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Abstract 

 

Precision agriculture is gaining acceptance all over the world as a management strategy that increases the input use 

efficiency and reduces the negative environmental impacts of intensive agriculture production.  Even with these 

advantages, the rate of adoption of precision agriculture practices is low in the US especially among the cotton 

producers.  Using farm level data from the2009 Southern Precision farming Survey, this study analyses the farm and 

farmer characteristics that influence the adoption of specific variability detection technologies by the cotton farmers 

in the southern United States.  A multinomial logit model with different technologies to detect field variability as 

choices was used to analyze the data.  The results indicated that cotton farmers in Texas are less likely to adopt 

cotton yield monitor or employing a consultant to detect field variability, whereas   they are more likely to use soil 

survey maps compared to other southern states.  Younger farmers with higher education and bigger farm size are 

more likely to adopt any of the variability detection practices.  Farmers using computers for farming operations are 

more likely to adopt variability detection practices but are less likely to employ a consultant.   Annual household 

income of the farmer had significant positive impact on adoption of cotton yield monitor and employing a 

consultant.    

 

Introduction 

 

Precision agriculture is a farming method aimed at taking the right action at the right place at the right time. Natural 

and acquired variability in production capacity within the field implies that uniform agronomic management 

practices that are suitable for some parts of the field may be inappropriate in some other parts.  To achieve the 

ultimate goal of sustainable cropping systems, variability must be considered both in space and time (Basso et al., 

2003). Precision management practices is in accordance with this principle and inputs application is done according 

to the need of the plant, taking into account the spatial and temporal variability in the field. Thus precision 

agriculture avoids excess application of inputs by limiting application to suit the field variability and hence also help 

in reducing the negative environmental impact.   

 

The main objectives of precision agriculture are to increase the profitability of crop production and reduce the 

negative environmental impact by adjusting application rates of agricultural inputs according to local needs (Pierce 

and Nowark, 1990).  The adoption of precision agriculture strategies is important not only to increase the 

profitability and sustainability of the farm, but also helps to protect the environment as the inputs are not applied in 

excessive quantities, which limits the potential of leaching of the chemicals to water streams.  The components of 

precision agriculture technology are data collection, processing of data, and variable rate application of inputs 

(Blackmore et al., 2003).  Common variability detection practices include use of yield monitor, soil map, soil grid 

sampling, aerial photos, or satellite imagery to identify the variability in soil fertility, pH of the soil, crop vigor, or 

moisture stress. Once the variability within the field is detected and analyzed, this information is used to apply 

inputs like fertilizers, lime, pix or irrigation water in a way that each portion of the field receives the input in 

required quantities. 

 

Even with all these potential advantages, the adoption of precision agriculture practices is low in the United States 

especially in cotton.  The lower adoption rate of precision agriculture technology in USA can be attributed to the 



lack of awareness of precision agriculture technology among the farmers (Daberkow and McBride, 2003), high cost 

of the technology, difficulty in proper understanding of the technology, and interpretation of the data (Reichardt and 

Jurgens, 2009).  The study of the adoption of precision agriculture practices is very important to tide over the 

bottlenecks in adoption and to evolve efficient extension strategies.     

 

In general, farmers decide on whether to adopt a new technology based on the economic benefit received from that 

technology, which in turn depends on the characteristics of the decision maker, and farm, crop markets, and the cost 

of the new technologies (Daberkow et al., 2002).  Even though numerous studies were conducted to study the 

adoption of precision agriculture practices (Banerjee et al. 2008; Walton et al. 2008, Walton et al. 2010), most of 

those studies were aimed at studying the characteristics of the farm and the decision maker that influences the 

adoption of a particular variability detection technology or VRT. Since there are multiple technological choices 

available for the farmers to detect field variability, estimating the probability of a decision maker choosing to adopt 

a particular variability detection technology from different available technologies will provide a better understanding 

of the adoption behavior.  Moreover, there is a need to compare the adoption patterns of Texas, the number one 

cotton producing state in the US, and other states; and of different regions within Texas.  

 

This study examines the adoption of three different strategies for detection of field variability, namely yield monitor, 

soil survey maps and the help of a consultant.  The adoption behavior of the farmers is then compared between other 

states and Texas and among 12 extension districts in Texas. The results from our study may help to identify the type 

of technologies more likely to be adopted by cotton growers and can be used to decide on further research 

initiatives. Identification of the factors affecting the adoption of the technologies can help the design of better 

extension strategies.  

