Gin stands
Equation

$$
\begin{array}{ll}
70-12,80-12,90-12, & G 5 C=.021 x \\
100-12,120-12 & G 5 C=.029 x \\
177-12,178-12,200-12, & G 5 C=.057 x \\
224-12,252-12 & \\
88-12,108-12,128-12, & \\
158-12 & \\
75-14,75-16,79-16, & \\
90-16,93-16,100-16, & \\
119-16,140-16,141-16, & G S C=.05 x \\
80-18,90-18,94-18, & \\
120-18,142-18 & G 5
\end{array}
$$

TEXAS A\&M UNIVERSITY

COLLEGE OF AC RICULTURE
COLLEGE STATION, TEXAS 77843

Texas Agricultural Market Research and Development Center

November 4, 1975

Mr. Joe Ghetti
Commodity Economics Division
Economic Research Service
U.S. Department of Agriculture

Delta Branch Experiment Station
Stoneville, Mississippi 38776
Dear Joe:
Enclosed is a copy of the gin capacity figures based on the gin stand saw configuration which was developed by Calvin Parnell. We indicated that we would send a copy to you since it may be useful for your studies ass well.

I visited with Parnell somewhat at length regarding the development of this information. He indicated that he has also checked it with the manufacturers of the gin equipment. They approved his method of calculations. Therefore, it seems that this is about the best available calculation to use. Will appreciate any comments or suggestions you may have.

Work on the coding of the gin equipment schedules is still underway. The AMS set which covers the 1974 data is almost completed. We will now revert to the ERS set and proceed with it. Our work on this was delayed considerably by a number of other analyses we have felt advisable before selecting the gin sample we will use in the study for Cotton Incorporated.

Thanks again for all of the assistance you have provided.
Sincerely,

Robert E. Brandon
Coordinator
Enclosure

MEMORANDUM
TO: DR. DEAN ETHRIDGE
MR. CHARI.: Y HODGES
SUBJECT: CALCULATIONS OF GIN STAND CAPACITY ACCORDING TO A MATHEMATICAL FORMULA GIVEN THE NUPMBER OF SANS AND SAW DIAMETER

FROM: CALVIN B. PARNELL, JR.

The model for determining gin stand capacity is given by equation 1.

$$
\begin{equation*}
\text { GSC }=F \text { (No of saws, saw diameter, saw speed (RPM), saw loading) } \tag{1}
\end{equation*}
$$

In reviewing, the literature on this subject I was able to find a publication by Griffin I/ that indicated values for saw loading that ranged from 5 to 34 pounds lint per saw per hour. By telephone conversation with representatives of the four manufacturers of gin stands, I obtained information on RPM and recommended gin stand capacities. These data are listed in Table 1. Griffin's study was based on 700 RPM for a 12 inch diameter saw cylinder which corresponds to $2200 \mathrm{ft} / \mathrm{min}$ peripheral velocity. Expanding equation 1, the model was as follows:

$$
\begin{equation*}
\text { GSC }=X \cdot \frac{\pi \cdot D \cdot R P M}{12} \cdot Y /(2200 \cdot 478) \tag{2}
\end{equation*}
$$

Where, GSC = gin stand capacity in bales per hour,

$$
x=\text { number of saws }
$$

$\mathrm{D}=$ diameter of saw in inches,
$\begin{aligned} & \text { RPM }=\text { manufacturers recommended revolutions per minute, and } \\ & Y \text { - saw loading factor in lbs. lint per hour. IN wow }\end{aligned}$
The 2200 corresponds to peripheral speed in $\mathrm{ft} / \mathrm{min}$ for a 12 inch saw at 700 RPM .
The 478 corresponds to the lint weight in a 500 -pound bale.
Solving for Y and using manufacturers rated capacities, I was able to group these into 5 groupings hence 5 equations. These are as follows:
1/Griffin, A. C. and 0. L. McCaskill. Gin-Stand Research at Stoneville, Miss.
1956-66. Agricultural Research Service, United States Department of Agriculture.
Sincerely jours,

Table 1. Gin Stand Properties and Manufacturers

*There is no way that you can distinguish this from your input information. The Super 88 (Lummus) has a capacity of 4-5 while the Imperial 88 has a capacity of $5-6$. Both will be calculated as $5.4 @ 825$ RPM. (Equation 3)
**There is no way you can distinguish Cont $90 \& 120$ from Lummus 90 and Murray 12^{\prime}). Hence using 700 RPM for both will yield good data.

Ethridge/Hodges
Page 2
October 14, 1975

Gins Included
70-12
01d Gin Stands all
C90-12, C120-12, HE 100-12, HE120-12, L.90-12, M80-12, M120-12

Equations

Group 1

12" diam., all at 700 RPM

GSC=X•H/478

HE177-12, HE178-12, HE200-12, GSC=X•14/478 HE224-12, HE252-12

GSC=0.029X

Group 3

Gin Stands with Soed Roll Agitators, all $12^{\text {n }}$ diam, all at 825 RPM

L88-12(Super), L88-12(Imperial)
L128-12(Imperial) $<158-12$

GSC $=x \cdot 25 \cdot 825 /(700)(47$
108-meplruntto 88
GSC $=0.062 \mathrm{X}$ $054 z-32$

Doab/e Engla $/ 4 / / 16=.085$
Group 4
16" diam Saws, all
700 RPM
C79-16, C93-16, C119-16, C141-16, MG75-16, MG140-16

$$
\operatorname{GSC}=\frac{(x \cdot 78)\left(\frac{\pi 16 \cdot 700}{12}\right)^{3}}{(478)(2200)}
$$

$$
M_{G} 75-14^{*} \quad m+90-16, m b 100-16 \quad \mathrm{GSC}=0.05 \mathrm{X}
$$

$$
\text { GSC=0.05x } X \text { - }
$$

Group 5
18" diam Saws all at 540 RPM

M80-18, M120-18, M142-18
M-9Y-18 Cowr. 80;
GSC $=\frac{(x \cdot 20)\left(\frac{\pi 18 \cdot R P M}{12}\right)}{(478)(2200)}$ *
GSC=.048X
*Although equation 4 and 5 were arrived at by different paths, I would recommerd that the same equation GSC $=.05 \mathrm{X}$ be used.

