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PREFACE

Our goals in developing The Competitive F irm’ s Response to Risk were twofold.
First to formulate and second to consistently apply a versatile analytic framework
to understanding and evaluating the broad set of actions available to the
competitive firm for responding to risk. In particular, we have focused on
extending equilibrium analysis at the micro level from the certainty case to the
risk setting. In doing this we use the familiar concepts of income and substitution
effects from economic theory.

The needs for achieving these goals are several. One is to further enhance
our analytic capacity for explaining the many types of institutional phenomena
and observed decision behavior that are atiributed to risk. A second is to
assemble many of the significant advances in risk analysis that are found in
the professional journals of economics and related areas into a single, unified
text. A third is to provide a book that focuses solely on the theory of risk analysis
rather than following the common practice in economic theory texts of devoting
only a chapter or two to this important topic. And a fourth is to provide one
comprehensive, unified approach for conceptualizing the analysis of numerous
risk responses in a fashion that yields plausible theoretical results and that is
amenable to empirical analysis.

To achieve analytic uniformity, we chose to utilize the expected value—
variance approach to represent the probabilistic characteristics of risk facing the
firm. The ramifications of this choice are considered in detail in several of the
chapters. We believe this is a useful choice. It allows economic theory under risk
to be developed in a plausible, comprehensive way. Moreover, as will quickly
become clear, economic theory under risk needs a simple point of departure
in order to clearly predict outcomes, understand behavior in complex decision
situations, and formulate and test hypotheses about the effects of various risk
responses. Thus we have translated and synthesized the important work from
recent journals into a consistent expected value—variance framework.

The book is organized into several parts. Chapter 1 introduces the scope
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xii PREFACE

of the subject matter and presents several of the key concepts used throughout
the text. Part 1 (Chapters 2 to 5) introduces decision theory concepts of utility
functions, risk attitudes, and risk measures, as well as approaches to ordering
individuals and their risky choices. The two chapters of Part 2 provide the book’s
analytic base; they characterize the multitude of firm models that exist under
conditions of risk and develop the equilibrium framework.

In Parts 3 and 4 the analytical framework is applied to a broad set of
choices available to the firm. Included are such topics as output responses,
input adjustments, hedging, diversification, insurance, and the management of
information and liquidity. Some of the applications are illustrated using specific
types of firms and industry settings, while others are treated in a more general
fashion. Part 4 is distinguished from Part 3 by changes in the probabilistic
characteristics of the firm’s risk position as the effects of risk are modified
by the respective choices. Because the resulting distinction between the direct
and indirect effects of risk yields a more complex setting, these chapters are
organized into a separate part. Finally, the Epilogue summarizes the preceding
developments and considers some of the possible future directions for risk
analysis.

The book is intended as a text or reference for advanced undergraduates
and graduate students in economics, business, agricultural economics, resource
economics, and related areas both in the United States and elsewhere. In
addition, it will be useful for professional economists in these subject matter
areas who wish to review a comprehensive treatment of risk analysis for the
competitive firm. We have assumed that readers have a prior acquaintance
with microeconomic, theory at the intermediate level as well as an introductory
knowledge of calculus and statistics. Indeed, the appendix of the book contains a
review of all the statistical concepts used throughout the chapters. Each chapter
is structured to present the material using a combination of text discussion,
mathematical derivations, and graphing of key functional relationships.

As the manuscript developed, we benefited greatly from the review com-
ments and suggestions provided by a number of colleagues. Included are Young
Chan Choe, Mark Cochran, Beverly Fleisher, Randall Kramer, Lester Mander-
scheid, Jack Meyer, Rulon Pope, Stanley Thompson, and David Trechter. We
are grateful for their time, effort, and contribution to the review process. In
addition, a large number of students who read early drafts of some chapters in
classes taught by the authors made useful suggestions and raised constructive
questions. We especially appreciate the important support needed to develop and
complete the manuscript that was provided by our host institutions, Michigan
State University and the University of Illinois at Urbana-Champaign. Finally,
we greatly appreciate the major effort and patience of our typists, Kim Olson
and Debbie Greer.

Lindon J. Robison
Peter J. Barry




CHAPTER

ONE

INTRODUCTION TO THE COMPETITIVE
FIRM’S RESPONSE TO RISK

The purpose of this book is to extend microeconomic theory to account
for the effects of risk on a firm’s equilibrium conditions. This extension is
needed because many aspects of firm behavior cannot be explained in a world
of complete certainty. Under certainty, the theory of the firm stipulates a
profit maximizing goal and considers such decisions as the optimal level of
output, input and product combinations, firm size, and product pricing when
markets are imperfect. Under conditions of risk, the choice set still includes
these types. of decisions but also introduces various responses to risk such as
asset diversification, alternative forms of contracting, holding liquid reserves,
restricting borrowing and financial leverage, utilizing insurance, acquiring new
information, and many others. Moreover, the firm’s profit-maximizing goal is
modified in response to various sources of risk and the decision maker’s risk
attitude. :

Extending the theory of the firm to account for responses to risk enriches
the theoretical framework, enhances the applicability of analytic methods,
and further broadens our capacity to understand the economic relationships
involved. But these extensions also present significant challenges. Especially
important are identifying the fundamental variables, evaluating interrelationships
* between them, and measuring risks, risk attitudes, and other forces involved.
‘For example, the many linkages between a firm’s production, marketing, and
financial activities yield a complex framework for analysis. Moreover, the types
and combinations of risk responses are numerous. Therefore we will focus on
the theoretical foundations of only a few of the major risk responses and show
how economic theory is extended to account for their effects on the firm’s
equilibrium position.

In this chapter we introduce the theory of the competitive firm under risk
and the distinguishing features of the theory, including relationships to firm
theory under certainty, the concepts of certainty equivalents and risk premiums,
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2 INTRODUCTION TO THE COMPETITIVE FIRM’S RESPONSE TO RISK

and the expected value-variance approach to equilibrium analysis under risk. A
distinction is also made between economic theory under risk and decision theory.
Each of these features and the distinction between economic theory and decision
theory are addressed in the following sections and related in an introductory way
to later chapters that develop these issues in greater detail.

ECONOMIC THEORY AND DECISION THEORY

Decision theory is an immense subject which studies human decision-making
behavior (Morris).! The subject is relevant when individuals face decision
problems. A decision problem exists when an individual has alternative choices,
each with significant consequences, and is unsure about which choice is the best.
When the individual is uncertain about the consequences of his or her choice
because of stochastic states of nature, the decision problem is said to be risky
(Anderson et al.). If the states of nature facing the decision maker depend on
the actions of an opponent, a game theory problem exists. ‘

Decision theory focuses on selecting the preferred choice, or a set of
preferred choices, for a well-defined class of decision makers. Selection is based
on the risk-return characteristics of the choices and the risk attitudes of the
decision makers. Levels of risk are represented by probability distributions.
Applications of decision theory employ a broad spectrum of models. Halter
and Dean, for example, illustrate decision problems for stocking rates in
agriculture, drilling in geology, and raw material acquisition in forestry. In
solving such problems analysts from diverse disciplines may combine their skills
to characterize the decision situation and derive the choice set. The preferred
choice usually has limited generality, however, since it applies only to the
specific conditions defined in the decision problem modeled.

Examination of economic theory under conditions of risk is a subset of the
general subject matter addressed by decision theory. For example, to identify
the functional relationships between important economic variables in guiding
resource allocations for a firm, economic constraints must be imposed on the
choice set and the choice criterion must be precisely specified. Economic theory
under risk often abstracts from measurement problems and the complexities of
real world decision making in order to highlight the fundamental issues. Thus
the theory essentially assumes an error-free specification of the decision maker’s
risk attitude and error-free measurement of probability distributions.

The theory must order choices uniquely in order to employ the calculus
of comparative static analysis. As an example, and to preview later results, the
evaluation of how holdings of risky assets change as a decision maker’s risk-free
wealth increases requires that an expected utility-maximizing choice already be
known. Moreover, the utility function should be continuous, differentiable, and
concave to the origin to ensure that a maximum exists. Economic theory under
risk in most cases begins with the assumption that a decision maker’s preferences
are represented by a concave utility function. In more general applications of
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decision theory, however, specifying the characteristics of the utility function is
one aspect of the analysis.

As later chapters will show, the procedural aspects of decision theory pro-
vide useful tools for developing and empirically testing economic theory under
risk. To aid in this process, Chaps. 2 to 4 introduce decision theory concepts
of utility functions and risk attitudes and review some of the measurement
approaches. Also included are some of the efficiency criteria used to order indi-
viduals according to their risk attitudes and to order choices according to their
risk-return characteristics.

THEORY OF THE FIRM UNDER CERTAINTY

As evidenced by numerous textbooks on microeconomics, the theory of the firm
under certainty follows an orderly sequence in its development. Included in this
development are such topics as single input-output production functions, factor-
factor relationships, product-product relationships, optimal output and pricing
(if appropriate) in the short run and long run, and economies of scale and
size. Income and substitution effects are specified to aid in comparative static
analysis. The theory yields a set of precise, unambiguous conditions about the
organization of a firm’s inputs and products so as to maximize profits under
certainty conditions.

To illustrate, we could show that a firm with a production function character-
ized by diminishing marginal productivity and operating in perfectly competitive
markets will achieve profit-maximizing combinations of inputs and products by
producing so that the marginal value products in all enterprises are equal to
input costs. Or, when viewed from a cost-size standpoint, profit maximization
under certainty will guide the firm to a level of production where marginal rev-
enue from added output equals the marginal cost of added output. Moreover, in
the long run, competition will cause this condition to occur at the lowest point
on the firm’s long-run average cost curve. The U-shaped characteristic of the
average cost curve implies that the firm may benefit from economies of size
by expanding until diseconomies of size occur. Firms operating in less than
perfectly competitive markets and facing downward sloping demand curves will
maximize profits at lower levels of economic efficiency relative to the perfect
market case.

The specific characteri§tics of these equilibrium conditions may change
when risk is considered. Risk may be viewed as resulting in an additional cost to
the firm which must be met in achieving an optimal organization of the firm’s
activities. The firm will engage in a risky activity only if it is compensated
for certain costs and risk costs. The effects of these added risk costs can then
be evaluated and will alter the firm’s choice of activities. As under certainty
conditions, an increase in the cost of a firm’s operations will unambiguously
reduce the optimal level of output, at least in the short run, and reduce the
incentive for exnandine the firm’s size. However. the effects of risk on the mix
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of inputs and enterprises are less clear; they depend heavily on the sources of risk
and the possible risk responses. Some types of risk may not change the optimal
input combinations for the firm; some inputs are actually risk reducing and thus
preferred when uncertainty is introduced. Other inputs are held in reserve or
underutilized to counter adverse outcomes possible under uncertainty. We will
demonstrate these effects in later chapters; the important point for now is to
recognize the useful role of the theory of the firm under certainty in extending
the analysis to a risky world.

RISK AVERSION, RISK PREMIUMS, AND CERTAINTY
EQUIVALENTS

The concepts of risk aversion, risk premiums, and certainty equivalents are
central to economic theory-under risk and to the equilibrium analyses used in
this book. For now, we will introduce these concepts in an intuitive way; their
development and analytic uses will be shown more rigorously in later chapters.

Risk aversion does not mean that individuals are unwilling to take risks.
Rather, risk aversion means that individuals must be compensated for taking
risks in the form of a premium over and above the return on a completely certain
investment. Thus a risky investment or enterprise must yield an expected return
high enough (compared to a risk-free investment) to compensate the risk-averse
decision maker for accepting the risk. Or, more generally, we can anticipate that
one investment that is riskier than another must offer a higher expected retum
to be preferred by risk-averse decision makers. Similarly, the more risk-averse
individuals are, the higher the compensation on the risky investments they are
considering must be for these investments to be preferred to riskless alternatives.

A risk-averse decision maker prefers a riskless investment whose return is
equal to the expected return on a risky investment. There is, however, some
level of expected return on the risky investment, larger than the return on the
safe investment, at which the decision maker is indifferent between the risky
and the riskless alternatives. This difference between the expected return on the
risky investment and the return on the riskless investment which leaves the firm
indifferent between the two choices is defined as a risk premium. The return on
the risk-free investment, equal to the expected return on the risky investment
less the risk premium, is defined as the certainty equivalent of the expected
return on the risky investment. The certainty equivalent and the expected risky
return yield the same level of well-being.

The relationships between the certainty equivalent, the expected risky return,
and the risk premium are expressed as follows:

Certainty equivalent = expected risky return — risk premium

For risk-averse decision makers, the risk premium is always positive in order to
provide the compensation needed for risk bearing. Thus the certainty equivalent
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of a risky investment is always less than its expected return. For risk-neutral
decision makers, the risk premium is zero; for risk-preferring decision makers,
the risk premium is negative, indicating their willingness to pay a premium for
the opportunity to bear risk or take chances.

The magnitude of the risk premium at the micro level depends jointly on
the decision maker’s level of risk aversion, as reflected by his or her utility
function, and on the level of risk, as determined by the investment’s probability
distribution. In general, risk premiums increase as risk aversion increases, as
the level of risk increases, or as both events occur together. As shown in
the preceding section, risk premiums for risky investments represent additional
costs for the risk-averse firm that affect its optimal organization. Since higher
costs reduce economic well-being, actions that reduce risk and/or risk aversion
reduce risk premiums and thus reduce the costs of the firm’s operation. In turn,
these cost reductions result in improved economic efficiency and higher utility
attainment. :

In later chapters we will further develop the theory and measures of risk
aversion and show how the concepts of certainty equivalents and risk premiums
can account for the effects of risk on the firm’s equilibrium conditions. We
will also analyze the effects of various risk responses on the firm’s cost of risk
bearing and utility attainment. To do this, however, we must introduce explicit
measures of risk and return in order to carry out the analysis. These measures
are treated in the next section.

EXPECTED VALUE-VARIANCE ANALYSIS

The concept of risk that we employ focuses on the randomness, or variability
of outcomes, some of which are favorable to the investor and some of which
may cause losses or adversity. The range of possible outcomes is expressed as a
probability distribution in which the probabilities reflect the weight or likelihood
of occurrence for the respective outcomes. To facilitate risk analysis we will
assume that the expected value and variance of the probability distribution
adequately reflect the distribution’s relevant characteristics.

The expected value-variance (EV) approach has had widespread use in
economic and financial analysis. It was originated by Markowitz to explain
investors’ diversification of financial assets, later extended by Tobin to include
risk-free assets, and then applied in equilibrium analysis by Sharpe, Fama, and
Lintner to the risk pricing of capital assets. The explicit measures of risk and
return have made the EV approach well-suited to empirical analysis. In addition,
rigorous demonstrations of its usefulness as an approximate method for portfolio
selection (Levy and Markowitz), especially when risk is small relative to total
wealth (Tsiang), have enhanced its general applicability.

The EV approach can be derived from an expected utility (EU) maximiza-
tion framework. Two sufficient conditions require an investor’s utility function
to be quadratic, reflecting preferences only for expected values and variances of
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outcome distributions, or that the investor’s expectations be modeled by normal
distributions that are fully specified by their expected values and variances. If
one of these conditions is met, then an expected utility-maximizing choice is
made from the efficient set. However, both quadratic utility and normality are
highly restrictive conditions. While quadratic utility may be a useful second-
order approximation for identifying a preferred choice from an EV efficient set,
its restrictive assumptions preclude its usefulness as an analytic tool. Moreover,
some of the theoretical models we will analyze clearly have nonnormal distribu-
tions. Thus we need a different basis for developing an expected value-variance
analytic model.

The approach followed in later chapters begins by recognizing that quadratic
utility and normal distributions are sufficient but not necessary for consistency
between EU and EV results. For example, for choices involving alternative
combinations of a risky and a riskless asset, all the decision maker’s choices are
members of an EV set. Moreover, each choice from the EV set can be found by
maximizing a linear function of expected values and variances for a given slope
subject to the constraints of the EV set. After finding the solution which can be
made to correspond to any specific expected utility solution, adjustments from
equilibrium can be analyzed in terms of income and substitution effects that
are stochastic counterparts of the same effects found under certainty conditions.
The characteristics of the income effect were derived under expected utility
maximization by Cass and Stiglitz; they apply in general to all shapes and
families of probability distributions. However, the substitution effect must be
derived from expected utility maximization under a more restrictive set of
assumptions about the investor’s preferred trade-off between the expected values
and variances of choices—specifically, that this trade-off is modeled by linear
isoexpected utility lines for an investor with constant absolute risk aversion (i.e.,
an investor whose income effect is zero).

The linearity condition cited above was obtained by Freund for normal
distributions and by Pratt for nonnormal distributions as a second-order ap-
proximation. Since we are not restricting the analysis to the case of normal
distributions, our estimates of the substitution effect with the expected value—
variance approach are also only approximations of the results that would occur
using the general expected utility model. However, for the models we analyze
" using this framework, the analytic results are the same as those found in other
studies using the general expected utility model.

Since expected utility itself is considered an approximation to the true
unknown preference function of the population of investors, and since ex-
act estimates of probability distributions are difficult to obtain, it is rea-
sonable and acceptable to use the expected value-variance framework. It
allows economic theory under risk to be developed in a plausible, com-
prehensive way. Moreover, economic theory under risk needs a simple
point of departure in order to clearly predict outcomes, understand deci-
sion behavior in complex situations, and test hypotheses about the effects
of risk. -
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CONCLUDING COMMENTS

In this chapter we introduced the subject matter of this book by characterizing
economic theory under risk as a framework for understanding and predicting a
firm’s responses to unanticipated changes in its operating environment. Some
of these responses involve extensions of the theory of the firm under certainty
conditions; others involve institutional and market phenomena that are unique
to the existence of uncertainty. In general, risks are considered to add to the
costs of operation for a firm with a risk-averse decision maker and thus reduce
economic efficiency.

The concepts of risk premiums and certainty equivalents serve as important
analytic measures for developing the theory of the firm under risk and for
conducting various types of equilibrium analyses. These concepts will be
implemented using expected values and variances of probability distributions
in order to fully characterize the.stochastic properties of the firm’s choices.
This will allow comparative static analysis of how a firm’s expected utility
maximizing choice changes in response to changes in probability distributions,
initial wealth, and risk aversion. In turn, these comparative static results can be
linked to the practical responses that a firm’s decision makers may consider in
achieving a risk-averting goal.

ENDNOTE

1. For a detailed diséussion of decision theory see Raiffa, Schlaifer, Anderson et al.,
Luce and Raiffa, and DeGroot.
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PART

ONE

AN INTRODUCTION TO
DECISION MAKING UNDER RISK




CHAPTER

TWO

WHAT IS RISK, WHY IS IT A PROBLEM,
AND HOW DO WE LIVE WITH IT?

In this chapter we introduce the basic foundations of risk analysis. We begin
by defining risk and uncertainty using actual decision situations as illustrations
and then organize the various components of these situations into a framework
for effective decision analysis under risk. The meanings of risk and uncertainty
are distinguished from one another, and the expected utility model (EUM) is
introduced.

WHAT IS RISK? WHERE DOES IT COME FROM?

Before defining risk and uncertainty, consider the following decision situations
and their implications for uncertainty analysis.

A student preparing to leave for class notices an overcast sky suggesting possible
rain. She considers taking an umbrella. This would be the safe alternative but would
also involve a cost. If the sky clears, the umbrella will be a nuisance. Should she
take the umbrella?

A salesperson will be making a long car trip on medium- to well-worn tires.
The tires may have 10,000 miles of driving left, but their worn condition increases
the possibility of tire problems. The safe, but expensive, alternative is to replace the
tires. The less costly alternative is to use the old ones. However, the inconvenience
of replacement along with the dangers of a high-speed blowout are important
considerations. Should the salesperson purchase new tires?

A farmer must decide whether to repair his old combine or buy a new one.
If comn prices and yields are favorable, the new purchase will be the better choice,
since investments in the old combine cannot be recovered and even if repaired it
would not be as reliable as a new one. On the other hand, poor weather and/or low
comn prices could create cash flow problems which would be reduced by repairing
the old combine rather than purchasing a new one. The farmer’s lender is concerned

11
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about the farmer’s liquidity. Should the farmer repair the old combine or buy a new
one? '

Each of these situations involves decision making when the outcome is not
known with certainty. Instead, one of several outcomes may occur, and it may or
may not be possible to assign a probability weight to each of them. Moreover,
to evaluate the possible choices properly the decision maker needs to consider
(1) how much risk he or she is willing and able to carry for a particular decision
and for all sources combined, (2) what sources of information are available to
estimate more precisely the risks involved, and (3) the alternatives for reducing
the likelihood of these risks, transferring them to other parties, and/or building
his or her capacity to bear risks. All these considerations are involved in decision
making under risk.

The adjective “uncertain” describes an event whose outcome is not definitely
known. An uncertain event has at least two possible outcomes and usually more.
If events are uncertain, we cannot say that one is more uncertain than another.
All we can say is that they are both uncertain.

Perceptions of the uncertainty associated with events are unique to individual
decision makers. These perceptions can be expressed in terms of probability
distributions that reflect the likelihood of occurrence for various events and
outcomes. An ex ante assessment of an event’s likelihood is made by individuals
based on their experience, accumulation of knowledge, and quality of judgment.
Generally, activities that build experience, increase information, and improve
judgment help to improve the quality of expectations and thus enhance decision
making.

To illustrate, the student above might believe, based on her experience
and information, that rain is impossible. From her standpoint, this removes all
uncertainty. But, it still might rain. In tumn, this experience might change her
expectations, as could an updated weather forecast.

Suppose, in another example, that two individuals are watching a two-
horse race. Individual A lacks information about the horses, their riders, and
their trainers; thus he is unsure of the winner. Individual B, however, knows
that the first horse’s ankle is weak, his rider is overweight, and his diet has
been poor. This information, along with the knowledge that the second horse
is well-prepared and is being ridden by a competent light rider, “guarantees”
the outcome of the race. The outcome of the horse race is a certain event
for individual B and an uncertain event for individual A. The certainty or
uncertainty exists in the minds of the individuals, one of whom lacks information.
If individual A had the same information as individual B, he would also view
the race’s outcome as certain.

We will avoid the metaphysical question of whether all events have a
predestined outcome; rather, we will define certainty in terms of the knowledge
of the decision maker about an event’s outcome. If an individual can specify
an event’s outcome with insignificant doubt, he faces certainty. If knowledge is
insufficient to specify a unique outcome, the individual faces uncertainty.
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Decision makers may also improperly assess the quality of their information.
Suppose that the horse “certain” to win stumbles and falls at the starter’s gate
so that the second horse wins. The point is not that the outcome of the race was
certain (which it was not), but that decision maker B believed it was.

The dependence on subjective information to distinguish uncertainty from
certainty should not imply that uncertainty is merely a lack of available
information. An individual may collect all available information and still view
the event as uncertain. Thus an uncertain event is an event with more than
one possible outcome. True certainty exists only when the decision maker can
specify a unique outcome of an event and his or her information corresponds to
real-world conditions. These conditions are rarely met.

Certainty and uncertainty are also related to the degree of accuracy of
future expectations about an event’s outcome. We may predict that tomorrow’s
temperature at 12:00 P.M. in East Lansing, Michigan, will be between 180 and
—75°F. But this prediction does not admit much accuracy compared to predicting
a high temperature in the 55 to 60°F range. In general, the greater the accuracy
desired in predictions, the more extensive is the knowledge required.

UNCERTAIN VERSUS RISKY EVENTS

In an earlier time, Knight distinguished between risk and uncertainty based on
the empirical information available for generating probabilities. If the decision
maker faced a situation similar to others which had occurred in the past and
information about the outcomes of previous choices could be used to estimate
probability functions, the situation was risky. A unique situation with little or no
empirical basis for the formation of probability distributions Knight considered
uncertain.

Decision makers must, however, make probability judgments even with
little or no empirical support. And once formed, the decision process is similar
whether the decision maker faces Knightian risk or uncertainty. Partly as a
result, few economists maintain the distinction imposed earlier by Knight but
use uncertainty and risk interchangeably. We propose, however, to distinguish
between risk and uncertainty.

