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CHAPTER 3

Response Efficiency Over Time

3.1 Introduction

So far we have taken no account of time in relation to the analysis of
crop or livestock response. We have treated response as if it were instan-
taneous or as if time were a fixed input. In fact, crop or livestock response
processes are never instantaneous; and quite frequently, time is not a
fixed input so that it has to be considered explicitly. Indeed, often the
influence of time on response efficiency is much more pervasive and
complex than the influence of physical inputs. Not only may time directly
affect the physical response process, it may also influence response
efficiency through time-price effects in the objective function or through
uncertainty about the future. In this chapter we consider the role of time
within the general framework of response efficiency under certainty of
yields and prices, leaving considerations of risk till Chapter 4. As in prior
chapters, specific crop or livestock response processes will only be used
for illustrative purposes.

3.2 Time Influences on Response

There are four ways in which time may affect the physical response
process. Firstly, the contribution of fixed inputs may vary with the time-
length of the response process so that time directly influences response.
In such cases time acts as a variable input which must be included
explicitly in the response function. For example, the yield of pasture hay
depends (among other things) on the time from the start of the growing
season until harvest. In such cases, denoting time by ¢, we have the time-
dependent response function:

Y= f(X,, Xp . -, X £). (3.1)
64
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Secondly, the capacity of the set of fixed inputs to accommodate vari-
able inputs may be a function of time and of the mix of variable inputs

@Q&Eﬁ@j@b}gﬂhm the total consumption of feed by broilers depends
on the time since hatching and the mix of carbohydrate and proteins in
the ration. Algebraically, at one extreme we may have the situation
where the utilization of each variable input depends only on time so that

we have the set of n input-utilization equations

X, = fi(t) (3.2)

which, on substitution into the response function, gives output as a
function of time:

Y = f(2). (3.3)
At the other extreme we may have the situation where the utilization of
variable inputs over time can be specified by the single expression

X, = f(t, Xoy X+ + - » Xo)- (3.4)

Between these two extremes, input utilization over time may be specified
by a set of less than n equations, some like equation (3.2) and some, for
other inputs, of the form:

XJ' =fj(t: Xg, Xm, .. ) . (35)

~ \Chirdly, the time sequence or pattern of either input injections or
output harvests may influence yield. A sheep’s wool production over a
given period, for example, is influenced by any variations in its dietary
pattern over the period. On the input side, if the sequence of input
injections varies systematically over time and there is a single harvest,
we have a set of n input-supply equations

X, = filt) (3.6)
where X, is the cumulative input of X over the period t.Qutput, how-
ever, may depend not only on the level of X but ' also on the sequential
pattern_pmghh&i,ﬂhagﬂbaen.injccmd into the response process. If so,
the response function will be some function of equations (3.6) so that in
some complicated fashion we again have:

Tr=s0. . (3.7)

BRI e

While equations (3.6) and (3.7) are somewhat analogous to equations
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(3.2) and (3.3), the former relate to input supply while the latter refer to
input demand.

Should harvesting of output occur either continuously over time or as a
sequence of discrete harvests, cumulative yield must then also allow for
the intensity of harvesting over time. For example, total milk production
of a cow varies with the milking pattern followed. —

Fourthly, input_carry-over effects may occur from one production
period to another if the injection of variable inputs within one produc-
ton period is not completely utilized within that period. A common
example is the partial carry-over of fertilizer inputs in pasture and crop
production from one production period to another. In such cases, yield
in the current production period will be a function of both current
inputs and of the variable inputs carried over from prior periods, this
carry-over being a function of time.

3.3 Time-Price Effects

Through their effect on response, the possible time influences outlined
above also influence the objective function. Hence they also affect the
choice of best operating conditions. As well, time may influence the
objective function through time influences on prices and profit oppor-
tunities.

Firstly, input and output prices may vary over time in either a pre-
dictable or a subjectively assessable probabilistic fashion.

Secondly, the use of inputs over time in a particular response process
means that these inputs (both fixed and variable) are tied up and are not
available for use in some other process. Alternative uses of the inputs are
forgone and an oPPORTUNITY cosT is entailed. This input opportunity
cost is the profit forgone from not using the physical inputs over time in
their most profitable alternative use. So, although we talk of time
opportunity cost, this cost depends not on time itself but on the avail-
ability of alternative uses for inputs over time. In broiler production, for
example, the time opportunity cost of carrying a batch of broilers for
another week (assuming there is no other more profitable use of inputs)
is the contribution which this week could make to profit if it were used
for a new batch of broilers.
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Thirdly, there are interest rate or TIME pREFERENCE effects. In the
sense 1o which we use the term time preference, these effects relate to
such time-induced problems as the necessity: (a) to compound present
costs or discount future returns so as to make them comparable; (b) to
further discount future profits because of uncertainty on the basis that
“A bird in the hand is worth two in the bush”; and (c) to use actuarial
formulae to convert lump sums to flows over time, and vice versa.

All these time preference considerations involve the use in the analysis
of some positive rate of interest per unit of time. If time preference is
ignored, this is equivalent to assuming an interest rate of zero. Ideally, in
a world of certainty, the interest rate used should be the maximum rate
of return obtainable from using the inputs. This interest rate should be
jointly determined (within a response process that is feasible for the
inputs) along with the value to be attached to the fixed inputs used in the
process. While these fixed inputs have some initial historical cost (such
as land used in forestry), their relevant value for decisions over time
depends not on this historical cost but on the profitability of the most
profitable response process they can sustain. Of necessity, therefore, time
preference analysis may become quite complicated, especially if—as in
many response processes—input injections and output harvests are to be
made in irregular sequences within a single run of the process.

3.4 Time and the Objective Function

In Chapter 2, ignoring time influences, we defined best operating
conditions in terms of the input array which maximized a timeless
objective function of the form: “profit” equals “output gains” minus
“input losses”. With the introduction of time, the efficiency indicator
profit is still the difference between output gains and input losses. The

algebraic form of the objective function, however, must accommodate

the various time influences outlined above in Sections 3.2 and 3.3 should
they be relevant. _

In particular, since best operating conditions are desired over some
chosen period of time into the future, if time preference is relevant, profit
must be evaluated as the present value of the future sequence of profits.
It is this present value or its equivalent in some form which must be
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maximized to achieve best operating conditions; for example, we may
maximize the equivalent profit flow per unit of time over the planning
period. Of course, if there is no time preference, present values and
actually occurring values of profit will be identical.

Obviously, the time-dependent objective function may be quite
complicated since real-world time influences may be much more
complex than the simple outline given in Sections 3.2 and 3.3. As well,
there is a further complication that may be relevant. Over a given
response period it may be impossible to specify a single profit function
encompassing all possible time sequences of input injections or output
harvests. If so, a different profit function must be specified for each
system. Best operating conditions then correspond to those conditions
yielding maximum profit in whichever system of input injections and
output harvests has the highest maximum profit.

Mathematically, the problem of ascertaining best operating condi-
tions over a period of time may be approached via two procedures. O\ng_
is that of the differential calculus whereby the overall problem is con-
sidered as a single problem in many variables. The other approach is
that known as dynamlc programming whereby the overall problem is——
approached as a series of recursively related problems each involving
some few variables. Both approaches yield the same answers. Although
dynamic programming may sometimes be the simpler approach, apart
from using it to analyse the effects of input carry-over from one period to
another and giving some references to it in the reading list at the end of
this chapter, we will continue to analyse response efficiency via the
differential calculus.

3.5 Planning over Time

There are various ways of planning best operating conditions over
time. Which is the most efficient procedure will depend on the costs and
benefits of the alternative procedures. At one extreme, best operating

onditions may be determined once and for all at a given point in time
or some fixed period into the future covering some number of response
periods. At the other extreme, a continuous or rolling planning pro-
cedure may be followed with best operating conditions being evaluated
cc\)\ntmuously or at the start of each response period within the overall

i
i
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planning horizon. Both procedures allow for the overall future sequence
of profits, and for the determination of the best time-length for each re-
sponse period. If input and output prices are constant (as is assumed
hereafter) and there is no time preference, both procedures will lead to
the same set of best operating conditions; under other circumstances,
the former procedure will generally lead to some degree of response
inefficiency which must be balanced against its cheaper planning cost.

3.6 Unconstrained Profit Maximization over Time

In the timeless analysis of Chapter 2 we showed that unconstrained
profit maximization occurred when each variable input was used at the
level such that TV

pMP = b, (3.8)

The most general statement of this timeless profit maximizing condition
is that for best operating conditions the MARGINAL REVENUE Or MARGINAL
vALUE PrODUCT of X, given by 8(#,1)/0X,, must equal the MARGINAL
cost of X, given by 8(p.X;)/0X;. In other words, the last increment of
X, must just pay for itself. ' '

As we show below, exactly the same general principle of equating
marginal revenue and m__argiunal‘4@05?@{5}"9}(@1_ for proﬁ»tmfr_ﬂl‘gxhiwf‘riljz_a_:
fion over time. The only difference is that marginal cost over time must
allow for time opportunity cost and time preference effects as well as the
direct marginal cost of inputs. Concomitantly, for best opé.;iﬁﬁg?Gn'N
ditions over time, along with deciding on the level of X it is necessary to
choose a time length of run for the response process.

Profit maximization over time involves more complex analysis than
in the timeless case. To maintain as much simplicity as possible while
still outlining the relevant principles, we first consider in Section 3.6.1
a simple response process operating over time but in the absence of time
preference, i.e. a zero interest rate is assumed. This analysis spotlights
the effect of the time opportunity cost of inputs. In Section 3.6.2 the
analysis of this simple time-dependent process is extended to incorporate
time preference effects. A numerical example illustrating the principles
of Sections 3.6.1 and 3.6.2 is presented in Section 3.6.3. Throughout,
input and output prices (4 and p,) are-assumed to be constant over time,
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the question of price variability being completely ignored. It is also
assumed that the response process operates on the basis of a given set of
fixed inputs (e.g. buildings and equipment) about whose replacement
we do not have to worry. In other words we are still only concerned with
the best use of the variable inputs of Chapters 1 and 2. For most crop and
livestock response processes this is not too severe a simplification. Ideally,
however, the injection of capital items into a time process should enter
into consideration, especially as the distinction between fixed and vari-
able inputs vanishes if we take a long enough period for all inputs to
become replaceable or variable.

3.6.1. WITHOUT TIME PREFERENCE
Consider a time-dependent response process
Y =f(Xy, Xgy ..., Xp) (3.9)
X; = fi(?) t=1,2,...,n)) (3.10)

with output being harvested at the end of the variable response period t.
Inputs are supplied at the start of each response period and there are no
input carry-over effects. The process is to be repeated continuously over
time.

Assuming no input or output price changes over time, no constraints
and no time preference, best operating conditions for each run of the
response process must be identical ; and maximization of total profit over

anumberof runs must be equivalent tomaxiniizing profit per unit of time.

Denoting profit per umt of time by 7* and the cost of the fixed inputs or
the fixed set-up cost per response period by F, we have the unconstrained
objective function:

™ = (p¥ — Sp.X, — F)t (3.11)

While the fixed input cost F is fixed for each run of the response process,
the ratio F/t is not constant for ¢ variable. Hence, unlike for the timeless
analysis of Chapter 2, fixed input costs must be included in the time-
dependent objective function.

Maximum profit per unit of time implies d7*/9t of equation (3.11)
equal to zero. Thus, setting dn*/d¢t equal to zero, rearranging the
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equation, and remembering that 0F/dt is zero due to F being a constant,
we must have S -

- py(9F]at) — Zpi0Xjot) = (pY — 2p X, — F)[t (3.12)
for maximum 7*. More simply if we denote by:
R: output gain or revenue per response period, ,1’;
C: input loss or cost per response period, >p X, + F;
then equation (3.12) can be written as
OR|ot — oC[ot = =*. (3.13)
In words, equations (3.12) and (3.13) imply that in the absence of time

preference the marginal profit per unit of time (LHS).must equal the
average profit per unit of time (RHS) if maximum profit per unit of time

is to be achieved. This equality, moreover, implies that average profit per
unit of time is at its maximum, as is easily proved. Since #* equals
w*t[t, setting d(w*t/t) |dt equal to zero gives d(m*t)[di equal to [t as the
condition for the average (7*) to be maximized, i.e. the average is maxi- _
_mized when the marginal total profit equals average profit/

The profit maximizing criterion of equations (3.12) or (3.13) is illus-
trated in Fig. 3.1. Profit or net gain (p,¥ — >p,X; —F) as a function of
the length of the response period is shown by the curve OAB. Maximum
profit from a single response period occurs at B with a response period of
length OH. In contrast, maximum profit per unit of time occurs at A
where the slope of the profit curve equals maximum average profit.and
the response period is only of length OG. Thus equation (3.1 3) is satisfied
at A. As Fig. 3.1 indicates, best operating conditions for a sequence of
response processes implies each response period should be.shorter than
if the response process was only tobécarrled th}oug}} once. The logic
of this is that as inputs are used beyond A, marginal profit per unit of
time is less than the maximum average profit per unit of time that could
b@m:EEsing these inputs in the next response period. Only if
harvesting of output occurs at A of Fig. 3.1 will the marginal value
product be equal to marginal cost over time. :

In terms of the variable inputs, the condition for maximum profit per
unit of time is that dn*/0X, be zero. Thus, differentiating equation
(3.11), we must have -

5,(OF[2X) = ps + (YOX) (BT — SpX, —F)t  (3.14)
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FiG. 3.1. Profit maximization over time in the absence of time preference.

or, akin to equation (3.13),
OR[0X, = 8C|dX, + (0t/dX,)m*. (3.15)

The LHS of equations (3.14) and (3.15) is the marginal value product of
X ;; the expression on the RHS is the marginal cost of X;. This marginal
cost is the sum of two parts. The first of these is the cost of a unit of X
without regard to time. We will call this the direct marginal cost of X .
The second part is the time opportunity cost of a unit of X. It consists of
the maximum average profit per unit of time possible in the next
response period, (p,1" — > p,X; — F)/t, multiplied by the time, 0¢/0X,
required to utilize a unit of X ;.

Compared to the timeless analysis of Chapter 2, the effect of introduc-
ing time is to increase the marginal cost of X, by the amount (0¢/0.X )ar*.
In turn, this implies that best operating conditions over time in volve
lower levels of the variable inputs than are implied by the timeless
analysis of Chapter 2. However, as discussed later, time opportunity—

cost effects are irrelevant in certain response situations. In such cases the |

analysis of Chapter 2 remains appropriate.

Most importantly, relative to equation (3.11) it should be noted that
no direct price was attached to time. Ofitself, time has no price. None the
less, our profit maximizing analysis shows how the availability of alterna-
tive uses for inputs over time introduces a time opportunity—cost element
into the marginal cost of variable inputs.
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While the above analysis has been couched in terms of the fairly simple
case of a sequence of response periods based on equations (3.9) and (3.10),
the same general principle applies in more complicated cases without
time preference. Thus should physical relations or prices be different in
the next response period, the rule still remains that response in the
present period should be harvested when, per unit of time, its marginal
net revenue is equal to the maximum average netrevenue expected from
the next response periodLConcomitantly, variable inputs should be used
to the point where their marginal revenue is equal to their overall mar-

ginal cost inclusive of time-opportunity cost based on future revenue

§5§§1bﬂ1t1es)The difficulty, of course, lies in making a good estimate of

revenue possibilities from the next run of the response process.

3.6.2. WITH TIME PREFERENCE

What if the response process of equations (3.9) and (3.10) is to be
repeated over time in the presence of time preference ? It then becomes
necessary : (a) to allow for the compounding of costs so as to make them
comparable with future revenues; (b) to evaluate future profits in terms
of present values; and (c) to apply actuarial formulae so as to convert
lump-sum values to equivalent flows over time so that the differential
calculus can be used. The procedure is as follows. Denote by :

¢ the time length of the response period;

s the number of response periods; _

r the time preference interest rate per unit of time; the present
value of a unit of profit realized at time ¢ in the future being
(1 + r)~*, and the compounded value at time £ of a current unit
of cost being (1 4 7)%;

p the rate of interest which, under continuous compounding (or
discounting), yields the same result as 7. Thus p equals In
(1 +7);and

x the profit, [p,¥ — (Zp:Xi+F) (1 + r)*], realized at the end
of each response period.

The stream of profits 7y, g, . . . , 75 realized at the end of the response
intervals of length ¢ constitute an annuity. Applying the standard
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formula for obtaining the present value of an annuity, the present
value (P) of this sequence of profits is given by:

P =af(l + 7% — 1/{[(1 + Nt — 1](1 + 1%} (3.16)

where [(1 + r)* — 1] is the interest rate per response period. £ is a lump
sum. Applying the amortization formula to obtain the equivalent flow of
profit per unit of time over the perlod st, we have the unconstrained
objective function:

%% = P[p(1 + /(1 + 7%t — 1] (3.17)
— mpl[(1 + 1)t — 1, (3.18)

where 7** is the equivalent steady rate of profit flow per unit of time
corresponding to a lump sum present value of P. Equivalently, we could
have applied the continuous sinking-fund formula, p/[(1 + )¢ — 1],
direct to = to convert this lump-sum profit to its flow equivalent. Setting
om** |0t equal to zero, we obtain the following condition for maximum
profit flow per unit of time:

(Bmjot) (1 + 1)t = m**, (3.19)

Thus, with time preference, profit maximization occurs with that time
length of response ¢ such that at ¢ the present value of the marginal profit
per unit of time, (dm/0t)/(1 + 1)}, is equal to the flow of profit, #**,
which could be obtained by allocating that last unit of time to a new run
of the response process. |

If we denote by:
R: output gain or revenue, p, ¥, per response period,
C:cost, (3 p X, + F) (1 + r)*, per response period,

so that 7 equals R — C, equation (3.19) can be expressed analogously to
equation (3.13) as:

OR|ot — 3C|ot = w*(1 + Nipt|[(1 + )t — 1]. (3.20)

For the usual case of 7 positive, the factor (1 + 7)tpt/[(1 + r)t — 1] is
greater than unity. Hence, comparing equations (3.13) and (3.20), it
follows that time preference implies a shorter optimal response period
than in the absence of time preference. Logically enough, when  falls to
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its limit of zero so that there is no time-preference, equation (3.20) can
be shown to collapse to equation (3.13).

