40) becomes

Y S VI | ,
ZE&X,-'*K& Z_:Zk:XJ.X,‘oov(a,-j,a,-_k) . < b, (5.43)

Given sample data, all the covariances could be calculated and (5.43) added to
a model. Unfortunately, the inequality is quadratic in the Xs, and so the
problem can be solved only by quadratic programming.!®

Following Wicks and Guise (1978), the problem can be linearized through
the following MOTAD formulation.

max E = } ¢, X, o (5.44)
J _

such that

(2FV2/T)E F alli (5.45)
and

Z(a,,, a;, z,;' <0, all¢ (5.46)
):a,jx + K § < b all i (5.47)
X 25,620, allij1 (5.48)

Here a,; denotes the sample mean value of the g, jth coefficient and F is again
Fisher’s constant «T/2(T — 1). :

The Z; variables measure the amount by which the requirement of a
farm plan for the ith resource in the /th year exceeds the average requirements
for that resource, equation (5.46). In equation (5.45), these deviations provide
a MAD estimator of the standard deviation of the Pplan’s resource require-
ments. These estimates of o, are then entered in the chance constraint
equations (5.46). :

The MAD estimates of the standard deviations are included in the
constraint set. Since these estimates will affect the choice of an optimal
solution, they cannot be calculated after the solution has been obtained as we
did with the MOTAD model in Section 5.5. The MAD is being used here to
provide point estimates of the standard deviation as well as to rank farm
plans, and it cannot be as reliable an alternative to quadratic programming as
the parametric form of MOTAD presented in Section (5.5). Note also that the
model will seek to minimize 6, in those constraints in (5.47) that are binding.
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Table 5.16 A MOTAD with RINOCO® Model

Labor
deviations

Com Beans (months) é

(ha) (ha) 2y Zz7 z; (months) RHS

Expected total gross

margin (pesos) 1372 1219 . . Maximize
Standard deviation

of labor use )

{months) : 1 1 1 ~0.977 -0
L.abor (months) : .

S, ~0.2 023 -1 _ <0

Sz 0.2 0.13 -1 } <0

Sa. -0.36 “1 <0
Chance Constraint : o
“(months) 1.4 1.77 . : 165 = <165

SRisky Input-Output Coeflicients (after Wicks and Guise 1978).

This means that the corresponding Z* variables will be selected in a minimiz-
ing way, thereby fulfilling an essential requirement of the MOTAD approach,

Table 5.16 provides a simple illustration of the model using Mayaland
data from Table 5.15. Only the labor portion of the tableau is shown, and an a
value of 0.05 has been assumed. Since T = 3, then F = 2.3571 and 2FV2/T
= 1.0235. Equation (5.45) becomes -

6 =1.0235) Z*
’ t

or

YZF —09T% =0
’ .

This explains the entry under ¢ in the second row of the table. A

. The model has been set up to maximize expected total gross margin, but
other objective functions could be used, including an E,V or E, ¢ specifica-
tion. T S
- ., Despite the attractiveness of chance, constraints, there are some major
drawbacks to their use. First, if more than one chance constraint is to be
incorporated in a model, then it is necessary. to assume that the stochastic
coefficients in each constraint are statistically independent of the. stochastic
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coefficients in all the other constraints. Tractablé methods for handling joint
dependent constraints have yet to be developed. Note that the coefficien
within a constraint do not need to be statistically independent.

Second, even when two or more chance constraints are statistical
independent, _ﬁroblcms still arise in that the probability of all the constrain
being feasible at the same time is the product of their individual probabilitie
For example, if there are five chance constraints and each is to be satisfie
with a probability of 0.95, then the probability that all five constraints will b
satisfied at the same time is only 0.95° = 0.773.

Third, a value of & has to be selected for each chance constraint. Th
chosen values may be inconsistent with the type and degree of risk avers
behavior assumed in the objective function of the model. This problem ca
only be resolved through the kind of unified decision theory analysis offerec
by discrete stochastic programming. : ‘

Fourth, chance constrained programming provides no guidance as tc
what a farmer should do in the percent of the years in which his plan will be
infeasible. However, it is because the farmer does have recourse options, many
of which are difficult to include in a model, that chance constraints are
attractive,

NOTES.

1 See Anderson, Dillon, Hardaker (1977, pp. 66-69) for an insightful review of the
theory.
2 If X and Y are random variables then the variance of thejr sum is V[ X + Y] =
ViX] + viY] + 2cov[X, Y] Equation (5.4) is a generalization of this basic .
result. ‘ A
3. The variances are always found along the diagonal of a variance-covariance .
matrix, ‘ . o
4 There have been some recent improvevLients, but improved algorithms are not
widely available, particularly in developing countries. o
5 The approach has been extended for use when subjective information can be:;
elicited from farmers about possible income outcomes (Hardaker and Troncoso 3
1979). _
6 We assume that the data are first adjusted for any trend or cyclical patterns. j
7 The constant F was derived by Fisher (1920), and strictly speaking, it only holds ;
for normally distributed random variables. 4
8 This assumes that Z' and Z~ will be selected in a minimizing way. This ;
requirement is met when the estimated variance is minimized in a farm model. It is
not met if the variance is maximized, hence 2 MOTAD approach is not applicable
to a risk-loving farmer. .

9 A zero sum game is one in which the sum of all winnings is equal to the sum of all ;
losses among the players, ' U

10 Kawaguchi and Maruyama (1972) developed farm planning models for additional 4
decision criteria, ' ' )
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11

12

13

14
15

Readers who have ever invested in the stock market will appreciate the concept as
the remorse felt at breakfast when reading the financial pages of the newspaper
and realizing how much money they might have made (or saved) the previous day.
Tauer (1983) also shows that the target MOTAD model, unlike MOTAD, provides
farm plans that are always second-degree stochastic dominant.

Low's safety-first model is a good example (see Section 5.8.2). In this case
feasibility with respect to a minimum income constraint is imposed in all states of

-nature.

For a contrary view, see Hogan, Morris, and Thompson (1981).
If only b; is stochastic, then the reader can easily verify that the chance constraint
becomes

‘ Za,»ij- < E(b) - K,0,,

J

In this case the equation-is linear in the Xs and can be included in a linear -

programming model.