Events are uncertain when their outcome is not known with certainty.
Uncertain events are important when their outcomes alter a decision maker’s
material or social well-being. We define as risky those uncertain events whose
outcomes alter the decision maker’s well-being. This definition is broader than
the popular concept of risk as involving possible loss or injury and implies that
risky events form a subset of uncertain events. The decision maker’s response
to uncertain nonrisky outcomes is indifference or irrelevance. Only risky events
have significance.

We said earlier that events are either uncertain or certain and cannot be
graded by degree of uncertainty. This does not hold for risky events. A decision
maker facing a set of risky choices does not view them as equally risky. The




14 AN INTRODUCTION TO DECISION MAKING UNDER RISK

decision maker learns to order them from least risky to most risky. This ordering
does not depend solely on the level of risk but on the decision maker’s attitudes
toward risk as well.

Other definitions of risk consider variances, likelihoods of loss, safe levels
of income, or specific requirements on probability distributions. These, however,
are only tools with which well-defined classes of decision makers measure and
order risky choices. They should not be confused with the general definition of
risk.

While risky events cannot be identified by objective probabilities involving
their outcomes as Knight suggested, the quality of information about probability
distributions is a useful consideration. It is recognized, of course, that all
informational bases are in part subjectively determined (e.g., which information
is to be included in a subjective decision); still one data base may be more
empirically anchored than another. For example, basing the probability density
function of rainfall in a location on 100 years of data represents a different
(better) informational state than using only 5 years of data. Unfortunately, the
current state of uncertainty analysis is such that we are unprepared to make
such distinctions using the existing theoretical tools. Future developments may
eventually correct such deficiencies.

To summarize, an uncertain event has more than one possible outcome;
the likelihood of the outcomes, however, can be described by probability
distributions. If the outcomes of the uncertain event alter the decision maker’s
well-being, the event is risky.

THE EXISTENCE OF DECISION PROBLEMS

Decision problems exist when the decision maker can take actions to alter his
or her well-being, although the best choice is not known with certainty. The
decision maker’s choice between risky events and responses to changes in risky
situations are the general topics of this book. However, formulating the choice
set is also important.

The major analytic tool for solving decision problems under risk is the
expected utility model. If a unique utility function for decision makers is
known, then a unique solution can be identified. In decision theory, analysts
may be content to reduce the set of possible choices to a smaller number of
efficient choices which include the preferred choice. In contrast, economic theory
identifies a preferred choice and then evaluates adjustments in the preferred
choice in response to changes in the set of choices facing the decision maker.

The components of a decision problem include (1) the states of nature, (2)
the possible outcomes, (3) the probabilities of outcomes, (4) the choices, and

(5) the decision rule for ordering choices. To illustrate, let sy, ..., sy, represent
m possible states of nature with probabilities p(s1),...,p(sm) Of occurring.
The decision maker’s choices are identified as A;, ..., A,. Each choice yields
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Table 2.1 Listing of possible choices Ay,..., A, and their out-

comes 0;; (1=1,...,m; 7= 1,...,n) over the possible states of
nature sy, ..., S8, Which occur with probability p(s1),..-,p(sm)
Choices

Nature Probability

state of state A A; A,

8 p(s1) Oon - Oi; 01,

‘sm P(am) Om1 te Omi v Omn

a unique outcome O;; (1 =1,...,m; 7=1,..., n) in the respective state of

nature. These components of the decision problem are shown in Table 2.1.

Having identified the possible choices, the outcomes, and their likelihoods,
the decision maker must order the choices according to preference. Consider a
practical decision problem. Suppose the states of nature are s, for rain and s;
for no rain. Let the choices for a salesperson contemplating a trip be: A;, buy
steel-belted radial tires which are expensive but safe; Aj, buy less expensive
and less safe Polyglass tires; and As, continue to drive on the old tires. Let the
probabilities of s; and s, be p(s1) and 1 — p(s1), respectively. This decision
problem is described in Table 2.2a.

How does the decision maker compare the outcomes (O11,---, O,3) for
this problem? A common denominator must be established for the outcomes
to make the comparison. One approach is to create a situation for selling (or
buying) the outcomes in exchange for their equivalent cash value. We might ask
the decision maker: How much would you pay to drive steel belts in the rain?
Suppose the response is $350. Then we subtract the actual cost of the tires, say
$250, leaving a cash value of $100. This value represents outcome y;; in Table
2.2b. Using the same procedure we can obtain the dollar equivalent values of
other outcomes.

In general, then, we express the outcomes of choices in money equivalents
y;; in Table 2.2b. Johnson refers to the process of converting outcomes to
their dollar equivalents as premaximization. Converting outcomes to their dollar
equivalents permits an ordering of the outcomes over the states of nature.
However, a decision maker’s responses to the questions which give rise to the
ordering may depend on many factors. Examples include the decision maker’s
health, acceptance by peers, relationships with others, retirement security, leisure
time, probability of business survival, and so on. The effects of these factors on
the ordering of outcomes is the subject matter of psychologists and sociologists;
it is not pursued here. Instead, we focus on ordering the choices under fairly
simple, yet general, assumptions about the decision maker’s attitudes toward
risk and returns.
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Table 2.2 Decision matrix for a tire purchase decision

Choice
Nature Probability A Ay Aj
state of state (Buy radials) (Buy Polyglass) (Keep old tires)
Panel a
81, rain p(s1) On Oz O3
sy, nonin 11— p(s) 0Oy 02 023
Panel b
81, rain p(s1) v V12 v13
82, no@in  1-p(s1) y21 y2 Y23
‘Panel ¢
81, rain p(s1) U(yn) U(yi2) U(y13)
s, nonin 1 -—p(s;) U(yz1) U(y22) U(y)

To begin, let the probability of s; be one, p(s;) = 1. This implies that
the decision maker has complete certainty about the outcomes for his or her
choices A, A, and A3 in Table 2.2b, The approach then is to order choices
A;, A,, and Az based on the dollar ordering of y11, y12, and yi3. If yy; is
the largest, then choice A; is preferred. It provides the greatest satisfaction to
the decision maker. Next, suppose the decision maker views states of nature as
being risky, with 0 < p(s;) < 1. Now the ordering of choices requires that
all possible outcomes be considered and compared. This comparison requires
a decision rule with an index for ordering choices based on attitudes toward
having different dollar values.

This indexing rule will be useful, however, only if decision makers act as
though they are following it. Dillon made the analogy that the mathematical
solution for determining the path of a thrown baseball requires solving complex
differential equations; however, those who can catch baseballs need not solve
these equations, even though their catches imply that they do. The implication
here is that decision makers may adopt rules of thumb to guide them through
complex decision processes. These rules have been tried and tested over time
and are held with confidence by the decision maker. Similarly, an analyst who
wishes to model the behavioral situation seeks a modeling approach that serves
as a reasonable, reliable guide in a complex decision situation. Any decision
rules that an analyst develops must produce choices consistent with the decision
maker’s rules of thumb, even though the decision maker may not explicitly
follow these rules.
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SOME DECISION RULES

One decision rule often proposed when little is known about the probability of
occurrence for various states of nature is the rule of the extreme risk averter.
The rule essentially says: Avoid the worst that can happen. It finds the worst
outcomes for each choice and indexes the choices according to the minimum
value. The best of the worst outcomes then is the most preferred. Other decision
rules are referred to as safety-first rules. Several versions of the safety-first model
exist, most of which employ probabilistic information about the worst possible
outcomes (reviewed in Robison et al.). Some rules may result in a sequential
ordering of goods with safety satisfied first. The safety-first rules are simple,
but they exclude considerable information. On the other hand, if probabilistic
data are lacking about the entire range of outcomes, or if the decision maker
is unwilling to establish probabilities for the entire range of outcomes, this
approach may be valid.

Another decision rule is: Maximize expected returns. The index for this
rule is the summation of the possible monetary outcomes weighted by their
respective probabilities. This weighted value for equal probabilities is called an
average, or an expected value. The expected value index for the jth choice
E(A;) is expressed as:

E(4)) = Zp(si)yij (2.1)

The ordering of the choices is based on E(4;) (7 = 1,...,n), with the
maximum E(A;) being preferred.

The expected value rule considers all outcomes, along with probabilistic
information about their likelihood of occurring. However, this rule is criticized
because it values each dollar equally and it may not adequately weight the
possibilities of low-level or high-level outcomes. The expected value or expected
returns rule was generally accepted at the time of Bernoulli in the 1700s. The
rule said, for example, that the best gamble had the highest expected value.
Bernoulli challenged the rule, however, and asked:

... let us suppose a pauper happens to acquire a lottery ticket by which he may
with equal probability win either nothing or 20,000 ducats. Will he evaluate the
worth of the ticket as 10,000 (the expected value of the gamble) and would he be
acting foolishly, if he sold it for 9,000 ducats? (Savage, p. 97)

Bernoulli postulated that, instead of maximizing the expected monetary
values of uncertain choices, people assign moral expectation values, later called
utilities, to each outcome. This concept explained how the marginal worth of
a dollar at a low income level could be valued differently than an additional
dollar at a high income. However, it raised the question of how to assign moral
expectations or utilities to each outcome.

Bernoulli’s response to this question was to use the logarithmic function to
convert dollar outcomes to utilities. Then he summed the expected logarithm of
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outcomes for each choice and chose the one with the largest index. Samuelson
and others express doubt that all decision makers’ preferences can be expressed
by a logarithmic function.

In the absence of a universal utility function, each person’s utility function
must be measured in order to predict or prescribe his or her preferred choice.
The ability to measure utility functions and the appropriate methods involved
are issues of continuing debate among economists and decision theorists.
Nevertheless, measurement tools developed by von Neumann and Morgenstern
have been tested and refined in many applications.

Von Neumann and Morgenstern, and later others (e.g., Friedman and Savage,
Herstein and Milnor, Luce and Raiffa, to name a few), deduced the expected
utility model in an axiomatic system. They proved that, if an individual’s
behavior conforms to certain postulates, an ordinal utility function can be
derived to arbitrarily assign utility values to contingent incomes. The preferred
investment decision maximizes the expected value of the ordinal utility function.
Different axioms have been used to deduce the EUM, and, at minimum, they
include:

Ordering of choices: For any two choices A; and Az the decision maker either
prefers A; to Ag, prefers Ap to Ay, or is indifferent.

Transitivity of choices: If A, is preferred to Az, and A, is preferred to As, then
A; must be preferred to As.

Substitution of choices: If A, is preferred to Az, and Ag is some other choice,
then a risky choice pA; + (1 — p)As is preferred to another risky choice
pAg + (1 — p) As, where p is the probability of occurrence of A, or A4;.

Certainty equivalent of choices: If A, is preferred to Aj, and Ag is preferred
to As, then some probability p exists that the decision maker is indifferent
to having A, for certain or receiving A, with probability p and As with
probability 1 — p. Thus Aj is the certainty equivalent of pA; + (1 — p)As.

If a decision maker obeys these axioms (and several others which are more
technical), a utility function can be formulated which reflects the preferences of
the decision maker.

Procedures for actually estimating utility functions are presented and eval-
uated in many references (e.g., Anderson et al., Robison et al.). The process
is briefly reviewed here. The estimation process typically occurs in a gaming
situation involving repeated applications of the certainty equivalent axiom cited
above. The axiom requires four informational items: values for y1, y2, ys, and a
probability measure p. The values of y1, y2, and ys are dollar-valued outcomes
associated with choices. The gaming approach specifies the values of three of
the items and then requires the decision maker to provide a consistent value for
the fourth. The process is then repeated by changing one of the specified items
and eliciting a new value for the fourth item from the decision maker, and then
repeated again, and so on.

To illustrate, suppose the decision maker faces a risky alternative having
a maximum possible gain of $10,000 with probability 1 — p. The scale of
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this person’s utility function is fixed by arbitrarily specifying a utility value
of 1.0 for the gain, U(10,000) = 1.0, and a utility value of .0 for the loss
U(—10,000) = 0. Utility values for monetary values in between these limits are
found as the person indicates certainty equivalents for differing likelihoods of
gains and losses. This procedure treats y;, ys, and p as the prespecified values.
It assumes that the utility of the certainty equivalent (ycg) equals the expected
utility of the risky alternative:

U(yoe) =p(1.0) + (1-p)(0) =

To illustrate, when probability p = .5, the decision maker might say that
a sure loss of $2500 is the certainty equivalent to gambling on a possible
loss or gain of $10,000 at these odds. Thus the utility of minus $2500 is
.5, U(—2500) = .5. When p = .7, the decision maker might indicate $3500
as the certainty equivalent. Then the utility of $3500 for this person is .7,
U($3500) = .7. So far, this procedure has yielded four observations on_utility
and monetary values for a particular decision maker. When enough observations
are available, a utility function can be developed using graphical or statistical
procedures in which the function is presumed to yield a valid, reliable ordering
of the decision maker’s risky choices.

To complete our earlier example, assume we associate with outcomes y1,
Y12 Y21, and yao the utility values U(y11), U(y12), U(yz1) and U(yzz) (see
Table 2.2c). The index of preference of choices can be constructed as:

EU(A;) =p1U(yu) + [1 - p(s1)]U(y21)
EU(A3) = p1U(y12) + [1 — p(s1)]U(y22)
EU(As) = p1U(w13) + [1 - p(31)]U(y2s)

The largest of EU(A,), EU(Az), and EU(As) is then selected.

A number of alternative approaches and applications have been used in
conducting utility games, with most of the focus on the choice of the prespecified
values in the certainty equivalent axiom (Anderson et al.). The entire procedure
has been subjected to considerable scrutiny and criticism, with numerous sources
of possible bias associated with the interviewers’ methods, preferences for
specific probabilities, negative preferences toward gambling, absence of realism,
inexperience of the participants, confounding of preference for income with
risk attitudes (Fleisher), and other sources of error (Roumasset, Binswanger,
Robison). The major criticism of empirically derived utility functions is the
quality of precision of the resulting preference representations. Preference for
income is a subjective perception. As in the case of the subjective perception
of salinity, sweetness, temperature, and noise, no representative function can
perfectly capture the ordering. "

These shortcomings have prompted considerable efforts to refine, extend,
and generalize the methods for directly eliciting utility functions from individual
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decision makers (e.g., Halter and Mason). Thus many improvements have been
made in the elicitation process. In general, as both a positive and a normative -
tool, the expected utility model remains the premier indexing tool.

CONCLUDING COMMENTS

The expected utility model is the premier indexing rule for ordering choices
under uncertainty. It is the disciplinary tool in most of the literature focusing on
economic analysis under uncertainty. Schoemaker claims it has been the major
paradigm in decision making since World War II. If so, the EUM has been both
durable and versatile as a tool in decision theory and economic theory.

It is not, however, a perfect predictor, because of problems in accurately
measuring utility functions and the probabilities of outcomes of choices. Appli-
cations in decision theory have allowed for this imprecision through the use of
various efficiency criteria (King and Robison), but in the equilibrium analysis
of economic theory, imperfect measurement is not permitted because a unique
solution is required.

Nevertheless the EUM is used in economic theory under risk because it
is the best alternative available. It allows us to build behavioral models for
sensitivity analysis. Since the introduction of the EUM in 1944, it has taken
considerable time to move from economic analysis under certainty to economic
analysis under risk. Nonetheless, the EUM is helping to increase the accuracy
with which we describe and analyze economic problems.
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CHAPTER

THREE

ORDERING INDIVIDUALS’ RISK ATTITUDES

In this chapter we further develop the concept of a decision maker’s risk attitude,
as reflected by the characteristics of the utility function, and explore the effects
of different risk attitudes on decision choices in a risky environment. The risk
attitude, along with the decision maker’s perceptions (i.e., expectations) of the
amounts of risk, are two of the basic behavioral components of decision theory.
The expected utility model directly reflects these components by evaluating
the utility values of different monetary outcomes using probabilistic weights to
represent their likelihood of occurrence.

The exact characteristics of utility functions are, of course, unique to each
individual. Nonetheless, we can develop methods of classifying decision makers
according to the general characteristics of their utility functions. At a high level
of generality, this may consist of attitudes ordered into risk-averse, risk-neutral,
and risk-preferring categories. Moreover, within the class of risk-averse agents
we can further order individuals according to levels of risk aversion and the
response of risk aversion to changes in wealth or other objects of utility. In
turn, these ordering procedures enrich our capacity to evaluate and predict the
responses of decision' makers to changes in the risk characteristics of their
decision environment.

In developing this framework we make use of the concepts of risk premium
and certainty equivalent that were introduced in Chap. 1. Now, however, we
define them more rigorously for analytic use in later chapters.
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SHAPES OF UTILITY FUNCTIONS

The first general distinction commonly made between the risk attitudes of
individual decision makers is based on the shape of their utility functions defined
with respect to wealth or another appropriate monetary outcome. The particular
shape of the function indicates the decision maker’s attitude toward additional
wealth and can be used to draw inferences about a person’s attitude toward
risk either at a unique level of wealth or over a range of wealth levels. The
possible shapes may be classified as concave (to the horizontal axis), linear, or
convex. Concavity (convexity) reflects diminishing (increasing) marginal utility.
A linear utility function reflects constant marginal utility.

In Bernoulli’s day, the most popular decision rule treated the marginal
utility of income as constant. Thus a linear utility function was postulated for
maximization:

Uly) = ky (3.1)

where y represents outcomes (usually a monetary value) and k is a positive
constant. To illustrate, let a decision maker with the linear utility function in
Fig. 3.1 choose between three possible choices. Choice 1 has two possible
outcomes, y; and y,, which are equal but-opposite distances from ycg and
occur with equal probability. Choice 2 has a certain outcome of y equal to
yce. The expected utilities of these two choices, as shown in Fig. 3.1, are both
kE(y), since ycg = E(y). Thus the decision maker is indifferent between
them.

Choice 3 has more narrowly dispersed outcomes, ys; and y,, which also are
equal and opposite distances from yc g, occur with equal probability, and have
an expected value of E(y). Again the expected utility of the choice is kE(y).
Thus the decision maker’s preference for choice 3 equals his or her preference
for choices 1 and 2. Moreover, the choices are unaffected by changes in variance
as long as the expected values are unaffected. For this case, the decision maker
is considered risk-neutral.

Bernoulli disagreed with the behavioral result of the decision rule based on
a linear utility function. He used the St. Petersburg gamble and other examples
to show that individuals did not order choices according to their expected
values.! He argued instead that diminishing marginal utility better described
the preferences of a decision maker. In particular, he suggested that the correct
and generally applicable function was the logarithmic utility function:

U(y) =logy (32)

This function is still popular, but not widely applicable in describing decision
makers’ preferences (Samuelson).

Most economists agree with Bernoulli that a concave utility function is a
more reasonable assumption than a linear utility function. The concave utility
function, as shown in Fig. 3.2, is interpreted to have diminishing marginal utility
(U" < 0) in contrast to the constant marginal utility of the linear function. The




24 AN INTRODUCTION TO DECISION MAKING UNDER RISK

Utility
of
Income /
U(y)
Uly) = ky
]
I
|
Yq Y3 EY)=YGE Y4 Yo

Figure 3.1 Representation of the linear utility of income function ky with constant marginal

utility of income.

slopes of lines drawn tangent to the function U(y) measure marginal utility.
The declining slope of successively higher lines suggests diminishing marginal
satisfaction for additional income. These decision makers will respond to risk
in fundamentally different ways than will those with linear utility functions.

To demonstrate this difference in response, we present the decision maker
with the same choices as in Fig. 3.1. Choice 1 has outcomes y; and y3, each
occurring with probabilities p and 1 — p, respectively. If p = 1, the expected
utility of the lottery is U(y1), and if p = 0 the utility of the lottery is U(yz).
In this example, p is -% and the expected value of the lottery is E(y). Then the
expected utility of the lottery EU(y) is L[U(y1) + U (y2)]. Corresponding to
this expected utility value is an income y& g which, if received with certainty,
would yield the same level of satisfaction as the lottery.

Now consider the decision maker’s response to choice 2, yielding outcomes
ys and y, with equal probability (1) and an equal distance from E(y). The
expected value of choice 2 is still E(y), but the outcomes are much less
dispersed than for choice 1. The expected utility of choice 2 is %[U (ys) +
U (ys)]» which exceeds the expected utility of choice 1. Moreover, the certainty
equivalent income for choice 1, y, is less than that for choice 2, §co g, because
of the latter’s reduced dispersion of outcomes around E(y).

For the decision maker with constant marginal utility, reducing the dis-
persion of the choice’s cutcomes, while leaving constant the expected values,
does not alter his or her preference. Now, however, diminishing marginal utility
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Figure 3.2 Graphical analysis of how decreasing dispersion of choice outcomes increases expected
utility for risk-averse decision makers.

causes reductions in the expected utility for choices with greater dispersions and
the same expected value. This result occurs because a positive increase in dis-
persion is more than offset in utility terms by an equal negative dispersion. More
simply stated, the increase in well-being resulting from an increase in income
from E(y) to yo in Fig. 3.2 is less than the increase from y; to E(y) because
of diminishing marginal utility, even though E(y) — y1 = y2 — E(y). Expected
value—preserving spreads of probability increase symmetrically the likelihood of
less favorable and more favorable events; the net impact is to reduce expected
utility for a risk-averse individual with a concave utility function.

This discussion of concave utility functions could be repeated for convex
functions, although the relationships would be reversed. Increasing the disper-
sion while leaving unchanged the expected value would increase a choice’s ex-
pected utility. Thus decision makers with increasing marginal utility are called
risk-preferring; that is, they prefer the choice with more widely dispersed out-
comes when given two choices with the same expected value.

MORE DISCRIMINATING RISK ATTITUDE MEASURES

Concavity, linearity, and convexity of utility functions imply an ordering
of individuals into three broad classes: risk-averting, risk-neutral, and risk-
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Figure 3.3 Arbitrary utility function U;(y) with indifference between the certainty equivalent
income yc g and the lottery with outcomes y; and y; which occur with probabilities p and 1 — p
respectively.

preferring. These classes are indicative of the individuals’ risk attitudes, but
they do not give an exact measure of the degree of risk attitude. Suppose a
more discriminating method is sought for ordering individuals according to
their risk attitudes. We might, for example, wish to order risk-averse decision
makers according to their degree of risk aversion. A common procedure is to
elicit the responses of different individuals to identical sets of risky choices.
A lottery with outcomes y; and y, is offered for sale to N individuals. Their
maximum bids represent the certainty equivalents they would be willing to pay
in exchange for the lottery. At an indifference point, the utility of the certainty
equivalent yog (a.maximum bid price) is equally preferred to the expected
utility of the lottery.
For the ¢th individual with utility function U;(y), this equality is written
as: :

Ui(yce) = pUi(v1) + (1 — p)Ui(y2) (8.3)

where p = probability that y; will occur. We represent this indifference using
the concave function U;(y) in Fig. 3.3. The expected value of the lottery is
E(y) = py1+(1—p)y.. The straight line connecting U; (y;) and U; (y2) indicates
the axnected utilitv for all nossible values of 0 < n < 1. The concavitv of the
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Figure 3.4 Arbitrary utility functions U;(y) and U;(y) showing indifference between ycg
received with certainty and the lottery with outcomes y; and y, occurring with probabilities p
and (1 — p), respectively.

function U;(y) suggests that the lottery’s expected value must at least equal its
purchase price yog. The difference between the expected value of the lottery
and its certainty equivalent is the risk premium = that is often used to order
individuals according to their risk attitudes (Pratt). The larger the risk premium,
the more risk-averse the individual given the choices and the amounts of risk
involved. The relationship between the shape of the utility function and the risk
premium is important. Concave utility functions imply positive risk premiums,
while convex functions imply negative premiums.

Consider two individuals < and 7 bidding certainty equivalent incomes for
a lottery consisting of outcomes y; and yo with probabilities p and 1 — p
respectively. The utility functions for the two individuals < and 5 are represented
graphically in Fig. 3.4 as U; (y) and U, (y), where U;(y) = U;(y) plus a positive
constant. Interestingly, both bid certainty equivalent income ycg in Fig. 34.
Therefore, based on either their certainty equivalent bid price ycg or the risk
premium = , they have identical risk attitudes.