An interesting rearrangement of equation (3.19) is obtained by ex-
pressing it in terms of the underlying response process. Thus we have

op,¥ — (1 + N2p:Xs + F)]/0

= [p¥ — (1 + ) (2p: X +F)(1 +n)'p/(1 + r)‘-(— 12]1)
3.

which, on expansion and rearrangement, gives the condition for profit
maximization as

OR|ot = Rp + w** + (1 4 1)t>p,(0X,[81). (3.22)

Expressed in this form, the profit maximizing criterion is that the mar-
ginal revenue per unit of time (LHS) must equal the marginal cost per
unit of time (RHS). This marginal cost is made up of three parts: Rpor
p,Yp which is the return that could be earned during the current unit of
time from the value of the product, p, 7, if output were harvested now and
this sum invested; #** which is the opportunity cost suffered or profit
foregone by not allocating the current time unit to a new run of the
process; and (1 + r)tZp,(0X,/ot) which is the compounded direct
marginal cost of the variable inputs during the ¢th unit of time.

If (as is typically the case in forest analysis) input (regeneration) costs
are regarded as independent of time, then equation (3.22) reduces to

~> 8RJot = Rp + w** (3.23)

————

which is the classical Faustmann criterion for best operating conditions

N S

e AR A e o e N e o e At i R

for 1ong-period TESponse processes. T |
" TFinally, since X, in the response system of equations (3.9) and (3.10)
is a function of ¢, from equation (3.20) we have

OR|0X, = 8CJoX, + (2tfoX)m*(1 + n)tpt[(1 + 1)t =11 (3.-24}

as the requirement for best operating conditions with respect to X;. Com-
paring equations (3.15) and (3.24), it is obvious that time preference
increases the time opportunity cost of X; and hence its overall marginal
cost. As a result, time preference induces a reduction in the best operating
level of each variable input. - -
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Both our analyses with and without time preference have been based
on a very simple prototype of time-dependent response. Empirical situa-
tions involving sequential response are likely to be far more complex,
although simple models such as we have used may provide worthwhile
approximations. Certainly it is mathematically straightforward to ex-
tend the analysis to encompass input injections made at any stage of the
response period \Regardless of such possible extensions, the above analysis
indicates the general rule for sequential best operating conditions with
time preference: variable inputs must always be used at such level that
their marginal revenue equals their marginal cost inclusive of time
opportunity cost and time preference effects. .

Except for lengthy response processes, such as in forest growth, or for
long sequences of response, such as may be involved in pasture-develop-
ment planning, time preference is generally of no great significance in
crop or livestock response sequences. Accordingly, except for Sections
3.9.4. and 4.4.4. and the numerical example directly below, from here
on we will ignore the possible role of time preference.

3.6.3. NUMERICAL EXAMPLE

As a simple numerical example of response analysis over time we use
the time-dependent response process specified by the two equations:

Y =10 + 100X; — X,3,
X]_ =

Prices ofp, = 1 and p, = 1, a fixed cost of F = 910 per response period,
and an interest rate of 0-01,1.e. 1 per cent, per unit of time are assumed.
Best operating conditions in terms of X; and ¢ are required for con-
tinuous operation of the process over time with and without time prefer-
ence. For production without regard to time, the principles of Chapter
2 indicate maximum profit occurs when X is at a level of 49-5.

' The relevant data corresponding to the criteria of equation (3.13) for
the case without time preference and of equation (3.19) for the case with
time preference are tabulated in Table 3.1 for increasing levels of input
and output. This data indicates best-operating conditions occur for ¢
and X, of 30 in the case without time preference, and for ¢ and X; of
approximately 27-18 in the case with time preference. To go beyond these
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input levels yields a marginal profit less than could be obtained by
devoting the additional input of ¢ or X, to a new run of the process. (The
fact that tand X, are equal in this example is merely a consequence of the
simple numerical form specified for the response process.) Note that
while the empirical counterpart of equation (3.13) can be solved directly
for optimal ¢, graphical procedures must be used to solve equation (3.19)
because of its mixed exponential form.

3.7 Constrained Profit Maximization over Time

Should there be any constraints on the response sequence, constrained
best operating conditions are found (as in the timeless analysis of
Chapter 2) by appropriately inserting the constraints in the objective
function.

For example, suppose the response process of equations (3.9) and (3.10)
is to be run continuously with the constraint that > ,X; must equal some
constant & in each response period. This implies a constraint of > p X/t
equal to k/¢t per unit of time. Incorporating the constraint, objective
function (3.11) becomes

a* = (p,¥ — 2p: X — F)t + A 2p: X, — K)Jt.  (3.25)
Differentiating with respect to X; and A, we have the n + 1 profit-
maximizing conditions: - ’

5,(0Y/0X)) — p; — (0t/0X}) (p,¥ — 20X, — F)[t + Ap;
— Noox) (SpX: — Bt =0, (3.26a)
CSp X —k=0. — (3.26b)

Elimination of A from equations (3.26a), along with equation (3.26b)
rearranged as the iso-cost locus, gives the following n equations to be
N solved for X;, X,, ..., X,:

MNR,[MNR; = p1[p;; (3.27a)
X, = kjpy — 2(bslbp) X, . (32m)

wherej = 2, 3, .. . n; and MNR, is the marginal net revenue over time
of a unit of X, as given by: D e '

MNR, = p,(0Y]0X,)) — p, — (8t8X,) (p,1 — Zp;X . — F)[t. (3.28)
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TasLE 3.1

NUMERICAL EXAMPLE OF PROFIT MAXIMIZATION OVER TIME®

Without time preference With time preference

Length of Marginal Time oppor-  Marginal Time oppor-

response Output profit? tunity cost profit? tunity cost
period of marginal of marginal
profit® profit®

¢ Y dnlot n* dnlot a**(1 + 1)t
5 - 485 89 —86 79-33 —98-19
10 - 910 79 —1 68-73 —11-11
- 15 1285 69 24 58-10 15-22
20 1610 59 34 47-43 26-33
25 1885 49 38 36-73 31-14
27-18 1989-25 44-64 38-71 32:08 32-08
30 2110 39 39 25-98 32-63
35 2285 29 38-29 15-20 32-17
40 2410 19 36-50 4-37 30-26
45 2485 9 34 —6-51 27-44
49-50 2509-75 0 31-32 —16-90 23-95
50 2510 —1 31 —17-43 23-74

s Based on the time-dependent response process of Section 3.6.3.
b Imlot = A(pyY — Zp X, — F)[ot =99 — 2t
¢ p* = mft = (p,¥ — Zp X, — F)[t =99 — ¢t — 900/t.
a gmjot = O[p,Y — (1 + r)4(Zp, X, + F)]/o¢
= 100 — 2t — (1-01)*[1 + (¢ + 910) In 1-01].
o ¥4 (1 4+ 1)t = [p, ¥ — (1 +)YZpX: + F)I(1 + 7)¥(ln LOD/[(1 + 7)* — 1]
= [10 + 100t — 2 — (1-01)*( + 910)](1-01)¢(In 1-01)/[(1-01)* — 1].

Equations (3.27) might be contrasted with equations (2.66) relating to
timeless analysis of the same input constraint; and also with equation
(3.14) which says that in the time-dependent unconstrained case, X
should be usedat such alével that MAVR,isequal tozer6.”

—

3.8 Time Classification of Response Processes

Crop and livestock response processes may be classified in terms of the
various ways they involve input injections and output harvests over time.
On the input side, the major input injection possibilities, with or without
carry-over effects, are as follows:
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A. Single input injection at the start of the process—for example,
fertilizer in cereal production. .

B.  Sequence of input injections over the response period. With respect to
input quantity and/or time between injections, these injections
may be either:

q——-—? B.1. Invariable—for example, broilers on a fixed ration;
or

—— B.2. Variable—for example, irrigation water in crop production.

On the output side, the major time-of-harvest possibilities are for
there to be:

—_ C.arvest at the end of the response period. The time-length of

this response period may be either:

C.1. Invariable—for example, a crop with a fixed maturation
period ; or

C.2. Variable—for example, the feeding period in broiler produc-
tion.

(_é D. Multiple harvests over the response period. In terms of the time
between harvests and/or their intensity or severity, the sequence
of harvests may be either:

D.1. Invariable—for example, milk production under a regular
twice-daily milking routine; or
D.2. Variable—for example, harvesting of pasture hay.

Further time-based distinctions might be made between response
processes on the basis, firstly, of their continuity and, secondly, in terms
of whether or not they involve multiple stages. Some response processes
are continuous. They continue over time with no natural break into
separate response periods. An example is pasture production in some
regions. In contrast, other response processes are quite discrete. They
exhibit a distinct break between runs of the response process. Such is the
case with cereal crops which, however, may involve fertilizer input
carry-over effects.

Likewise, some processes involve only a single stage, whereas others
may involve a number of stages. Thus cereal production is a single-
stage process in contrast to wool production which involves the two
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concurrent stages of pasture production from the land and grazing of the
pasture by the sheep to yield wool. In other processes, the multiple stages
may be sequential rather than concurrent. Feedlot fattening of cattle, for
example, may follow on from prior production of hay and grain.

These time-based distinctions between response processes could be
extended much further. But simple as it is, the above classification
scheme leads to 96 possible types of response processes on a time-oriented
basis. For each of these 96 types, a mathematical model incorporating the
response function, time relations, profit and opportunity cost considera-
tions could be developed for formal analysis of best operating conditions.
Such a possibility, of course, is the real advantage of organizing such a
classification scheme. It immediately highlights the distinctive time-
dependent characteristics that response processes may exhibit. However,
rather than formally develop models for the various possible classes of
response and analyse their implications, we will simply look at four
specific response processes that, between them, straddle many of the
time-dependent features mentioned above.

Before considering these examples, it should be noted that many crop-
fertilizer response processes may be satisfactorily represented as having a
fixed-response period with variable inputs injected at the start of the
response period and a single output harvest at the end. Time plays no
role in such an approximation, either as a variable in the response func-
tion or in terms of opportunity-cost effects in the obj ective function. As a
result, best operating conditions for such processes may often be reason-
ably ascertained via the timeless principles of Chapter 2—a not insignifi-
cant fact given the importance of crop—fertilizer processes.

39 Ekamples of Time-dependent Response Analysis

In sequence, we will look at the determination of best operating con-
ditions for: (i) a crop having a single input injection but multiple har-
vests; (11) broiler production, which involves a sequence of feed injec-
tions, a single harvest and a variable response period; (iii) livestock
production from pasture, a multi-stage process which may involve single
or sequential input injections and single or multiple harvests; and (iv)
a crop with fertilizer carry-over between response periods.
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3.9.1. FERTILIZER FOR MULTI-HARVEST CROPS

As a relatively simple example of time-dependent response, we con-
sider the case of crops such as berries, tomatoes, cantaloupes, melons,
cucumbers, and many others which are characterized by:

(a) asingle injection of fertilizer at the start of the response period;

(b) asequenceof harvests over the latter part of the response period as
ripening of the crop proceeds;

(c) interaction between fertilizer inputs and the pattern of matura-
tion or ripening of the crop. ‘

We assume constant prices over time, no input carry-over effects,
and harvesting of ripe fruit at constant intervals over the harvest period.
Further assuming continuous repetition of the crop over time (as in
glasshouse production of tomatoes), the decision variables for which best
operating conditions are required are: (i) fertilizer input levels, (ii)
number of harvests, and (iii) length of each run of the process. Appro-
priate choice of these variables hinges on modifying the analysis of
Section 3.6.1 to allow for multiple harvests and the absence of input-
utilization equations akin to equation (3.10).

Suppose for each harvest we have a yield function of the form:

Ye=bo + by N + by N? + bgP + b P? + b NP
4 bgt + bgt2 + bgNt + bPt  (t=1,2,..., k) (3.29)

where y, is output of the ¢th harvest or picking period, Vis nitrogen input
and P is phosphorus input. Diminishing returns are assumed to prevail to
N, P and ¢. The terms in Nt and Pt allow for the influence of fertilizer on
ripening, while the ¢ and #2 terms reflect the genetically determined
growth pattern of the crop.

With some variable number of harvests k, total yield per run of the
response process ist

Y=7Sy9 (t=12...,k (3.30)
— k(by + by N —+ byN? + byP + b,P? + b NP) .
- (b - boN + bGP) (K* + K)/2 + bik(k + 1) (2k + 1)/6. (3.31)

t+ In equation (3.31) we make use of the fact that

142434 .. k=R 4 A2 |
and that 12 4+ 22 + 32 & ... + &2 = k(k + 1)(2k + 1)/6.
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Further assuming there is a fixed period T between planting and the
first harvest, the objective function for profit per unit of time correspond-
ing to equation (3.11) is

% = (p, — pyN — p2P — F)[(T + k). (3.32)

Setting dn* |0k, dm*|dN and &n*[OP equal to zero, we have the set of
three equations

p,(0Y[ok) = m*, (3.33a)
p(0Y]ON) = pu, (3.33b)
5,(87]8P) = pp. (3.33¢)

Simultaneous solution of these equations gives the required levels of &
and P, number of harvests &, and length of run T - £. Note that the best
choice of k can involve the cessation of harvesting before all the crop has
ripened. The logic of this is as discussed relative to Fig. 3.1.

Example

As a simple example, consider the single-fertilizer multi-harvest situa-
tion where, corresponding to equations (3.29) and (3.31), we have

9, = 005N — 0-0001N2 + 10¢ — 0-5¢2 + 0-001V%, (3.34a)
¥ = k(0-05N — 0-0001N°2) + (10 + 0-001N) (k2 + k)/2
- 0-5k(k + 1) (2k + 1)/6. (3.34b)

What are the best operatihg conditions for N and £ if set-up costs F are
zero, Tis 10, py is 0-1,and p, is 1-0?
Corresponding to equations (3.33) we have

[0-05N — 0-0001V2 + (10 + 0-00LN) (k + 0-5)
_ (6k2 + 6k -+ 1)/12] (10 + k) = £(0-05 — 0-0001N?)

+ (5 + 0-0005V) (k* + k) — (2k® + 3k2 + £)/12 — O-1N
(3.352)

k(0-05 — 0-0002\') + 0-0005(k2 + k) = O-1. (3.35b)
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Eliminating JV from these two equations, we have
0-3343k% + 0-1073k* — 92-7583k°
+ 86-5062k2% + 50k 4 250 = 0. (3.36)

Using graphical procedures, solution of this polynomial indicates two
possibly relevant solutions. These are for £ equal to 1-25 or 28-20. For £
equal to 1-25, ; and ¥ are negative so this solution is infeasible and &
equal to 28 is the relevant number of harvests. The corresponding level
of N, based on equation (3.35b), is 254-64, implying a total yield of
481-32 units and =* of 11-99.

i
—t

3.9.2. FEEDING PERIOD AND RATIONS FOR BROILERS

In the most general sense, broiler production is a prototype of a class of
problems known as “replacement problems”. Indeed, with a little in-
genuity any response process can be cast as a replacement problem. The
essence of such problems is that a decision has to be made as to when some
element of the production process should be replaced ; for example : sheep
in wool production, hens in egg production, seed and fertilizer in crop
production, cows in dairy production, rams and ewes in fat-lamb
production, pasture in grazing production. Ina less general sense, broiler
production is typical of the class of non-grazing livestock processes that
are repeated continuously over time and are characterized by a single
harvest at some variable time following a sequence of feed input injec-
tions whose composition is chosen by the producer. For such processes,
as in broiler production, the decision variables for which best operating
conditions are required are the length of the response period or time of
replacement, the specification of the feed ration, and the number of
animals to be fed. It is these decision variables that are our concern here.

For broiler production, as for other livestock response processes, a
variety of models of the production process have been suggested. These
differences in approach correspond to various interpretations of the
decision-making power of animals in deciding how much of what feed
they will eat. As well, alternatives exist in analysing response in terms of
either feed types (maize, fishmeal, etc.) or basic feed constituents
(digestible protein, carbohydrate, etc.) in the ration. Some of these
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alternative approaches are referred to in this chapter’s suggestions for
further reading.

Here, in the belief that it is the most logical approach, we formulate
and analyse a broiler model based on the decision variables:

P: per cent protein in the ration;
C: calories per unit weight of feed;
t: length of the response period.

Both output (body weight per bird) and feed consumption (weight of
ration consumed) are specified as functions of P, C and t. Thus for the
response function we have

T =f,(P, G, 1) (3.37)
and for the utilization of feed
F=f;(P,C,t) (3.38)

where ¥ is body weight per bird at harvest time ¢, and F is total weight of
feed consumed up till harvest at time &.

Ifthe cost (purchase, debeaking, medication) of each chick is K, profit
per bird (m,) with a response period of ¢ is

my = py ¥ — ppF — Ky (3.39)

where p, and py are the price per weight unit of 7" and F respectively.
While p, (regarded as constant) is given from outside the response pro-
cess, b is taken as a linear function of P and C, as given by

br=1po + PPP + PCG (3-4’0)

where p,, is a constant, pp is the cost of adding an additional 1 per cent of
protein per unit of F, and p is the cost of adding an additional calorie to
one unit of F.

The need for equation (3.40) arises from the fact that prices are
usually known in terms of the feed components (such as maize and
fishmeal) but not in terms of protein and calories. Of course, any ration
specified in terms of protein and calories should be made up as the least-
cost mixture from available sources of protein and calories.

t The determination of such least-cost rations to meet given protein and calorie (and
other) specifications is a problem in linear programming. See Heady and Candler (1958,
pp. 131-45) and, for direct applications to livestock feed response, Brown and Arscott

(1960), Dean et al. (1972), Dent (1964), Nelson and Castle (1958) and Nelson, Castleand
Brown (1957).
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Since broiler production is usually carried out with a fixed set of build-
ings, equipment and labour, the aim must be to maximize profit per unit
of time with respect to this fixed set of production factors. A reasonable
measure of these fixed factors is the amount of floor space available.
Accordingly we express the objective function in terms of profit per unit
of floor space per unit of time. To do so, we have to allow for the fact that
space demands per bird are not constant. They increase over time,
recommended space requirements apparently being met by a function
of the form

2 = (co + 1t + cat?) ™1, (3.41)

where 2 is the number of birds of age t which can be accommodated by a
unit of floor space (2~ ! being floor space per bird at age t), and ¢, ¢; and
¢, are estimated coefficients based on the relevant standard floor-space
recommendations.