 

Materials and Methods 

 

The Data 

The data for this analysis are from the 2009 Southern Precision farming Survey (Mooney et al. 2010).  This 

extensive survey received 1981 responses from cotton farmers in 12 southern states, of which 880 are from Texas. 

The survey provided information on the characteristics of the farmers, their farm, and their farming practices with 

special references to the different precision agriculture practices.  

 

Empirical Model 

A multinomial logit model was used to analyze the data.  A multinomial logit model is a random utility model with 

discrete unordered choice sets that are mutually exclusive, exhaustive and finite.  This model was used to estimate 

the probability of decision maker   choosing the alternative   (McFadden, 1974).  

 

This model assumes that the decision maker will choose the alternative that provides him the highest utility from the 

available choice set. These utilities are unobservable but can be decomposed into a systematic observable part and 

an unobservable error part. 

 

Then the utility received by farmer   by choosing technology   can be written as  

 

             

 

Here      is the systematic or observed part of the utility and     is the unobservable error term. The term     is 

the vector of alternate specific characters that are hypothesized to influence the utility derived by the farmer. When 

we replace the unobservable utility term by decomposed terms, farmer   will choose technology   under the 

following condition. 

 

                             

 

Let the observed utility,           . Then the probability of farmer   by choosing technology   can be written as 



    
    

      
   

 

For the empirical estimation of the model, different farm and farmer’s characteristics are used as the independent 

variables and adoption of different field variability detection technologies are used as the choice set. The detailed 

description of the variables used in the study and the choice set are provided in table 1 and 2 respectively. 

 

Table 1. The definition of variables used in the study 

Number Variable Name Definition 

1 TX Farmers from the state of Texas 

2 DIST1 Farmers from Texas Extension district 1 (Panhandle) 

3 DIST2 Farmers from Texas Extension district 2 (South Plains) 

4 DIST3 Farmers from Texas Extension district 3 (Rolling Plains) 

5 DIST4 Farmers from Texas Extension district 4 (North) 

6 DIST5 Farmers from Texas Extension district 5 (East) 

7 DIST6 Farmers from Texas Extension district 6 (Far West) 

8 DIST7 Farmers from Texas Extension district 7 (West Central) 

9 DIST8 Farmers from Texas Extension district 8 (Central) 

10 DIST9 Farmers from Texas Extension district 9 (Southeast) 

11 DIST10 Farmers from Texas Extension district 10 (Southwest) 

12 DIST11 Farmers from Texas Extension district 11 (Coastal Bend) 

13 DIST12 Farmers from Texas Extension district 12 (South) 

14 OTH Farmers from states other than Texas 

15 AREA Average area planted to cotton in 2007 and 2008 in acres 

16 AGE Age of the decision maker in years 

17 AGESQ Square of the age of the decision maker 

18 LIVESTOCK Framers possessing livestock 

19 EDUC Number of years of formal education received by the farmer  

20 COMP Farmers using computers for farming operations 

21 INC1 Farmers with annual income < $100,000 

22 INC2 Farmers with annual income between $ 100,000 and $ 200,000. 

23 INC3 Farmers with annual income > $200,000 

 

Table 2. The definition of independent variable and choices used in the study 

 Number Variable Name Definition 

1 TECH The technology adopted by the decision maker 

2 CON Employing a consultant to detect variability 

3 SOIL Adoption of soil survey maps to detect variability 

4 YM Adoption of cotton yield monitor to detect variability 

5 TOM Adoption of 2 or more of the above practices 

6 NON Adoption of none of the above practices 

 

Model Selection 

An unrestricted model with all the individual specific variables (excluding the dummy variables DIST12 and Inc1 to 

avoid perfect multicollinearity) provided in Table 1 was used for estimation. Then different restricted models with 

fewer variables were used for empirical estimation of the model.  From the results of these estimations, the 

Likelihood Ratio (LR) was calculated and likelihood ratio test was conducted to choose the best model.  The LR 

statistic is calculated using the following equation 

 

               
 

The different restricted models tried and the corresponding LR statistic is provided in Table 3.  Model No.6 with 2 

omitted variables (AGESQ and LIVESTOCK) was selected as it could exclude the largest number of variables 

without a significant LR statistic. From the results of the estimation with the empirical model the marginal impact 

was calculated using the following equation. 
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Here the coefficient for the excluded alternative is set equal to zero for the calculation.  The parameter estimates and 

marginal effects are provided below. 