Consider two other individuals k and £ with utility functions Uk (y) and
U (y) whose utility functions are related by the expression Ue(y) = bUk(y),
where b > 0. As shown in Fig. 3.5, like individuals U;(y) and Uy(y), their




28 AN INTRODUCTION TO DECISION MAKING UNDER RISK

U(y)
Uy(y)
/ /
U (y)
U lypp)= —
(YCEIT /
EU /()
Uklyce)=
EUK(Y)
"
Y1 YceE(Y) Yo

Figure 3.5 Arbitrary utility functions Ui(y) and Uj(y) showing indifference between yop
received with certainty and the lottery with outcomes y; and y; occurring with probabilities p
and (1 — p) respectively.

respective certainty equivalent bid prices and risk premiums are equal.

The lesson here is that the utility function U (y) is not a unique indicator of
risk preferences, at least if the risk premium or certainty equivalent outcomes are
to serve as risk attitude indicators. In fact, adding a constant and/or multiplying
the utility function by a constant cannot change the risk premium or certainty
equivalent income associated with the transformed utility function.

To show more generally the invariance of orderings caused by linear
transformations of utility functions consider the utility function U(y) used in the
evaluation of two probability distributions f(y) and g(y). Suppose the expected
utility of f(y) exceeds the expected utility of g(y). That is:

/U(y)f(y) dy > /U(y)g(y) dy

Choosing a different origin, say «, and changing the scale by multiplying U (z)
by the constant B, yields the same ordering. To show this we write:

/ [a+ BU(y)]f(v) dy ? / [+ BU(¥)]9(y) dy
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But the expected value of the constant « is just o , and the expected value of
EBU(y) is just BEU (y). So we can write:

a+8 [V () dy 2+ [Ulsdotw) dy
and, after canceling, we obtain:

/U(y)f(y) dy>/U(y)g(y) dy

The cardinal measure, therefore, is not the important characteristic of the utility
function.

The characteristic of the utility function that does influence the risk
premium is its bending rate. In Fig. 3.6 we compare two individuals with utility
functions U;(y) and Uj(y). As they are drawn, U;(y) bends at a greater rate
than Uj(y), since U;(y) = U;(y) at y1 and y2, yet is steeper at y; and flatter
at y,. As a result, risk premium ; associated with U;(y) is larger than risk
premium «; for function U;(y). This result suggests that individual ¢ is, in
general, more risk-averse than individual j but, as we shall see, this inference
might be premature.

The utility functions in Fig. 3.6 are bending downward. As a function
bends less in a downward or negative direction, the risk premium decreases—
in Fig. 3.6 the decrease is from =; to «;. As the rate of bending in a negative
direction approaches zero, the function U(y) approaches a straight line and the
risk premium 7 approaches zero. Thus the certainty equivalent of a risk-neutral
decision maker with a linear utility function is the expected value of the lottery.

Positive bending of the function U(y), on the other hand, implies a negative
risk premium; that is, a decision maker will willingly pay amounts in excess of
the expected value to acquire the lottery. As indicated above, these individuals
are risk preferrers or risk lovers.

The direction of the bending—negative, zero, or positive—is indicated
by the second derivative of U(y). For U”(y) < 0 the bending is negative,
U"(y) = 0 indicates no bending, and U"(y) > 0 implies positive bending.
Thus either U (y) or the sign on the risk premium is used to classify decision
makers into the risk-averse, risk-neutral, or risk-preferring category. But the
magnitude of the second derivative is not a rate and therefore cannot be used
for interpersonal comparisons of risk aversion because an individual’s utility
function is unique only up to a positive linear transformation. That is, the
value of the second derivative can be arbitrarily varied by multiplying the
utility function by a positive number. Hence U”(y) is not suitable for ordering
individuals beyond the classes of risk averters, risk neutrals, or risk preferrers.
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Figure 3.6 Comparison of risk attitudes of individuals ¢ and j with utility functions U;(y) and
U;(y) and certainty equivalent incomes yog; and yo Bj» respectively.

LIMITATIONS OF RISK PREMIUMS

Despite their intuitive appeal, risk premiums have limited usefulness for classi-
fying decision makers according to their risk attitudes. They depend on probabil-
ity distributions that may differ among choices and over time as well. Moreover,
a risk premium is a single parameter used to represent risk attitudes described
by the function U(y). Thus it resembles a measure of central tendency, much
like an expected value. To illustrate these limitations, consider the difficulty of
classifying individuals with Friedman-Savage-type or Kahneman-Tversky-type
utility functions.

Friedman and Savage argue that decision makers who display a preference
for choices with both negative and positive risk premiums must have utility
functions containing both concave and convex segments. Such a utility function
is displayed in Fig. 3.7a. Friedman and Savage maintain that this function
applies generally to all decision makers; it may reflect risk-preferring behavior
for casino-type gambling and risk-averse behavior for business-type decisions.
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Empirical estimates of utility functions, however, have not substantiated their
claim. In fact, Kahneman and Tversky proposed a different type of preference
function that is just the reverse of the Friedman-Savage function (Fig. 3.7b).
Their empirical investigations have led them to conclude that people exhibit
risk-preferring characteristics in loss situations and risk-averse characteristics
in gain situations.

For the Friedman-Savage utility function in Fig. 3.7a, the risky prospect
with possible outcomes y; and y, is equal in utility to the certain outcome of yq.
The same is true for the utility function proposed by Kahneman and Tversky.
In both cases the risk premium is zero. But in neither case are the decision
makers considered risk-neutral, nor do they have identical risk attitudes. The
difficulty is caused by inferring from a single parameter—the risk premium—
the general characteristics of a decision maker’s utility function. Thus the risk
premium is considered a central tendency measure of risk aversion. It provides
a risk attitude measure for a particular level of risk and over a particular range
of wealth but may not accurately depict risk attitudes “in the large.”

So, a risk premium cannot in general be used to order individuals according
to their relative degree of risk aversion; utility functions themselves cannot be
used either, since they are subject to linear transformations. The next section will
introduce a unique, measurable means of ordering decision makers according to
their risk attitudes. This measure reflects the bending rate of a utility function.

THE BENDING RATE AS A MEASURE OF RISK ATTITUDE

A unique measure of the direction of bending of U(y) and the rate of change
in slope of the function is the absolute risk aversion function. Introduced
independently by Pratt and Arrow, it is defined as:

— Ull(y)
R(y) = 34
( ) U' (y) ( )
A related measure is the relative risk aversion function R, (y); it measures the
elasticity of marginal utility and is defined as:

U (y)y
R.(y) Ty (3.5)
Neither measure is affected by linear transformations of the utility function.
They have positive values for risk averters, a zero value for risk-neutral decision
makers, and negative values for risk lovers. Moreover, their uniqueness permits
interpersonal comparisons at comparable wealth levels.

The absolute risk aversion function is the more commonly used risk attitude
measure. Moreover, every function U(y) has a corresponding function R(y),
and all linear transformations of U(y) would map into the same function?
R(y). Thus representing decision makers by their absolute risk aversion function
R(y) is preferred to using a nonunique utility function® U (y).
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Figure 3.7 Comparison of the Friedman-Savage utility function and the Kahneman-Tversky

preference function.
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DARA, CARA, and IARA Risk Attitudes

The rate of bending function R(y) has proven useful in classifying deci-
sion makers’ risk attitudes. For all decision makers whose von Neumann-
Morgenstern utility functions have derivatives U’(y) > 0 and U"(y) < 0,
all values of the corresponding function R(y) will be positive. Hence R(y) > 0
implies risk aversion. Beyond that, however, the sign of R'(y) indicates how
risk attitudes change as y increases.

If R'(y) < O, the most usual assumption, decision makers are said to
display decreasing absolute risk aversion (DARA). This implies that the risk
premium for a lottery decreases as the decision maker moves to higher wealth
levels. Similarly, R'(y) = 0 implies constant absolute risk aversion (CARA).
As one might expect, the risk premium for CARA decision makers is constant
regardless of changes in the decision maker’s wealth. Finally, R'(y) > 0implies
increasing absolute risk aversion (IARA), suggesting that the risk premium
increases for the same lottery with increases in wealth.

To illustrate DARA, CARA, and IARA utility functions, the absolute
risk aversion function R(y) and its derivative are calculated for three risk-
averse utility functions: U(y) = Iny; U(y) = A — ¢*¥ where 4,1 > 0; and
U(y) = y — by? where b > 0 and (1 — 2by) > 0. For the logarithmic utility

function: .
R(lny) = -
(Iny) "

and :
R'(lny) = ?/? <0

implying a DARA risk attitude. For the negative exponential utility function:
R(A—e )=

and
R'(A- e—"y) =0

implying a CARA risk attitude. Finally, for the quadratic utility function:

2b
— 2 et
Ry—by") = 1 2y
and (262)
] _ 2 N S A 0

implying a IARA risk attitude. Since IARA implies such a strong (and rarely
observed) response to risk, one can understand why a quadratic utility function
is not generally assumed except as a local approximation.
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Local and Global Risk Attitude Méasures

The absolute risk aversion function R(y) indicates both local and global
measures of risk aversion. Since R(y) is a function defined over y, the measure
of risk attitude can occur at any value of y. Consider a specific value for y,
call it E(y), and ask: For the sth and jth individual, who is more risk-averse
at income E(y)? Another way to ask the question is: For small gambles with
variance o2, and expected value E(y), which individual would pay the larger
risk premium 7 to eliminate uncertainty?
To answer these questions, Pratt derived the approximate relationship:4

r = 2 R[E(y)]o? (3.6)

Equation (3.6) indicates that the risk premium =« is equal to one-half of the
product of the absolute risk aversion, measured at the expected value of the
gamble E(y), times the variance of the choice outcomes. Recall from Chap. 1
that the certainty equivalent income ycg is found by subtracting « from E(y).
Using (3.6) we express ycg as:

vor = B(y) - 3 RIEW))? (5.7

Equation (3.6) implies that, the greater the measure of risk aversion R(y),
the larger the required risk premium. Thus, in the small, or at a point, individuals
can be ordered according to their degree of risk aversion either by their absolute
risk aversion function valued at a point or by the size of the risk premium.

Ordering individuals globally or in the large creates another problem.
When is one individual always more risk-averse than another? Consider two
individuals « and j whose absolute risk aversion functions R;(y) and R;(y)
are described in Fig. 3.8a. As the patterns of the functions R;(y) and R;(y)
in Fig. 3.8a show, individual ¢’s risk aversion decreases as y increases, so that
he or she exhibits decreasing absolute risk aversion. In contrast, individual j
exhibits increasing absolute risk aversion. Both individuals face a choice with
possible outcomes y; and y, and mean outcome E(y) = §. From Eq. (3.6) we
can determine that the sth individual is more risk-averse since R;({j) exceeds
R;(§)- If, however, the choice has outcomes y; and y, with mean outcome
E(§)* = y*, then the jth individual is more risk-averse since R;(y*) exceeds
R (y*)- : .

Now suppose the ith and jth individuals face a lottery consisting of y, and
ys with mean E(y**) = y**. Which is more risk-averse? We cannot say based
on the local measure of risk aversion. The individuals could be interrogated
to find their respective certainty equivalents, and thus we could obtain risk
premiums for the choice with outcomes y- and ys. However, we cannot infer
that the individual with the larger risk premium is more risk-averse, because
many utility functions with corresponding absolute risk aversion functions may
have identical risk premiums. In this example, shifting the probability weights
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Figure 3.8 Comparison of absolute risk aversion functions R; (y) and R;(y) over outcomes y for
the ith and jth individuals, respectively.

between outcomes y, and ys reverses the risk-averse orderings of the sth and
jth individuals. This, however, is inconsistent with the condition that the risk
attitudes are independent of probability measures.

If R;(y) were consistently greater than R;(y), as in Fig. 3.8b, then the risk
premium for individual ¢ would always exceed that for individual 7, no matter
what the probability distribution of choices. In this case, the sth individual would
be globally more risk averse than the jth individual. -

One condition which guarantees that one decision maker is more risk-
averse than another is risk aversion in the large. Risk aversion in the large
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requires that utility function U *(y) bends at a greater rate everywhere than
does utility function U (y). This is guaranteed, as Pratt showed, if U*(y) is a
concave transformation of U (y). The function g is a concave transformation
if ¢ > 0 and g"” < 0, that is, if g is concave. To demonstrate how concave
transformations increase the absolute risk aversion function R(y), we write:

U*(y) = 9[U()] (38)
To find the corresponding absolute risk aversion function R*(y), we
recognize that:
U*'(y) = ¢'[U]V'(¥) (3-9)
and
U*(y) = ¢ [UW]" () + [U'W)] 6" [U ()] (3.10)

With these derivatives we can write:
Ry = S W) + LACIFAUOIE
¢[U)]U"(y) (3.11)
= R(y) + R{9(»)]U'(¥)

where R[g(y)] = —g" [U(y)]/g' [U(y)] But since R[g(y)] >0, asis U”:
R*(y) > R(y) (3.12)

So, increasing concavity increases the value of R(y). If R;(y) > R;(y)
for all y, then decision maker ¢ is considered globally more risk-averse than
decision maker g, a condition we showed was guaranteed by one utility function
being a concave transformation of another.

The consequences of decision maker ¢ being globally more risk averse than
decision maker j are:

1. For every lottery faced by individuals < and j, individual ¢ will pay a larger
risk premium (;) than individual j (x) in order to eliminate uncertainty
(Pratt).

2. Equivalently, since # = E(y) —ycE, where yce is the certainty equivalent
income or the lottery sale price acceptable to the lottery’s owner, the cer-
tainty equivalent income for individual j exceeds the certainty equivalent
income for individual 2.

3. Individual ¢’s utility function curves at a greater rate than individual
4’s; that is, his marginal utility declines at a faster rate. This is true if
Ui(y) = g[U;(y)] where ¢’ > 0 and ¢ < 0; that is, g is concave.

4. A lottery exists that would be acceptable to individual y but not to
individual 2.

5. When facing choices that combine a certain choice and a single risky
asset, individual 1’s preferred choice contains more of the safe asset than
individual j’s.
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While these statements can all be deduced from global risk aversion, it is
important to maintain the distinction between local and global risk aversion.
Equation (3.6) is a local measure of risk aversion at E(y). The absolute risk
aversion coefficient is measured for a specific income level E(y). Moreover,
holding o2 constant, the ordering of the risk premiums must be consistent with
ordering of risk aversion coefficients measured at E(y).

Average Risk Aversion

The global risk aversion measure is so strict that very few decision makers can
be considered more or less risk-averse than others over all levels of wealth.
Pratt’s local approximation, on the other hand, applies only at a local level. For
distributions with dispersion beyond local bounds we cannot be confident that
the local measure is still useful. We suggest another risk aversion measure-an
average risk attitude measure.

Consider first that the average of a constant is the constant. Thus for the
constant absolute risk-averse utility function —e=*¥, A is a constant and an
average risk attitude measure.’ To demonstrate how the parameter A can be used
more generally as an average risk attitude measure, consider two individuals
facing the same distribution, one with absolute risk aversion function R(y) = A
and another with a nonconstant absolute risk aversion function R* (y). Suppose
that both would pay the same risk premium = to eliminate uncertainty. Then,
since the average absolute risk aversion consistent with the risk premium is A,
both decision makers are said to have an average absolute risk aversion of A
for the uncertain choice.

Moreover, for any risk premium # associated with risk aversion function
R(y), we can always find a constant absolute risk aversion measure ) that leads
to the same risk premium by adjusting A until the risk premium associated with
the utility function —e=?¥ is #.

Using mathematical notation, we can more precisely define average absolute
risk aversion. Let the kth individual’s utility function be U and her certainty
equivalent for the probability distribution g(y) be ycx,. Then we can write:

Ulyor.) = 3 U(¥)9(y)

Also, by taking the inverse of U we could write:
vos, =0~ [ Uls)st)]

However, many utility functions may have identical certainty equivalent values
for a distribution g(y). Figure 3.7 illustrates graphically how two quite different
utility functions (and absolute risk aversion functions) can both have the same
risk premium or certainty equivalent when facing a gamble involving y; and
y, with an expected value of yo.
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One function that has the same certainty equivalent value, if A, is properly

chosen, is:
U(y) = —e ¥ (3.13)

In particular, this function has a constant absolute risk aversion value that is
also the average absolute risk aversion. For this function we can write:

—e~AkYCEL — Z e—kkyg(y)

and

_—=In) e 2 ¥g(y)
YCE, = /\k

The ), value above which equates the inverse of expected utility to the
certainty equivalent yog, is defined as the average risk aversion coefficient.
The relationship between A and ycg, is inverse. If YyocE 41 > YCEw» then
we expect the average risk aversion coefficient Axy1 < Ax. These results are
consistent with the relationship between certainty equivalents and absolute risk
aversion established for Pratt’s local and global risk aversion measures.

From the above relationship, given a certainty equivalent income, the av-
erage risk aversion coefficient Ax can always be found. This measure orders
decision makers according to their risk aversion for a particular distribution. It
provides a more general measure than Pratt’s local measure, yet is less restric-
tive than his global measure. Its limitation is that it depends on the measures
of probability.

Average Risk Aversion and Normal Distributions

Where the utility function is characterized by constant absolute risk aversion and
g(y) is normally distributed with mean E(y) and variance o2, the utility of the
certainty equivalent income ycg set equal to expected utility can be written as:

=1 - —-F Y 2 .‘
Ulyce) = —/(2w02) 2 exp{ ly po (v)] - Ay} dy (3.14)
Freund, and Hildreth before him, solved for ycg in the above expression and

found: ro?
o2
yoe = E(y) — = (3.15)

Rearranging and remembering that E(y) — ycE i the risk premium yields:

2
r= ’\—‘2’- (3.16)

which is Pratt’s local approximation. Because A is constant in this case and no
moments above the second exist, the expression is an exact equality and no
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Figure 3.9 An expected value—variance efficient choice set.

EXPECTED VALUE-VARIANCE TRADE-OFFS

It is common (e.g., Binswanger, Brink and McCarl, Dillon and Scandizzo) to
infer orderings of risk attitudes based on the trade-off between the expected
value and variance at the equilibrium choice on EV sets. EV sets describe a
risk-efficient frontier ACB, as in Fig. 3.9, from which the expected utility-
maximizing choice can be found. Individuals who select choices above C
are considered less risk-averse than those selecting choices actions below C.
However, such an ordering may not clearly distinguish between risk-aversion
measures in the small and in the large.

Consider, for example, the equation for the tangent line at C in Fig. 3.9.
The intercept, D, a choice with zero variance, is a certainty equivalent outcome
yop of the risky choice C with expected value E(y) and variance o2. The
slope is a constant times the variance. Defining the constant slope coefficient
as \/2 yields an equation of the form:

A
E(y) = yoE + 502 (3.17)

where the intercept ycg plus the slope times the variance at equilibrium equals
the expected value E(y) of the choice at point C. We can rearrange the equation
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to obtain:

A
E(y) - yog = 50" (3.18)

Since E(y) — ycE is by definition the risk premium 7, we are left with Pratt’s
local approximation formula given in Eq. (3. 6). Twice the slope AJ2 or A,
turns out to be the local absolute risk aversion function value at E(y). Since
this is a local risk aversion measure, we cannot generalize about global risk
attitudes based on EV slope coefficients. Only if all decision makers have
constant absolute risk aversion functions can we make such global inferences
about risk attitudes.

CONCLUDING COMMENTS

In this chapter we addressed the concept of ordering individuals according to
their risk attitudes. We began by characterizing their attitudes into the general
categories of risk-averse, risk-neutral, and risk-preferring based on the shape
of their utility functions. Then we sought a more discriminating method of
ordering risk attitudes within these broad categories. The bending rate of an
individual’s utility function serves this purpose. It can be measured by the
Pratt-Arrow function of absolute risk aversion, which itself depicts a functional
relationship between the level of risk aversion and wealth as the object of
an individual’s utility function. Following this approach an individual can be
classified as having decreasing absolute risk aversion, constant absolute risk
aversion, or increasing absolute risk aversion. Moreover, individuals can be
compared in terms of local and global measures of their risk attitudes, although
global comparisons are more difficult to achieve.

Ordering individuals according to their risk attitudes is a complicated
process. Risk aversion in the strict sense is only represented by a function, but
comparisons of functions are difficult. Unfortunately, the single parameters often
used in comparisons, such as risk premiums, slopes on EV sets, and average
risk aversion measures are not independent of the probability distributions of
the choices being compared. As a result, the ordering may change when the
distributions. being compared are changed. Thus further work is needed to
develop more general global comparisons of risk aversion. "

APPENDIX 3A

Pratt has derived an approximate relationship between R(y), the risk premium, and the
variability of the choice. Recall that there exists a risk premium # such that the utility
of the certain income U[y — =] is equally preferable to the expected utility of any
lottery EU(y + z) where z is a random variable with mean zero and variance o2. Thus,
E(y +z) = y. So, we can write:

EU(y+2)=U(y— ) (3A.1)
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From Pratt we can solve for w by taking the Taylor series expansion about y of
both sides of the expression above. This we write as:

Uly — m) = U(y) — 7U’ () + 0(e?) (3A.2)
and "
EU(y+2)=E [U(y) +2U'(5) + y—z@zz ;.. ] (3A.3)

The term O(c'?) indicates a term small enough to be ignored without significantly
changing the results. Taking the expectations operator inside the bracket in Eq. (3A.3)
produces the result:

"
BU(y +2) = U@ + o 20™ + - (3A4)
Next we equate the two Taylor expansions and write:
"
U(y) — 7U'(y) +0(c?) = U(y) + g%a'z 4o (3A.5)

Canceling out U(y) from both sides and ignoring all terms beyond the second term
in both expressions (since they must be small) we obtain an approximate equality
relationship which we write as:

_Ull(y)a,z
307(y) (3A.6)
Recognizing the ratio —~U"'(y)/U(y) as R(y), we write:
2
= @ " (3A.7)

2

ENDNOTES

1. The St. Petersburg gamble paid a prize depending on the number of coin tosses that
occurred until the first heads (tails) appeared. The expected value of this gamble
was infinity but no one would pay more than a finite sum to play.

2. The measure R(y) is a unique measure of the bending rate and therefore a unique
measure of risk associated with the utility function U(y). Pratt shows this result by
integrating twice the function —U" (y)/U’(y). Integrating R(y) gives log U'(z) +c;
exponentiating and integrating again gives ¢°U®) 4 But the constants of integration
¢ and d are immaterial—that is, they do mnot affect risk premiums or certainty
equivalent incomes. Thus the measure R(y) contains all relevant information about
Ul(y), while eliminating all unnecessary information, including the constants of
integration.

3. So far we have inferred that the essence of a decision maker’s attitude toward risk is
captured by the rate of bending in the ordinal utility function U (y) or the absolute risk
aversion function R(y). This function alone, however, has no element of uncertainty
or risk included in it. R(y), for example, is simply a function defined over y. But the
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manner of its derivation by finding indifference between risky alternatives makes it
unclear whether the function represents simply ordinal ranking of a certain income or
whether it is also a measure of risk attitude. This issue is discussed more completely
by Fleisher. Whichever is true, we use the function to compare risk attitudes of
individual decision makers.

4. The derivation of this measure is presented in App. 3A.

5. Define R(y) = —U"(y)/U’(y). For U(y) = —e~*¥, U'(y) = e~ and U"(y) =
—~2e~AY, Forming the ratio and canceling produces the result R(y) = A.
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CHAPTER

FOUR

ORDERING RISKY CHOICES

In the preceding chapter, we established the concepts and methods for identi-
fying risk attitudes and for ordering individuals according to their risk attitudes
when they are faced with similar probability distributions. In this chapter, we
shift the focus to the concepts and methods for ordering risky choices, based on
comparisons of their probability distributions, for a given decision maker and
utility function. The relationship between this chapter and the preceding one is
important. The ability and accuracy of methods of ordering choices are directly
related to our information about a decision maker’s attitudes toward risk. The
more detailed and precise the information, the more complete the ordering of
risky choices. A complete ordering of risky choices requires substantial infor-
mation about risk attitudes but also increases the chances of ordering errors if
the attitudinal information is in error. A partial ordering of risky choices requires
less comprehensive information about risk attitudes, and reduces the chances
of ordering errors. Thus the ordering concept involves a trade-off between the
completeness of ordering and the possibility of ordering errors.