With fixed costs independent of flock size (such as labour, depreciation,
repairs, etc.) of K, per unit of floor space per time unit, and a break of T
time units between runs of the response process, we have the objective
function

a* = [R(py¥ — peF — E)/(T + )] — Ko, (3.42)

where x* is profit per unit of floor space per unit of time. Note that
equation (3.42) is merely a modification of equation (3.11) to allow for
the specific features of the broiler response process. The only variables in
the objective function are , 7, F, pr and ¢. Of these, ¥’ and F are func-
tions of P, C and ¢; p is a function of P and C; and K is a function of ¢.
Hence maximization of =* implies setting the derivatives on*/t,
dm*|dP and 9x*[0C equal to zero and solving simultaneously for P, C
and ¢. The three equations to be solved are as follows:

p,(9712t) = pr(@F|ot) + m/(T + 1) + mZey + 2af),  (3432)
$,(07]0P) = p(3F|aP) + p-F, (3.43b)
£,(9718C) = p(2FJoC) + poF. (3.43¢)

Having solved these equations to determine the best level of P, C and ¢,
substitution of this ¢ value into equation (3.41) gives the number of birds
to be purchased per unit of available floor space for each run of the
process.
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In terms of specifying best-operating conditions, the above model (in
common with those that others have postulated) has three major weak-
nesses. First, it specifies only a single ration for the entire response period
and makes no allowance for changes in the protein or calorie level of
the ration over time. In fact, ideal best operating conditions would likely
involve a changing proportion of protein to calories in the ration as the
birds approach harvesting. A model encompassing this possibility would
involve a series of equations specifying body weight and feed consumption
at the end of each week of the response period. With additional modifica-~
tions, the model could then be set up so that the decision variables were
the quantity of protein and calories to be included in the ration for each
week. The second weakness of the model is that it ignores restraints on
the broiler process arising from its typical role as an intermediate stage
in a vertically integrated chain of processes. Thirdly, because it assumes
non-overlapping batches of broilers with batch size determined by the
floor-space requirement per bird at harvest, the model involves under-
utilization of space. This waste of floor space, which can have a significant
effect upon possible profit, gradually declines to zero at harvest. An
extension of the model to eliminate this waste of space by allowing for the
staggering or overlapping of response periods is noted in this chapter’s
further reading suggestions.

3.9.3. LIVESTOCK PRODUCTION FROM PASTURE GRAZING

Five major complexities must be allowed for in any reasonable model
of the pasture-livestock complex.

First, there is the possibility of innumerable systems of grazing arising
from the array of possible combinations of various time sequences of
input injections and output harvests. Each system will have its own
response function. The problem of best operating conditions, therefore,
is not simply to decide on the level of input and output. Itis also necessary
to choose between alternative grazing systems.

Second, there is the multi-stage nature of the overall production pro-
cess. Pasture production constitutes one stage, and its grazing for live-
stock production the next stage.

Third, these two production stages are not independent. Livestock
influence pasture output; pasture output influenceslivestock production.
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Hence the two stages interact over time so that allowance must be
made for their simultaneous determination.

Fourth, allowance must be made for the possibility of conserving some
pasture as hay or silage for later injection into the livestock production
process.

Fifth, livestock make decisions and have variable appetites. Within
limits, it is they (not the grazier) who decide how much of what feed will
be eaten.

Given all these complicating features of the livestock grazing process, a
full realistic model would be exceedingly complex. In contrast, only a
simple model is presented here. The basic approach to best operating
conditions is to balance scarce pasture feed supplies against revenue-
producing demands for feed, all within the constraints imposed by
livestock maintenance requirements and the cyclical nature of pasture
growth and deterioration.

Assumptions

We distort the real world by assuming that:

1. The grazier operates on a fixed land area of uniform soil type de-
voted solely to established pasture of uniform character and history.

2. Newly produced pasture is of uniform nutritional quality regardless
of its production date.

3. The yearly pattern of pasture growth is associated perfectly with the
known climatic cycle.

4. A single class of livestock and a single fertilizer are the only variable
inputs used in pasture production, fertilizer being applied only at the
start of the yearly production cycle.

5. Only asingle type of conserved pasture is produced and only a single
type of supplementary feed is purchased.

6. No agistment or conserved fodder is sold.

7. There are no mechanical losses in conserving pasture or distributing
supplementary feed; and storage costs of conserved pasture and pur-
chased supplement are zero.

8. The rate of stocking in terms of the number of livestock is constant
over land and time.
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9. Initially, only a single grazing system is to be considered. This
system is specified by some given time sequence of supplementary feeding
and a given time sequence of minimal livestock liveweights (or some other
criterion of the standard of livestock maintenance).

10. Prices do not vary over time and profit is to be maximized over the
12 months of the annual pasture cycle, the initial time point of each year-
long response period being the beginning of the pasture flush.

11. Time preference is irrelevant, a unit of money here and now being
worth no more (or less) than a unit at some future date.

Notation

Throughout, a dot over a variable is used to denote its time rate of
change. Time subscripts are used in the form X, to indicate the size of
X at time £; and in the form X, , toindicate the size of (X; — X,). Where
necessary, an asterisk is used to distinguish levels of a variable decided by
the grazier rather than by the livestock. In order of occurrence, the more
important symbols used are as follows:

R* minimum allowable liveweight of an animal,
time (in weeks, 0 < t < 52),

quantity of purchased feed fed out,

quantity of pasture produced,

number of livestock grazed,

input of fertilizer,

quantity of pasture conserved,

quantity of pasture lost by deterioration,
quantity of pasture consumed,

quantity of purchased feed consumed,
quantity of conserved pasture consumed,
quantity of livestock product,

liveweight of livestock,

profit per annual pasture-livestock cycle,

p, price or cost per unit of the ith factor or product,
E* quantity of conserved pasture fed out.

*

I RO TN Ly~
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Grazing Model

For a given grazing system, specified by the preselected time sequences
of minimal livestock liveweight (R*,) and purchased feed input (B*,, t)s
the pasture-livestock response process is depicted by an interdependent
system of seven differential equations. As well, there are four restrictions
(apart from the obvious non-negativity requirements for input and
output) that ensure feasibility of the grazing system within the bounds
specified by the mechanics of grazing production. Infallibility is not

Input of Rate of pasture
livestock deterioration
J
z
Rate of Time of
pasture growth [**] ' year

Rate of feed-out Rate of consumption input of

of conserved pasture of conserved pasture fertilizer
i |
Rate of feed-out
of purchased feed
1 \
=] Rate of consumption Rate of consumption
of purchased feed of pasture
[ .
Rate of production Rate of change in | g
™ of livestock product livestock liveweight
Profit
\
Quantity of conserved Quantity of pasture
pasture consumed conserved

Prices of input
and output

Fic. 3.2. Interrelations in the pasture-livestock grazing process.
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claimed for the choice of variables entering the various relations. As yet,
too little research has been done on the interrelationships of the grazing
complex to specify anyways accurately all the relationships involved.
Rather, the model must be regarded as a simple sketch of the way the
pasture-livestock complex may operate.

The major interrelations or directions of influence allowed for by the
model are depicted in Fig. 3.2. The specific relations of the model are as
follows.

The rate of pasture production is specified as:

P = fi(S, F, t). (3.44)

Although the input of livestock and fertilizer in prior pasture cycles
undoubtedly influence the rate of pasture production, here they are
taken as given. Also, a more realistic model would need to include the
quantity of pasture conserved (Hy, ¢) in f;. This would necessitate further
circumscribing the grazing system by a given H, ;sequence.

The rate of pasture deterioration is specified as

D =£(S,1) (3.45)

and is assumed to be measured in such a way that remaining pasture can
be assessed in constant units (say on an absolute protein basis or some
such). It might also be argued that f; should include the stock of pasture
on hand after livestock and mower have had their fill.

The rate of feed consumption by livestock is specified as a set of three
equations, one each for pasture, purchased feed and conserved pasture.
The equations are:

C =S, P,B,E, T, R), (3.46)
B =f,(8,C E, 1, R), (3.47)
E = £,(S,C, B, T, R). (3.48)

These feed consumption relations reflect the decision making capabilities
of livestock should they ever be confronted with all three types of feed at
the same time. ;

The rates of livestock production and maintenance are specified by the
equations :
¥ = fu(S, C, B, E, R, 1), (3.49)

R=f8,C,BE Y1) . (350
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If animal product and liveweight are synonymous, equations (3.49) and
(3.50) collapse to a single equation.

Denoting the fixed cost per annual run of the pasture cycle by K, and
assuming no variable cost in the harvesting of livestock product and no
set-up cost for pasture conservation, the objective function for the pre-
specified system of grazing is given by

7=p,Yos0 — S — ppF — puHo 52 — psE*050 — K. (3.51)

Apart from the usual non-negativity requirements for inputs and
outputs, there are four other restrictions that must be met. The first of
these relates to livestock maintenance. Usingliveweight asa maintenance
criterion, this restraint can be expressed as the necessity for the actual
weight of livestock at any time-point (R;) to equal or exceed the pre-
specified minimal allowable liveweight at that same time-point (R*,).
This minimal liveweight may or may not vary over the production cycle
since it depends on the grazier’s discretion. Thus we require

R, > R*,. (3.52)

The second restriction accommodates the necessity for the quantity
of purchased feed consumed (B, ;) to equal or be less than the quantity
of purchased feed fed out (B*, ;) over the period from O to {. Hence we
require

B*, ;= By, - (3.53)

The remaining two restrictions, detailed in equation (3.54), ensure
that only “‘excess’ pasture is conserved and that the consumption of
conserved pasture does not exceed its supply at any stage of the con-
sumption cycle. Denoting the reciprocal of the transformation coefficient
between pasture and conserved pasture by &, we require:

Pyt — Do, — Co, s = Hy, s = kEp, ¢ (3.54)

Except for the maintenance requirement, all the above restrictions
would be automatically satisfied in the real world. This would not neces-
sarily be the case, however, in predictive or normative manipulation of
the response model. Hence the necessity for precise specification of the
restrictions. :
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Best Operating Conditions

Maximum profit under the given system of grazing (i.e. for the given
time sequences of minimal liveweights and injections of purchased feed)
implies maximization of equation (3.51) subject to the restrictions of
equations (3.52), (3.53) and (3.54). Assuming no carry-over of conserved
pasture, profit maximization implies all pasture conserved is consumed
so that

k~1Hy 50 = E*g 55 = Eg 52 (3.55)

Hence the objective function (3.51) can be written as:

T =PyTo.52 "PSS — prF — (ka —I"PE)Eo.sz — K. (3-56)

Within the grazing livestock response process depicted by equations
(3.44) to (3.50), the only variables under the grazier’s control are S, F
and ¢t. However, ¢ is not a relevant decision variable for objective function
(3.56) since it has been removed by integration to obtain 1} 5, and
E, .. Accordingly, making use of relations (3.44) to (3.50), = can be
expressed as a function of §' and F alone. Maximization of 7 with respect
to S and F, subject to the constraints (3.52), (3.53) and (3.54), gives the
optimal level of livestock and fertilizer for the given grazing system. The
optimal amount of conserved pasture is then obtainable from equation
(3.48) expressed in its reduced form as a function of § and F. A harvest
sequence to obtain this quantity of conserved pasture could then be de-
duced from the amount of excess pasture available over the pasture cycle,
as defined by restriction (3.54) with livestock and fertilizer each at their
optimal level.

Still, there would be no guarantee that this grazing system would be
efficient. Efficiency will only prevail if no purchased feed fed out is
wasted. If any purchased feed is not consumed, fixed costs could be re-
duced without decreasing production. However, once optimal livestock
and fertilizer inputs have been determined for the original grazing
system, an efficient system could be deduced by nominating, via the re-
duced form of equation (3.47), a sequence of purchased feed offerings
that allowed no waste. :

So much for a single grazing system. In fact, the model is relevant to an
infinite number of grazing systems corresponding to all possible combina-
tions of time sequences of purchased feed offerings and minimal livestock
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e optimal system, it would be necessary to
f each efficient system. Perhaps the best way

liveweights. To specify th

compare the profitability o
of doing this would be to investigate a range of grazing systems, look at

d thereby approach a satisfactorily

“best” system. The problem, of course, would be immeasurably more
difficult for a more realistic model involving a wider array of inputs,
carry-over effects between years, variable stocking rates over land and
time, diverse pasture types and locations, and probabilistic climatic
elements.t Simulation procedures could perhaps be used but they would
still necessitate knowledge of the important pasture-livestock response

the pattern of profit behaviour an

parameters.

3.9.4. CROP PRODUCTION WITH FERTILIZER CARRY-OVER

As a simple example of the determination of best operating conditions
when there is carry-over of variable inputs between periods or runs of the
response process, we consider the case of cereal crop production with
fertilizer carry-over. The procedure used is that of dynamic program-
ming. For simplicity, we examine the case of only a single fertilizer in-
jected at the start of each run of the process. The analysis is easily ex-
tended to more than one type of fertilizer.

We suppose that the amount of carry-over to the beginning of period T
from Q units of fertilizer available at the beginning of period 1 is
QViVs. .. Vroa with 0 < ¥, < 1 for each period ¢t (t=1, 2,...,
T — 1) corresponding to a prior run of the crop response process. The

carry-over coefficient V, would depend on such factors as weather con-

ditions and yield during period £.

As in the usual reverse time-ordering of dynamic programming, we
use 7 to denote that period after which n — 1 further runs of the response
process are to be made or equivalently, at the start of period n, there are
n runs of the process still to be made. The response function %, {0} of

t Infact, evenif mechanical procedures were available to obtain the necessary experi-
mental observations on the variables of equations (3.44) to (3.50), these equations could
not be estimated because the system contains too many variables that are determined
within the system, i.e. the system is under-identified. (See Heady and Dillon, 1961, p.
139.) Compromise procedures for overcoming this difficulty are discussed in Dillon and

Burley (1961, pp. 129-32).
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grain yield in period n, denoted 7, to total available fertilizer at the
start of period n, denoted Q ,,,is assumed to exhibit diminishing returns so
that the required second-order conditions for optimality hold true. Avail-
able fertilizer, Q ,,, consists of residual or carry-over fertilizer, R,, already
in the soil at the beginning of period 7, plus the fertilizer applied in
period z which, of course, equals (Q , — R,). The unit prices of grain and
fertilizer in period n are denoted p,, and p,, respectively, and
a(=1/(1 + ) of Section 3.6.2) is used to denote the time preference
discount factor per period.

Abstracting from any uncertainties in price or yield, recurrence
equations of the usual dynamic programming form for finding the opti-
mal application of fertilizer may be formulated. For the case with only
one period remaining, i.e. n = 1, we have:

max

Si{R1} = Q; [ap111{Q.} — pr1(Q1 — R1)Is (3.57)

and for the general case with z periods remaining,

max

ffRe} = Qa [0pun2n{Qn} — :a(Qn — Ra) + ofuo1{VaQa}]s (3.58)

where £, {R, } is the return from following an optimal fertilizer policy in
each of the n future periods given that residual fertilizer at the start of the
current period, i.e. period , is R,. The cost of fertilizer is assumed to fall
due at the beginning of each response period and revenue from the time-
invariant single-harvest crop at the end of each period.

Differentiating the expression in square brackets in equation (3.57)
with respect to our decision variable Q;, and assuming the required
second-order conditions hold (as implied by diminishing returns), the
usual single-period condition for profit maximization with an opportun-
ity cost of 7 per cent—as per equation (2.67c)—is obtained as

dY,/dQ 1 = psifepys- (3.59)

Defining the Q ; which satisfies equation (3.59) as Q*,, equation (3.57)
may be written as

Ji{R,} = '“Py;ﬂ {Q*1} — pr1(Q*1 — Ry), (3.60)

where the optimal final period application of fertilizer is (Q*; — R;).
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Continuing for the case with two periods remaining, i.e. n = 2, from
equation (3.58) we have

max

SofRo} = Qo [“Pyzyz{Q,z} - pf2(Q2 — R,)
+ a[apylyl{Q.«*l} "Pfl(Q.*l — V2Q.2)]11. (3.61)

Differentiating the expression within the outside square brackets with
respect to Q, (the decision variable for n = 2) and assuming second-
order conditions hold, the condition for profit maximization is found to

be
dY,]dQ 5 = (prz — Vaps1)|%bya- (3.62)
With Q*, defined as the Q , satisfying equation (3.62), equation (3.61)
becomes
fz{Rz} = “Pyzyz{Q,*z} - l’fz(Q.*z - Rz)
+ a[apylyl{Q.«*l} —Pfl(Q*l — VoQ*,5)]- (3-63)

Using the same procedure for the case with three periods remaining,
the profit maximizing condition is

dY5/dQ s = (pra — @Vapya)[abys (3.64)

and we have
Fo{Rs} = apys¥a{Q*s} — p1s(Q¥s — Re)
+ afapye?a{Q¥s} — pra(Q¥s — VaQ¥s)
+ afap, V1{Q*:} — b (Q¥ — VaQF3)]- (3.65)

Arguing by induction, these results may be extended to the general
case with 7 periods remaining. Thus the optimal application of fertilizer
in any period nis (Q*, — Ry), where Q*, issuch that

dTn/dQ.«n = (pfn - “Vnpfn—l)/apyn' (366)

The return from following such an optimal policy is given by

j;t{Rn} = ‘xpynTn{Q.«*n} - pfn(Q.«*n _ Rn)

+ "i an~ Lopy X {Q* 1} — pri(QF — Vie1Q*141)]
- (3.67)
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Equation (3.66) shows that for determining optimal levels of fertilizer
application taking account of carry-over between periods, the only
relevant variable pertaining to future periods is the price of fertilizer in
the next period. The response functions and grain prices that hold in
future periods, being assumed independent of current fertilizer use, do
not influence the current decision. Whatever the value of Ry, the optimal
application of fertilizer is that amount which increases total fertilizer
available to Q*,. As would be expected, the condition specified in
equation (3.66) indicates that the greater the discount factor (i.e. the
smaller the time preference interest rate) and the greater the rate of
carry-over and the price of fertilizer next period, the greater should be
the current application of fertilizer.