ORDERING RULES FOR UTILITY FUNCTIONS

A decision maker’s utility function is the basis for a complete ordering of
choices, since it reflects all that is known about the effects of monetary out-
comes on the decision maker’s risk attitudes. Let U(y) be the utility func-
tion of a decision maker and let fi(y), f2(y),.-., fu(y) be the probabil-
ity distributions describing the likelihood of outcomes for n risky choices.
The decision maker must order these distributions according to his or her
preferences. This is done by forming the preference (expected utility) in-
dexes: EU(y) f1(v); EU(y) f2(y), - - - , EU(y) fn (). A complete ordering of the
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choices is based on the absolute differences between the index values. When
an explicit answer is required, complete ordering by the utility function is war-
ranted. The advantage, however, of such an explicit ordering is also a disadvan-
tage: It applies only to a single decision maker. Beyond that the utility function
has no application.

As noted earlier, some, such as Bernoulli, have argued that individuals
have similar utility functions. The logarithmic utility function proposed by
Bernoulli orders distributions according to their geometric means, the highest
value being the most preferred.! A linear utility function, on the other hand,
orders distributions based on their expected values.

There is no evidence, however, that either the logarithmic or the linear
utility function accurately represents the preferences of all individuals. As a
result, efforts have been made to evaluate the behavioral implications of various
types of utility functions. If decision makers are risk-averse, then a quadratic
utility function of the form:2

Uly) =y—by* (4-1)

can be used where the restriction > 0 must hold under risk aversion. One might
also argue that a quadratic function reasonably approximates any concave utility
function.®

Taking the expectation of a quadratic utility function leads to an equivalent
expression of the function containing explicit parameters of probability density
functions that can then be used to order risky choices. If, for example, y is
stochastic with expected value E(y) and variance o2, then the expected value
of Eq. (4.1) can be written as:

E(y - by®) = E(y) — bE(y%) (4.2)

Since o2 equals E(y2)— (Ey)?, we can add and subtract (Ey)? without altering
the equality and obtain: :

Bly - by?) = E(y) - b{ By ~ [E@)] + (B}

= By) - b {o* + [EQ)’}

This criterion, with b > 0, implies that risk is based on expected values and
variances of choices. For b > 0, an increase in o? while holding [E(y)]2
constant increases the risk of choices and reduces their expected utility. Thus
for choices having equal means but different variances, the choice with the
smallest variance is preferred.

The quadratic function can be further restricted by limiting the value of b&.
Elton and Gruber, for example, argue that the y value at which negative marginal
utility occurs (where U’(y) = 1 — 2by = 0) should be at least some specified
distance from the mean of y. If the maximum value for y is, say, two standard
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E(y)

02(y) ,

Figure 4.1 Expected value-variance efficient choice set represented by the line BC'; points interior
to the line BC are inefficient.

deviations from the mean, then y = E(y) + 20 and b = {Z[E(y) + 20]}
With an explicit minimum value for 5, a more refined criterion can be deduced.

This criterion, referred to as the expected value—variance (EV) criterion is
described graphically in Fig. 4.1. Each dot in Fig. 4.1 describes the expected
value and variance of a choice. Choices A; and A; have the same expected
value, although A; has the lower variance. Thus A; is preferred according to
the EV criterion. Again the risk attitude describes individuals whose preferences
are represented by quadratic utility functions concave to the origin.

Choices along line BC are preferred to choices interior to BC for the
identified class of decision makers. Sometimes the distinction used is efficient
choices and inefficient choices. When choices are separated into efficient choices
(e.g., points along BC) and inefficient choices (e.g., points interior to BC),
then each inefficient choice is dominated by a choice in the efficient set. To
illustrate, all quadratic risk-averse decision makers prefer A; to Aj; therefore
A; is inefficient.

STOCHASTIC DOMINANCE RULES

Imposing any functional restriction on the shape of the utility function limits
its generality. As a result, more general ways to describe decision makers have
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Table 4.1 Likelihood of outcomes associated with choices A; and A2 with
density functions f(y) and g(y) and cumulative functions F(y) and G(y),
respectively.

Cumulative density

Density function function
Outcomes A Ay Ay Ay
Y1 fy1) = 9(y1) g(vy1)  F(y1) = Gy)
" - e sw  F@) < G
" w0 - e g0 Fao - Glue)
Un oy = s s Faw = Gl

been sought. The result has been more generally applicable efficiency criteria
called stochastic dominance rules (Hadar and Russell, Hanoch and Levy).

Consider the class of decision makers who prefer more income to less, a
very unrestrictive assumption. A decision maker from this class is faced with
choices A; and A, whose outcomes and likelihood of outcomes are shown in
Table 4.1. The outcomes, in ascending order, associated with the choices are
Y1,...,Yn. The likelihood of outcomes for choice A is described by either
the density function f(y) or the cumulative function F(y). The likelihood of
outcomes for choice A is described by either the density function g(y) or the
cumulative function G(y).

Suppose the probability functions f and g are related in the following ways:
f(y) = g(y) except for the sth and kth outcome. Outcome y; is more likely if
choice A, is selected while outcome y; is less likely for this choice. That is,
probability a < g(y;) is subtracted from the likelihood of the zth outcome under
A; and added to the likelihood of the kth occurrence. So, for choice A,, an
event more satisfying, yx, is more likely to occur, while a less favorable event
y; is less likely to occur. The result for all those who prefer more to less is to
make choice A; less risky and preferred to A,. The effects of these probability
shifts on the cumulative functions F(y) and G(y) are demonstrated in the last
two columns of Table 4.1. The probability of outcome y, or something less
(worse), is always less for choice A, than for choice As.

This criterion, called first-degree stochastic dominance (FSD), is stated as
follows: The choice associated with F(y) is always preferred to the choice
associated with G(y) by all decision makers who prefer more to less if the
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i
G(YK)= F(yk) __________________
G(Yi) --------
a
F(yi) p--——-—-- .
’ Y1 Yi Yk Yn

Figure 42 Graphical presentation of the condition on cumulative distributions F'(y) and G(y)
for G(y) to be riskier or less preferred than F(y).

condition F(y) < G(y) holds for all y with strict inequality for at least one
y. The condition is described graphically in Fig. 4.2. That is, the cumulative
distribution function of the dominating choice always lies to the right of (below)
the dominated choice.

Second-Degree Stochastic Dominance

First-degree stochastic dominance is based on the behavioral property that
decision makers prefer more return to less, U’(y) > 0; it is the most general
efficiency criterion. Its disadvantage is a limited ordering capacity. That is, the
number of choices in a first-degree stochastic dominance efficient set is usually
large. This is unsatisfactory because all the choices within the FSD set cannot
be ranked against one another. Furthermore, if large numbers of choices are
considered, the criterion becomes unworkable.

The solution is to further refine the description of decision makers’
preference, and thus increase the ordering capacity. If, in addition to having
utility functions exhibiting positive marginal utility [U’(y) > 0], decision
makers are also risk-averse: [U "(y) < 0], then second-degree stochastic
dominance (SSD) can be used (Fishburn, Hadar and Russell, Hanoch and Levy).

Consider again a comparison between choices A; and Az having probability
density functions f and g, respectively, with outcomes y1,...,9n arranged
in ascending order. The distributions are constructed so that distribution f is
obtained from distribution g by shifting the probability from the tails to the
center of the distribution. For example, a < g(y;) is shifted from the 2th to the
(i + 1)st outcome. In contrast, 8 < g(yx+1) is shifted back from the (k + 1)st
outcome to the kth outcome. The results are presented in Table 4.2.
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In Table 4.2, the first probability shift a exceeds the shift 8. For decision
makers with diminishing marginal utility, we can unequivocably argue that the
decision maker benefits by such a shift. The shift of a probability which makes
the more favorable outcome y;,; more likely, while reducing the likelihood of
the less favorable outcome y;, increases expected utility by the amount:

Ulyssa)e — Ulw)e = « AU(y,) (4.4)

On the other hand, a shift in probability A from yx 41 to yx, which is less
favorable than y; 1, reduces expected utility by the amount:

BU (yx+1) — BU (yx) = BAU (y&) (4.5)

The difference between the gain of expected utility at y; and the loss of expected
utility at y; is written as:

a AU(y:) — BAU(y) > 0 (4.6)

It exceeds zero because o > f and because diminishing marginal utility requires
the marginal utility at yx to be less than at y;.

Thus probability shifts which preserve the sign of the cumulative difference
Y>(G — F) > 0 always imply that F' is preferred to G. The cumulative
distributions, along with the cumulative sum of the differences between F' and
G, are presented, respectively, in Fig 4.3 and 4.4. In Fig. 4.3 the cumulative
distributions differ by probability amount « at y;, where F(y;) < G(y;), and
by probability amount B, at y, where F(yx) > G(yk).

The cumulative sum of the difference between F(y) and G(y) is graphically
described in Fig. 4.4. This measure is best thought of as the cumulative value
of the area between the two cumulative distributions F(y) and G(y). And,
since they differ only at points y; and y;, this area measure will have only two
values, « and « — S. In general, SSD occurs when the accumulated area of the
cumulative function for choice A; remains less than that for A; as the area
is summed over higher levels of monetary outcomes. This criterion allows the
cumulative functions to cross, which FSD does not.

MEAN-PRESERVING SPREADS AND INCREASES
IN VARIANCES

Spreading of probability from the center of a probability density function to its
tails makes the transformed density function riskier than the original function for
all risk-averse decision makers. This fact is the consequence of SSD. Table 4.2
described how probability can be spread so as to create an SSD-dominated
distribution. Another way to spread probability leaves unaltered the expected
value of the distribution.
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F(y).G(y) 3
G(yk+1 )= -
F(yk+ ) F(Yk) ......
L Gly,)i2
Glyj41)=
Flyi+ 4 G —
ai
F(yi).....
y
Yi Vi Yk Yk+1 Yn
Figure 43 Cumulative density functions F(y) and G(y) for choices A; and A;.
2[G(y)—F(y)]
at—-
a—f---
y

Yi Yk Yn

Figure 4.4 Cumulative sum of the difference G(y) — F(y).

To illustrate, .suppose a firm’s income y is distributed with expected
value E(y) and variance o?(y). One method of spreading probability without
changing the expected value is to increase the variance of income from o2 (y)
to 02(9) > o?(y). By doing so, the shifted distribution is made less preferred
than the original for all risk-averse decision makers.

Of course, one might increase o2(y) and at the same time increase E(y).
This spreading of the probability density distribution offsets the increase in
variance with an increase in expected income, so that the preference for the
original or the transformed distribution depends on the specific risk attitudes of
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Figure 4.5 Alternative probability density functions.
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Figure 4.6 Alternative cumulative density functions.

the decision maker.

Throughout this book, we will examine the effects on an optimal choice
of an increase in variance of the random factor or of the variance of income.
When this occurs, increase in variance (without a change in expected income)
constitutes a mean-preserving spread. Moreover, if variance is increased by
spreading profitability to the tails, then the distribution with the larger variance
is dominated by SSD.

Now consider a special application of SSD. Suppose the choice is between
A, and A,, whose probability density functions f and g are normally distributed
with equal expected values and different variances. Two such probability density
functions are shown in Fig. 4.5 and their cumulative distributions in Fig. 4.6.

Since the distributions are normal and symmetric, the probability mass
is divided equally at their expected values. Thus the cumulative distributions
corresponding to F and G are equal and cross at their expected values, and
symmetry requires that the difference in area between the distributions to the
left of the expected value equal the difference in area to the right of the expected
value. That is, area a in Fig. 4.6 equals area b. As a result, the cumulative
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sum of the differences between G and F' will always be positive, and F
will be preferred to G by all risk-averse decision makers. This result leads
again to the EV criterion: For normal distributions with equal expected values
but different variances (standard deviations) the distribution with the smallest
variance (standard deviation) is preferred. Thus two justifications for the EV
set described graphically in Fig. 4.1 are: (1) risk-averse decision makers with
quadratic utility functions and (2) risk-averse decision makers facing choices
with normally distributed outcomes.

A third justification relied on in this book is Tobin’s, which has been
generalized by Meyer (1985).* If choices consist of convex combinations of a
single risky asset and a riskless asset, and the expected return on the risky asset
exceeds the safe asset return, then all choices must be on the EV frontier. No
choice is available which is not on the EV frontier. Moreover, the EV frontier
describes an efficient set regardless of the probability distribution or risk attitude
of the decision maker. And since the models considered here, for the most part,
include only a single risky asset, we have a completely general justification for
selecting the preferred choice from an EV set.

STOCHASTIC DOMINANCE WITH RESPECT TO FUNCTIONS

Each of the efficiency criteria identified above will order choices into efficient
and inefficient sets for a particular class of decision makers. If one set of choices
is preferred to another, this set is also less risky. Hence these efficiency criteria
add definitiveness to the meaning and measurement of risk.

As practical tools, however, these efficiency criteria have a relatively
low discriminatory power. For first- and second-degree stochastic dominance,
the resulting efficient sets are too large (King and Robison). Moreover, the
arbitrary classification of decision makers based on the derivatives of their utility
functions is quite restrictive if decision makers display both risk-preferring and
risk-averse attitudes.

Stochastic dominance with respect to a function is an evaluative criterion
that orders choices without the restrictions of a particular utility function or
specified characteristics of risk attitudes. The decision-making class is defined
by upper and lower bounds on absolute risk aversion functions. Moreover, FSD
and SSD are special cases of this more general efficiency criterion.

To illustrate, the class of decision makers ordered by FSD was assumed to
have positive marginal utility, U’(y) > 0. This assumption places no bounds on
the absolute risk aversion function, since U"(y) can take on any value. Thus
the decision-making class consistent with FSD is defined as:

—o00 < R(y) < o0 » (4.7)

The SSD set is more discriminating. Besides U’ (y) > 0, it requires U "(y) < 0.
Now the function R(y) and the applicable class of decision makers are limited
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to the risk-averse class with R(y) > 0:

0< R(y) <o0 (4.8)

Stochastic dominance with respect to functions utilizes a lower bound
R, (v) and an upper bound function R;(y) on the absolute risk aversion function.
Then the class of decision makers is: ‘

Ri(y) < R(y) < Raly) (4.9)

The necessary and sufficient conditions for ordering choices consistent with
the class restriction were established by Meyer (1977). For distribution f to be
preferred over g by decision makers in the class described by (4.9), the solution
procedure requires a utility function U,(y) which minimizes:

/wm—ﬂmwmw (4.10)

subject to:
_ U" ( y)
U'(y)

Equation (4.10) is equivalent to measuring the difference between expected
utilities for distributions G(y) and F(y).> Minimizing (4.10) involves a search
for the decision maker in the defined set who is least likely to prefer F to G.
If this member of the set, as defined by (4.9), actually prefers F to G, then so
do all the other members of the set. Thus G is eliminated from the efficient set.
If the member of the set described in (4.9) who is least likely to prefer F' to
G does not in fact hold this preference, then the procedure is repeated for G
relative to F'.

‘Meyer’s solution to this problem requires an optimal control technique.
Details of the solution are given in Meyer (1977), and an example is given in
King and Robison. Applications of the technique are illustrated in Love and
Robison.

R1 (y) S S Rz(y) for all Yy

CONVEX SET STOCHASTIC DOMINANCE

One characteristic of these efficiency criteria is the unanimity of the preference
requirement. For example, if A, dominates A, by FSD (Table 4.1), then
all decision makers who prefer more income to less must prefer A; to Asz.
Similarly, if A; dominates Az by SSD (Table 4.2), then all risk-averse decision
makers must prefer A; to As.

The most recent advance in the area of stochastic dominance relaxes the
unanimity of the preference requirement. Convex set stochastic dominance
(CSD), as developed by Fishburn and applied by Meyer (1979) and Cochran
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et al,, can be applied to any of the efficient sets already described. Suppose
the efficient set identified by Meyer’s choice among distribution algorithms
consists of choices Aj,..., A, Ax+1. Then, according to CSD, if a convex
combination of A;,..., A, can be found which dominates choice Axy1, then
Agy41 can be rejected from the efficient set. In essence, what CSD asks is:
Can all the decision makers for whom the efficiency criterion applies find one
member of Aq,..., A, (not necessarily the same one) which is preferred to
Ars1?

CONCLUDING COMMENTS

An efficiency criterion divides the decision alternatives into two mutually
exclusive sets: an efficient set and an inefficient set. The efficient set contains
the preferred choice of every individual whose preferences conform to the
restrictions associated with the criterion. No element in the inefficient set is
preferred by any of these decision makers. Thus the inefficient alternatives are
no longer considered. In general, then, the stochastic dominance criteria and
the expected value-variance (EV) criterion are efficiency criteria that provide a
partial ordering of risky choices.

An efficiency criterion applies for a particular class of decision makers as
defined by a set of restrictions on their utility functions. If these restrictions are
rather general in nature, the criterion can order alternatives while requiring only
minimal information about preferences. If enough alternatives are eliminated,
decision makers can make a final choice from the efficient alternatives. A major
problem with efficiency criteria, however, is the possible trade-off between
their discriminatory power and their general applicability. Efficiency criteria that
place few restrictions on preferences, and so apply for most decision makers,
may not eliminate many choices from consideration. Conversely, criteria that
identify small efficient sets usually require more specific information about
preferences. Thus efficiency criteria help resolve some of the problems of
single-valued utility functions, but have shortcomings of their own. Nonetheless,
efficiency criteria are widely used in empirical analyses of risk situations.

In the remainder of this book, the preferred choice is uniquely identified
from a set of possible choices. This requires that decision makers’ risk attitudes
be specified more precisely than required by the efficiency criteria discussed in
this chapter. However, efficiency criteria will play a role. For the most part, all
choices available to decision makers will be included in an EV set. This will
allow us to specify the unique risk attitude which determines the optimal choice
selected from an EV set as one whose desired trade-off between variance of
returns and expected returns is A/2. The consistency between this risk attitude
specification and more general expected utility results will be discussed in

Chap. 6.
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ENDNOTES

1. The ordering equivalence of the geometric mean criterion and the expected logarith-
mic utility function requires that each criterion yield the same orderings of choices.
Thus if there exists a positive monotonic transformation equating the expected value
of the two functions, the orderings will be identical.

The geometric mean Eqy(y) of outcomes y1,...,¥n with likelihoods of occur-
rence pi, ..., pn Tespectively is:

Eg(y) = [[ ¥

1=1

A logarithmic function is a monotonic transformation which when applied to the
above expression yields:

n n
> pilogy =103(Hyf‘)
i=1 t=1

Since the expected value of the log utility function is a monotonic transformation
of the geometric mean, it must provide the same ordering.

2. Since utility functions are unique up to linear transformations, we can always
transform quadratic functions of the form U(y) = d+ey+ fyz, where d, e, f
are parameters, to obtain the expression above which has the single parameter b.

3. A second-order Taylor series approximation would, for example, lead to quadratic
function approximation in a neighborhood.

4. A more formal statement of Meyer’s generalization of the result used by Tobin is
as follows. From Feller (p. 134) two cumulative density functions Fj(-) and F5(-)
differ only by location parameters a and b if:

Fi(y) = Fy(a +by) with b >0

Proposition If the set of random variables {y;} is described by cumulative density
functions G;(-) and there exists some random variable z with a finite mean and
variance such that each G;(-) differs from F(-) only by location parameters, then the
ranking of y; by expected utility can be represented by a ranking function V (o, 1)
where o; and y; are the standard deviation and mean of y; (Meyer 1985).

For many of the models developed in this book, the condition stated above
is satisfied; random variables do differ by location parameters, hence they can
be ordered using EV methods, and no inconsistency between the EV model to
be developed later and expected utility models is possible. In some later models
involving the truncation of cumulative density functions to form choices, the
consistency is not guaranteed except by the condition that only EV choices are
available.

5. To show this let the difference in expected utility between f and g be:

[vwswas - [veswas= [vo]re - sw)] e
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Then applying the change-in-variable technique to integrate let dv = f(y) — g(y),
v = F(y) — G(y), and u = U(y). Then, recalling udv = uv]*%g, — [ vdu, we write:

f Uy) [f(y) - 9()] dy =U () [F@y) - GW)] " + / [Gy) - F)] U'(y) dy
= / [G(y) - F(»)] U'(y) dy
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CHAPTER

FIVE

FIRM-LEVEL MODELS UNDER RISK

The purpose of this chapter is to categorize the risk models that will be analyzed
in later chapters. The possible models are numerous; only a few are considered
here in order to establish the analytic approaches and to indicate the range of
empirical applications.

CERTAINTY AND RISK CONDITIONS

The traditional theory of the firm is based on an assumption of perfect
knowledge about the outcomes of choices. The rules for ordering choices
under certainty are profit maximization subject to a cost constraint or cost
minimization subject to an output constraint. These rules yield identical results.
The utility function is not explicitly considered in certainty analysis because
it is equivalent to profit maximization. That is, the same solution is found by
maximizing profits as by maximizing utility of profits.

To demonstrate, assume the firm sells output g at a certain price p with
costs of C(q) + B, where B is fixed cost and C(g) is the variable cost. Also,
assume the firm maximizes utility U of profit y:

max U(y) (5.1)

subject to:
y=pq—C(q) - B

The first-order conditions yieid the optimal solution:

U'(y)[p—C'(g)] =0 (5.2)
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Since U’(y) is positive, it can be canceled, leaving the profit-maximizing
condition in which marginal revenue equals marginal cost:

p=C'(q) (5.3)

Second-order conditions, of course, require C”(g) > 0.
Under risk, however, the utility of profits does matter. The first-order
condition for maximizing expected utility becomes:

E{U'(y)[p-C'(9]} =0 (5-4)

In Eq. (54) E is the expectations operator which evaluates the expression
by integrating continuous random variables, or by summing discrete random
variables, over the range of probability density functions. Equation (5.4) may
have several stochastic elements. Output price p, level of output g, the cost
function C(q), and fixed cost B may all experience random variation. Clearly,
then, the introduction of risk produces many possible models.

The greater complexity of model organization under risk has several pay-
offs. For example, numerous institutions have developed in direct response to
risk. Futures markets and insurance companies are examples. Indeed, some
responses by the perfectly competitive firm, in the absence of additional con-
straints, are described only if risk is introduced; various types of diversification
and holding reserves are examples. Without stochastic models we cannot explain
either the creation of some institutions or the firm’s responses to risk. Under
risk, however, we can begin to explain these and many other phenomena.

FIRM MODELS BY TYPE OF ACTIVITY

Consider a firm operating in a market in which it has no influence on product
demand, input supply, or market prices. While these conditions seem fairly
general, they still leave a wide range of responses to risk, depending on the
basic activity of concern to the firm: production, marketing, or finance.

The firm’s basic production process involves the acquisition of inputs

Z1,...,Tn at prices p,...,pn and their transformation through a production
function f into product q. This relationship is expressed as:
g = f(z1,-..,%n) (5.5)

The firm sells the products ¢ at output price p, holds ¢ in inventory, or uses g
to produce another product g+. The costs per period of holding inventories r

" represent the return forgone by not selling g at output price p plus the cost of

storage. If output g is an intermediate product, another transformation process h
changes g into g+ for sale at output price p*. For large firms, several intermediate
steps may be required to produce a salable output.
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The firm’s marketing activities may also increase the expected utility of
profits through the exchange of products between buyer and seller. Differences
in the risk attitudes of market participants may motivate the exchange of goods
under risk. In fact, the production models allow for trades of claims for risky
outcomes that shift risk in accord with differing risk attitudes. A futures market
is an example of an institutional arrangement for conducting the exchange of
risky prospects.

The firm’s financial activities include holding of liquid assets, borrowing and
debt management, and utilizing credit (unused borrowing capacity) as a source
of liquidity. These activities are critical to production and marketing. To begin
production, the firm finances its inputs with internal equity capital E, debt capital
D, or some combination thereof. Incurring debt involves an exchange with
financial intermediaries where the firm trades some of its borrowing capacity or
credit C, for debt capital D. If the return on credit reserves were zero, the firm
would hold few reserves. But credit reserves are valuable because they provide
the financial capacity for investing later, for making unforeseen but favorable
investments, and for avoiding costly liquidations should future events prove less
favorable than anticipated.

A joint analysis of these producing, marketing, and financing activities
would yield a complex model. Therefore we begin by examining each activity
separately. The most simple model describes the firm as acquiring inputs
Z1,...,Tp at Prices pi, ..., Pn and transforming them by an efficient process
f to produce an output ¢ which is sold at price p. The difference between pq
and the cost of the inputs is profit y which is the object of expected utility
maximization:

‘ max EU(y) (5.6)

subject to:

y=pq—2p;$;—3 and q=f(z11'-',$n)

1=1

Now allow the firm to hold part s of ¢ in inventory. The expected return on
inventory is $, and the per-unit cost of holding an inventory is rsq. The expected
utility of profit is now:

max EU(y) (5.7)

subject to:

y=(p—r)sq+p(l—s)a—) pzi—B

1=1

g=f(z1,.-+,%n)

Next assume that g is an intermediate product which is sold, stored, or
transformed via an efficient process h into a final output ¢+ which is sold at
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price p*. Let s; be the percentage of ¢ stored, sy be the percentage used to
produce p#, and s3 the percentage of ¢ sold outright. The model is now:

max EU (y) (5.8)
subject to:
n
y = pxqx + 819(f — ) + s3gp — ) _ pizi — B
i=1
1=3;+82+s3
g* = h(s2q)

g= f(z1,.-.,%n)

Next we assume that the firm’s acquisition of inputs z,,...,z, is con-

strained by some limiting factors. These factors could include the cost and
availability of credit from financial markets, diminishing marginal products, and
increasing marginal risks. Financial intermediaries, for example, generally es-
tablish rules for determining borrowing limits. One type of rule might limit total
credit to some multiple ¢E of the firm’s equity capital. Thus the cost of debt
#D is subtracted from profits, and input acquisitions are limited to borrowing

plus equity.
With these extensions, the basic production model is written as:
max EU(y) (5.9)
subject to:
y=prqs +5:q(p—r) +sagp— Y pizi —#D — B
=1
1=39;+382+33
g* = h(s2q)
q=f(z1,...,%n)
¢cE=D+C
D + E = Zp,-a:,-

Production models which include inventorying activities suggest that some
attention be given to time. In what Hey (1981) calls “passive” risk models,
decision makers allocate resources at the beginning of the period and then
passively await the risky outcome. Another class of models will be considered
in Part 4 of this book: The decision maker may make decisions both at the
beginning of the period under risk and at the end of the period after the risky
outcome has been realized. Such an intertemporal feature adds considerable
realism (and complexity) to the analysis of a firm’s response to risk.
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CHARACTERIZING THE MARKETS

The basic market environment is a perfectly competitive market which is
distinguished from its certainty counterpart. Both the certainty and risk models
assume the firm is a price taker for its outputs and inputs; however, the risk model
relaxes the assumption of perfect knowledge about input and output prices and
production processes. Under risk, only the probability distributions of output
or input prices, quantities of output, or availability of inputs may be known.
If the firm has accurate knowledge of these distributions and meets the other
conditions, then it is considered to operate in a perfectly competitive market.

Other market environments can be modeled as well. Consider, for example,
a product whose price is not uniform among all product suppliers. This is typical
of products sold infrequently, of products whose quality is not standardized or
easily compared, and of products about which information is costly to obtain.
In this market one supplier experiences some monopolistic control. Because
information acquisition is costly to consumers, the seller knows that a price
above the minimum will not result in a complete market loss as would occur in
a perfectly competitive certainty market.

Consumers may also exercise monopoly control. Information is not free but
is obtained at a cost, and information about a firm’s price-setting policies tends
to be cumulative. Eventually a high-priced firm will lose some of its customers
to lower-priced firms. The potential for customer loss may counterbalance the
seller’s monopoly power.

Regulated markets are also important. These markets typically have firms
which are granted monopoly power over the sale of a product, as in the case
of public utilities. Other examples are salespeople who are granted exclusive
marketing rights for a product in a particular area and labor unions which
may obtain an exclusive right to provide labor services to a firm. In exchange
for monopoly power, regulatory agencies impose varying degrees of price
control. Still, monopoly power in one industry does not rule out substitutes.
A wood stove, for example, substitutes for a gas furnace, and increased
insulation substitutes for more energy use. Therefore, despite the regulated
monopoly’s control over its market, such as the public utilities’ control, the
quantity demanded may still be stochastic. Moreover, monopoly power does not
eliminate stochastic input prices nor provide for control over future regulatory
actions. Thus regulated firms must still make allocative decisions in the face of
uncertainty. :

NATURE OF THE FIRM’S INPUTS AND OUTPUTS

An important relationship exists between the activities of the firm and the
types of inputs and outputs. Static production models most often assume that
assets are both perfectly divisible in acquisition and use and nondurable. These
assumptions are valid for some products, but not for others. Gasoline at a filling




64 ORGANIZING FIRM-LEVEL RESEARCH UNDER RISK

station may be sold by the gallon, but deliveries to a farm may be available only
in specific amounts. Fertilizer is conceivably available by the ounce, but bulk
producers and distributors more likely deal in larger, less divisible quantities.
Other assets such as tractors, combines, computers, cows, and buildings are not
available in completely divisible quantities.

The services from most inputs are, however, divisible in use. A tractor is
driven a second at a time, and fertilizer, if deemed desirable, can be applied an
ounce at a time. This distinction between divisiblity in acquisition and in use
is not regularly made in the literature. Yet it plays a major role in models of
investment and disinvestment. :

The distinction between durables and nondurables has received more at-
tention. Durables can be used in more than one production period, while non-

~ durables cannot. Durables tie up resources beyond the single period of produc-

tion; they impose an inventory cost on the firm, sometimes called a fixed cost.
Durables force the decision maker to choose whether to disinvest now or later.
Such decisions do not arise with nondurables.

Reversibility is another criterion for classifying assets. Risk is reduced
if an investment, once made, can be undone. To reverse an investment, two
conditions must be met. First, resale of the asset must be possible. Second, the
difference between acquisition price and salvage value should not be so great
as to discourage investment in or disinvestment from the asset.

The characteristics of divisibility versus lumpiness in acquisition and use,
durability, and reversibility apply to both inputs and outputs. Unless a product
is durable, hedging or storing is not a feasible alternative. Lumpiness may also:
be important in determining the firm’s marketing strategies. While hedging or
forward-contracting strategies may appear desirable for the firm, contracts may
be available only in lumpy sizes. This may force the firm into making a “yes”
or “no” decision rather than taking the fine-tuning marginal approach in which
the level of contracting is tailored precisely to the level of expected production.

ORGANIZING MODELS BY SOURCE OF RISK
AND RISK RESPONSES

The two most important categories for classifying firms under uncertainty are (1)
the sources of risk and (2) the firm’s risk responses. These two categories often
are closely related. In some cases a direct relationship exists between the source
of risk and the possible risk responses; in other cases the relationship is less
evident. Establishing and measuring these relationships are important objectives
of risk analysis.

We begin this section by identifying potential sources of uncertainty. In
reference to the expected utility model in Eq. (5.9), the firm’s sources of risk
include:

1. p#, an uncertain price for its final product




S

o0 =

10.

FIRM-LEVEL MODELS UNDER RISK 65

p, an uncertain price for its intermediate product

#, an uncertain future price for its stored intermediate product

r, the storage cost per unit of ¢

p; (¢=1,...,n), the price of its inputs zy,...,Zn

#, the price of borrowed funds used by the firm, and implicitly the return
on unused borrowed funds or credit

The input-output relationship between ¢* and ¢ described by A

The input-output relationship between g and zy,...,Zn described by f
The input-output relationship between D + C and E described by the
parameter ¢

The availability of z1,...,2Zn

Other sources of risk are attributed to the reliability and availability of

information about the probability density functions for random events and
about the utility function of the decision maker. We resolve risky decisions by
maximizing single-valued utility functions over probability functions, both of
which are assumed to be measured without errors. In reality, however, error-free
measurements are rare. Thus the incorporation of new information is another
dimension of firm-level models.

Standing in relationship to the sources of risk are the potential responses to

risk. These include:

(S

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

SO h W=

Adjusting input levels z,...,z, and output ¢

Holding reserves s;q

Holding credit reserves C

Holding reserves of inputs z1,...,Zn

Integrating vertically to produce g*

Gathering information

Postponing decisions

Forward-contracting

Hedging

Diversifying enterprises, that is, integrating horizontally to produce prod-
ucts in addition to g, §, and g*

Acquiring risk-reducing inputs

Investing in production processes with a flat average cost curve
Buying flexible inputs ~
Buying insurance

Specializing

Adjusting financial leverage

Diversifying operations spatially

Spreading transactions over time

Participating in public programs designed to reduce risk
Utilizing share leasing of resources

Consider how these responses to risk are related to the source of risk.

Suppose one of the output prices p#, p, or p, one of the input prices py,...,Pn»
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02,Tf

Figure 5.1 Quadratic relationship between levels of output g sold and total variance o2 and risk
premium .

or the cost of credit r is a random variable. The simplest, most direct way

to reduce the firm’s cost of risk x is to reduce the firm’s holdings of g. To

illustrate, consider the risk premium « which was earlier identified using Pratt’s

approximation:

- RIE(y)lo?
2

where o2 = variance of profits and R [E(y)] a measure of risk aversion at mean
outcome level E(y). The firm facing a variance of prices 02 and purchasing or
selling output ¢ or input z; has total variance o2 which is related to the level of
outputs sold g by the expression 02 = ¢g202. To find Pratt’s cost of risk = we
multiply o2 by R [E(y)] /2 to obtain the dotted curve in Fig. 5.1.

A complication arises because expected returns often are reduced as risk
is reduced. Thus economic analysis examines how firms determine the trade-
off between expected returns and variance of returns. Figure 5.1 illustrates a
fundamental fact about risk reduction. It occurs only as a result of altering the
firm’s holdings of risky assets. This response to risk links all the models we
will examine and allows us to develop a similar approach to their solution.

Diversification is another means of altering the firm’s risky asset holdings.
Suppose the firm can produce two outputs g; and g, that are sold at stochastic
prices of p + ¢; and p + e where ¢; and e¢; have expected values of zero and
variances of o2 and o2, respectively. Let their covariance be o2 or po1 02, Where
p is a correlation coefficient. Recall (see the appendix, A Statistical Review) that

(5.10)
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the total variance of returns from output sold o? is:
o? = g30% + g505 + 2941920102 (5.11)

Since the expected prices for ¢, and gp are equal, the firm’s preferred
combination of q; and g; depends on the combination of ¢; and g, which reduces
o2. If 02 = o2 and ¢, and e; were perfectly correlated, the firm could achieve
no reduction in o2 by diversifying its production; that is, when ¢ = g1 + g2 and
o2 = o2 and p = 1, (5.11) can be written as:

0% = [ + (g — @) +2q1(g — @1)] oF = ¢°0f (5.12)

and the total variance depends only on the total of ¢, + g2 Or g.
If, however, o2 = o2 and p < 1, total variance is reduced by diversification,

as o2 can be written as:
0% = [¢® +2(1 - p)a} — 2qq: (1~ p)] 0% (5.13)

The total variance-minimizing g, value can be found from the derivative of
o2 with respect to ¢;:

89 _9¢,—¢=0 and q1=% (5.14)

\

\

Samuelson has generalized the above result to show that, for n identically
and independently distributed risky assets, the optimal solution for each is ¢/n.
This result also holds when, instead of independence of the risky assets, we
assume symmetric interdependence.

Continuing with our two risky asset examples, assume o2 # o2 and p # 0.
Constraining g; + g2 = ¢, o2 can then be written as:

o = @2o? + (¢ — q1)%03 + 2q1(¢ — @1)por02 (5.15)
and the variance-minimizing value for g; can be found from the expression:

do?

dg q1(0? + 03 — 2p0102) + q(po102 — 03) =0 (5.16)
and 2
o= g2 — PO102 (5.17)

0'% + 0'% - 2p0’10’2

When p =1 and 02 =03, ¢ is undefined. This result implies that q; = 0
and ¢, = ¢ are equally acceptable solutions. On the other hand, as o, increases
relative to o5, the smaller becomes the right hand side of Eq. 5.17 and the
optimal q; .
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Whether or not diversification pays under the most general conditions
described above depends on how variance increases with an increase in q. If all
assets are sold as g, then o2 increases by the quantity:

d0'2

a9 = 2qpo105 (5.18a)

If the portfolio is diversified as in (5.13), the increase is:

do? 2 2

rri 2(q — q1)o5 + 2g105 (5.18b)
The increase in (5.18b) is smaller than in (5.18a) precisely when po; < os.
Thus, as long as the adjusted standard deviation associated with €, (po; ) is not
large relative to the standard deviation of e3(o2), diversification pays.

In other cases, gains can obtained from specialization. Specialization, for
example, may permit learning or introduce quality control so that the variance of
outcomes decreases. This condition could be characterized as increasing returns
to scale in risk. Mathematically, let the variance of returns from g, o2, be
expressed as o2 /q, suggesting that 62 actually decreases with increased output
levels. Total variance then is:

02 = qo? (5.19)
This expression is linear rather than quadratic, so that a smaller variance is
not possible, even with diversification. Still, the principle we introduced before
applies. To alter risk, the firm must adjust its holdings of risky assets either by
diversifying or specializing.

Other common responses to risk include integrating vertically and exchang-
ing risky prospects for safe ones through hedges or forward contracts. Even
the exchange of the firm’s resources for additional information may reduce the
perception of variance. Insurance schemes, selling equity shares in the business,
and bringing in additional partners are other ways to alter the costs of risk to
the firm. Risk reduction may not be the only goal of these actions, but in many
cases it is. These methods are well-suited for the business that cannot easily
diversify. A decreasing average cost curve or decreasing variance with higher
levels of output may force a firm to specialize.

If the firm wishes to reduce risk, it can diversify the ownership of risk. The
idea is developed as follows. Consider the cost of risk for an investment in gq.

It is written as:
2.2

= R[E(y)] L5 (5.20)

where E(y) = expected return ¢?02? = variance of investment. Now divide ¢
between n partners so that the +th owner holds an amount g/n of the risky asset
and faces a risk premium of:

_ RIEQ)] (g/n)??
2

s
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The total risk premium of the n partners, assuming R [E(y)] is the same for all

partners, is:

_ R[E(y)] g20°
2n
Letting nm; be the total risk premium z#, we can show that increasing n
decreases the total cost of risk; differentiating * with respect to n, we obtain:

drx  —R[E(y)]o® —m+
dn 2n? T o

nw; (5.21)

<0 (5.22)

Hence our result: Decrease the cost of risk by increasing the number of people
sharing it. Sharing of the firm’s risks may be arranged through hedging, share
leases, participation in government programs, adding shareholders, and so on.

These two strategies may be combined. Inviting many people to participate
in a risky investment reduces any one firm’s commitment to the project and
allows diversification into other projects which may be negatively correlated
with the first.

Another general approach to risk reduction involves the holding of reserves.
Holding reserves does not reduce the likelihood of risks occurring, but it does
provide resources for coping with adverse events when they do occur. Holding
credit reserves, cash reserves, or both, allows the firm to respond to financial
emergencies or to undertake new investment opportunities. Holding excess
machinery capacity allows the firm to respond to equipment failures. Holding
crops and other goods in inventory permits a response to favorable changes in
prices for these outputs.

But all holdings of reserves also involve a cost. By holding a credit reserve,
the firm gives up possible returns obtained from using the funds in alternative
investments. By holding machinery and outputs in reserve, the firm gives up
earnings from other uses of these funds and experiences the risk of adverse
price changes. ‘

CONCLUDING COMMENTS

We return to our original conclusion that the principal response to risk involves
changes in the holding of risky assets. This can be accomplished in numerous
ways. In addition, relationships arise between the source of risk and the possible
risk responses. Some risky investments are not well suited to division of
ownership. Some risky assets exhibit increasing returns to scale under risk, while

others do not. Some goods are not storable. The firm can control some factors, .

such as input purchases, and not others, such as lender-controlled credit reserves.
The best approach in examining the usefulness of potential risk responses is a
case-by-case approach.

Now, consider the analytic problem of examining a firm that faces a
multitude of sources of risk, has available to it numerous risk responses, and
operates in competitive, monopolistic, and regulated markets. In particular,
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consider the case of 10 risk sources, 20 possible responses, operation in 3
different markets involving 3 different types of activities for purchases and sales
of 6 different goods. The number of potential models, assuming all maximize
expected utility, is: 10 x 20 x 3 x 3 x 6 = 10, 800. Obviously, the list of potential
models could be increased to well over 10,800. Thus a need exists to simplify
and standardize the approach for analyzing such a large number of different
models. We will introduce this approach in the next chapter and apply it to a
selected set of the potential models in later chapters.
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CHAPTER

SIX

EQUILIBRIUM ANALYSIS UNDER RISK

As established in Chap. 1, a distinction between decision theory and economic
theory is the former’s emphasis on the selection of either a preferred choice
or a set of preferred choices. In contrast, economic theory addresses changes
in a preferred choice as changes occur in one or more of the underlying
-parameters. Under risk, these parameters may include changes in the variability
of choice outcomes or changes in the expected level of choice outcomes. Thus
economic theory under risk extends the firm’s equilibrium analysis from the
certainty case to the risk case. Using the expected value-variance framework,
this extension yields a stochastic counterpart of the certainty case in which
income and substitution effects resulting from shifts in EV efficient sets are
distinguished by an investor’s risk aversion characteristics.

In this chapter we introduce the fundamental properties of equilibrium
analysis that serve as the analytic framework for model evaluations in later
chapters. We begin by establishing the concept of expected value-variance
analysis and show how maximizing the expected utility of a choice from an EV
efficient set under certain conditions is equivalent to maximizing the certainty
equivalent of the choice. Following this, we define the income and substitution
effects under risk and illustrate them with an application to a savings problem.

ORIGINS OF EXPECTED VALUE-VARIANCE ANALYSIS

This chapter introduces an analytic framework that characterizes expected utility
solutions in terms of their expected values E and variances V. To justify this
approach, we will review the debate over the use of EV models and the more
general EU models. Then we will show that the EV approach is more strongly
justified as an analytic or deductive tool than as an empirical tool, although most
studies using the EV approach have emphasized empirical applications.

1
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EV Models and Decision Theory

Since its development by Markowitz as a portfolio selection tool, the EV model
has been a popular method for ordering choices into efficient and inefficient sets.
The EV efficient set is defined as the choices or sets of choices that provide
minimum variance for alternative levels of expected returns. The efficient set is
considered to contain the preferred choice for a well-defined set of investors. In
contrast, the inefficient set does not contain the preferred choice.

Earlier, the conditions justifying the use of the EV model included as-
sumption of a quadratic utility function or normally distributed outcomes. Tobin
showed that, if the investor’s utility function were quadratic, so that prefer-
ences were expressed only about the expected value and variance of choices,
the preferred choice would be a member of the EV set (see also Chap. 4 ).
Samuelson showed that a risk-averse expected utility maximizer’s preferred
choice would be from an EV set as long as the choices’ outcomes were nor-
mally distributed and thus fully characterized by their expected values and vari-
ances.

Another justification for the EV approach was shown by Tobin but has gen-
erally been overlooked. He showed that expected utility—-maximizing decisions
are always members of an EV set when choices are represented by various com-
binations of a risky asset and a safe asset. The resulting choice set has no choices
that are excluded from the EV set. Meyer has since shown that Tobin’s condition
is a special case of a more general condition requiring linear combinations of a
random variable (Meyer).!

Thus the EV approach is justified on the basis of four conditions: (1)
quadratic utility, (2) normality, (3) choices involving a single random variable,
and (4) choices involving linear combinations of the random variable. None of
these conditions except 4 is very satisfactory relative to the characteristics of
most empirical situations. Quadratic utility implies that marginal utility becomes
negative beyond some level of monetary outcome and that the investor being
modeled is characterized by increasing absolute risk aversion. Few variables
take on values that range from negative to positive infinity as normality implies
or are symetrically distributed. And most decision situations concern choices
involving more than one risky asset. These are, of course, all only sufficient
conditions.

These shortcomings of conditions underlying the EV approach have made
its justification in empirical analysis dependent on the ability to approxi-
mate results obtained with the more general EU model. Porter, for exam-
ple, showed that EV sets of randomly constructed stock portfolios were con-
sistent with EU models, except for portfolios having small expected val-
ues and variances. Tsiang demonstrated that various restrictions on skewness
could yield a close correspondence between the EV and EU results. Levy and
Markowitz showed similar effects of EV analysis as an effective approximat-
ing approach to portfolio selection. Moreover, the appropriateness of quadratic
utility has been defended as a second-order Taylor series approximation to
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all risk-averse utility functions. Thus the debate involving EU and EV mod-
els as decision tools has largely focused on the approximating capacity of the
EV model.

The EV Model as a Deductive Tool

Decision theory models and the resulting efficient sets are valuable for their
empirical content. They identify efficient choices and the resulting measures
of financial performance (e.g., expected values and variances). They contribute
importantly to improving the quality of decision making when the objective
function is already known, and to predicting the magnitude of outcomes from
various decision alternatives. But the empirical measures of expected values
and variances of efficient choice distributions are not necessary in an analysis
that serves to deduce economic theory under risk. The deductive or analytic
results are valuable not for their measurability but for their characterization
of relationships between variables and for showing the direction of change in
relevant variables as changes occur in other factors that comprise the decision
environment. These relationships and changes are basic to an analytic model.

Analytic models must of necessity be developed in as simple a fashion as
possible, while still reflecting as rich a content as possible. Only a limited number
of relationships can be analyzed simultaneously through deduction. Thus most
analytic models formulated under risk contain only a single random variable.
Adding more variables quickly complicates the derivations and tends to obscure
the underlying relationships. In fact, stochastic dominance conditions are inde-
terminate for the evaluation of multiple risky. assets under most circumstances
(Hader and Russell).

Restricting the analytic model to be linear combinations of a random
variable suggests that Tobin’s rationale for EV analysis is applicable. That is,
with all choices formed by combinations of a risky and a safe asset, only EV
efficient choices are available. With this approach, we can seek to build an
EV analytic model that yields results consistent with those obtained from the
more general EU models. The point of departure for doing this graphically is to
characterize any solution to the EV set in terms of maximizing a linear tangent
line to the EV set where the line has slope A/2. Since the choice of the slope
is arbitrary, any solution from the EV set can be described using this approach.

In Fig. 6.1, the tangency point for the isoexpected utility line E [U()]
and the EV set AB occurs at choice C, yielding expected wealth E(y.) and
variance o2(y,.). To further develop this approach, let the linear tangent line in
Fig. 6.1 be extended until it reaches the vertical expected return axis at ycg.
Since yog has zero variance, it is considered a completely certain return that is
equivalent in terms of expected utility to the risky choice with expected return
E(y.). Thus we can call yog the certainty equivalent to risky expected return
E(y.) and refer to the line between ycr and E(y.) as the certainty equivalent
line. Moreover, the optimal risky solution can be obtained by maximizing the
certainty equivalent subject to the restriction that the choice occurs from the EV
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Figure 6.1 Equilibrium point C established by the tangency between an isoexpected utility line
EU(y) and an EV set AC B identified by the yo g linear tangent.

set and that its slope equals the equilibrium slope at the tangency between the
isoexpected utility line EU (y) and the EV set, a slope designated as /2. This
objective can be expressed as:

A
maxycr = E(y) - 502(11)

In this framework, the maximization of yog is equivalent to finding an
optimal solution based on the equality of slope A/2 between the EV set and
the isoexpected utility lines, as illustrated by the tangency at C in Fig. 6.1.
Maximizing the expected utility of a choice, where the expected value and
variance are the objects of utility, is equivalent to maximizing its certainty
equivalent. Moreover, it follows that if a change occurs in the shape or location
of the EV set, then the optimal slope A/2 must change to reflect a new point of
tangency between an investor’s isoexpected utility lines and the revised EV set.
The optimal slope, then, can be described as a functional relationship:

A= Ar,02,Wo,...)

where r and o2 are the mean and variance, respectively, of the return on the
risky asset, Wy is the level of allocable resources, and “...” represents other
variables affecting the location of the EV set.

The general problem is to formulate an analytic framework that shows how
the optimal value of the control variable responds to changes in other variables
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that shift and/or rotate the EV set. This in turn involves a description of how
X(...) responds to changes in the EV set. This problem is approached by dividing
the adjustment into two parts: an income effect and a substitution effect. The
income effect is identical to the results obtained by Cass and Stiglitz for the
generalized EU model. The substitution effect, to be derived later, requires a
limiting assumption that may not always yield identical results for the EV and
the EU models. The net results of the income and substitution effects, however,
nearly always yield results for the EV model that conform to those for the EU
model.