The above results relate to situations where the residual fertilizer or
initial fertility at the beginning of a period is less than the optimal quan-
tity of fertilizer for that period, i.e. R, < Q*,. This will generally be true
with continuous cropping. If R, > Q%*,, no fertilizer should be applied.
This would be the case for fallow periods. In general, if £ periods of
fallow are to follow the crop produced in period n before another crop is
grown, then the decision criterion of equation (3.66) becomes

dY,[dQ . = (b — WV Vg e - Vn—kﬁfn—k—l)/“ﬁyn- (3.68)

3.10 Further Reading

The general principles of profit maximization over time are discussed
at length in Winder and Trant (1961) and in the associated contribu-
tions by Faris (19602 and 1961). More formal treatment, but with the
length of each response period fixed, is given by Henderson and Quandt
(1971, pp. 309-33). Gaffney (1960), along with an excellent discussion
of the Faustmann criterion—see also Gane (1968), has presented an
excellent critique of many of the incorrect criteria that have been sug-
gested. Although he deduces an incorrect criterion, the discussion by
Boulding (1958) provides an interesting outline of the possible com-
plexities in profit maximization over time. Frisch (1965, Pt. 5) presents
a more formal analysis oriented to fixed input replacement which is of
little relevance to crop and livestock response although his introductory
discussion of time (ch. 4) is of interest. More relevant is the analysis of




RESPONSE EFFICIENCY OVER TIME 97

agricultural fixed asset replacement by Perrin (1972). Tax effects have
been analysed by Chisholm (1974 and 1975) and Gafiney (1967 and
1970-1).

The standard formulae for obtaining the present value of an annuity
and for amortizing a lump sum, as used in equations (3.16) and (3.17),
are illustrated in Faris (1960a) and Chisholm and Dillon (1966).

An introductory outline of the alternative mathematical approach of
dynamic programming is given in Sasieni, Yaspan and Friedman (1959,
ch. 10), Roberts (1964) and Throsby (1964a and b). Using dynamic
programming, the general problem of economic replacement has been
outlined by Burt (1963). Among others, Burt and Stauber (1971),
Dudley, Howell and Musgrave (1971), Flinn and Musgrave (1967),
Hall and Buras (1961) and Hall, Asce and Butcher (1968) have used
dynamic programming for economic appraisal and manipulation of crop
response to irrigation water. Other response-oriented applications of
dynamic programming have been by Kennedy (1972 and 1973) to beef
feedlot control, by Hochman and Lee (1972) and Kennedy et al. (1976)
to broiler production, and by Kennedy ez al. (1973) and Stauber, Burt
and Linse (1975) to optimal fertilizer use with carry-over between
periods.

With the exceptions noted below, time opportunity—cost effects have
largely been ignored in analyses of time-dependent crop and livestock
response processes. For example, the livestock studies of Heady and
Dillon (1961, chs. 8-13), while incorporating some consideration of the
time required to achieve specified yields and comparisons of least-cost
and least-time rations, do not really comprehend the problem of profit
maximization over time. They fail to allow for the fact that animal
production typically involves a continuous sequence of response periods
so that best operating conditions necessitate a choice of length for each
response period as well as a choice of feeds. The gradual development of
a correct approach is illustrated, in sequence, by the broiler studies of
Heady and Dillon (1961, ch. 10), Hansen and Mighell (1956), Brown
and Arscott (1970), E. Smith (1965), and Trant and Winder (1961).
A comparison of alternative approaches to the analysis of broiler
response has been made by Hoepner and Freund (1964) whose analysis
Jargely forms the basis of Section 3.9.2. This analysis has been further
extended by Hadar (1965) to allow for the full utilization of floor space
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by concurrently running batches of broilers at various stages of develop-
ment, and by Hochman and Lee (1972) and Kennedy et al. (1976) using
a dynamic programming approach. A few time-oriented studies are also
available for other response processes. For orcharding, see Faris (1960b) ;
for multi-harvest crops, Eidman, Lingle and Carter (1963)—whose
work forms the basis of Section 3.9.1 above; for beef feedlots, Faris
(1960a) and Kennedy (1972 and 1973) ; for pigs, Battese et al. (1968),
Dent (1964), Fawcett (1973) and Townsley (1968) ; for forests, Chisholm
(1966 and 1975), Gafiney (1960) and Sinden (1964-5) who present an
adaptation of the Faustmann criterion to answer the forest manager’s
problem of deciding whether to fell now or in five years or so. For irri-
gation, see Beringer (1961), Dorfman (1963), Hall and Buras (1961),
Moore (1961), Ram (1963), Yaron (1971) and Yaron et al. (1963 and
1973); and the studies by Flinn and Musgrave (1967), Dudley,
Howell and Musgrave (1971) and Minhas, Parikh and Srinivasan
(1974) which are of special interest for their recognition of the problem
of sequential input injections and the use of simulation procedures.
Analyses partially covering time effects in milk response have been
made by Dean (1960), Heady et al. (1964 a and b), O.E.C.D. (1965
and 1969a) and Paris et al. (1970). The economic appraisal of alterna-
tive crop rotations is considered by Battese and Fuller (1972), Battese,
Fuller and Shrader (1972), Fuller (1965), Fuller and Cady (1965),
and Shrader, Fuller and Cady (1966). They have also given considera-
tion to the problem of input carry-over effects between response periods.
More specifically time-oriented analysis of the crop cycling and
fertilizer carry-over problem using dynamic programming is presented
by Kennedy et al. (1973)—whose work we have followed in Section
3.9.4 above—and Stauber, Burt and Linse (1975). The actual meas-
urement of residual or carry-over fertilizer has been discussed by,
among others, Barrow (1973), Barrow and Campbell (1972), Colwell
(1967-8), Stauber and Burt (1973), and Waugh, Cate and Nelson
(1973). Extending the fertilizer carry-over question, Helyar and Godden
(1976) have shown that soil nutrient status may be regarded as a capital
asset whose size from year to year is significantly influenced by crop out-
put and fertilizer input. This allows appraisal of optimal fertilizer use in
the context of an allocation between annual variable and capital costs
(Godden and Helyar, 1976).
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As well as failing to allow properly for time effects, livestock-feed
analyses based on pen-feeding trials have also generally involved ad
libitum feeding. On a priori grounds based on considerations of diminish-
ing returns, there are strong reasons for believing sub-ad libitum feeding
levels must be optimal since the marginal product of feed is zero beyond
stomach capacity and greater than zero below it. Empirical evidence of
the non-optimality of ad libitum feeding is also available from grazing-
stocking rate trials as analysed by Chisholm (1965) and Lloyd (1966), the
optimal stocking rate being well beyond a grazing pressure which would
allow an ad libitum feed level per animal. For pen-feeding trials and lot-
feeding systems of production, Duloy and Battese (1967) have developed
4 time-oriented model based on feed input factors as a proportion of
bodyweight. This model allows analysis both in terms of time oppor-
_ tunity costs and sub-ad libitum levels of feeding.

No adequate empirical studies of the pasture livestock-response
complex are as yet available although a start has been made with the
studies of beef response to pasture and soilage by Nelson and Castle
(1958), Jones and Hocknell (1962), McConnen ¢t al. (1963), McConnen
(1965) and Heady et al. (19632 and b) and the pasture grazing stocking-
rate studies of Bennett ef al. (1970), Cannon (1969 and 1972), Conniffe
et al. (1970), Harlan (1958), Hart (1972), Jones and Sandland (1974),
Mauldon (1968) and Sandland and Jones (1975). These studies vari-
ously illustrate the underlying biological considerations and the alterna-
tive empirical approaches (i) of relating livestock product directly to
fertilizer and the input of livestock (stocking rate), or (ii) of using a
multi-stage (intermediate product) approach of superimposing a
pasture-livestock production function on a fertilizer—pasture produc-
tion function (perhaps also using linear or dynamic programming to
impute a price to pasture and to allow for seasonal variations in pasture
supply and demand). Some discussion of these alternatives of a direct
or of an intermediate product approach has been given by Anderson
(1967a) and Dillon and Burley (1961).

The rather elaborate and more realistic but somewhat hypothetical
pasture-livestock grazing model of Section 3.9.3 is based on the work
of Dillon and Burley (1961). Using dynamic programming, Throsby
(1964b) has explored the problem of ascertaining the optimal time path
of development for a pasture-grazing response process. Arcus (1963)
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and more recently Anderson (1974c), Dent and Anderson (1971), Greig
(1972), Paltridge (1970), Reid and Thomas (1973) and Wright and
Dent (1969) have discussed or investigated the pasture-livestock grazing
problem using a systems-modelling simulation approach.

Like the analysis presented in the current chapter, virtually all the
studies referred to above assume prices and yields are known with
certainty. This is a simplification since crop and livestock response
processes are inevitably risky. In consequence, they involve questions of
subjective judgement and preferences about the risks involved. These
influences on best operating conditions are outlined in Chapter 4.

3.11 Exercises

3.11.1. Derive best-operating conditions for the response process of
equations (3.9) and (3.10) if it is to be run continuously under the
constraint that output in each response period must equal some fixed
amount 1*.

3.11.2. Hoepner and Freund (1964, ch. 4) have estimated functions of
the following form corresponding to the broiler process of equations
(3.37) and (3.38):
¥ = by + 5,C2 + byP 4 bgP? + byt? + bgt® + beCGP? + b,CG2P -
+ bgCG%t + by P,

F = a, + a,C + a;P + azP? + a,P® 4 agt + agt? + ant
+ agCP + agCP? + a,,Ct 4 a1,C?t.

Using these functions, derive the criteria for best-operating conditions
corresponding to equations (3.43).

3.11.3. Contrast the treatment of time effects as developed in this chapter
with that used in Heady and Dillon (1961, chs. 8-13) and Heady et al.
(1963 a and b).

3.11.4. Assess the relative amenability of polynomial, Mitscherlich, resis-
tance, and power-type response functions for time-oriented analyses of

the type developed in this chapter.




RESPONSE EFFICIENCY OVER TIME 101

3.11.5. How adequate is the role assigned to time in the pasture-livestock
model of Section 3.9.37?

3.11.6. Construct a table analogous to Table 3.1 but couched in terms of
the criteria of equations (3.15), (3.24) and the Faustmann criterion of

equation (3.23).

3.11.7. Extend the analysis of Section 2.8 for multiple response with input
control so as to accommodate time opportunity cost and time preference

effects.

3.11.8. Show the equivalence of equations (3.19) and (3.22).

3.11.9. Given the grain response function
¥ = 314 + 29N — 0-4N?

with ¥, = 0-2 for tfrom 1 to 4, R,=1,0a=09,p,=10 and py; =211,
use the dynamic programming procedure of Section 3.9.4 to determine
the optimal fertilizer policy {(N¥*, —R;;i=1,2,3, 4} and optimal
return (R, = 1) for a planning sequence of four crop years.

3.11.10. Extend the analysis of Section 3.9.4 to the case of two fertilizers
each with carry-over between periods.




CHAPTER 4
Response Efficiency Under Risk

4.1 Introduction

Just as the influence of time complicates the analysis of response
efficiency, so also does risk. Indeed, given the yield and price uncer-
tainties that typically prevail in crop and livestock production, risk
effects are generally more significant than time effects. They are also
more difficult to analyse. Their difficulty of appraisal arises not so much
in the mathematical sense (though that can be complicated enough)
but because risk assessment is a personal matter. It involves personal or
subjective judgement both about the chances to be associated with the
different possible outcomes that might arise from any particular choice,
and about preference between the sets of possible outcomes that are
associated with alternative choices. Because of these elements of subjec-
tive judgement, the best operating conditions that would be appropriate
for one decision maker may be quite inappropriate for another.

In the main we will consider risk effects in a quasi-timeless context so
as to avoid complicating the analysis with the time-dependent considera-
tions of Chapter 3. Note, however, that it is impossible to avoid an
implicit time dimension in risk analysis. Present uncertainty about
future outcomes necessarily implies a present and a future. Only with the
passage of time between initiation of theresponse process and its termina-
tion is uncertainty resolved in terms of the choices made.

We will use the words Risk and UNCERTAINTY interchangeably to
describe a decision situation which does not have a single sure outcome.
Risky or uncertain choice in the response context thus implies a decision
about input variables where the outcome in terms of profit is not certain
because of uncertainty in yield or price or both. Further, as argued in

102
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Section 4.3.2 below, we believe and adopt the view that risky or un-
certain outcomes can always be described by a probability distribution
and that this distribution is necessarily subjective. Risky choice thus
implies judgements about and choices between alternative subjective
probability distributions of outcomes.

As noted in the further reading to this chapter, a number of definitions
of risk and a variety of approaches to handling it have been advocated.
Chief among these suggestions have been such different procedures as:
using various non-probabilistic criteria for choice derived from game
theory; applying a risk discount factor to possible returns so as to ensure
conservative analysis; using the expected value of returns for evaluation;
working with a safety-first rule of requiring some minimum level of
profit at a guaranteed level of probability; and using a decision theory
approach based on the theorem of expected utility.

All of these approaches may have some relevance for different de-
cision makers from a descriptive or behavioural point of view. In norma-
tive terms, however, they are not equally attractive. The game-theoretic
procedures are wrong in ignoring the fact that subjective probabilities
can always be ascribed to uncertain events. Though they have be-
havioural appeal to some decision makers, risk-discount factors and
safety-first levels are arbitrary and have no logical foundation. The use
of expected profit values to choose between alternatives implies
indifference to the possible variation in returns.

Only the decision theory approach based on the maximization of
expected utility, as outlined in Section 4.3.3 below, is normatively
coherent and logical as a basis for risky choice. Accordingly, we will
appraise risky response in terms of expected utility. This implies: first,
the use of subjective probability distributions to specify the profit arrays
associated with alternative choices about input use; and, second, the
use of an objective function expressed not in terms of profit per se but in
terms of a subjectively derived measure known as expected utility. After
first outlining the sources of risk, we will sketch these concepts of subjec-
tive probability and expected utility, and then discuss their theoretical
implications and use in the determination of best operating conditions

for risky response.
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4.2 Sources of Risk

Risky returns occur in the context of crop and livestock response
processes because either yields or prices or both are uncertain.

42.1. YIELD UNCERTAINTY

Uncertainty about yield arises because invariably some input vari-
ables are not under the decision maker’s control and their levels are not
known at the time decisions have to be made about the controlled input
variables. Consider a ““timeless’ response function which includes all the
non-fixed input variables X, Xoy o oo s X which influence yield. From
a decision point of view, these input factors may be classified into three
groups as follows:

(a) Xy, Xos- -5 Xn denoting variables whose levels are controlled by
the decision maker; these are the DECISION VARIABLES.

(b) Xps1, Xnszs-- - X, denoting variables whose levels are not
controlled but are known to the decision maker at the time he has
to decide on the decision variables; these are the PREDETERMINED
VARIABLES.

(€) Xiv1> Xk+2>+- > X,, denoting variables whose levels are neither
controlled by nor known to the decision maker at the time he
chooses levels for the controlled inputs; these are the UNCERTAIN
VARIABLES.

We can thus write the complete response function as
T—'_—_f(Xl, « e ey Xn; Xn+1, “ .0y Xk; Xk+1’ s e sy Xm). (4.1)

Typical controlled variables in crop production are fertilizers, seed
quantity, crop variety, herbicides and insecticides; and in livestock
production, feed type and quantity, animal density and feed additives.
Uncontrolled but predetermined input factors could be, for example,
such site characteristics as initial soil fertility and soil moisture content
in crop production and such animal characteristics as genetic merit in
livestock. For both crop and livestock processes, the major uncertain
(i.e. uncontrolled and unknown) inputs are such climatic variables as

rainfall, temperature, wind, solar radiation, etc.




RESPONSE EFFICIENCY UNDER RISK 105

Yield uncertainty arises from the influence of the uncontrolled
variables X, , 1, . . . » X, whose levels are unknown. As equation (4.1)
indicates, for each possible set of values of the uncertain inputs in con-
junction with chosen values for the decision variables and given values
for the predetermined variables, there will be some corresponding level
of output. Since we do not know the input values Xy, 1, ..., Xn, we
cannot be sure of the yield we will obtain. As discussed later, however,
we can always specify a subjective probability distribution for yield in
relation topossible combinationsof levelsof the uncertain input variables.
This probability distribution of yield will be relevant to the appraisal of
best operating conditions so long as there is any interaction in response
between any of the decision variables and the uncertain variables. If
these two groups of variables have independent (i.e. only additive and
not multiplicative) effects on response, the marginal products of the
decision variables X, . .., X, and their best operating levels will be
independent of the uncertain variables. This will not be the case if the
decision variables interact with the uncertain variables.

Stated another way, if the probability distribution of yield associated
with the uncertain variables X, ..., X, is independent of or not
conditioned by the level of the decision variables Xj, . . . , X, choice of
levels for the decision variables can be made without regard to yield
risk ; no matter what levels are chosen for the decision variables, they will
have no influence on the distribution of yield. Hence, best operating
conditions for a particular process (though not the choice between
alternative processes) can in this case be chosen without regard to yield
uncertainty. Conversely, if the probability distribution of yield relative
to X;,1,..., X, can only be specified conditional on Xj, ..., X,
choice of X, . . . , X, will influence the distribution of yield. Therefore,
in this case, choice of best operating conditions should allow for yield
risk effects.

In fact, crop and livestock response invariably involves interaction
between the decision variables (such as fertilizer and feed) and the
uncertain input variables (such as rainfall and temperature) whose
levels are not known a priori. Accordingly, unless yield uncertainty is
eliminated by, e.g. government-sponsored yield insurance schemes, risk
effects associated with uncertain response will usually be pertinent to
the appraisal of best operating conditions.
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4.2.2. PRICE UNCERTAINTY

With allowance for fixed costs , and ignoring time effects, net return
or profit from the response process of equation (4.1) is given by

szyy— zplXi_F (i= ]., 2,.-.,”) (4‘-2)
where the input prices p; are positive for the decision variables : = 1,
., n and zero for the uncontrolled variables ¢t =n -4 1,...,m.

Variable costs thus relate only to the decision variables. As equation
(4.2) indicates, price uncertainty may be influential either through
uncertainty about the product price p, or uncertainty about the input
prices p;. In fact, by the nature of crop and livestock production, the
product price p, but not the input prices p; will generally be uncertain
at the time a decision has to be made about the level of the controlled
input variables (though there may sometimes be price policy schemes
which reduce or eliminate product price uncertainty). For our analysis,
we will assume price uncertainty only occurs in relation to product price
p,- The input prices p; will be taken as known constants. »

4.3 Risk and the Objective Function

The importance of yield and price uncertainty lies in their influence on
profit possibilities. At the same time, because of the great qualitative
difference between situations of certainty and risk, they force a change in
the form of the objective function. The simple riskless objective function
of equation (2.2) is inadequate for risky response appraisal. What sort
of objective function is required will become obvious from a considera-
tion of profit uncertainty.