This use of the EV model is based on its strength as an analytic tool rather
than as a decision theory tool. In this light, the primary analytic strengths of the
EV model include: its relative ease in deriving optimal solutions and conducting
equilibrium analysis; the natural relationship between the concepts of risk and
variability and the statistical concept of variance; the ease with which it can be
graphed using expected values and variances as the two dimensions; and finally,
although not considered here, the extension of micro results to aggregative
analysis. Although not justified by Tobin’s single risky asset argument, the EV
model permits a natural framework for analyzing multiple risky assets which is
not analytically possible within the generalized EU framework. These strengths
make the EV approach well-suited for modeling and analyzing many types of
decision situations.

ASSET CLASS AND THE INCOME EFFECT UNDER RISK

Under conditions of certainty, an increase in an investor’s wealth will increase
the purchase of normal assets, leave constant the purchase of neutral assets,
and reduce the purchase of inferior assets. Since all investors are considered to
maximize profits in a certain world, and hence do exactly the same thing, these
differences in asset purchases arising from a change in wealth are attributed to
the characteristics of the assets, not to the investor. Under risk, however, this
is not true. As wealth increases, investors facing the same investment choices
may respond differently because of differences in their risk attitudes. Thus
equilibrium analysis under risk utilizes information about these risk attitudes.

We begin the analysis by specifying a set of investors who can choose
between a risky and a safe asset in formulating their portfolios. If these investors
experience an increase in risk-free wealth, we must identify the conditions under
which they will increase, leave constant, or decrease their holdings of the risky
asset. The classification of risky assets as normal, neutral, or inferior is based
on the generalization of a proof (contained in App. 6A) from Cass and Stiglitz
that has the following result:
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Theorem 6.1 If there are two assets, one risky and one safe, the total
purchases of the risky asset increase, remain unchanged, or decrease with
increases in initial wealth as there is decreasing, constant, or increasing
absolute risk aversion.

This classification of risky assets is in turn based on the absolute risk
aversion characteristics of the investor. A corollary to Theorem 6.1 is that, if
the purchase of the risky asset increases, remains constant, or decreases with
increases in risk-free wealth, depending on whether absolute risk aversion R'(y)
decreases, remains constant, or increases, then so does the variance of the choice.
Together, the theorem and corollary imply that a risky asset is a normal, neutral,
or inferior good depending on whether R'(y) é 0.

Under conditions of certainty, the income effect is defined as a change in
demand for an asset resulting from an increase in real income with prices held
constant. Under risk, however, prices of assets are often random variables and, to
identify the income effect, their probability distributions are assumed to remain
constant as risk-free wealth increases. Thus the income effect under risk is the
change in demand for an asset resulting from an increase in risk-free wealth
while holding probability distributions constant.

Within the expected value-variance framework the income effect is ex-
pressed by a parallel shift in the EV set. To show the effect graphically, let the
EV set be curve ACB in Fig. 6.2, with preferred choice C occurring at the
point of tangency between an isoexpected utility curve E [U (g)] and the EV
set AC B. Preferred choice C has expected value E(yc) and variance o2 (yc).
Now assume that the investor receives an increase in risk-free wealth that causes
an upward parallel shift in the EV set. The upward parallel shift reflects the ad-
dition of risk-free wealth to all previous portfolios in the amount (1 + r) AW,,
where AW, is the change in wealth and r is the safe return. The increase in
risk-free wealth also extends the EV set from B to B’ because more risky assets
can be held than before. Graphically the new EV set is A'C'B'2

Now consider how investors within the three classes of absolute risk
aversion will adjust to the parallel shift in the EV set. For the decision maker
with constant absolute risk aversion, R'(y) = O, the risky asset is a neutral good
and the investor’s holdings remain unchanged. The preferred choice is C' with
the same variance as before. Because the shift is parallel, the slope at C’, given
by a linear tangent, is the same as the slope at C.

For the investor with decreasing absolute risk aversion, R’'(y) < 0, the new
risky asset is a normal good; its purchase increases with an increase in risk-free
wealth. This investor will move from the original choice B to a location on the
new EV set A'C' B’ that lies to the right of C’. This new choice is represented
by C”. Since the slope of the EV set declines as one moves from A’ to B’, the
equilibrium slope at C" is less than the slope at C’.

A similar analysis indicates that risky assets are inferior goods for mvestors
with increasing absolute risk aversion. In this case, the equilibrium choice lies
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Figure 6.2 Income effects under risk measured on expected value-variance set ACB.

to the left of C’, say at C", with an increased slope.

To summarize the income effect, for an increase in risk-free wealth that
extends the EV set and shifts it upward in a parallel fashion, the equilibrium slope
decreases, remains constant, or increases for investors with decreasing, constant,
or increasing absolute risk aversion, respectively. Moreover, since changes in the
slope of an EV set correspond to changes in the holdings of risky assets, the
purchases of risky assets decrease, remain constant, or increase for investors
with increasing, constant, or decreasing absolute risk aversion, respectively.

THE SUBSTITUTION EFFECT UNDER RISK

Under conditions of certainty, the substitution effect is the change in demand
for an asset resulting from a change in relative prices after compensating the
decision maker for a change in real income; i.e, keeping utility fixed. Under
risk, the substitution effect is the change in quantity demanded resulting from
a change in the probability distribution of price after compensating the investor
for a change in risk-free income.

To illustrate, consider an investor who is in equilibrium at point C on EV set
ACB in Fig. 6.3. Let the probability distribution change so that the expected
return on the risky asset increases. This change causes the EV set to rotate
counterclockwise to a new location AC'B'. The substitution effect resulting
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E(y)

a2(y)

Figure 6.3 Substitution effect under risk obtained by measuring the adjustment of a constant

absolute risk-averse investor.

from this change can be found in two ways. One way is to subtract the income
effect from the total change in the EV set, with the remainder representing the
substitution effect. The second way is to find the size of the adjustment in the
equilibrium solution for those investors whose income effect is zero. As shown
above, these investors display constant absolute risk aversion.
Following the second approach, which is based on an initial equilibrium at
C, we first subtract real income until the investor is returned to his or her initial
isoexpected utility line. An important condition is the shape of this isoexpected
utility line. Freund showed that the line was linear when the risky asset was
normally distributed. Moreover, Pratt’s second-order approximation of the risk
premium also yields a linear relationship:
A 2
yece = Ely) — 3° (v) (6.1)
But this relationship is the same as the linear tangent line used earlier
in the chapter to obtain the initial characterization of the solution, where A
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was a function of the parameters defining the location of the EV set. Thus,
to identify the substitution effect under risk, we assume that an investor with
‘constant absolute risk aversion has an isoexpected utility line that is linear in
expected value and variances. This specification is, of course, an approximation
when the distributions are not normal. However, the complete generality of the
income effect plus the more limiting assumptions imposed on the specification
of the substitution effect yield highly reliable analytic results compared to those
obtained from the more general expected utility model.®

To find the substitution effect, let the isoexpected utility line yogy*cg in
Fig. 6.3 be the straight line described in Eq. (6.1) with slope A/2. Initially, the
preferred choice occurs at tangency point C between the isoexpected utility line
yoey*ce and EV set ACB. Let an increase in expected return on the risky
asset, or a decrease in its variance, rotate the EV set from ACB to AC'B'. The
substitution effect is found by subtracting risk-free income from set AC'B’,
causing it to shift downward in a parallel fashion until a new tangency at C"
occurs between the isoexpected utility line ycry*ce and the shifted EV set
DE. Any change in the demand for the risky asset between choices C and C”
is due to the substitution effect.

A more convenient measure of the substitution effect is based on the
observed EV set AC’ B’ rather than the unobserved set D E. Since the variances
at C" and C' on EV sets DE and AC' B, respectively, are the same, and the
slopes at choices C" and C’ are equal, the change in demand for risky assets
between C and C’ is the same as the change in demand between C and C”.
Thus, since EV set AC' B’ is observed and DE is not, the substitution effect is
more conveniently measured as the difference between C and C’.

Finally, we add the income effect to Fig. 6.3. For upward parallel shifts,
the equilibrium slope decreases, remains constant, or increases for investors with
decreasing, constant, or increasing absolute risk aversion, respectively. Adjusting
from equilibrium point C’ on EV set AC' B, investors with decreasing absolute
risk aversion choose a new equilibrium position to the right of C' with a
lower slope (i.e., F). Decision makers with increasing absolute risk aversion
will choose an equilibrium position to the left of C’ (i.e., G) with a higher
slope. Those with constant absolute risk aversion choose equilibrium position
C' without a slope change, signifying no income effect.

MATHEMATICAL FORMULATION

To this point, the income and substitution effects associated with shifts in EV
sets have been analyzed in terms of equilibrium slopes. Extending the adjustment
theory to evaluate holdings of individual assets and specific changes in risk-free
wealth and probability distributions requires a mathematical description.

The substitution effect is found by expressing the certainty equivalent model
as in (6.1), holding A constant, and observing an asset’s change in response to
a given change in the parameters of the EV set. Similarly, the income effect
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Table 6.1 Responses to an increase in a parameter o describing the
location of an EV set

Decreasing Constant Increasing
absolute absolute absolute
risk aversion risk aversion risk aversion
(DARA) (CARA) (IARA)

Certainty equivalent
income increases as o

A ax _ 2.
increases and the EV da < 0 Bda T 0 da > 0
set shifts upward
Certainty equivalent
income decreases as o

a\ 0 X _ 0 a\ <0

increases and the EV Ja Ja
set shifts downward

R

involves the change in demand for an asset in response to a change in A. In
sum, if = is a risky asset, then the total change in the demand for z, dz, in
response to a change in « is:

':_Z = (g_;v') A constant + ‘g;g—g‘ (6-2)
where o = any parameter (variance, expected return, risk-free wealth) defining
the location of the EV set. The first term on the right in (6.2) is the substitution
effect, with A held constant. The a second term identifies the income effect. If
an increase in o increases the certainty equivalent income, then dA/3a < 0
for a decision maker with decreasing absolute risk aversion. For increasing or
constant absolute risk aversion, 1/da > 0 or A /8a = 0 respectively. These
results are summarized in Table 6.1.

INCOME AND SUBSTITUTION EFFECTS APPLIED
TO A SAVINGS PROBLEM

The income and substitution effects under risk are illustrated by the following
example involving an investor’s two-period consumption problem. The investor
is assumed to have a utility function U(c) for consumption of asset c. The
amounts of ¢ consumed in periods 1 and 2 are, respectively, ¢; and c,. However,
because ¢, is consumed one period in the future, its present worth is pc3, where:

1
1+r

p= (6.3)
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ind r = a time preference rate.

The consumption decision is limited by allocable funds Wy If it is assumed
hat the price per unit of ¢; and ¢, is 1, then the investor can spend Wy — ¢
mits of Wy in period 1 and save ¢, units for consumption in period 2. But the
inits saved earn a rate of return ¥, where:

Ff=rp+e (6.4)

ind ¢ is a stochastic element with expected value 0 and variance 2. Thus the
;xpected value and variance of 7 are r; and o2, respectively. The investor
nust allocate W, between consumption in the current period and savings
‘or consumption in period 2. Consumption in period 1 is known to equal
Vo —cq < W.However, consumption in period 2 is (1+#)c2, which depends on
he stochastic element e. A favorable 7 more than compensates the investor for
sostponing consumption, but an unfavorable # may have adverse consequences.
[he focus here is on the responses of savings and consumption decisions to
‘hanges in risk-free wealth W,, expected retumns rp, and variance o2. We shall
»xamine these issues using the certainty equivalent consumption model.

First we construct an EV set for all combinations of expected present value
6.5) and variance (6.6) of consumption:

E(cy + peg) = Wo — c2 + p(1 4+ r2)c2 (6.5)

ind
o?(c1 + pez) = p?(c3)o? (6.6)
[he extremes of the consumption and savings decision are c; = 0 with

10 variance—a completely safe decision—and c; = Wy, a decision to save
sverything with all consumption at risk.

Expected utility of consumption with the allocable wealth constraint added
:an now be approximated with the certainty equivalent formula expressed as a
‘unction of c,:

A
(c1+ pez)ce = E(cx + pea) — 502 (c1+ pe2) (6.7)

where (6.5) and (6.6) define E(c; + pc2) and o®(c1 + pe2).
Maximizing the certainty equivalent formula for ¢z yields:

d(c1 + pe2)cE
d62

=p(141r2) —1—Ap?c20?2 =0 (6.8)

ind solving for ¢o gives:

p(l+r)—1
g = ——F7

6.9
Ap2c? (6:9)
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Since the function is a quadratic in ¢z, the necessary second-order conditions
hold.

Now let the investor experience an increase in risk-free wealth, Wy. To show
the change in consumption, we consider the sum of the income and substitution
effects for the three classes of absolute risk aversion. First, the substitution effect
is zero for all investors starting with a constant-slope (A) isoexpected utility line
approximated by the certainty equivalent formula in (6.7): deo/dWo = 0. The
income effect is:

dea _ —[p(1+rz) — 1] (8X/Wo)
dWO - (’\pa'ts)2

(6.10)

Since Wy shifts the EV set upward, 6 /6Wo§0 depending on whether the
investor has a DARA, CARA, or IARA risk attitude. If ro > r, the income
effect is positive for DARA, negative for IARA, and zero for CARA. This
implies that DARA (IARA) decision makers save more (less) with an increase
in wealth and that CARA decision makers save the same amount.

The total effect of an increase in wealth on saving is the sum of the income
and substitution effects. For an increase in Wy alone, the sum is equal to the
income effect alone. But, for an increase in ry, the sum of the income and
substitution effects is:

dez
dr2

_ 2y —1 [p(1+ r2) — 1] (8)A/8r2) — A
= (Apo?) -t (Apoe)? £ (6.11)

(substitution effect) (income effect)

Again, assuming r; > r, the sign of the income effect is determined by dA/8r,.

Since an increase in r, rotates the EV set upward, 8)/dr, § 0 for a DARA,
CARA, or IARA risk attitude. Thus the income effect is positive for decreasing
absolute risk aversion. Combined with a positive substitution effect, this result
means that savings increase with an increase in expected return.

For increasing absolute risk aversion the response of savings to an increase
in expected returns is ambiguous. Because this class of investors is less willing
to assume risk as wealth increases, their negative income effect combines with
a positive substitution effect to leave the total effect ambiguous.

Now consider an increase in the variability of the return from saving. Should
current consumption ¢; increase because “a bird in the hand is worth two in the
bush,” or should saving ¢, increase to ensure minimum consumption standards in
the second period? Rothschild and Stiglitz show that ¢, increases with quadratic
utility. Our results are:

des  flp(t+ra) =1 |, [p(1+r2) — 1 (8)/302)
do? ~ { E)E ()2 } (6.12)

Assume that ro > r. Increasing o2 rotates the EV set downward, and for DARA
and CARA decision makers d1/3c2 > 0 and dcz/do? < O (see Table 6.1).
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This implies that ¢, increases; ¢, ‘can also decrease for quadratic utility decision
makers whose absolute risk aversion function is IARA, as Rothschild and Stiglitz
claim, but this result is not guaranteed in our model.*

CONCLUDING COMMENTS

This chapter has introduced the theoretical structure for the remainder of the
book. When choices consist of alternative amounts of a single risky asset or
linear functions of a single random variable, two important rationale exist for
use of EV models. First, all choices are EU efficient and, therefore, the EV
set must contain choices selected by EU maximizers. Moreover, by selecting
the proper slope parameter, A/2, our EV model can be made to select the
same choice from the EV set as would any particular EU maximizer. This EV
justification is completely general and applies to all the models developed in
the later chapters of the book.

After justifying the use of an EV choice set, an EV analytic model was
developed which allowed us to separate adjustments in EV set shifts into income
and substitution effects.

The important feature that distinguishes choices under risk from the cer-
tainty case is the change in an investor’s absolute risk aversion function as
risk-free wealth increases. This characteristic is related to changes in equi-
librium slopes on EV sets. An increase in risk-free wealth causes a parallel
upward shift in the EV set. Compared to the slope at the original equilib-
rium, the new equilibrium slope decreases, remains constant, or increases for
investors with decreasing, constant, or increasing absolute risk aversion, respec-
tively.

Having measured the income effect, the task of measuring the substitu-
tion effect remained. If investors are distinguished by their income effects,
then the substitution effect is simply the response of constant absolute risk
averse investors whose income effect is zero. Their isoexpected utility lines
are linear. This result allows the substitution effect to be measured by hold-
ing constant the slope in the certainty equivalent formula. The total effect
is then the sum of the income and substitution effects. The adjustments to
shifts in the EV set using the EV model will be consistent with EU maxi-
mizers under the sufficiency condition of quadratic utility, normality of out-
comes, or EV choices consisting of linear combinations of a random vari-
able.

All of the models presented in Part 3 are models in which the choices
are a linear function of the random variable. For those models, consistency
in the rankings of choices using EU or EV analysis is guaranteed. In Part
4 we use the properties of the EV model used in Part 3 to analyze mod-
els that may not always be consistent with EU models. But, on the other
hand, no one can claim all the sufficiency conditions for consistency between
EU and EV models have been discovered. Until we understand these condi-
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tions more fully, we justify the use of the EV model even when it is not
consistent with EU models because it is interesting in its own right. More-
over, the proper test of the EV model is not its absolute consistency with
EU models but its ability to describe and predict decision maker behavior un-
der risk.

APPENDIX 6A

Theorem 6A.1 If there are two assets, one risky and one safe, the total purchases
of the risky asset increase, remain unchanged, or decrease with initial wealth as
there is decreasing, constant, or increasing absolute risk aversion.

PROOF Define Wy as initial wealth allocated between the purchase of an input z
at price p, for use in the process f(z); Wo — pz 2 is invested in a safe asset earning
a known rate of return r. Let the output f(z) be sold at a stochastic price of p +¢,
where ¢ is distributed with mean 0 and variance o2. Profits for a particular e value
can be written as:

y=(p+ef(z)+rWo—pzz) — pz2 (6A.1)

and expected utility of profits as EU(y). The optimal allocation between z and the
safe asset equal to Wy — pzz can be found by maximizing the expected utility of
profits with respect to z:

EU'(y)l(p +€)f'(z) — rpz — pz] =0 (6A.2)

Since U'(y) > 0 by assumption, (6A.2) equals zero just in case the bracketed

expression equals zero.
Now we ask how the purchase of z will change as risk-free wealth Wo

increases? To answer, we totally differentiate (6A.2) with respect to z and Wy
and obtain the result:

dz - 'EU"(y)[(p + e)f'(:z:) — TPz — pﬂ:] (6A 3)
aWo EU"(y)(p +€)f'(z) — roz — pz]* + EU'(y)(p + €) f" (2) '

Since it is assumed that U"(y) < 0 and U’(y) > 0, we can sign the denominator if
f"(z) < O; this we assume. Then the denominator multiplied by the negative sign
is unambiguously positive. Thus the sign of dz/dW, depends on the sign in the
numerator. We write the numerator as: r EU" (y)[-] which is equal to:

Mo - U"(y)] ! .
EU (y)[]—E[——U,(y) Uil (6Ada)

which can be written as:

EU"(y)[] = —E[RW)IU' ()] (6A.4b)
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since —U" (y)/U" (y) = R(y).
Next set R*(y) equal to R(Wpr); that is, define R*(y) to be the value of the
risk aversion function measured at a safe income level of rWy. This permits us to

write:
—ER@)U'(y)[] = EIR" (+Wo) —~ R@)IU" (3)[']
. , (6A.5)
~ R*(Wo)EU'()[']
But from (6A.2) EU’(y)[-] = 0, which allows us to write:
~R@U' ()] = ELR*(rWo) — R@IU' @150 (6A.6)

If R'(y) < 0, then for [-] > 0, R*(rWs) < R(y), and when [-] < 0, R*(rWp) >
R(y) and (6A.6) is positive. This implies dz/dWo > 0. Conversely, if R'(y) > 0,
then for [[] > 0, R*(rWy) > R(y) and when [-] < 0, R*(rWj) < R(y). This
implies dz/dWo < 0. And finally, if R'(y) = 0, then R*(rWs) = R(y) which
implies dz/dWp = 0.

ENDNOTES

1. Choices from EV sets are linear functions of the random variable if the random
variable appears to the power 1.

2. This description of EV choices rules out short selling, which could of course be
permitted. Moreover, the description of adjustments to shifts in EV sets ignores the
possibility of CARA decision makers who prefer the riskiest solution on an EV set
and would prefer still riskier positions if not wealth-constrained.

3. The graphical presentation indicates a significant difference in the estimation of the
substitution effect. However, when the substitution effect is measured using calculus,
the substitution effect measured in a small neighborhood is precisely measured.

4. Corresponding to the quadratic utility function U(y) = y + by? is the absolute risk
aversion function: '

—2b

1+2by>0 for (1+2by)>0 and b<O

R(y) =

Increasing y, therefore, increases the value of R(y):

2 |
@ 1

R'(y) =

1+ 2by




86 AN INTRODUCTION TO DECISION MAKING UNDER RISK

REFERENCES

Adler, M. A. “On the Risk-Return Trade-off in the Evaluation of Assets.” Journal of
Financial and Quantitative Analysis, 4(1969):493-512.

Baron, D. P. “On the Utility Theoretic Foundations of Mean-Variance Analysis.” Journal
of Finance, 32(1977):1683-1697.

Cass, D. and J. E. Stiglitz. “Risk Aversion and Wealth Effects on Portfolios with Many
Assets.” Review of Economic Studies, 39(1972):331-354.

Freund, R. “Introduction of Risk into a Programming Model.” Econometrica, 24(1956):
253-263.

Hadar, J. and W. Russell. “Stochastic Dominance and Diversification.” Journal of
Economic Theory, 3(1971):288-305.

Klein, R. W. and V. S. Bawa, “The Effect of Estimation Risk on Optimal Portfolio
Choice.” Journal of Financial Economics, 3(1976):215-231.

Levy, H. “The Demand for Assets Under Conditions of Risk.” Journal of Finance,
38(1973):79-96.

and H. M. Markowitz. “Approximating Expected Utility by a Function of Mean
and Variance.” American Economic Review 69(1979):308-317.

Markowitz, H. “Portfolio Selection.” Journal of Finance, 7(1952):77-91.

Meyer, J. “Two Moment Decision Models and Expected Utility Maximization,” mimeo,
Michigan State University, Sept. 1985.

Porter, R. B. “An Empirical Comparison of Stochastic Dominance and Mean-
Variance Portfolio Choice Criteria.” Journal of Financial and Quantitative Analysis,
8(1973):587-608.

Robison, L. J., and P. J. Barry. “Portfolio Adjustments: An Application to Rural Banking.”
American Journal of Agricultural Economics, 59(1977):311-320.

Rothschild, M., and J. E. Stiglitz. “Increasing Risk II: Its Economic Consequences.”
Journal of Economic Theory, 3(1971):66-84.

Samuelson, P. A. “The Fundamental Approximation Theorem of Portfolio Analysis in
Terms of Means, Variances and Higher Moments.” Review of Economic Studies,
37(1970):537-542.

Tobin, J. “Liquidity Preference as Behavior Toward Risk.” Review of Economic Studies,
25(1958):65-86.

Tsiang, S. C. “The Rationale of the Mean-Standard Deviation Analysis, Skewness Prefer-
ence, and the Demand for Money.” American Economic Review, 62(1972):354-371.




PART

THREE

AN ANALYSIS OF FIRM-LEVEL
RESPONSE TO RISK




CHAPTER

SEVEN

OPTIMAL OUTPUT UNDER PRICE RISK

In this chapter we explore the effects of risky output prices on the firm’s optimal
level of production. We contrast the results with optimal output under certainty
conditions and show the nonneutral effects of fixed costs and income taxes. The
analysis is based on an approach first used by Sandmo, which has been adapted
here to utilize the expected value—variance framework.! As the analysis will
show, the expected value-variance formulation avoids the ambiguous output
response to increased risk that characterized Sandmo’s results. Thus it yields
results consistent with those of Ishii and others who have shown, using the
expected utility approach, that the level of output under risk will decrease for a
decision maker with decreasing absolute risk aversion,

MODEL ASSUMPTIONS

Consider the case of a perfectly competitive firm whose principal activity
is to produce a single good with a fixed plant size. Thus no investment or
disinvestment decisions are allowed. The only reference to capital in the firm’s
operations is a fixed cost that represents the rental price of capital. Further assume
that the model is based on a single time period and that all the firm’s production
is sold at the prevailing market price. This leaves the firm’s only response to
changes in the exogenously determined prices for inputs and outputs as a change
in the level of output. The model is then specified solely in terms of output g,
a variable cost function C(g), and a fixed cost B.