4.3.1. PROFIT UNCERTAINTY

Given our assumptions of known constant input prices, the profit
equation (4.2) shows that profit uncertainty may arise because of un-
certainty residing in either the product price p,, the yield ¥, the input
quantities X; or the fixed costs F. Inevitably there will be some slight
uncertainty about the controlled input quantities X; and fixed costs F.
These effects, however can usually be safely ignored. We therefore
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1

assume that all uncertainty about profit = arises from yield and product
price risks. Since product price and yield occur together in the profit
equation (4.2) as the gross revenue term p,, 7, this can be very convenient
for statistical appraisal—it means that the probability distribution of
profit bears a direct relation to the distribution of gross revenue or the
joint probability distribution of p, and 1.

Though the probability distribution of p, is unlikely to be influenced
by the decision variables Xj, . . ., X,,, this is not true for the distribution
of X—as was discussed in Section 4.2.1 above. Accordingly, the joint
distribution of p, and ¥, and hence the distribution of =, will be con-
ditional on the decision variables X, . .., X,. Thus we need to write
the probability distribution of profit, denoted A(w), in the conditional
form

bl Xy ... X)) = h(p,Y — SpXi — F| Xy, X). (43)

Since > p,X;and F are constant for any given set of X, . . . , X, values,
the distribution of (| X3, . . . , X,) will be of the same shape as the distri-
bution g(p, | Xy, - - - ,X,) of grossrevenue. The only difference between
the two distributions is that the mean of the profit distribution will be
lower by the amount (> $;X; + F) than the mean of the gross revenue
distribution.

Choice of best operating conditions for the decision variables X;,
..., X, therefore devolves to a choice between alternative probability
distributions of profit (or gross revenue). What we need in order to make
such choices is some criterion which enables us to rank alternative
probability distributions of profit. Such a criterion, which has the
attractive feature of being normatively logical for many decision
makers, is given by the expected utility theorem.

4.3.2. EXPECTED UTILITY AND SUBJECTIVE PROBABILITY

The expected utility theorem is based on three axioms or postulates
which many people regard as reasonable bases of choice. These three
axioms are:

Ordering. A person either prefers one of two probability distributions
hy or hy, or is indifferent between them. Further, if a person prefers
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ky to hy (or is indifferent between them) and prefers 4, to A3 (or is in-
different between them), then he will prefer £, to ks (or be indifferent
between them).

Continuity. If a person prefers the probability distribution %, to A, to
ks, then there exists a unique probability p such that he is indifferent
between %, and a lottery with a probability p of yielding the distribution
h, and a probability (1 — p) of yielding the distribution 4.

Independence. If the distribution £, is preferred to k,, and k3 is some other
probability distribution, then a lottery with 4, and /3 as prizes will be
preferred to a lottery with h, and kg as prizes if the probability of £,
and k, occurring is the same in both cases.

As can be shown, these three axioms imply the EXPECTED UTILITY
THEOREM which states that: for a decision maker whose preferences do
not violate the axioms of ordering, continuity and independence, there
exists both (a) a unique subjective probability distribution for the set of
outcomes associated with any risky choice alternative that he faces; and
(b) a function U, called a uTiLITY FUNCTION, which gives a single-valued
utility index or measure of attractiveness for each of the risky alternatives
that he faces.

The implied subjective probabilities follow the usual laws of proba-
bility. The utility function U has the following properties:

(i) If the probability distribution %, is preferred to Ay, then the
utility index of &, will be greater than the utility index of 4,, i.e.
U(k,) > U(hy). Conversely U(k,) > U(hy) implies A, is prefer-
red to &,.

(ii) If Aisan actor choice with a set of uncertain outcomes {a }, then
the utility of 4 is equal to the statistically expected utility of 4
where the expectation is taken in terms of the subjective prob-
ability distribution £(a) implied by the expected utility theorem.
Thus, using E to denote mathematical expectation,

U(4) = E[U(4)] (4.4)

= °_°w U(a)h(a)d(a). (4.5)

As these equations indicate, only the mean or expected value of
utility is relevant for choice; the expected value of utility takes
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full account of all the attributes (mean, variance, skewness, etc.)
of the probability distribution /() of outcomes.

(iii) Uniqueness of the function U is only defined up to a positive
linear transformation. Given a function U, any other function
Ut such that

Ut == alU + 0(2, al > 0, (4’.6)

will serve as well as the original function. Thus utility is measured
on an arbitrary scale and is a relative measure analogous, for
example, to the various scales used for measuring temperature.
Further, because there is no absolute scale for utility and because
a decision maker’s utility function reflects his own personal
valuations, it is impossible to compare one person’s utility
indices with another’s.

Note the remarkable nature of the expected utility theorem. On the
basis of three simple and reasonable postulates about rational choice, it
implies: (a) the existence of a subjective probability distribution for
the uncertain outcomes associated with any risky alternative a decision
maker may be contemplating; (b) a utility function that reflects the
decision maker’s preferences between alternative risky choices; and (c)
that risky choice is optimized by choosing the alternative with the
highest expected utility index. The utility approach thus brings together
in an explicit way the two crucial elements in risky choice—the decision
maker’s personal degrees of belief and his personal degrees of preference.
For these reasons, practical difficulties aside, expected utility is a most
attractive measure for appraising risky response alternatives in crop and
livestock production.

4.3.3. UTILITY OBJECTIVE FUNCTION

Taking the maximization of expected utility as our criterion for risky
choice, the objective function must be formulated in utility terms. Thus
we wish to choose levels for the decision variables X, .. ., X, of the
response function (4.1) so as to maximize the utility objective function
specified by:
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U= U(n) (4.7)
= E[U(x)] (4.8)
= f_w U(m)h(m| Xy, . .., Xn)d(") (4.9)

where equation (4.8) follows from equation (4.7) by virtue of the ex-
pected utility theorem, profit  is as defined by equation (4.2) buton a
total enterprise—not a technical unit—basis, and A(7|X;, ..., X,) is
the subjective probability distribution of profit (conditional on the level
of the decision variables) implied by the expected utility theorem. Since
a particular profit outcome, say #’, implies a corresponding particular
utility outcome U(#'), the probability distribution of profit (=] X, . . .,
X,) is also the probability distribution of possible utility values with, of
course, the scale of the random variable 7 transformed to that of U via
the utility function.

Some general aspects of the utility function for profit, U(w), are as
follows. First, U(w) may have any algebraic form so long as it is monoton-
ically increasing over the range of interest. Equivalently, it should have
dU/dm > O reflecting a positive marginal utility for profit. This corres-
ponds to more profit being preferred to less. Commonly used forms of
the utility function which satisfy this requirement are the quadratic

U= mt bn? (4.10)

which requires = > —1/2b if 6 > 0 and 7= << —1/2b if b << 0; the
logarithmic function

U = log,(W + =) (4.11)

where W is the decision maker’s current wealth; and the power
function

U= W4+, ¢>0. (4.12)

Second, the utility function at a given level of 77 indicates risk aversion,
risk indifference or risk preference according as d2U/dn? is less than,
equal to, or greater than zero, respectively. Thus the quadratic utility
function (4.10) exhibits risk aversion if & << 0, risk indifference if
b = 0, and risk preference if & > 0. As a point of empirical fact, most
decision makers are risk averse.

Third, unless the utility function is linear (i.e. d2U/dn? = 0), it follows
that U(km) = kU(xr) for any non-zero constant £ # 1, and also that
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U(my + ) 5 Ulmy) + U(my) for any non-zero profits 7; and m,. In
consequence, the utility appraisal of risky response must be based not on
the gross margin (p,7’— > p;X;) but on profit or net return (p,Y
—>pX; —F),ie. fixed costs must be subtracted out. Likewise, utility
must be assessed on a total profit (i.e. total enterprise) basis and not on a
technical unit basis (i.e. per hectare or per animal). Thus, if we are
dealing with a crop or livestock response process involving H hectares
or animals and profit as per equation (4.2) is expressed on a per hectare
or per animal basis, we must convert equation (4.2) toa total profit basis
by multiplying it by the factor H. To avoid this complication, we will—
unless otherwise noted—assume profit as per equation (4.2) is already
expressed on a total basis so that the utility objective function of equation
(4.9) is on a total profit basis. The above requirements contrast with the
riskless analysis of Chapter 2 in which fixed costs can be ignored and
efficiency assessed on a technical unit basis.

Fourth, just as interpersonal comparisons of utility are impossible, it
must also be emphasized that a decision maker’s utility function per se
cannot be the subject of normative assessment. The utility function
simply describes his preferences; it cannot be classified as good or bad,
right or wrong, efficient or inefficient.

Fifth, by taking the expectation of a Taylor series expansion of the
utility function, the (expected) utility objective function (4.9) may be
expressed as a function of the moments of the profit distribution. Thus

U = f(E(m), V(x), S(), . . ) (4.13)

where E(x), V(w), $(7), . . . , respectively, denote the mean, variance,
skewness and higher moments My (w) = E[= — E(ar)]* about the mean of
profit. As an empirical matter, in general the higher the moment, the
less important its influence in utility appraisal. Rarely is it necessary to
consider moments beyond the third, i.e. effects corresponding to
skewness; and for many decision makers and many decision problems,
reasonable or adequate appraisal is given by consideration of just the
mean and variance of profit. ‘

Figures 4.1(a) and (b) illustrate the utility concept with quadratic
utility functions for profit measured in thousands of dollars. These
functions respectively exhibit (a) risk aversion (the most common case)
and (b) risk preference.
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F1G. 4.1. Example of utility functions exhibiting (a) risk aversion
and (b) risk preference.

4.4 Best Operating Conditions under Risk

With profit specified on a total enterprise basis as per equation (4.2)
and the utility objective function specified as per equation (4.9), we are
now in a position to at least theoretically assess best operating conditions
under risk. For simplicity of exposition we begin with the case of response
involving only a single input decision variable.
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4.4.1, SINGLE DECISION VARIABLE

Suppose we wish to determine best operating conditions for the
response process

T':f(‘Xl;XZ”"’Xk; Xk+1:"'3Xm) (4.14)
with a single decision variable X, ; predetermined variables X, . . . , Xj;
and uncertain variables X ., . . . , X, which interact with X; so that

the probability distribution of yield is conditional on X;. No uncertainty
attaches to fixed costs F or to the level of the decision variable X, or its
unit price p;. Product price per unit p, is uncertain. Reflecting the
uncertainty of both p, and ¥, total profit as defined by

m=pY —pX; — F (4.15)
is a random variable with some subjective probability distribution
h(ﬂ'le)-

The utility objective function to be maximized may be expressed as
U=[ Ulmhin|X2)d(m). (4.16)
-

However, it is more convenient for analysis to express utility in the
moment form of equation (4.13). To keep the analysis simple, we make
the not-unreasonable assumption that the mean and variance of profit
are the only relevant probability parameters for utility appraisal. Thus
we have

U = f(E(m), V(n)). (4.17)
The first-order condition for maximizing U is that the derivative
dUdX, = [8U[8E(n)] [dE(m)/dX,] + [0U[oV(m)] [dV(m)/dX,]
' (4.18)
be equal to zero. This implies

0 = dE(m)/dX, + {[0U]0V(m)}/[0UJ0E(m)]}[dV(m)/dXy],  (4.19)

where the term in curly brackets is the negative of the RATE OF suB-
STITUTION IN UTILITY of E(#) for V (), written RSUg, and defined as the
slope dE(w)/dV(m) of an isoutility curve in mean-variance profit space.
That the curly-bracket term is the negative of RSUyg, can be seen by
rearrangement of the total implicit differential

dU = [0U[0E(n)|[dE(m)[dV(x)] + oU/oV (m) (4.20)
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of U = f(E(m), V(m)) with U fixed at U* so that dU = 0. Hence

RSU gy = [dE(m)[dV(m)]g-v* (4.21)

= —[8U[oV (x)/[8UOE(m) o - o™ (4.22)

Thus the utility maximizing criterion of equation (4.19) may be
rearranged as

RSUyy — [dE(m)JdX,)/[dV(m)/dX:] (4.23)
— dE(m)|dV(m) (4.24)

which says that, when mean and variance of profit are the only relevant
probability parameters, best operating conditions under risk imply
equality between (a) the rate of substitution in utility of E(w) for V(=),
and (b) the rate of substitution in response of E(r) for V(). Alternatively
stated, we require tangency between (a) an isoutility curve in mean-
variance profit space, and (b) the mean-variance frontier of response
possibilities depicted in mean-variance profit space. Figure 4.2 illus-
trates the criterion, best operating conditions being achieved with the
level of X, corresponding to the tangency point A on the mean-variance
frontier of response possibilities OAB. At this point, maximum utility of
U,* is obtained. Note that response possibilities involving combinations
of E(r) and V(=) lying above OAB are not feasible.

To proceed further with the utility maximizing criterion of equations
(4.19) or (4.24), we need to express the derivatives of E(7) and V(=)
with respect to X; in terms of our basic economic variables. To do this
we take the mean and variance of 7 as implied by equation (4.15). Thus
we have

E(m) = E(p,)E(Y) — poX1 — F (4-25)
V(n) = [E(p,)12V(Y) + [E(D)]*V(py) + V(E)V(T), (4.26)

where, in equation (4.26), we have made the reasonable assumption
that product price p, and yield 1 are statistically independent relative to
the individual decision maker. Taking the derivatives

dE(m)|dX, = E(p,)dE(T)[dX; — by (4.27)
4V (m)JdX, = {[E(p,)1? + V(p,) HAV(Y)[dX)]
+ 2V(p,) E(Y) [dE(Y)[dX,] (4.28)
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F1c. 4.2 Solution of equation (4.24) at tangency between a mean-variance
isoutility curve (U;*) and the mean-variance frontier (OAB) of response possi-
bilities.

from equations (4.25) and (4.26), respectively, and substituting them
into equation (4.19), we have

E(p,)[dE(Y)[dX,] = py + (RSUgy)[dV(m)/dX,]  (4.29)

or, more fully,

E(p,)[dE(Y)[dX1] = py + (RSUgy)[{[E(p,)]* + V(p,)}
[dV(Y))dX,] + 2V(p,)E(Y)[dE(Y)/dX,]].
(4.30)

This expression reflects the effects of both yield and price uncertainty.
For the risky response process we are considering, it constitutes the usual
economic ground rule that efficiency necessitates equality between,
however measured, marginal revenue and marginal costs. The LHS of
equation (4.30) expresses marginal revenue as the expected value of
marginal product per unit of X;. Marginal cost on the RHS consists of
the direct marginal cost per unit of Xj, i.e. p;, plus a MARGINAL COST OF
RISK per unit of X; due to profit variance. This marginal cost of risk
consists of RSU, weighted by a factor involving the mean E(p,) and
variance V(p,) of price, the mean yield E(’), the marginal variance of
yield dV(¥)/dX,, and the marginal expected product dE(Y)/dX;. The
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decision maker’s personal evaluation of risk is reflected in equation
(4.29) both by RSUgy (which is determined by his utility function), and
by the mean and variance parameters of his subjective probability
distributions for p,, and 7.

Intuitively, it is obvious that for a risk-averse decision maker, variance
constitutes a friction interpretable as equivalent to a risk-induced in-
crease in input cost. Hence, under risk aversion, risk implies a lower level
of input use than in the absence of risk. With risk preference, the reverse
would apply. And with risk indifference, best operating conditions would
be as in the riskless case. That these intuitions are correct can be seen
from consideration of the expression for the marginal cost of risk in
equation (4.30). The RSUg, term will be positive, zero or negative
according as the decision maker’s utility function exhibits risk aversion,
indifference or preference, respectively. With risk aversion, for example,
RSU gy is positive since any increase in variance must be compensated
for by an increase in expected profit if utility is to remain unchanged.
Thus for the quadratic expected utility function

U = E(m) + bE(7®) (4.31)
= E(m) + b[E(m)]* + bV(m) (4.32)

which corresponds to equation (4. 10), we have
RSUgzy = —b/[1 + 2bE(m)] (4.33)

which is positive, zero or negative according as the utility function
exhibits risk aversion (b << 0), indifference (b = 0), or preference
(b > 0) within its relevant range. The other more complicated term
comprising the marginal cost of risk in equation (4.30) will be positive
so long as yield variance increases with input use, i.e. dV(Y) JdX;, > 0,
and marginal expected product dE (¥)/dX, is positive. Both these con-
ditions will normally prevail within the relevant range of operation of
the response process. Sometimes it may be that dV(¥)/dX, is negative;
for example, if X; is irrigation water or insecticide in a very drought or
insect prone situation. But even in such cases, the negative effect of
dV(Y)/dX, must outweigh the positive effect of the 2V (p,) E(Y)E(T)]
dX,] cost term of equation (4.30) before risk will induce enhanced input
use. Should this occur, it is logical in that we would expect a risk-averse




RESPONSE EFFICIENCY UNDER RISK 117

decision maker to use more of an input if in that way he can reduce yield
risk.

With only yield risky, i.e. p, a known constant, equation (4.30)
collapses to the simpler form :

pIdE(Y)[dX,] = py + (RSUgy)[p,2dV(Y)[dX,].  (4.34)

The optimal level of X, is then that at which the value of its marginal
expected product (LHS) is equal to its direct marginal cost p; plus a
marginal cost of yield risk which consists of the yield-induced marginal
variance of revenue weighted by RSUy. ,

Likewise if only product price is uncertain, i.e. }"a constant for given
X, so that V(¥) is zero, we have

E(p,)[dY]dX,] = py + (RSU3y)2V(p,) YdY]dX,. (4.35)

In this case best operating conditions imply equality between the
expected value of marginal product (LHS) and marginal cost com-
posed of the direct marginal factor cost p; plus a marginal cost of price
variability.

Comparing the marginal costs of risk in equation (4.30) with the sum
of those in equations (4.33) and (4.34), it may be noted that when both
price and yield risk are present, the marginal cost of risk is increased by
the price-yield risk-interaction element (RSUg W V(p,)dV(Y)[dX,.

Marginal
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Fic. 4.3. Effect of risk on best operating conditions for a risk-averse decision
maker as per equations (4.30), (4.34) or (4.35).
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‘Figure 4.3 illustrates the general nature of the effect of risk on best
operating conditions for a risk-averse decision maker as implied by
equations (4.30), (4.34) or (4.35). The difference between the marginal
cost curve and the p, line is the marginal cost of risk. In the absence of
risk, the optimal quantity of X; would be OA; with risk it is OB.

So far we have made no mention of the second-order condition
d2U/dX,? < 0required for maximization of the utility objective function
(4.9) or (4.17). Nor will we do so except in the further reading of
Section 4.7. The conditions are complex and have no insightful impli-
cations. Empirically, the second-order conditions will tend to be auto-
matically taken into account, as will input constraints, by the necessity
to use numerical methods of analysis.

Example of Single-factor Risk Anab)szs

Suppose a farmer plans to grow 100 hectares of maize. His utility
function for profit is

U = 7 — 0-0000272. (4.36)

Fixed costs are $100 per hectare. His subjective probability distribution
for the price of maize per kilogram has a mean of $0-04 and a variance of
0-0001. The decision variable of interest is nitrogen fertilizer priced at
$0-30 per kilogram. Based on historical data, he judges that the mean
and variance of yield per hectare can be expressed as

E(Y]ha) = 6000 + 30N — 0-1N2, (4.37)
V(¥]ha) = 800000 + 10000, (4.38)

where J is kilograms of nitrogen per hectare. These two equations reflect
the fact that the probability distribution of yield arising from uncertain
climatic and other factors is conditional on JV. Converting E(1") and
V() to a total enterprise basis of 100 hectares, as required for the utility
objective function, we have

E(T) = 6(10%) + 3(10%)N — 102 (4.39)
V(T) = 8(10°) -+ (108)V. (4.40)
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Corresponding to equations (4.25) and (4.26) we thus have, on a 100
hectare basis,

E(m) = (0-04)[6(105) + 3(10°); — 10NZ] — 30N — 10* (4.41)

V(m) = (0-04%)[8(10°%) + (108)V] 4- [6(10°) + 3(10%)¥ — 10N2]2
(0-0001) -+ (0-0001)[8(10°) + (10%)NV]. (4.42)

To determine best operating conditions we could proceed directly
to solve the “marginal revenue equals marginal cost” criterion of either
equation (4.23) or (4.29) using the relations of equations (4.33), (4.36),
(4.41) and (4.42). It is not necessary to elaborate the utility objective
function (4.32). For completeness, however, we may note that this
utility objective function would be specified as

U = 0-04[6(105) + 3(10°);N — 10N2] — 30N — 10*
— 0-00002{ 0-04[6(10%) + 3(10%)N — 10NZ] — 30N — 10*}2

— 0-00002 {0-042[8(10°) + (108)N] + [6(10%) + 3(10°)N
— 10M2]20-0001 -+ 0-0001[8(10°) 4 (10%)N]}. (4.43)
Given this equation, we could proceed to set dU/dN equal to zero and

solve for the optimal level of V. However, we will follow our develop-
ment of equation (4.30).

Taking the necessary derivatives from equations (4.39) and (4.40), and
making the other necessary substitutions, corresponding to the criterion
of equation (4.30) we have:

0-04[3(10%) — 20N = 30 -+ 0-00002[1 — 0-00004 {0-04
[6(10°) + 3(10%)N — 102 — 30N — 104}]~1{(0-04* +
0-0001)108 + 2(0-0001)[6(105) 4 3(10%)N — 10NX3][3(10%)

— 20N} | (4.44)

Solving this equation graphically, as sketched in Fig. 4.4, indicates an
optimal JV of 74 kilograms per hectare. Without consideration of risk,
the optimal V would be 112:5 kilograms per hectare. If only yield were
uncertain, the optimal level of N would be 96. With only price un-
certainty, it would be 93. |




120 THE ANALYSIS OF RESPONSE IN CROP AND LIVESTOCK PRODUCTION

. Marginal cost curves

120 Marginal A: without risk

¢~ expected B:only price risk
revenue C: only yield risk

- 100 : .
e D : price and yield risk

80

40

N
(o]
I

N (kg/ha)

Fic. 4.4. Graphical solution of equatiohé (4.34), (4.35) and (4.30) respectively
illustrating the empirical example with only yield risk, with only price risk, and
with both yield and price risk.

The marginal revenue and marginal cost for the 100 hectares of maize
at various levels of IV per hectare with only yield risk or only price risk
or both are as shown in Table 4.1. These costs, when added to the direct
marginal cost of N of $30 per 100 hectares, correspond respectively to the
RHS of equations (4.34), (4.35) and (4.30) and the marginal cost curves
C, B and D of Fig. 4.4. In this particular example, price risk is more
significant than yield risk, and the interaction effect between price risk
and yield risk is quite small, e.g. at = 80 it is only [30-98 — (12-80
-+ 17-38)] = $0.80 for the 100 hectares.

e

44,2, MULTIPLE DECISION VARIABLES

With multiple decision variables Xj, . . . , X, and uncertain variables
X415 - - -+ » Xm» we have the risky response function

Tzf(Xl, « ey Xn; Xn;+1, “ ey Xk; Xk+1, v ooy Xm), (4‘.4‘5)
the risky profit function
r=pY— >p X, —F (t=1,2,...,n), (4.46)
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TasLE 4.1

MARGINAL REVENUE AND MARGINAL COST IN THE EMPIRICAL EXAMPLE OF
: ‘ SINGLE-FACTOR RISK ANALYSIS

Nitrogen Direct Marginal cost of risk with:

per Marginal margiral Yield risk Price risk Yield and .
hectare revenue . cost "~ only only price risk
kg $on 100ha
0 120 30 7.26 16-34 24-06
40 88 30 10-00 19-36 29-98
80 . 56 30 12-80 17-38 30-98
120 24 30 - 13-33 8-16 22-32

and the utility objective function
U= =[ UpT— 3pXi—Fh(a|Xs,..., X)d(m). (4:47)

As in the single-decision variable case, all these equations are formulated
on a total enterprise and not a technical unit basis. Making the same
assumption as in the single variable case that E(=) and V() are the only
probability parameters of relevance, best operating conditions corres-
pond to the set of X, values which satisfy the set of n simultaneous equa-
tions

0 = 9E(m)[0X, — (RSUgy) [0V (m)[0X ] (4.48)

akin to equation (4-19) Alternatively, these first-order conditions for
maximizing utility may be expressed analogously to equation (4.30) as
the set of » “marginal revenue equals marginal cost” equations

 E(p,)[0E(Y)[0X,] = py + (RSUey)[{[E(p,)]* + V(£)]}
- [oV(Y)[oX] + 2V(p,) E(Y)[PE(Y)[0X ]]-
(4.49)

Each of these equations collapses to
p[OE(T)[0X,] = p, + (RSUz)[p,30V(N)[0X]]  (4.50)
if there is only yield risk; and to - | _ )
E(p)[0Y]0X ] = b + (RSUs)2V(p,)1(2[0X))  (4:51).
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if there is only price risk. As consideration of these equations (4.49),
(4.50) and (4.51) indicates, the implications of risk in the multiple
decision variable case are exactly analogous to the single variable case.
In general, risk as measured by variance increases the marginal cost of
input use for a risk-averse decision maker, thereby leading to overall
lower input use than in the absence of risk. With risk preference, the
reverse tends to occur. Since most decision makers are risk averse, the
overall effect is of profit variability as a friction to input use.

4.4.3. CONSTRAINED MULTIPLE RESPONSE

As an example of constrained multiple response analysis under risk,
suppose H hectares of homogeneous crop land are available for alloca-
tion between r different independent crop-response processes. Each crop
exhibits yield risk but there is no price uncertainty. The risky decision
problem is to choose how much land to give to each crop and, for each
crop, what array of controlled input levels to use.

Utility must be assessed on the basis of the total area H. However,
since we are concerned with the allocation of H between the alternative
crops, it is most convenient in this particular type of problem to express
the crop response functions on a technical unit basis. Thus, on a per
hectare basis, we have the set of 7 response functions

Y, =fh(X1, ces Xy Xnvns oo Xy Xygyrs oo+ 5 Xi)
h=1,2,...,7) (4.52)

where X, to X, are the input decision variables and X, , ; to X,, are the
uncontrolled variables of which X, ,, to X,, are uncertain. We suppose
the input decision variables are unconstrained and that, from relevant
historical data, the mean yield per hectare E(7}) and variance of yield
per hectare V(7},) are known for each crop as functions of the decision
variables X, ..., X,. ,

Total profit, subject to the area constraint H, is given by

T = th(/’hTh - ZpiXih) — F, ZHh < H, (4'-53)

where H, is the area devoted to the Ath crop; p, is the unit price of 7;,;
p,1s the unit price of the ith input decision variable X; (1 = 1, 2, ..., n);
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X, is the amount of X; used per hectare of the kth crop; and F is fixed
cost on the H hectares. o
The utility objective function is

U= | f Ulm)h(m| Xops - .. Xor)d(m) + NSH, — H). (4.54)

As this function indicates, the probability distribution of profit is con-
ditional on the set of 7n values X, that prevail. The utility function is also
constrained to meet the restriction that land cannot exceed H hectares.

Again assuming that E(w) and V(m) are the only probability para-
meters of relevance, we can rewrite equation (4.54) as

U = f(E(m), V() + M2H, — H) (4.55)
with
E(m) = %Hhr_phE(Th) - gﬁtXm] —F (4.56)
and
V(m) = %anﬁnzV(Th) + 2 gggn preHH oo [V(X) V(L)1
(h=1,2,...,r;g=2,3,...,r), (4.57)

where p,, is the correlation coeflicient between the random variables 1/,
and 7, i.e. between the yields of the hth and gth crops.

The decision quantities consist of the rn input levels X;, and the 7
crop areas H,, i.e. a total of r(n + 1). As usual, this set of best operating
conditions (assuming satisfaction of the second-order conditions) is’
found by simultaneous solution of the set of first derivatives of the
objective function with respect to the decision variables. From the utility
objective function (4.55), for 8U/ 29X ,,, we have the rn equations

0E(m)[0Xy — (RSUgy) [0V (m)[0Xn] = 0 (4.58)

implying equality between RSUgy and the rate of substitution in
response of E(w) for V(m) for each input decision variable X;; for
oU/|oH, = 0 we have the r equations

OE(m)|0H, — (RSUgy)[oV(m)[oH,] + A =0  (459)

implying that if the land constraint is effective, RSU 5y exceeds the rate
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of substitution in response of E(r) for V() by the quantity A/[0V (=) [0H,]
for each crop area H, ; and for 0U/0A = 0, the single equation

SH, —H=0 (4.60)

ensuring that the land constraint is met.

Eliminating A from equations (4.59) and making the approprlate
substitutions for the relevant derivatives of E(r) and V(w) from equa-
tions (4.56) and (4.57) respectively, we obtain the set of r(n + 1)

equations:

PulPE(Yy)[0X ] — by — (RSUgy) {Hy [0V (1) [0X 1]
+ Pt pnbg[V(X,) [V (Y3)] °[0V(Y})[0X ]} = O (4.61a)
brE(Yn) — 2.0:X i — (RSUgy) 200 {Hyp V(1)

+ Pthgﬁg[V(Th)V(Tg)].s} =[70E(T - ZpiXig
— (RSUgy)2p,{Hp,V(Y,)' + png hl)h[V(T YV(T)1°r  (4.61b)
SH, = H. (4.61c)

These r(n + 1) equations are made up of rn in equations (4.61a) for the
rn derivatives dU[0X, from equations (4.58); (r — 1) in equations
(4.61b) corresponding to 0U[oH, = 0U|oH, for g #h=1,2,...,7)
from equations (4.59); and equation (4.61c) from equation (4.60).
Obviously, simultaneous solution of these equations (even if there are no
boundary solutions X, = 0 or H,, = 0) to find the set of 7z values X,
and the r values H, for best operating conditions will be a messy affair.
And much more so if account should also have to be taken of pr1ce
uncertainty.

4.4.4. TIME AND RISK TOGETHER

To illustrate the implications of time and risk influences occurring
together, we will extend the analysis of time- -dependent response with
time preference of Section 3.6.2 to incorporate price uncertainty. The
time-dependent response process is specified by equations (3.9) and
(3.10). Assuming mean and-variance of profit provide an adequate
representation of risk and that the mean E(p,) and variance V( py) of
product price are known subjectively, we have ' -
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E(w**) = E(m)p[[(L + )¢ — 1] (4.62)
= [E(p,)Y = (OpX: + F)(1 +1n)fp/[(1 + 1) — 1]

o N (4.63)

V(a**) = V(m)p?/[(1 + 1)t — 1]? (4.64)

= V(p,)V2p?/[(1 + )t — 1]° (4.65)

where the notation follows that of Section 3.6.2, i.e. w** is the equivalent
steady rate of profit flow per unit of time and p, equal to In (1 -+ 7), is
the continuous compounding rate equivalent to 7.

The utility objective function

U = f(E(z**), V(7*¥)), (4.66)

specified in terms of the flow of profit pef unit of time equivalent to the
lump-sum profit 7, implies best operating conditions when we have
either

OE(n**)|0X; — (RSUgy)0V(m**)[0X; =0 (4.67)
or, since X; = fi(t),
OE(n**) [0t — (RSUgy)oV(a**)[0t = 0. (4.68)

Making the appropriate substitutions into equation (4.68) of derivatives
from equations (4.62) and (4.64) gives the condition

[0E(m)/0t)(1 + 1)t = E(=**) + (RSUgy) {p/[(1 + 1)t — 11}
{[oV(m)[ot](1 + 1)t — 2V(m)p]
[+ — 1]}k (4.69)

Comparing this criterion with its riskless analogue of equation (3.19), the
effect of risk due to price variability is seen to be the addition of the term
involving RSU v to the marginal opportunity cost of the RHS. This
term will be positive so long as = > Ya**(1 + r)*(84/67). In this case—
which must be expected to be the usual one—the effect of risk is to increase
marginal cost and hence further shorten the time length ¢ of each run of
the process. The same result can be seen in terms of the input decision
variables X, by working directly from equations (4.67), (4.63) and
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(4.65) or by 'eyxpressing equation (4.69) in terms of X,. Thus we have
E(p,)[0%]0X,] = pi(1 + ' + 2(p:X, + F)p(1 + 1)*(0/0X))

+ E(m**)(1 + r)%(6t/0X)

+ (RSUgy) {2V(p,) Y (8Y[0X,) }
{p/[(1 + 7t — 1]}l — ¥p(l + 7)*
(atfo7)[[(1 + )t — 11} (4.70)

Comparison of this equation with its risky but timeless analogue of
equation (4.51) shows the influence of time added to risk. Conversely,
comparison with the riskless analogue of equation (3.24) shows the
influence of risk added to time to be the addition of the RHS term in-
volving RSUy. Note that risk and time effects, just like yield and price
uncertainty, are not simply additive—there is also an interactive effect
between them.

4.4.5. INTERRELATED YIELD AND PRICE RISKS

Usually yield and price risks will be statistically independent in so far
as the farmer’s price for his product is not influenced by his own produc-
tion. However, if climatic effects such as drought and rainfall tend to
occur simultaneously across a country or large producing regions rather
than in isolated areas, yield and product price will likely be correlated.
To illustrate such effects on best operating conditions, we will extend the
single decision variable analysis of Section 4.4.1 to allow for non-
independence between the probability distributions of yield and product
price. For simplicity, we assume these distributions to be normal.

With utility defined as a function of E(7) and V(«), the dependence
between p, and 7 is captured by their correlation coeflicient p,,.
Equations (4.25) and (4.26) respectively become

E(m) = E(p,)E(Y) + pou[V(0)V(V)]® — prXs — F (4.71)
V(m) = [E(p)]12V(Y) + [E(X)]*V(py) + V() V(T)

+ o2 {poy V() V() + 2E(p,)E(D)[V($,)V(Y)]°}-
(4.72)
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In turn, the criterion of equation (4.30) becomes

E(p,)[dE(Y)[dX1] = p1 — ppu[V(0)[V(Y)]®[dV(Y)]dX;](0.5)
+ (RSUgy) [{[E(p,)]2 + V(p,)}aV(Y)]dX,]
+ 2V(p,)E(Y)[dE(Y)[dX,]
+ pp®V(py)[dV(Y)[dX,] + 2p,,°E(py)
[V(p,) V(Y)]P[dE(Y)[dX1] + pu®E(py)E(T)
[V(p)]°[dV(Y)[dX,]/[V(T)]°]. (4.73)

Comparison with equation (4.30) shows the pervasive effect of correla-
ted yield and price on best operating conditions. Whether it is equiva-
lent to an increase or a decrease in marginal cost depends on the relative
size of the second and third groups of terms on the RHS of equation
(4.73)—and from these no general implications are apparent. However,
it is interesting that for a risk-indifferent decision maker (i.e. one with
RSUgy = 0), correlation between yield and price is still influential via
the second group of terms on the RHS of equation (4.73).

4.4.6. EFFECT OF SKEWNESS

For some decision makers, skewness of the probability distribution of
profit—as well as its mean and variance—will be a significant influence.
In the moment form of equation (4.13), their utility function is

U = f(E(x), V(x), S(x)). (4.74)

Analogously to equation (4.18), best operating conditions imply that
the derivatives

dU|dX, =[0U[2E(m)|[0E(m)|0X,] + [2U/oV(m)1[aV (m)[0X,]
+ [2UJaS(x)][0S(m)[eX,] (i=1,2,...,n) (4.75)

be equal to zero. Hence, akin to equation (4.48), we have
0 = 0E(m)[0X, — (RSUgy)[0V(7)[0X ]

where RSU ¢ denotes the rate of substitution in utility of E(mr) for S(=).
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If there is both price and yield uncertainty and they are independent
with co-moments of zero, profit skewness is approximated by

S(m) = S(p,)S(¥) 4 3S(p) E(N)V(Y) + 3E(p,)V(£,)S(T)
+ 6E(p,) V(p,) E()V(T) + S(bu) [E()P
+ S(NIEM@) (4.77)

For simplicity we will assume p, has a symmetric distribution, i.e.