Some of the models in later chapters permit the firm some flexibility in
responding to risk. For example, some of the inputs may be chosen after the
risky output price is known. However, this specification is not allowed here; all
input decisions occur before the actual output price is known.
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Finally, we reiterate the assumptions that underlie the analysis. These
assumptions include choices whose stochastic outcomes are fully specified by
their means and variances and that are members of an expected value—variance
efficient set. These assumptions allow the model to be formulated to yield a
unique solution from among the choices comprising the expected value—variance
efficient set. This solution is found by maximizing certainty equivalent income

YcE: )
maxyce = E(y;) — —2~02(y;) (7.1)
where E(y;) = expected value of ith choice, o2(y;) = variance of sth choice,

and \/2 = equilibrium slope along expected value-variance set.

THE CERTAINTY MODEL

Let the firm produce a single output, g, at variable cost C(g), where C(0) = 0.
The output price is known and equal to p. The firm also pays a fixed rental price
B on capital. Profit y is then:

y=pg—C(q) - B’ (7.2)

We take the derivative of y with respect to ¢ and equate it to zero in order
to find the profit maximizing condition:

p=C'(q) (7.3)

which requires that marginal revenue equal marginal cost. Fixed cost B has no
effect on the optimal level of output.

A profit-maximizing rather than a profit-minimizing condition is guaranteed
only if C"{g) > 0. Marginal costs must increase at an increasing rate, otherwise,
greater output with a constant output price would yield infinitely large profits.

Taking the total derivative of the first-order condition with respect to p and q
indicates that supply ¢ increases with output price p as long as the second-order
condition on C(q) is satisfied:

d 1
E—Z' = CT(q) >0 (7.4)

To examine the certainty model on an after-tax basis, we let T equal the

applicable marginal income tax rate. After-tax profits y* are:

y* = [pg— C(g) — B] (1 - T) (7.5)

As the first-order condition indicates, the proportional tax rate has no impact
on the final output since canceling 1 — T yields the same before-tax profit-
maximizing condition:

p(1-T)=C'(g(1-T) (7.6)
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THE RISK MODEL

We define a perfectly competitive market under risk as one in which the firm
is a price taker and has identified the probability density function of all random
variables. Using the certainty model as a base allows us to compare the output
levels under certainty and risk, the impact of fixed costs, the slope of the supply
curve, the effect of taxes, and the maximization conditions.

Consider a firm facing a risky price for the product it produces. Under risk
conditions, let p be the expected output price such that:

E(p+e)=p (7.7)

where the random variable e has expected value 0 and variance o2. Risky profit
is now: /
y=(p+e)g—Clqg)— B (7.8)
Expected profit is:
E(y)=pg—C(9) - B (7.9)

and variance of profits is:
o?(y) = ¢%a? (7.10)

To find the firm’s optimal output under risk we form the certainty equivalent
of the profit expression:

A
yor = pg— Clg) — B — 5¢%0¢ (7.11)
which is maximized with respect to q. The first-order condition is:
p—C'(q) — Ago? =0 (7.12)

As long as marginal costs C'(q) are positive, the output level satisfying
the first-order conditions under risk will be less than the corresponding output
under certainty. Figure 7.1 illustrates these results, with the solid and dashed lines
representing marginal cost under certainty and risk conditions, respectively. The
difference between the two curves is line Ago? which represents the cost of
risk—the costs the firm would willingly forgo from its expected profits if the
difference were received with certainty. This cost of risk reduces the firm’s output
relative to production under certainty. Output levels under risk and certainty
differ by the amount g, — g, on the horizontal axis.

To ensure an expected utility-maximizing solution, the second-order condi-
tion requires that H is positive, where:

H =C"(q) + Ao?

A sufficient condition is that marginal costs increase at an increasing rate
C"(q) > 0. The second-order condition can also be satisfied by a weaker

condition:
~C"(g) < Ao?
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C'(q) + Aqo?

4
N 7 C'(CI)
N _ e
\\ S
i N //
- Aqo2
———— q
Figure 7.1 Marginal cost under certainty and risk.
average cost, , 2 C(q) +2q20 2
marginal cost C(a) +1q0,” 2~ ¢
K / / q
I”’
C'(a) C(a)
q
q

9% 9%

Figure 72 Average cost-minimizing output under certainty g, compared to average cost-
minimizing output under risk g,.

A homogeneous cost function with costs constant over all output levels would
satisfy this requirement. In such a case, the condition C”(q) = 0 produces a
unique optimal output under risk, although the output level under certainty is
indeterminant.
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These theoretical results concerning the reduction in optimal output under
risk, relative to the certainty case, have important implications for empirical
analyses. Studies on economies of scale, for example, may suggest that some
types of firms are operating inefficiently because their size and levels of output
appear to fall short of those which minimize average cost (Madden). However,
as the above results show, including the costs of risk in the analysis will explain,
at least in part, the discrepancy between optimal output under certainty and risk
conditions. To illustrate this result graphically in Fig. 7.2, we represent average
and marginal costs under certainty by solid lines, and average and marginal costs
under risk by dotted lines. Clearly, the average cost minimizing output under
risk g, is less than the average cost minimizing output under certainty g..

THE EFFECT OF FIXED COSTS UNDERRISK

Recall that the certainty equivalent model of solutions from an EV set allows A
to remain fixed only if the EV set does not shift. Since A equals the coefficient
of absolute risk aversion R(y), measured at the expected value of outcomes,
any shift or rotation of the EV set requires a corresponding change in A.
DARA, CARA, and IARA attitudes imply that A decreases, remains constant, or
increases as the EV set shifts or rotates upward away from the risk axis toward
higher-return solutions. The opposite effects occur for a shift or rotation in the
EV set toward the risk axis.

An increase in fixed costs reduces the firm’s expected profit at each level of
output. This is equivalent to a downward parallel shift in the EV set (Flg 7.3).
The effect on the absolute risk aversion function is:

E)) ,
@-dB 0 a RI[E@)]S0 (7.13)

This result is portrayed graphically in Fig. 7.3. The dotted EV frontier represents
the EV frontier adjusted for an increase in fixed costs. The DARA decision
maker responds to a downward parallel shift in the EV set by finding a new
expected utility-maximizing choice that requires a higher rate of exchange
between expected profits and variance. The movement from A;, the initial
equilibrium, to A, the new equilibrium, reflects the i income response to higher
fixed costs.

Whether or not decision makers respond as indicated in Fig. 7.3, it is
plausible that changes in fixed costs should not be ignored. Increased fixed
costs could lead some decision makers to a riskier location on the EV set in
order to regain reduced profit margins. Increased fixed costs may result in more
conservative output decisions to avoid the possibility of large operating losses.
Or, fixed costs may have no income effect at all. The theory explicitly allows
for any of these possibilitiés rather than ignoring the effects of fixed costs as it
does under certainty.
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E(y)

11 7

Figure 7.3 Income effect response to an increase in fixed costs.

The impacts of fixed costs are expressed mathematically by totally differ-
entiating the first order conditions (7.12) with respect to ¢ and B. The results
are:

AN 5
Hdg+ 35 9°¢ dB=0 (7.14)

Rearranging (7.14) results in the expression:

dg _ —(8)/3B)qo?
dB H

(7.15)

The denominator on the right-hand side of (7.15) is positive, otherwise
the second-order condition would fail. The sign of dA /aBEO depends on

R'(y) § 0, so that for DARA decision makers 81 /8B > 0, implying that output
will fail as fixed costs increase, dg/dB < 0. Similarly, if R'(y) > 0 (IARA deci-
sion makers), increased fixed costs will increase risky output, since 8\ /8B < 0.
Only for CARA decision makers [R'(y) = 0] will a change in fixed costs have
no effect on output. Thus, except for the case of CARA decision makers, these
results contradict those obtained for the certainty model.
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EFFECTS OF TAXES

The effects of income taxes may also influence the firm’s production organiza-
tion under risk conditions. The expected after-tax profit y# is:

E(y+) = [pg—C(q) - B|(1 - T) (7.16)

and the variance is:
o*(y*) = ¢*(1 - T)%0? (7.17)

The certainty equivalent model is:
vop* = lp— Cla) ~ B|(1~T) — 52(1~TV%?  (1.18)
Maximizing the certainty equivalent income with respect to g yields:
p=C"(q) +2q(1 - T)o? (7.19)

As (7.19) shows, proportional taxes affect the first-order condition under risk.
The effect of the tax is to reduce the cost of risk. If A is constant, output g is
increased relative to the model results without taxes. But A may not stay constant
since introducing taxes will shift the EV set. Thus to analyze the effects of taxes
on risky output ¢ we must consider how taxes affect the distribution of profits.

Consider the impact of a proportional tax that has full offset provisions;
that is, both positive and negative incomes are reduced by T percent. This has
the effect of reducing negative expected income, reducing positive expected
income, and reducing the variance of income.

We demonstrate the impact of a full-offset proportional tax in Figs. 7.4 and
7.5. First consider a distribution f(y) with an expected value of zero, as shown
by the solid line in Fig. 7.4. The before-tax parameters of the distribution are
E(y) = 0 and ¢? = ¢%02. In a normal distribution, about two-thirds of the
probability falls within 1 standard deviation go of the mean.

The after-tax distribution f*(y#*) also has a zero expectation, since reduc-
tions of positive incomes are offset by reduced losses. The variance, however,
is unambiguously reduced to:

o*(y*) = (1 - T)*¢%s?

Thus the before-tax standard deviation of ¢ is reduced to the after-tax standard
deviation of (1 — T)qo., resulting in a more peaked distribution, as shown by
the dashed line in Fig. 7.4.

Now consider the impact of full-offset proportional taxes when expected
profits are positive. Again the variance of y is reduced, but so is the after-tax
expected profit—from E(y) to E(y)(1— T). Thus the tax shifts the distribution
to the left and peaks it, as shown in Fig. 7.5. The effects of taxes on negative
expected income are similar to those in the positive income case except that the
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fly), f*(y*)

y:¥y
E(y)=0
Figure 7.4 Probability density functions of before- and after—taxr proﬁts.
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Figure 7.5 Probabiiity density functions of before- and after-tax profits.
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o2(y)

Figure 7.6 Before- and after-tax expected value-variance sets.

distribution shifts to the right and is peaked; a negative expectation is made less
negative by the tax.

Next we will examine how the tax shifts the before-tax EV set. In Fig. 7.6,
the solid curve represents the before-tax EV set, with the horizontal line
representing zero expected profits. Choice Ay has zero before-tax profits. The
introduction of a tax which reduces the variance without affecting expected
profits implies that the before-tax choice is mapped on Ag*, the after-tax EV
choice. The before-tax distributions with negative expected profits shift the EV
set upward, since they reduce variance and increase (reduce negative) expected
values.

How distributions with positive expectations before taxes affect the EV
efficient set is unclear. Taxes reduce both the variance and the expected
value. Therefore the magnitude of these reductions determines whether the new
portfolios lie below or above the original EV set. This ambiguity in the EV shift
is reflected in Fig. 7.6 by the dotted interval around the original EV set in which
the after-tax EV set may lie.

To find the effects of marginal increases in the proportional tax rate on
the firm’s risky output, the first-order conditions are totally differentiated with
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respect to output ¢ and the tax rate T'. The total differential, including both the
income and substitution effects, is:

—H*dq+ {/\qaf - -g%q(l - T)af} dT' =0 (7.20)

dg _ {Xqo?—(8)/3T)q(1 — T)o?}

dT =~ H*
where H* = [C"(g) + A(1 — T)o?] > 0 for a maximum.

We have already established that H* is positive in order to meet the second-

order condition. The sign of the numerator in (7.21), however, is ambiguous
because the sign of 1 /8T depends on the location of the initial equilibrium
and the direction of the shift in the EV set. If the tax shifts the EV set upward
and the decision maker is DARA, then 8)/8T < 0, but the derivative dg/dT
is still ambiguous. This result also contradicts the certainty model result.

(7.21)

THE SUPPLY CURVE

The comparative statics for the supply curve are analyzed by differentiating the
first-order condition (without taxes) with respect to g and p; because of the EV
shift we also differentiate A. The result is:

A
(1 - qa,f) dp—Hdg=0 (7.22)
Op
where H is required to be positive to satisfy second-order conditions. Or,

expressed as a differential:

dg 1-(8)/3p)go? DY
— = £ fi — < .
5 = >0 for 5 <0 (7.23)

We anticipated an unambiguous result, indicating that increases in the
expected output price would increase the supply response. Instead, the slope
of the supply curve depends on the derivative 82 /3p. If increasing p shifts the
EV set upward, then the new EV equilibrium slope for the DARA decision
maker does in fact decrease, and dgq/dp is unambiguously positive. But dg/dp
may be negative for the IARA decision maker. It is therefore reassuring that
under the usual DARA or CARA assumptions the supply curve continues to
slope upward.

Finally, we examine the effects of increased variance, for which no analogy
exists in the certainty model. In certainty models, supply is characterized as a
relationship between output and prices. Under uncertainty, however, the supply
response must also be related to the probability density function of output
prices—in particular to changes in variance.
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To examine this situation, we differentiate totally the first-order condition
with respect to ¢ and o2. We also account for the effect on A of an increase in
o2 which rotates the EV set downward toward the risk axis. The total derivative
is:

oA
Hdq+ (x\q + qo? 303) do? =0 (7.24)
and the differential is:
dg _ —[Mg+g0?(8)/802)]
e = i (7.25)

If 81/8c. > O, the sign of dq/ do? is unambiguously negative since
H > 0. Because the increase in o2 rotates the EV set downward, d1/302 > 0
corresponds to DARA and CARA, respectively, which are the more usual cases,
and increasing the variance reduces output. In effect, for CARA and DARA
decision makers, increasing o2 increases the marginal cost of producing ¢ and

reduces output. Still, IARA results in ambiguity about the sign of dg/do2.

CONCLUDING COMMENTS

We have now analyzed a simple output model under conditions of risk.
Contrasting the results with the certainty case is important. Under certainty,
fixed costs and taxes do not affect output levels; under risk they can matter
a lot or not at all. Under certainty, increasing marginal costs are required for
profit maximization. This condition is sufficient, but not necessary, under risk.
The supply curve slopes upward with price under certainty. It may do the same
under risk, but under some conditions it can slope downward. Finally, changes
in variance may increase, decrease, or leave constant the supply response.

The difference in results between the certainty and risk models is important
in other ways as well. Under certainty, a single solution characterizes the
response of all decision makers. With the conditions of certainty and more
profits preferred to less, the choice with the highest profits is known and
selected by all decision makers. Under risk, the unanimity of choice disappears
and each decision maker can prefer a different choice because of his or her
unique attitude toward risk. For analytic convenience, we categorize decision
makers according to their response to increases in risk-free wealth—with DARA,
CARA, and IARA decision makers requiring decreasing, constant, or increasing
risk premiums, respectively, in response to an increase in risk-free wealth.

As evidenced by the solutions to the certainty-and-risk model described in
this chapter, risk makes economic analysis more complicated. It also increases
the information needed to solve the problem including attitudes toward risk held
by the decision maker. But risk models also yield more believable results.
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ENDNOTE

1. Hawawini later reformulated the Sandmo model within a mean—standard deviation
framework. '
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CHAPTER

EIGHT

RISK-REDUCING INPUTS AS A RISK RESPONSE

Risk-reducing inputs such as irrigation systems, pesticides, subscriptions to
market forecasting services, use of professional consultants, and buying new
equipment represent another type of response to risk. Analytic models should
consider the impacts of risk-reducing inputs on the expected utility of a decision
maker and how the use of these inputs responds to changes in risk attitudes,
expected returns, variances, and fixed costs. These impacts are addressed in this
chapter, based on alternative modeling approaches.

THE JUST AND POPE ASSUMPTIONS

Just and Pope examined many important analytic issues involving risk-reducing
inputs. They established seven conditions which an economic model should
satisfy in order for input into the model to be risk-reducing. Letting ¢ represent
output and z; be an input (« = 1,..., n), these conditions are:

1. E(q) > 0; the expected value of output is positive.

2. 8E(q)/3z; > 0 inputs provide positive contributions to the production
process.

3. 382E(q)/8z? < 0; the marginal productivity of the inputs should diminish
at some point. '

4.  8E(q)/80%02 = 0; expected output can be held constant while reducing
the variance of the random component.

5. 80%(q)/8z; §0; the change in variance associated with a change in the
risk-reducing input is not constant in sign.

6. 80%(8q/8z;)/0=; §o; the change in variance of a marginal product is not
constant in sign.

7. f(fz) = f(z); constant stochastic returns to scale.

101
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To evaluate the Just-Pope approach, we consider whether the standard
production functions used in many types of risk analyses have the characteristics
required above for risk-reducing inputs. Models containing empirical production
functions usually have one of three standard forms.

Model 1: ¢ = f(z)e; e ~ (0,02
Model 2: ¢ = f(z)e; € ~ (1,02)
Model 3: ¢ = f(z) + € e~ (0,02

Consider how the distribution of g varies with z in each of the three models.
In model 1, the exponentiated error term has a constant distribution. But since
f'(z) > 0, the distribution is multiplied by an increasing factor f(z) which
spreads the distribution as z increases. Moreover, e¢ > 0, and q is restricted
in model 1 to positive values; Figure 8.1 illustrates how the distribution of ¢
values changes with input values z;, =5, and z3, where z; < z; < z3.

Model 2 is similar to model 1 in that the distribution and variance of ¢
increase with the input z. It differs from model 1 in that negative ¢ values are
possible when e < 0 and the expected value of q is f(z;). Figure 8.2 illustrates
how the distribution of g values changes with input values z;, z,, and zj,
where z; < z5 < z3. Model 3 is the easiest to describe. Its variance is the same
regardless of the choices of z. It is described graphically in Fig. 8.3.

We will consider each model using the criteria established by Just and Pope.
Most often, model 1 assumes a normally distributed error term e. Since E(e€)
is the moment generating function e*< for ¢ = 1, the expected value of g, E(q),

= E(q) = f(z) E(e")

_ f(x)e”Z/z (8.1)

Assuming z has a positive marginal product (otherwise, none of it would
be purchased), condition 1, E(g) > 0, is satisfied. Condition 2 is also met since:

O (822)
and we may easily impose diminishing marginal productivity on f to meet
condition 3. That is,

62E(q)

T f'(z)e <0 (8.2b)

To examine condition 4, we differentiate the expected value of ¢ in Eq. 8.1
with respect to o2
2E(q) flz)eo/?
202 2

>0 (8.3)
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Probability
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Figure 8.3 Probability distributions for alternative input values z; < z3 < z3 where ¢ = f(z) +e¢.

Since the form of model 1 precludes the possibility of 2E(g)/202 = 0, it

violates condition 4.
To examine condition 5, we first calculate the variance of output:

o*(g) = Blf () - [1(=)et?]

(8.4)
= [f(=)]?o?(¢°)
Next we differentiate the variance of ¢ with respect to input z:
2
99°(9) _ 24 (2)'(2)o? () > O (8.4)

oz
Since 8o%(q)/8z can be signed only in one direction, condition 5 is also

violated.
Model 1 also fails to satisfy condition 6. Letting the variance of marginal

product under risk be:
o?[f'(2)] = [f'(=)]*0® () (8.6)
its derivative with respect to z is:

L@ g p(0) (o) <0 (8.7)

which is always negative since f”’(z) < 0 by assumption. Thus the model f(z)e¢
is not suitable for evaluating risk-reducing inputs. Finally, condition 7 can be
tested only after a specific functional form for f(z) is chosen.
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Condition 5 is tested by differentiating 0%(¢) with respect to z:

%@—) = 2h(z)h'(z)o? (8.14)

Since h'(z) §0, (8.14) satisfies condition 5.
To test condition 4, we begin by noting that:

9E(g) -giq) - f'(z) (8.15a)

Forming the ratio of the expressions in (8.15a) and (8.14) we can write:

3E(q) _ _ f'(a)
d02(q)  2h(z)R'(z)02 (8.15b)

With an appropriate choice of k'(z), Eq. (8.15b) can approach zero, hence satisfy
condition 4.
Next we examine condition 6 by first finding the variance of the marginal

product of z. The expected value of the marginal product is:
E[f'(z) + K (z)e] = f' (=) (8.16)

and the variance is:
E K (z)e]* = r'(z)202 (8.17)

Differentiating the variance of the marginal product with respect to z yields:

do? [f'(z) + h'(z)e]

= = 2h'(z)h"(z)0? (8.18)

The sign of this expression depends on both A'(z) and A"(z), which have not
been specified. Hence condition 6 can also be satisfied. Previous comments
about condition 7 continue to hold.

Thus we find a model with a rather general form which satisfies assumptions
made about the impact of risk-reducing inputs. We will apply this model in
analyzing the effects of pesticides, an important risk-reducing input in many
types of agricultural production.
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rHE PEST MANAGEMENT MODEL

The presence of pests in agricultural production poses an interesting problem for
»conomic analysis. Pests are an uninvited input with a negative marginal product
n the production model. Controlling the levels of pests reduces the likelihood
>f lost production. However, the pest population depends on stochastic factors
;uch as heating degree days, humidity, pest populations in previous periods, and
e host environment. Thus decision makers must make control decisions under
isk.

The weather may eliminate the need for pest controls. On the other hand,
waiting until control measures are clearly needed may result in extensive damage
-equiring difficult or costly control procedures. Determining the threshold level
»f a pest population which should trigger control procedures is an important
sroblem for biological scientists and agricultural economists. We now consider
1 model for determining this threshold level.

We assume that the firm operates in a perfectly competitive market. Its input
z is completely divisible and, nondurable and produces a completely divisible
sutput g. The input-output relationship is expressed by the production function
7 = f(z). Input purchases and output sales occur at certain prices p, and p,
respectively, accompanied by fixed cost B.

In this model the pest population is uncertain. It is described by the random
variable N + ¢, where ¢ ~ (0,02) and —N < e for all possible values of e.
This stochastic population is estimated from samples taken within the infested
area. The expected pest level and the variance of the pest level are expressed as
E(N +¢) = N and 0%(N + ¢) = o2, respectively.

The damage to the plant (or animal) without pest control is represented by a
damage function D(N +¢). Since N + ¢ is a random variable, so is the outcome
of the damage function.