S(p,) = 0. Equation (4.77) then reduces to

S(m) = 3E(p,) V(p,)S(Y) + B6E(p,) V(py) E(V(T)
+ S(NE@] (4.78)

Given an empirical function relating S(¥) to the decision variables X,
substitution of the derivative for 8S(m)/0X; from equation (4.78) into
the skewness-effect term of equation (4.76) gives

(RSU g 5)[8S(m)[0X,] = (RSUxg)[[0S(T)[0X ] {3E(p,)V(#y)
+ [E(p,)1°} + [oV(¥)[0X 16E(p,)
V(p,)E(Y) + [0E(Y)[0X J{6E(py)
V(p,)V(T) 1] (4.79)

Whether this skewness effect constitutes an addition or a subtraction to
marginal cost depends on the signs of RSU g, 0S(1 )J8X,and 8V (Y)/0X,.
Intuitively we might expect aS(Y)joX, and 9V (¥)/6X, to usually be
positive. We would also generally expect RSUgs to be negative since
most decision makers prefer positive skewness of profit (i.e. tailing of the
probability distribution to the right) so that their mean-skewness
isoutility curves at a fixed level of variance indicate a need to compensate
for lower skewness by a higher mean. However, it is generally unlikely
that the marginal cost-reducing effect of positive skewness would ever
out-balance the cost-increasing effect of variance for a risk-averse
decision maker. In consequence, the marginal cost under uncertainty
(i.e py + RSU g [oV(m)[0X,] + RSU g [8S(m)[0X]) is still most likely
to exceed that under certainty (i.e. p;) and hence induce lower levels
of input use. ’

e e e,
s e A
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4.5 Empirical Appraisal under Risk

In the preceding section we have outlined the theoretical analysis
relevant to using utility-based decision theory to appraise best operating
conditions for risky response. An implicit assumption in our analysis was
that the necessary empirical functions or relationships could be specified
for real-world analysis. Something now needs to be said at least briefly
about these empirical aspects. They relate chiefly to specification of the
utility function and probability distributions for profits; the evaluation
of expected utility for different choice alternatives; and the use of
utility-based but specific utility function-free procedures of stochastic
dominance to segregate potential choices into those that are risk efficient
and those that are not.

4.5.1. SPECIFICATION OF THE UTILITY FUNCTION

If a decision maker is interested and co-operative, it is usually feasible
to elicit his utility function by using his responses to a series of hypo-
thetical questions involving different risky profit possibilities. The basis
of the questioning is the continuity axiom of Section 4.3.2. This implies
that for any triplet of profits ; << 7, <C 3, there exists a probability p
such that the utility of 7, is equal to the utility of the risky choice offering
y with a chance of p and 73 with a chance of (1 — p). Equal utility, of
course, implies indifference of choice by the decision maker. Alterna-
tively, the axiom implies that for any risky choice which offers 7, with
probability p and 7y (>m,) with probability (I — p), there exists a
CERTAINTY EQUIVALENT or sure profit , (>, and < ar3) whose utility is
equal to that of the risky choice. Both these formulations of the axiom

imply -
pU(my) + (1 — p)U(ms) = U(ma). (4.80)

Using this relationship, questions to determine a decision maker’s
utility function may be organized in a variety of ways. This is done via a
series of linked questions in each of which three of the four quantities p,
my, mo and g are specified and the decision maker chooses the fourth so
that equation (4.80) holds true. In other words, alternatives correspond-
ing to the left and right sides of equation (4.80) are posed to the decision
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_ maker in such a fashion as to establish the level of the unspecified
quantity which induces him to be indifferent between the two sides. Each
such indifference relationship establishes a point in [, U(w)] space.
Given a series of such points, the utility curve U(w) can be drawn as in
‘Fig. 4.1 or statistical estimation can be used to obtain some appropriate
algebraic estimate U = f(m) of the utility function. For purposes of
subsequent analysis, the reading of utility values from a graph of the
utility function will often be sufficient. Other times, it will be more
" convenient to have available an algebraic specification of the utility
~ function. |

'One reasonable procedure for eliciting the required set of [7, U(m)]
points is that known as the modified von Neumann—Morgenstern
method. In terms of equation (4.80), it uses p = 05 and questions are
posed to determine the certainty equivalent =, of the fifty-fifty or even-
chance prospect involving given values of m; and 5. The trick is to
choose the 7; and 75 values in such a way thata linked series of questions
are generated to span the relevant range of profit possibilities (and hence
utilities) that confront the decision maker in his real-world activities.
Suppose the relevant range of profit is from a low of m, to a high of
,00—the relevance of the subscripts will become apparent below. Since
the utility scale is arbitrary, we can set U(m) = 0and U (m100) = 100.
Questions are then posed to determine the certainty equivalent mgg
such that

0-5U(mo) + 0-5U(m100) = Ulmso)-

Since U(mo) = 0 and U(myq0) = 100, it follows that Ulmso) = 50. We
now have three points on the utility curve. These are (5 0), (g0, 50)
and (100, 100). The next two points are obtained by repeating the
procedure to find g5 and 775 respectively such that

0-5U(my) + 0-5U(ms0) = Ulrss)
and

0-5U(mso) + 0-5U(m100) = Ulmas)

so that U(mgs) = (0-5)(0) + (0-5)(50) = 25 and Ul(mys) = (0-5)(50)
+ (0-5)(100) = 75. The procedure of bisecting the already established
utility intervals is repeated in analogous linked fashion to obtain as
many further points as desired. Usually seven to nine will be sufficient
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and checks can be made for consistency, repeating the questions if need
be. Thus the same value for =g, as a certainty equivalent should result
for the risky choice with [0-5U(wg5) + 0:5U(wy5)] as from [0-5U(m)
+ 0-5U(m100)]-

For purposes of risky response analysis, it will usually be desirable to
have an algebraic estimate of the utility function. This is because risky
response involves input decision variables which are continuous rather
than discrete and which, at each level, have some continuous distribu-
tion of possible yields rather than some small array of discrete yield pos-
sibilities. Statistical procedures therefore need to be used to estimate some
algebraic fit of U = f(#) to the set of elicited points defining the curve.
This can be done by least-squares regression using, for example, the
quadratic, logarithmic and power functions of equations (4.10), (4.11)
and (4.12) respectively. The one which fits best (on the basis of subjective
assessment) may then be chosen for further use. Note, for example, that
if a quadratic function is fitted it will be of the form

U = ao + a11'r + 02772 (4’.81)

which, by virtue of utility only being defined up to a positive linear
transformation, can be transformed to the simpler form of equation
(4.10) where, in terms of equation (4.6), a; = 1/a, and «y, = —ag/a; so
that b = a,/a,.

45.2, EVALUATION OF BEST OPERATING CONDITIONS

Given an algebraic form U = f(a) for the utility function, the utility
objective function (4.9) can be specified as

U= | o_ow S| X, -, X)), (4.82)

Evaluation of alternatives by direct maximization of this function, how-
ever, will only be simple and convenient if the probability distribution
h(w|X,, . . . , X,) is of a very simple type (such as discrete, rectangular or
triangular).

Usually, evaluation will be more conveniently carried out by decom-
position procedures based on the mean E(=) and the moments M,, about
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the mean of the probability distribution of profit. Two approaches are
pertinent—one of a discrete enumerative nature, the other of a con-
tinuous and analytical orientation. The latter is relevant if the decision
variables are continuous and thus have an infinite array of possible levels.
This is usually the case in response processes, as for example with fer-
tilizer in crop production. However, as noted below, it may sometimes be
convenient to treat such continuous variables as if they had only a
limited possible number of discrete levels. The continuous analytical
approach is the one we have already used throughout Section 4.4. Its
essence is the setting of the derivatives dU/dX, equal to zero and solving
for the set of utility maximizing X, values. As shown by the numerical
example of Section 4.4.1, the data requirements of the continuous or
analytical method consists of knowledge of the algebraic form of the
utility function and of the mean and relevant moments about the mean
of each of the profit distributions. As pertinent, these profit probability
parameters should be expressed as functions of the decision variables.
The discrete enumerative approach applies if the decision variables
are discrete or if it is judged that they may be reasonably treated as if
they were discrete. For example, fertilizer level might be appraised not
as a continuous factor but as a discrete variable with units of, say, 10
kilograms. The essence of the discrete enumerative approach is to calcu-
late the expected utility of each discrete choice possibility. The alterna-
tive which yields the greatest utility is optimal. To calculate the utility of
each potential choice, a very convenient moment-based procedure is
available. This proceduré derives from the convenient (if not extra-
ordinary) fact that the utility of a risky choice is equal to its expected

" utility. Based on a Taylor series expansion of the expected utility function

(4.82) taken about the mean profit level, this moment method expresses
expected utility—and hence the utility objective function—in the form

U= U[E(m)] + U[E(m)1My(m)[2! + Us[E(m)1M(m)[3! + .(- Cs )
- 4.83

where U[E(m)] is the value of the utility function at the mean profit
level; U,[E(m)] is the kth derivative d*U/dn* of the utility function
evaluated at E(x); and M, (=) is the kth moment about the mean of the
probability distribution of profit, i.e. My (7) = E[m — E(m)]*.

If the utility function is quadratic, just the first two terms (involving
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profit mean and variance) of equation (4.83) provide an exact assess-
ment of utility since

U = U[E(w)] 4 2bMy(m)[2! (4.84)

_ E() + B[E(m)]? + V() (4.85)
= E(m + bn?). (4.86)

Likewise the first three terms involving profit mean, variance and
skewness [ M(m) = S(mr)] are exact for the cubic function

U = E(bym + byn® + bgn®),  bg® < 3bibg, by >0, (4.87)
b, E(m) + by {(V(m) + [E(m)]12} + ba{S(m)
+ 3E(m)V(m) + [E()]°}. (4.88)

For the logarithmic and power utility functions of equations (4.11)
and (4.12), the moment method is only approximate though usually
adequate. The logarithmic function becomes

U = log,[W + E(m)] — [W + E(m)]~2V(m)/2
+ [W + E(@)]-38(m)/3, (4.89)

and the power function yields

U= [W 4 E(@)]° 4 o(c — D[W + E(m)]°=2V(m)[2
F o(c — 1)(c — 2)[W + E(m)]°3S(m)/6. (4.89b)

The data requirements of the discrete enumerative method of
appraisal are exactly the same as for the continuous analytical approach:
first, knowledge of the algebraic form of the utility function; and, second,
knowledge of the mean and variance, and, if required, the skewness of
each probability distribution of profit expressed, if relevant, as functions
of the discrete decision variables.

To illustrate the discrete approach, suppose we are happy to evaluate
nitrogen use in the empirical example of Section 4.4.1 by assuming
discrete V units of 10 kilograms. Use of equation (4.84) to calculate
utility values with both price and yield risk gives:

N (kg/ha): 0 50 60 70 80 90 100
Utlity: 9088 9882 9926 9945 9943 9923 9888
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The discrete approximation thus suggests an optimal /¥ of 70 as against
74 kilograms per hectare by the continuous or analytical procedure.

4.,5.3. SPECIFICATION OF THE PROBABILITY DISTRIBUTIONS

A number of aspects of the probability distribution appearing in the
utility objective function of equations (4.8) or (4.9) have already been
noted. First, because of the one-to-one mapping from = to U(w) via the
utility function, the probability distribution of profit corresponds
directly to the probability distribution of possible utility outcomes for a
particular choice. Second, for each possible setting of the decision
variables there will be a corresponding probability distribution of profit.
The risky response problem is to choose the most attractive of these
alternative distributions. Third, each profit distribution is a function of
whatever random or risky variables enter the profit equation (4.2). In
general, the risky variables will be product price p, and yield 1" corres-
ponding respectively to price risk and yield risk. Fourth, if both price
and yield risk are relevant, each profit probability distribution will
correspond to a joint distribution of p, and 7. Generally product price
and yield will be independent for an individual decisionmaker. If they
are not, their dependence should be allowed for as in equations (4.71)
and (4.72) and via the co-third moments if skewness is relevant to utility
appraisal. Fifth, if it exists, product price risk will be pertinent through
its influence on the gross revenue term p,7 of the profit function (4.2).
Sixth, yield risk arising from uncertain uncontrolled input factors will
only be relevant if there is interaction between these uncertain factors
and the decision variables. If the probability distribution of yield is not
conditional on the decision variables, yield risk has no influence on best
operating conditions. Seventh, only if the probability distribution of
profit or its source distributions of price and yield are of simple form—
e.g., discrete, rectangular or triangular—will direct appraisal via the
algebraic expression for the distribution as per equation (4.82) be
feasible. Usually it will be far more convenient, if not essential, to work
with the mean, variance and perhaps skewness parameters of the
relevant probability distributions. Eighth, by virtue of the expected
utility theorem, subjective probability distributions can always be
specified for the uncertain outcomes of relevance. These distributions




RESPONSE EFFICIENCY UNDER RISK 135

should be those judged appropriate by the decision maker. They may,
of course, be influenced to a greater or lesser extent by objective his-
torical data.

Empirically, the major probability aspect is to determine the mean
E(w), the variance V(x) and, if relevant, the skewness S(m) of profit for
each choice alternative. If sufficient guideline data of a historical nature
are available on gross returns p,¥, estimation may proceed directly.
What are needed, if both price and yield risk are pertinent, are time-series
data conditional on the controlled inputs Xj, ..., X,. When this
approach is possible, it has the advantage of avoiding the need to account
for price and yield risks separately. Most often, however, while data on
p,Y may be available, its conditional association on X, ..., X, will
not be known and the approach cannot be used.

Determination of E(p,), V(p,) and S(p,) usually presents no problems.
Often time-series data will be known as a guide. If not, unguided sub-
jective (but none the less the only valid) estimates can be made. Moreover
since p,, is typically independent of the decision variables, a single value
of each parameter E(p,), V(p,) and S(p,) serves for appraisal of the com-
plete array of input choice possibilities.

In concept, the probability distribution of yield is a little more difficult.
At its most complicated, it may be conditional not just on the decision
variables X, . . . , X, of response function (4.1) but also on the predeter-
mined variables X, ,;, . . . , X,. This is the usual case with, for example,
interaction between fertilizer decision variables, uncertain climatic
variables and predetermined soil fertility factors. At its simplest, the
yield distribution may only be conditioned by the decision variables.
One possibility would be to attempt to specify the yield distribution in
relation to the joint distribution of the uncertain variables, conditional
on the relevant array of known (decision and predetermined) variables.
Never, however, will the full array of uncertain and predetermined
variables be known. At best all that can be done is to pick out a few ob-
viously important variables such as, for example, the soil’s pH, nitrogen,
phosphorus and potashstatus, rainfall and temperature. Even thislimited
array might be further composited into some one or two surrogate in-
dices. Such an analytical approach to the yield distribution is not to be
recommended. Because of the impossibility of capturing all the relevant
factors, it is sure to lead to a relatively poor estimate of yield risk.
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The preferred alternative approach to assessing the probability distri-
bution of yield is to proceed directly to the fitting of empirical functions

E(Y) =fulXy, ..., X,), (4.90)
V) =fr(Xy, ..., X)), (4.91)
S(Y) =fo(Xey ..., X,) (4.92)

which relate the parameters of the yield distribution to the level of the
decision variables. Such an approach, which might be described as gross
rather than analytical, is the one we have followed in the example of
Section 4.4.1 above where equations (4.39) and (4.40) correspond
respectively to equations (4.90) and (4.91). The data required to fit such
empirical relationships are a series of observations on the probability.
parameters and their corresponding levels of the decision variables
X1, ..., X,. Inmaking the estimates, it is assumed that variations in the
uncertain variables occur across the X, . . ., X, combinations, thereby
reflecting the sources of yield uncertainty. If observations are available
on any of the predetermined but uncontrolled variables X, , ,, ... X,
the empirical functions (4.90), (4.91) and, if relevant, (4.92) should be
extended to include these predetermined variables as well as the decision
variables. In this way the gross approach will capture as many as possible
of the factors conditioning the parameters of the probability distribution
of yield.

So far we have shown the importance of having estimates of such
parameters as the mean, variance and skewness of ¥ and p, (and of = if
we are not working through 7" and p,), but we have not shown how to
obtain these estimates. Two types of situation may be distinguished—
one with ample data, the other with sparse data, i.e. say less than 10
observations.

With 10 or more observations, the standard moment-estimation
formulae may be used to provide guideline estimates. Thus for the set of

observations ¥y, X, . . . , %, on the random variable x (corresponding to
by, Yorm):
E(x) = Jxn (4.93)
V(x) = [2x2 — (3x)3n]/(n — 1), (4.94)

S(x) = [nZx® — 33x, 5% + 2(5x)Yn)j(n — 1)(n — 2).  (4.95)
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For example, in terms of 7" the above procedure would imply we had
10 or more observations on ¥ at each of some sufficient number of
combinations of the decision variables Xj, . .., X,. For each of these
input combinations (usually experimental treatments), equations
(4.93), (4.94) and (4.95) could be applied and then least-squares re-
gression used to fit equations (4.90), (4.91) and (4.92).

With less than 10 observations, sparse-data procedures are relevant.
These are based on the fact that if we have N observations on a random
variable and we arrange them in ascending order of size, the expected
fraction of all possible values of the random variable falling below the
Kth observation is K/(N - 1). Thus the K'th ordered observation is an
estimate of the K/(V -+ 1) fractile of the random variable’s distribution.
For example, suppose we have three years of observations on p,, say
values of 6, 3 and 8. In ordered form they are 3, 6 and 8, respectively
giving estimates of the 1/4, 2/4 and 3/4 fractiles of the p,, distribution, i.e.
there is a probability of 025, 0-5 and 0-75 that a random drawing of p,,
will lie below 3, 6 and 8 respectively. Though barely sufficient, with this
little information we can sketch the cumulative distribution of p,. This
sketch, of course, will be subjective and be guided by other relevant
information—e.g., we might assume the lowest possible value for p, is
zero, and the highest 11. Figure 4.5 illustrates the procedure using the
above data.

Cumulative probability
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' Fic. 4.5. Example of sparse-data cumulative probability curve for use in
moment estimation.
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Given a graph of the cumulative distribution, moments can be calcu-
lated by breaking the curve into, say, 20 equal probability intervals and
calculating the moments using the probability elements (0-05 if 20 inter-
vals) and associated values of the random variable at the midpoints of
the probability intervals. Thus E(x) = >x,P; where x, is the midpoint
value and P, the probability interval. Likewise, M, (x) = Dlxy —
E(x)]*P;. More conveniently, however, a reasonable approximation
formula is available for the mean and, to a less adequate degree, for the
variance. These are

E(x) ~F s+ (0-185)(F g5 + F o5 — 2F5) (4.96)

V(x) =~ [(F g5 — F05)[3:25]" (4.97)
where the fractiles F,ys, F 5 and F o5 are read from the sparse-data
curnulative probability curve. Reading from Fig. 4.5, for our example
wehave F o = 0:73,F,; = 5-7and F,3s = 10. Hence E(p,) ~ 5-58 and
V(p,) ~ 8-14.

As in the case with 10 or more observations, once the required set of
moment estimates have been calculated for each available combination
of the variables, equations (4.90), (4.91) and, if required, (4.92) can be

fitted by least-squares regression.

4.6 Stochastic Dominance Analysis

Our preceding analysis of risky response has assumed knowledge of the
decision maker’s utility function. More general appraisal is possible by
means of the rules of stochastic dominance. In contrast to the identifica-
tion of the risk—optimal input combination that is possible with know-
ledge of the utility function, stochastic dominance analysis only identi-
fies sets of risk-efficient operating conditions. The essence of the method
lies in the comparison of entire probability distributions, each of which
corresponds to the array of possible profits associated with a particular
choice alternative. The comparisons are made by checking whether or
not various cumulative curves of the distributions cross one another.
Figure 4.6 provides a simple example where curves 4, B and C might
respectively correspond to the alternative choices of using (N, P)
fertilizer combinations of, say, (0, 0), (40, 20) and (100, 40) in kilograms
per hectare.
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Cumulative probability

Fic. 4.6. Illustration of the principle of stochastic dominance analysis.

Because the cumulative probability distribution depicted by curve C
lies everywhere to the right of curves A4 and B, alternative C, i.e.
(N, P) = (100, 40), would be preferred over alternatives 4 and B by
all decision makers who prefer more profit to less. The reason is that for
any profit level such as =’ that could occur with any of the alternatives 4,
B or C, alternative C offers the smallest (greatest) probability that actual
profit will fall below (above) this level. So C s risk efficient compared to
A and B. Now compare 4 and B. For 7 values below 7", 4 is always best;
but above =", B is always best. Hence we cannot make an unqualified
statement about the relative merits of 4 and B.

The above example is, in fact, an illustration of the first rule of stochas-
tic dominance known as first-degree stochastic dominance. There are
also second and third-degree rules. Their formal definition is as follows.

Consider two probability distributions () and g() defined over the
profit range = = a to w = b. Suppose h(m) relates to an alternative
labelled H and g(m) to another labelled G. Given k() and g(=), we can
calculate the quantities

Hy(R) = | () dm Gi(R) = | jg(ﬂ') dn (4.98)
Hy(R) = j jHl(w) dn Gy(R) = j :Gl(w) dm (4.99)

Hy(R) = f ::Hz('n') dn Gs(R) = f :Gz () dr (4.100)
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for R values from a to 5. These quantities are the first, second and third-
order cumulatives of 4(x) and g(w). The quantities H;(R) and G(R)
for R from a to b are, of course, familiar as the points plotting out the
cumulative probability distribution for k() and g(w) respectively. In
similar fashion equations (4.99) and (4.100) can respectively be used to
generate values plotting out the second- and third-order cumulative
curves. These first-, second- and third-order cumulative curves are useful
in comprehending the following rules of stochastic dominance.

THE ANALYSIS OF RESPONSE IN CROP AND LIVESTOCK PRODUCTION

FIRST-DEGREE STOCHASTIC DOMINANCE of H over G prevails if
H,(R) < G,(R) (4.101)

for all R in the range [a, b] with H;(R) < G,(R) for at least one value of
R. Gompared to G, His said to be FIRST-DEGREE RISK EFFICIENT.

SECOND-DEGREE STOCHASTIC DOMINANCE of Hover G prevails if
Hy(R) < Gy(R) (4.102)

for all Rin the range [a, b] with Hy(R) < G3(R) for at least one value of
R. Compared to G, His said to be SECOND-DEGREE RISK EFFICIENT.

THIRD-DEGREE STOCHASTIC DOMINANCE of H over G prevailsr if |
Hy(R) < Go(R) (4.103)

for all R in the range [a, b] with H3(R) << G3(R) for at least one value of
R. Compared to G, H is said to be THIRD-DEGREE RISK EFFICIENT.

These rules relate to decision makers’ utility functions in the followmg
manner. If H is first-degree risk efficient but G is not, H will be preferred
over G by any decision maker whose marginal utility for profit, dU/dm, is
positive, i.e. so long as the utility function is monotonically increasing.
Since this requirement merely corresponds to preferring more profit to
less, it is obviously reasonable.

If neither H nor G are first-degree risk efficient but H is second-degree
risk efficient over G, then H will be preferred to G by any decision maker
whose utility function has dU/dr positive and dzU J|dm? negative, i.e. by
any risk-averse decision maker. -

If neither H nor G are first- or second-degree risk efficient but H is
third-degree risk efficient over G, then H will'be preferred to G by any
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decision maker whose utility function has dUfdr positive, d?U/dn?
negative and d3U/d=® positive, i.e. more or less so long as he is de-
creasingly risk averse as his wealth increases.

Application of the stochastic dominance rules is illustrated diagram-
matically in Fig. 4.7 where the cumulative curves based on the quantities
calculated from equations (4.98), (4.99) and (4.100) have been plotted
as relevant for six alternatives labelled I to VI. Figure 4.7(a) allows
inspection for first-degree stochastic dominance. On this basis we can
eliminate alternatives I, IT and III (I and II are dominated by III to
V1, and III is dominated by IV and V). The first-degree risk efficient set
of alternatives thus consists of IV, V and VI. The second-order cumula- .
tives of these three are plotted in Fig. 4.7(b). Inspection shows VI to be
dominated by IV so that the second-degree risk efficient set consists of
alternatives IV and V. Plotting the third-order cumulatives of IV and V
in Fig. 4.7(c) indicates that the set of third-order risk eflicient alterna-
tives consists only of IV. Note that in graphing the second- and third-
order cumulatives, each curve is plotted up to the highest value of R
taken by any of the first-order cumulatives.

Just as individual utility appraisal has the disadvantage of requiring
knowledge of the utility function but the advantage of only needing to
know the first few moments of each profit distribution, stochastic domi-
nance analysis has the advantage of not needing full information about
the utility function but the disadvantage of needing full specification of
each alternative’s profit distribution. Too, stochastic dominance
analysis loses its generality unless the decision making audience to whom
the analysis is addressed hold subjective probability distributions well-
matched by those used in the appraisal of risk efficiency.

Empirically, application of the rules of stochastic dominance can bea
demanding task. It necessarily involves, first, the “sketching” (visual or
by computer) of the relevant probability distributions (perhaps using
sparse-data procedures) and, second, numerical methods of integration
to enable appraisal (visual or by computer) of the first-, second- and
third-order cumulatives.’ Also, because the decision variables involved
in response analysis are continuous, approximation via many discrete
combinations of levels is necessary for thorough appraisal. For example,
stochastic dominance appraisal of possible (W, P) fertilizer decisions for a
particular crop in a particular region might necessitate considering 11
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F1c. 4.7. Example of risk efficiency analysis using the rules of (a) first-degree
stochastic dominance, (b) second-degree stochastic dominance and (c) third-
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levels of V (from say 0 to 200 kilograms per hectare in steps of 20 kilo-
grams) in combination with each of 11 levels of P (from say O to 80 in
steps of 8 kilograms per hectare). All told there would thus be 121 profit
probability distributions to be specified and appraised. The results of
such appraisal might, for example, be as illustrated in Table 4-2. Those
combinations with a zero entry in the table are risk inefficient ; those with
a 1, 2 or 3 entry are risk efficient of the first, second or third degree
respectively. Note that an entry of 3 implies 2 and 1 also; and an entry of
2 also implies 1.

TasLE 4.2

HyYPOTHETICAL ILLUSTRATION OF THE RESULTS OF STOCHASTIC DOMINANCE
APPRAISAL OF ALTERNATIVE FERTILIZER COMBINATIONS

Nitrogen Phosphorus (kg/ka)
(kg/ha) O 8 16 24 32 40 48 56 64 72 80
0 0 0 1 2 3 3 3 3 3 3 3
20 0 0 0 0 1 3 3 3 3 3 2
40 0 0 0 0 1 2 3 3 3 2 1
60 0 -0 0 0 1 1 3 3 2 1 1
80 0 0 0 -0 1 1 3 2 1 1 1
100 0 0 0 0 0 1 2 2 1 1 1
120 0 0 0 0 0 1 1 1 1 1 1
140 0 0 0 0 0 0 1 1 1 1 1
160 0 0 0 0 0 0 1 1 1 1 1
180 0 0 0 0 0 0 0 1 1 1 1
200 0 0 0 0 0 0o 0 1 1 1 1
4.7 Further Reading

The decision theory approach to best operating conditions for risky
response, along with extensive discussion of the concept and elicitation
of both utility functions and subjective probabilities, is presented by
Anderson, Dillon and Hardaker (1976, chs. 2, 4 and 6). Some of the
same ground is covered by Dillon (1971) and Halter and Dean (1971).
More wide-ranging mathematical treatment, including consideration of
second-order conditions for utility maximization, is to be found in
Magnusson (1969). Expected utility analysis within the general setting
of microeconomics is surveyed by McCall (1971).
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~ While we have used the terms risk and uncertainty interchangeably
to denote probabilistic decision situations, the term risk is also commonly
used to denote the probability of loss, e.g. de Janvry (1972a), and in a
technical statistical sense to denote a mean-preserving spread of a
probability distribution, e.g. Diamond and Stiglitz (1974). Acceptance
of the expected utility theorem, of course, implies discarding the old dis-
tinction between risk (where frequency data are available) and un-
certainty (where no frequencies are known).

The use of expected profit, safety-first and game theoretic criteria to
appraise risky response is variously exemplified by Carruthers and
Donaldson (1971), Cone (1974-5), de Janvry (1972a), Chisholm (1965),
Doll (1972), Heady, Pesek and McCarthy (1963), Roumasset (1974 and
1976), Swanson and Tyner (1965) and Walker, Heady and Pesek (1964).

Of necessity, we have skipped over a number of topics without proof
or elaboration. An easily comprehended proof of the expected utility
theorem is given by Dyckman, Smidt and McAdams (1969). Taylor
series expansion of the utility and expected utility function is elaborated
by Dillon (1971). For the construction of sparse-data probability curves,
see Anderson (1973 and 1974a) and Anderson, Dillon and Hardaker
(1976, chs. 2 and 6). Chapter 8 of the latter reference also discusses the
difficulty of utility appraisal involving risky time sequences. The theory
of first and second-degree stochastic dominance is presented by Hadar
and Russell (1969), and for the third-degree by Whitmore (1970). All
three rules are covered by Hadar and Russell (1974). Elaboration and
empirical examples of stochastic dominance and risk efficiency analysis
in the context of agricultural response are given by Anderson (1974b)
and Anderson, Dillon and Hardaker (1976, ch. 9). The latter reference
also contains a computer programme for stochastic dominance analysis.

Apart from the examples presented by Anderson (1973, 1974a and b),
Anderson, Dillon and Hardaker (1976, ch. 6) and Halter and Dean
(1971), there appears as yet to be no full applications of utility-based
risky response analysis. Closest are the sheep stocking rate work of
McArthur (1970) and McArthur and Dillon (1971), the fertilizer-solar
energy study of Montafio and Barker (1970) with rice, the broiler study
—notable for its incorporation of both time and price uncertainty in an
expected profit framework—of Hochman and Lee (1972), and the farm
efficiency study of Dillon and Anderson (1971). Of close interest is the
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analysis of risk and farmer learning (i.e. adjustment of subjective prob-
abilities) in new crop response processes by Hiebert (1974). Studies
involving the mean and variance of return include those of Battese and
Fuller (1972), Battese, Fuller and Shrader (1972), Colyer (1969), Ryan
and Perrin (1973) and Tollini and Seagraves (1970). Also relevant as
steps along the way to the more comprehensive decision theory approach
are the earlier contributions of Chisholm (1965), Dowdle (1962), Fuller
(1965), Halter (1963) and Smith and Parks (1967).

Examples of the influence of inter-period climatic variability on
response are to be found in Battese and Fuller (1972), Brown and Merril
(1958), Colwell (1973a), Colyer and Kroth (1970), Doll (1972), Engle-
stad and Parks (1971), Fuller (1965), Hjelm (1962), L.R.R.I. (1969,
1970 and 1972), Pequignot and Recamier (1962), Russell (1968a) and
Voss, Hanway and Fuller (1970). The incorporation of climatic and
other environmental variables in the response function has been used or
investigated by Byerlee and Anderson (1969), de Janvry (1972a), Dean
et al. (1972), Englestad and Doll (1961), Heady et al. (1964a and b),
Knetsch (1959), McArthur and Dillon (1971), Montafio and Barker
(1970), Oury (1965), Parks and Knetsch (1959 and 1960), Roumasset
(1974), Russell (1968c), Ryan and Perrin (1973 and 1974), and Tollini
and Seagraves (1970). In an interesting study, Mandac (1974) has fitted
rice response functions involving nitrogen and phosphorus fertilizer,
degree and time of water stress, solar energy, and soil, disease, insect and
weed factors.

Estimation of empirical relationships between input decision variables
and the variance of the yield distribution has been carried out by Battese
and Fuller (1972), Doll (1972), and Fuller (1965), while Anderson (1973)
and Day (1965) have also estimated analogous functions for skewness.
More general discussion of climate in relation to response—with differing
conclusions as to how best to incorporate climatic uncertainty—is
presented by Anderson (1971), Doll (1967), Pesek (1973), Ryan (1972),
and Shaw (1964). The use of weather predictions in a decision theoretic
response framework is explored by Byerlee and Anderson (1969) and
Doll (1971). The modelling of crop response to weather factors is illus-
trated by Denmead and Shaw (1962), Nix and Fitzpatrick (1969),
Oury (1965), and Reid and Thomas (1973).

Appraisal of uncertainties due to pests and disease, as well as climate,
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is given by Roumasset (1974) in terms of a “normal® response function
which is adjusted multiplicatively by a probabilistic “damage factor”.

Further discussion of response variability over time and space, with
emphasis on research implications, is given in Section 5.4 below.

Anderson, Dillon and Hardaker (1976), Blandford and Currie (1975),
and Hazell and Scandizzo (1975) have considered some of the implica-
tions for agricultural policy arising respectively from yield and price
uncertainty.

4.8 Exercises

4.8.1. Solve the numerical example of Section 4.4.1 if the farmer's utility
function is as in equation (4.11) with W = $100,000. What if also
poy = —04?

4.8.2. Is price uncertainty a relevant consideration if the decision
variables X;, . . , X, and the uncertain variables X, ., ..., X,, do not
interact?

4.8.3. Determine best operating conditions for the crop response process
specified by

E(Y) = 5000 + 32V + 40P — 0-08/N2 — 0-03P? - 0-1NP
V(Y) = (600 - 20 + 10P - 0-2N2 — 0-1NP)?

where 7, N and P are in kilograms per hectare, p, = 0-3 per kilogram,
pn = 0-4 per kilogram, and the only four observations available on g,
indicate values of 0-05, 0-07, 0-04 and 0-09 per kilogram. Assume fixed
costs are $80 per hectare and that 100 hectares of the crop are to be
grown by a farmer whose utility functionis U = (150,000 - =)"S.

4.8.4. Develop criteria for best operating conditions of a response process
in which there is uncertainty about the prices of the multiple decision
variables but no uncertainty about yield or product price.

4.8.5. Derive best operating criteria for a multiple response situation
where total outlay on the decision variables is constrained and each
process exhibits price but not yield uncertainty.

4.8.6. Extend the analysis of Section 3.6.2 to incorporate yield risk.
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4.8.7. On the basis of the modified von Neumann-Morgenstern method,
postulate a series of answers and questions corresponding to.the utility
curve of Fig. 4.1(a).

4.8.8. Construct three probability distributions such that two are
stochastically dominant at the second-degree and one would be preferred
by a decreasingly risk-averse decision maker.

4.8.9. The mean and variance of a grazier’s annual net income might be
specified as follows:

E(m) = H{S(IM — dS]R — C) — F},
V(x) = (dAS?R)20?

where His farm area, S is sheep stocking rate per hectare, M is maximum
wool cut per sheep per year, d is the reduction in annual wool cut per
sheep per unit increase in S, R is wool price per kilogram, C is variable
cost per sheep per year, F is annual fixed cost per hectare and o? is the
variance of a climatic index. Deduce the impact on optimal stocking rate
of one-at-a-time increases in H, C, F, M and R. What if there were no
climatic uncertainty but R had a variance of V(R)?

4.8.10. If p, and Py are respectively $0-04 and $0-30 per kilogram, apply
risk efficiency analysis to evaluate the use of nitrogen given the following
set of data:

Nitrogen Yield observations in
per hectare kilograms per hectare
0 200 1200 2300 4100 1400
20 2000 4900 3400 6600 4300
40 6700 5900 5200 7200 4400
60 4300 7400 7000 9100 6000
80 7200 9600 3700 7800 10000
100 5100 9300 11400 7900 6400
120 8400 9100 4100 10400 10000
140 9200 9900 2800 5500 10700
160 8300 9600 7700 1900 8300

4.8.11. Given the data of Exercise 4.8.10, what level of nitrogen per
hectare would be best for a farmer planning to grow 100 hectares of
crop with a fixed cost of $100 per hectare if his utility function were:
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() U=
(i) U= = — 0-000022.
(iii) U= = — 0-0000272 -+ 0-000001x>.

4.8.12. What if in Exercise 4.8.10 there were a fifty-fifty chance that p,,
would be $0-02 or $0-06 per kilogram ?

4.8.13. Extend the analysis of Section 3.9.2 under the additional assump-
tion that both product price and the per cent protein in the ration are
uncertain. Would it simplify the analysis to assume each distribution is
normal ? N

4.8.14. What implications do you see for the design of crop and livestock
response experiments arising from a recognition of the influence of risk ?