The decision maker responds to the presence of the pest by applying a
control measure. In our model, the control is a pesticide z which is purchased
at price p,. The effectiveness of the pesticide is described by a “kill” function
k(z), with diminishing marginal kill properties so that k'(z) > 0 and k"(2) <O.
Since the number of pests killed depends on N + ¢ at application, the pesticide
effectiveness is expressed as the percentage of N + e that is killed so that
0<k(z) <L

The expected postapplication damage of the pest is functionally related to
the pest population still alive after the pesticide application; that population is
(N + €) [1 — k(z)]. The damage function D then is:

D= D{(N+¢)[1-k)]}

To simplify the analytic model, D and N are assumed to be linearly related by

the function:
D = d(N + ¢€)[1 — k(z)] (8.19)

where d = some constant damage caused by each pest.
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The profit function y is now formulated as:
y=p{f(z) —d(N +¢)[1-k(2)]} — pzz—p.2— B (8.20)

It is important to note that the description of output ¢ is characterized by
f(z)—d(N+e) [1 — k(z)]. This expression has the general form f+he suggested
by Just and Pope, where

f= f(:z:) — dN [1 - k()] and =—d[l- k(z)]e

Thus this formulation is applicable to the analy31s of a rlsk-reducmg input.
Expected proﬁt is:

B(y) =p{f(s) ~dN[1-ka)} ~pas—psz =B (8.21)

and variance of profits, o2(y), is:

o*(y) = {pd[1 - k(2)]}" o? (8.22)
The certainty equivalent model is written as:
yce = p{f(z) — dN[1 - k(2)]} — pzz — p2z— B

(8.23)
~ 2 {pd[1 - k(2)]}*
The two control variables for this problem are z, the level of pesticides, and
z, the inputs to the production function. The firm can produce a more certain
output if it applies more pesticides. The cost effectiveness of the pesticide
application, however, is uncertain because the pest population is a random
variable. The decision maker might accept the risk that nature will reduce the
pest population to a very low level. Or, a strongly risk-averse decision maker
might pay a high price to eliminate the pests. In any case, the control decision
should be independent of the production decision. The first-order conditions
with respect to z and z confirm this hypothesis:

%(;_E =pf'(2) —ps =0 (8.24)
angE = pdNk'(z) — p. + A(pd)? [1 — k(2)] ¥'(2)02 = 0 (8.25)

The first-order condition with respect to = confirms that the output decision
is independent of the pesticide control decision. It equates the value of marginal
product to the marginal factor cost of z, the usual result of a certainty model.
The first-order condition with respect to z suggests that the pesticide is applied
until the reduction in profit variability due to uncertain pest damage weighted
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by the risk aversion parameter A plus the expected loss reduction just equals the
cost of an additional unit of pesticide. ‘

Thus the firm chooses its inputs based on the equality between its marginal
factor costs and its marginal value products. But the risk-reducing input is chosen
so that its marginal factor cost just equals the increase in the firm’s certainty
equivalent associated with a reduction in the variance and the level of damage
caused by the pest.

This model can be used to analyze several interesting questions. For
example, how will pesticide applications change as risk aversion increases? We
answer this question by totally differentiating the first-order condition (8.25)
which produces the result:

dz _ —(pd) [1 — k(2)] ¥ (2)o?
dx  Nk"(z) + Apd [1 — k(2)] k" (2)o2 — Apd[K'(2)]202
since k" (z) < 0.

The pest population where the decision maker is indifferent about applying
the pesticide is called the economic threshold (Headley). To find the threshold
population N* we replace z in the first-order condition (8.25) by zero and solve

for N*.
pz — A(pd)? [1 — k(0)] '(0)o
pdk' (0)

The threshold population increases with the cost of pesticides and decreases
with increases in output price p, damage function parameter d, variance of pest
population o2, and risk aversion parameter A.

dN*
dp.
dN*
dp
dN*
dd
dN*
do?
dN*
dA

The changes in threshold level N in response to an increase in fixed costs
or input prices are less clear. Both affect the EV set in similar ways. Consider,
for example, the increase in input price p.. Because the output decision is
independent of the pesticide decision, every EV efficient solution has the same
level of input z. Thus increasing p, shifts the EV set downward and reduces
profits for every choice. The downward shift is parallel because the increased
input price uniformly affects profits at all levels of output. Therefore the only
impact on the threshold level N* is an income effect:

dN* _ —(9X/3ps)(pd)? [1 — k(0)] K'(0)o?
dp. B pdk’ (0)

>0  (8.26)

N* = (8.27)

>0

<0

<0

<0

<0

(8.28)
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The sign of dN* /dp, depends on the numerator. First, recognize that increasing
input costs reduce expected profits and shift the EV frontier downward. For
DARA decision makers, a downward shift in the EV set makes the decision
maker less willing to accept possible losses from pest damage. As a result,
dA/dp, > 0, making dN*/dp, < 0. For IARA decision makers dN*/dp; > 0
and 0 for CARA decision makers.

To summarize, (8.26) suggests that the more risk-averse the individual
decision maker (i.e., the larger X is), the greater his or her application of the
risk-reducing input z. It can also be shown, using Eq. (8.27), that the more
risk-averse the decision maker (i.e., the larger A is), the lower the economic
threshold pest population N* at which pesticide application is begun. Finally,
the effect of an increase in the cost of the productive input = on the economic
threshold depends on whether the decision maker is DARA, in which case N*
decreases, IARA, in which case N* increases, or CARA, in which case N*
does not change.

ALTERNATIVE FORMULATION

The pest management model just described is patterned after a model developed
by Feder. However, Feder’s model has serious limitations for purposes other than
analyzing risk-reducing inputs because of the limited number of risk sources it
considers. In reality, the effectiveness of the pesticide, described by function
k(z), is probably stochastic, as is the output price p. The output price and the
level of output may not be independent either. If pest control is effective and
output increases, prices will likely decline. A more complete pest management
model using simulation techniques has been developed by Cochran, et al. and
by Talpaz and Borosh.

We can extend our model results by allowing the price of the output and
the pest population to be stochastic. The earlier model described in Eq. (8.20)
is modified by letting the output price be p + v, where v ~ (0,02) and —p < v.
Then let the pest population be N +¢, as before where € ~ (0,02) and —N < e.
Finally, assume ¢ and v are independent. Now let the stochastic profit function
be expressed as:

y=(p+v){f(z) ~d(N+e)[1-Kk(2)]} —pzz—p.2—B  (8.29)

With two random variables, we can proceed as before using our EV model.
However, with two random variables, consistency between EU and EV results is
not guaranteed. On the other hand, results from the EV model are easily derived
which is not the case with EU models.

In Chap. 10, we will analyze a two random variable model in our EV
framework. Two random variables, however, quickly complicate our analysis,
forcing us into numeric rather than analytic approaches. Furthermore, we could

find the threshold level for N* as before but the solution would require solving

a quadratic formula with few deterministic results.










CHAPTER

NINE

OPTIMAL INPUT USE UNDER RISK

In this chapter we discuss the impact of risk on the firm’s demands for its factors
of production. In particular we discuss how the firm’s acquisition and use of
inputs adjust to changes in risk. The firm’s responses, of course, depend on the
source of risk. Factor demands may be influenced by risk associated with input
prices, input quality, output prices, production functions, input availability, and
holding costs for inputs.

The most obvious response of factor demand to risk is to alter the relative
amounts of inputs. Under certainty optimal input combinations are referred to
as least-cost combinations. If risk alters these input combinations, then factors
will no longer be in the least-cost combinations determined under certainty.
Of interest here are comparisons of factor demands under risk to those under
certainty conditions.

This chapter also examines the concept of flexibility and its influence on
factor demands. Flexibility is defined as the ability to adjust to new information.
Tt arises as a natural consequence of being able to make some input decisions
after the random variable has been revealed. Sometimes flexibility is increased
by holding inventories. It will be shown that flexibility almost always allows
factors to adjust from their least-cost combinations determined under certainty.

In this chapter we will first review the theory of factor demand under
certainty. Then we examine factor demands under the following conditions: (1)
output price risk, (2) input price risk, (3) quality of input risk, and (4) production
function risk. Then flexibility is introduced by allowing the firm to choose one
of its inputs after the uncertainty is revealed. Finally, we show how the addition
of flexibility results in a class of solutions falling between Sandmo’s theory and
the theory of the firm under certainty.
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Figure 9.1 Isocost, isoquant, and least-cost solutions to a production problem with two variable
inputs under certainty.

Meanwhile, the isoquant for a given g, is:
dfe = frdL+ fkdK =0

or
dL _ —fx

K~ fi
At the equilibrium tangency point, where the slope of the isoquant equals
the slope of the isocost line, the equilibrium relationship is

r

Ix _
o w

which is the condition for (9.5). For the profit-maximizing output, found by
solving (9.2) and (9.4) simultaneously, we associate the output g, and input
levels K, and L.. These will serve as reference values for later comparisons
with factor demands and output levels derived under risk.
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INPUT PRICE RISK

We next consider the case of input price risk. This condition may exist when
not all inputs are purchased at the same time in the production process or when
inputs are purchased in different types of markets. The agricultural production
process is an example. The production of corn involves fertilizer, seed, and
soil preparation in the spring when input prices are well-known. Costs to
be incurred in the fall, including harvesting, drying, and transportation costs,
are not, however, known with certainty. Another example is defense contracts
established with contractors by the U.S. government using a “cost plus” pricing
arrangement because the final production costs are subject to considerable risk.

To examine the effects of uncertain input prices, we define a production
process, as before, with two inputs with stochastic prices and which are divisible
in acquisition and use. Let the input price for labor L be w+e¢, where € ~ (0,0%2),
and let the input price for capital K be r+v, where v ~ (0, 02). The correlation
between v and ¢ equals p. In this case, the output price p is certain. Finally,
assume that the production function has the derivatives defined before to ensure
that both inputs increase (decrease) with production.

The expected profit and variance of profit are expressed, respectively, as:

E(y) = pf(L,K) —wL—rK (9.10)

o?(y) = L2602 + K?02 + 2LK po,0e (9.11)

The certainty equivalent model is:
maxycg (K, L) = E(y) — é<72(y)
K,L ’ 2

and the first-order conditions are:

(‘i%%—E =pfr, — w— ALo? + Kpo,0o.) =0 (9.12a)
dyce _ Ko2 _ b
Fie =pfx —r— MKo2 + Lpoyoc) =0 (9.12b)

Rearranging (9.12a) and (9.12b) yields the equivalent of (9.5) and (9.9):

w pft—A(Lo? + Kpoyoe)
- = = (9.13)
r  pfx — AMKo2+ Lpoyoe)
In addition to input prices and marginal products, the ratio of factor combinations
now depends on the output price, risk aversion, the risk variables o, and o,
and the correlation p associated with the two input prices.
While output price risk alters the level of factor demands, it does not change
their relative demands because each is affected in the same way as long as the
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production function is homothetic (the slope of the isoquants along a ray from
the origin does not change).?

If a decision maker is not risk-neutral, factor price risk will change both the
level and factor proportions relative to the line of least-cost combinations under
certainty. This result stems from the fact that inputs incur differential price risks.
Moreover, as the input price risk is reduced for one of the inputs, the relative
factor demand moves in its favor. For example, if af = 0, then (9.13) becomes:

w o pfL '
r pfr+ — /\K*U?, (9.14)

which can be achieved only if:
foe < fL or pfxs — AK*02 > pfx — X(Ko2 + Lpoeoy)

This requires that L increase to L*, or K decrease to K*, or both. Thus
eliminating the input price risk associated with labor L increases its demand
relative to K.

QUALITY OF INPUT RISK

Suppose that now the firm faces a still different kind of risk, namely, that an
input L can be purchased at a known price of w per unit but that the actual
quality of L is stochastic, say L + €, where ¢ ~ (0,02) and e > — L. Quality
of input risk involves variability in services supplied by the input. For example,
labor is hired to provide services, but health, incentives, previous training, and
dependability leave uncertain the actual supply of available services.

Assuming the actual level of inputs supplied is L + ¢, let the production
function for ¢ with a fixed supply of capital be expressed as:

g= f(L+¢K)
subject to
fi >0 and ff <O

which ensures second-order conditions for certainty equivalent maximization.
The income function y, expected value of y, and variance of y now are
written using the earlier notation as:

y=pf(L+¢K)—wL—rK
E(y) = pEf(L+¢K)—wL—-rK

and
o?(y) = p*a*(f)
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which allows us to form the certainty equivalent expression:
A
maxycg = pEf(L+ ¢|K) —wL—rK — -2—p202(f) (9.15)

Now consider the expressions for the variance and. expected values of
f(L + €|K) if € takes on the values AL and —AL with equal probability.
The expected value of the production function is then:

E[f(L+ )] = 2 [£(L+ ALIK) + £(L - ALIK)] < F(Z|K)  (916)

The expected output is less than the output at the mean input level L for the
same reason that E [U (y)] is less than the utility of the mean income U [E(y)].
Both functions f and U are concave, so that marginal products to the left of L
are greater than those to the right. With Jensen’s inequality, we deduce that the
expected value of a concave function is always less than the functional value of
the mean level of input. Nevertheless, the expected value of the output depends
critically on the value of L.

Now consider how increases in L affect the variance of output. Suppose,
for example, that the firm selects input level L* > L while random factors
determine that either L* — AL or L* + AL is actually available. At L*, the
range of outputs is:

Af(L*|K) = f(L* + AL|K) - f(L* — AL|K) (9.17)
while at input level L the range of outputs is:
Af(L|K) = f(L+ AL|K) - f(L — AL|K) (9.18)
.But diminishing marginal productivity means that
Af(L*|K) < Af(LIK)

as shown in Fig. 9.2. Because the variance in this case depends on the range
determined by the end points, the variance of output associated with L*,
o2[f(L*)), is less than the variance associated with the input choice L, o2(f(L))-
Thus variance is reduced by increasing the input level. Moreover, this result
is consistent with empirical observations. For example, farmers buying new
equipment frequently keep their old machines to use when breakdowns occur.
Extra parts are often held in inventory in case replacements are not available.

We complete the analysis of input service risk with the certainty equivalent
model. To do so, let Ef(L + ¢ | K) be denoted f(L) and let the variance
be o2(L). Then assume that the input is purchased in a perfectly competitive
market at constant price w.

Expected profit for the firm facing input service risk is:

E(y) = pF(L) — vl (9.19)
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possible with input }
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fevel L. }
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Figure 92 Comparison of the range of outputs at two levels of input L* > L with quality of
input risk € equal to — L and L.

The first-order condition requires:

pr(Lc) =w (9'20)

-

where L, is the value of L satisfying (9.20) which is also the certainty solution.
Now consider the solution for the risk-averse certainty equivalent maximizer
whose objective function is:

- A
maxycg = pf(Lr) — wL, — 2p*0*(f(L)] (9-21)
where L, = optimal solution for L under risk. The first-order condition is:

pfo(Le) —w-— %p2 Q%L'—)] =0 (9.22)

But the earlier discussion deduced that do2[f(L,)]/8L < 0. Thus risk is
decreasing with L, so that:

pfr(L) < pfr(Lec) (9.23)
which, given a production function with diminishing marginal productivity, is

true only when L, > L.. In general then, risk associated with the quality of
inputs induces a decision maker to hold larger levels of the input than would
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Now the first-order conditions are written as:

pfr —w— Ap2f(L,K) fro? =0, (9.29a)
and

pfx —r—Ap2f(L,K)fgo?=0 (9.29b)

Forming the ratio r/w results in the expression

r _ folp=2p*f(L K)o?]
_h
Ik
which is the least-cost combination deduced under conditions of certainty in
Eq. (9.5). Risk, however, alters the factor levels because, contrary to the additive
risk case, risk is not independent of the factor choices. If the production function
is homothetic, so that the input combination does not change with the level of
production, the relative factor demands will be constant.

FLEXIBILITY AND INPUT SELECTIONS

Optimal input use is influenced not only by risk but also by flexibility. In
everyday use “flexibility” has come to mean the characteristics associated with
the initial choice which measures the ability to respond or conform to new or
changing conditions (Webster's New Collegiate Dictionary, 1977).

Information and flexibility are critically linked. Information determines the
importance of flexibility to the firm. If no new information is available, flexibility
is not important. That is, the characteristics of the initial choice which allow it to
adjust to new information are not useful. On the other hand, without the ability
to adjust, or if the cost of adjustment is exorbitant, new information is of little
use to the firm.

In the rest of this chapter we review efforts to incorporate risk and flexibility
into the selection of divisible inputs and then construct a certainty equivalent
model to illustrate the important relationship between a class of flexibility models
and Sandmo’s model.

In similar articles by Holthausen and by Hartman (1976), flexibility is
introduced into a two-input production model by choosing one input, call it
capital K, in the presence of risk and then later choosing the second input, call
it labor L, after the risk is eliminated. Thus the second input is chosen under
certainty conditions.

In Hartman’s paper, the firm chooses the amount of capital it will employ
when it is uncertain what the output price will be. Before the firm decides on
how much labor to use, it receives information which reveals the output price.
Let the firm’s ex post income function y equal

y=(p+¢)f(L,K)—wL—rK (9.31)
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FLEXIBILITY AND INVENTORIES

We now introduce a competitive firm model which captures and illustrates some
essential features of the flexibility models described above.? The model will also
show the difference between ex ante models which contain no ex post controls
(or flexibility) and ex post (instability) models which contain complete flexibility.

To begin, we assume that the competitive firm faces ex ante price risk but,
depending on its flexibility, can make factor adjustments ex post when the actual
output price is revealed. The level of flexibility, and thus the cost of making ex
post adjustments, depend on its ex ante choices. The firm chooses its level of
flexibility and places limits on its ability to choose output levels ex post once
the output price is known with certainty.

The basic conclusion we draw from our model is that flexibility results in
an output level somewhere between that of the ex ante model, in which all
input choices are made under risk, and the price instability model, in which all
choices are made under conditions of certainty. If adjustment costs are high (and
flexibility low), output levels tend toward those of the ex ante firm, If adjustment
costs are low (and flexibility high), the solution tends toward that of the firm
whose decisions are made ex post.

First consider the competitive firm facing price risk whose output is chosen
ex ante. Let output ¢ depend on the cost function C(q), where C'(g) > 0 and
C"(q) > 0. Moreover, let the output price be p + ¢, where ¢ ~ (0,02) and
fixed costs equal B. This is the Sandmo model in which the certainty equivalent
expression is: )
maxyce =pq—C(g) — B — "2'4203 (9.35)

To simplify matters we assume that C(q) = bg? where b > 0 and is
constant. With this assumption, (9.35) is solved by substituting for C(q) and
finding the first-order conditions. The first-order condition is:

p—2bg—Ago2=0 (9.36)

Therefore: p
= —— 9.37
9 2b + Ao? ( )

Second-order conditions are guaranteed by the quadratic cost function and the

quadratic nature of risk costs.
In contrast to the results of the ex ante model, suppose g is chosen in the
model above after output price p + ¢ is revealed. Then income y is written:

y=(p+eqg—bg®— B - (9:38)

Maximizing (9.38) with respect to g results in the solution for ¢ equal to:

pte
= 9.39
9= (9.39)
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so that on average q equals:

_ P, _P
E(d) = 35 > 33 202 (9.40)

That E(q) is larger than the g chosen in the ex ante model is not a general result
but depends on the nature of the cost function C(g), in this case assumed to be
a quadratic.?

Now we introduce flexibility into the model. Instead of requiring the firm
to choose g ex ante in the face of risk, let it choose an inventory of ¢ equal to
I. Then, after the output price is known, the firm can sell ¢ equal to I, hold the
unused portion of I as inventory (g < I), or produce more (g > I). However,
we assume that for ¢ < I or for ¢ > I, the firm pays an inventory or adjustment
cost which is a quadratic function of the difference I — g. Thus we capture
the essence of Turnovsky’s adjustment cost, which allows us to examine the
effects of increased or reduced flexibility (as a function of adjustment costs) yet
continue to preserve the ex ante or ex post decision-making process described
by Hartman and by Holthausen.

To find the optimal inventory level I, like Hartman we first find the firm’s

ex post supply of g. Let the ex post profit function y be:
y=(p+e)g—bg* — B—c(g—I)? (9.41)

where ¢(I — ¢g)? = quadratic adjustment cost, where ¢ > 0 and is constant.
The first-order condition for ¢ given I in (9.41) is:

pte—2(b+c)g+2cI=0 (9.42)
from which the demand for q is found:

p+e+2cl
(Y

206+ o) (943)

Next we substitute the right-hand side of (9.43) for ¢ in (9.41) to obtain the ex
ante income as a function of I. This is expressed as:

y=(p+a(l) - bla(D)f* —cla() - 1] - B

(9.44)
= ag(I) + oy (I)e + aze’

where
ao(l) = [(p +2¢1)?/4(b + ¢)] - B—cl?

ay(I) = (p+ 2¢I)/2(b + ¢

1
4(b+ c)

Qg =
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To find the optimal I, we find the certainty equivalent expression for (9.44).
The expected value and variance of y, recalling that E(e) = 0, can be written:

E(y) = ao(I) + azo? (9.45)

and
o2(y) = [ea(I)]? 02 + o202 (%) + 201 (I) tapis (9.46)

where 02(e2) = E(e*) — (02)2 and p3 = E(€?).
The certainty equivalent model, which now depends only on I, is:

A
max yos(z) = aoll) + az0? {[a1(1)12 o2

<73
(9.47)
+ aZo?(€?) + 2a1(I)a2u3}
The first-order condition for (9.47) is:
dyce(ry _ dao(l) da (1)
dI( ) = o~ Mea(D)o? + caps] —57— =0 (9.48)
Since
dao(I) _ c(p— 2bI)
8 ~  b+ec
and
dai(I)
8  b+ec

we can substitute into (9.48) and obtain the first-order condition in terms of the
original parameters used in (9.41). The first-order condition is:

(p + 2cI)o? U3

20t ap+q] 0 (9.49)

(p—sz)—,\[

The second-order conditions are satisfied, which guarantees that the solution
to (9.49) is a maximum. The explicit solution for I is found from (9.49):

o _ plb+¢) = (A/4) (s + 2poe)
1=* 2b(b + ¢) +Ij\ca? : (9:50)

Notice that, when the output price variance o2 increases, the optimal
inventory level decreases. This response is due to the increase in risk costs. In
Chap. 7, we showed that ex ante output decreases with increases in risk costs.
Corresponding to the decrease in the optimal ¢ is a decrease in the optimal
inventory needed to supply q. Increasing the skewness has an effect similiar to
that of increasing o?; it increases risk costs, and decreases optimal ¢ and I. On
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Figure 93 Optimal inventory levels as ex post adjustment costs increase.

the other hand, increasing p increases the optimal inventory level required by
the firm:

dI dI I
< d —<0 =—>0 for 2(b > Ao’
= 0 an ” = r 2(b+c) > Aog

But for increases in ¢, the results are not entirely clear. For instance, the
derivative of I with respect to ¢ equals:

de [2b(b +¢) + Aco?)? > .

When the distribution is symmetric (and p3 = 0), then dIf /dc is positive.
When the distribution of ¢’s is negatively skewed, then I /dc can be negative.

An important question, however, is: What is the limit of I as ¢ increases?
The answer is: If ¢ becomes very large, then ex post adjustments become more
costly and less likely to deviate from the ex ante solution given in (9.37). This
is the result of our model as ¢ approaches infinity:

: - P
dm I= 3 o2

Thus I approaches the ex ante solution to the Sandmo model as ¢ becomes large
and adjustments from I costly. However, this limit may be approached either
from below or from above, since the derivative in (9.51) does not change sign

with increases in c.
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On the other hand, when ¢ becomes small or approaches zero, risk costs
are eliminated (A = 0) and the solution for I (on average) is:

. _pb—(A/4) (s +2p0?) p
JSm I'= 22 2%

which is the average solution to the average output of the firm whose decisions
are made ex post in the face of certainty [see Eq.(9.40)]. These results are
described graphically in Fig. 9.3.

CONCLUDING COMMENTS

Input and output adjustments as responses to risk are closely linked. For normal
inputs, those whose use decreases (increases) as risk increases (decreases), risk
affects their levels in the same way that risk affects output decisions. That is,
higher risk reduces the levels of input use and output. But even for normal
inputs, some sources of risk may alter relative factor demands from their least-
cost combinations derived under certainty.

If the risk affects two inputs in the same manner, the factor combinations
relative to expected prices are the same as those of least-cost combinations
derived under certainty. On the other hand, quality of input risk or input price
risk which discriminates between inputs may significantly alter relative factor
demands from their least-cost combinations.

One response to risk when the firm has flexible choices for output (and
input) levels and when it expects new information is to hold inventories. As
the cost of holding inventories or adjusting output from its ex ante planned
level increases, flexibility is reduced, and in the limit the firm’s solution is
that of Sandmo’s competitive firm model without flexibility. On the other hand,
with perfect flexibility, the solution is the same as the price instability solution
discussed by Shalit et al. In between complete flexibility and no flexibility, the
inventory level may be greater than or less than the ex ante level of planned
output.

The inventory level is ambiguous relative to the ex ante output solution.
First, it may be ambiguous even if adjustment costs are symmetric, because
diminishing marginal utility suggests that shortages reduce expected utility
more than surpluses. On the other hand, costs of production increase at an
increasing rate, so that overproduction is less likely than output reductions.
Finally, skewness may dominate both these results. Once again we find that
unambiguous results are harder to find in the world of risk.

ENDNOTES

1. Baﬁ‘a and Ullah concluded (p. 547) that “the risk-averse firm utilizes smaller
quantities of inputs . .. than a firm operating under certainty.” This statement, as