 

Table 3. The restricted models and corresponding LR statistic 

No. Model LR 

1 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AGE+AGESQ+EDUC+COMP+INC2+INC3 
27.1 ** 

2 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AREA+AGE+EDUC+COMP+INC2+INC3 
0.95 NS 

3 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+EDUC+INC2+INC3 
26.56 ** 

4 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+COMP+INC2+INC3 
15.72 ** 

5 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 
1.95 NS 

6 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +AREA+AGE +EDUC+COMP+INC2+INC3 
2.9 NS 

7 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AREA+AGE+AGESQ+EDUC+COMP 
13.3 ** 

8 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +LIVESTOCK+AGE+AGESQ+EDUC+INC2+INC3 
59.68 ** 

9 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +AGE+AGESQ+EDUC+COMP+INC2+INC3 
29.96 ** 

10 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +AREA+AGE+EDUC+COMP 
15.82 ** 

11 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +EDUC+INC2+INC3 
92.34 ** 

12 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 + AGE+AGESQ+EDUC 
81.92 ** 

13 
TECH~TX+DIST1+DIST2+DIST3+DIST4+DIST5+DIST6+DIST7+DIST8+DIST9+DI

ST10+DIST11 +EDUC 
112.16 ** 

14 TECH~TX+LIVESTOCK+AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 90.24 ** 

15 TECH~TX+ AREA+AGE+AGESQ+EDUC+COMP+INC2+INC3 92.66 ** 

 

Results and Discussion 

 

The results of the empirical estimation analyzing the impact of different geographical, farm and farmer 

characteristics on the choice of the variability detection technology by the cotton farmers are presented below. 

 

Impact of Extension Districts 

The estimates, standard errors, p values and marginal impact are provided for the three important extension districts 

in Texas as far as cotton farming is concerned (Panhandle, South Plains and Rolling Plains) in tables 4, 5, and 6.  

The results indicate that South Plains and Rolling plains have about 2.5 percentage points less likelihood to employ 

a consultant and 0.7 and 1.2 percentage points more likelihood to adopt soil survey maps compared to the south 

extension district of Texas.  The panhandle area has about 1 percentage point higher adoption of two or more 

practices, but shows a 1.3 percentage lower adoption of soil survey maps compared to the south. 

 

 



Table 4. The estimates, standard errors, p values and marginal impact for Panhandle 

Practice Estimate SE p Marginal impact 

CON 0.4537 0.1328 0.0007 0.03386 

SOIL -16.4975 <0.0001 <0.0001 -1.32454 

YM 16.7941 0.0232 <0.0001 1.06286 

TOM -12.1612 <0.0001 <0.0001 -0.29461 

 

Table 5. The estimates, standard errors, p values and marginal impact for South Plains 

Practice Estimate SE p Marginal impact 

CON -0.5284 0.2398 0.0277 -0.2608 

SOIL 11.4639 0.2769 <0.0001 0.7009 

YM 15.9563 0.0797 <0.0001 0.7298 

TOM 13.7868 0.1183 <0.0001 0.2562 

 

Table 6. The estimates, standard errors, p values and marginal impact for Rolling Plains 

Practice Estimate SE p Marginal impact 

CON -28.7032 <0.0001 <0.0001 -2.3856 

SOIL 11.6588 0.1176 <0.0001 1.2859 

YM -20.0812 <0.0001 <0.0001 -0.9759 

TOM -10.6606 <0.0001 <0.0001 -0.1565 

 

Comparison of adoption in Texas Vs Other states 

The estimates, standard errors, p values and marginal impact of Texas on adoption compared to other states are 

provided in Table7. Texas has a 3.7 percentage lower adoption of soil survey maps and 0.8 and 0.3 percentage lower 

likelihood of adoption of two or more practices and yield monitor respectively. The likelihood of employing a 

consultant is lower in Texas by 0.2 percentage points compared to other states.  This result indicates the lower level 

of adoption of any kind of precision agriculture practice in Texas compared to other southern states in USA.  

 

Table 7. The estimates, standard errors, p values and marginal impact for Texas 

Practice Estimate SE p Marginal impact 

CON -1.3798 0.0976 <0.0001 -0.2046 

SOIL -48.6976 0.1128 <0.0001 -3.7221 

YM -8.5502 0.1278 <0.0001 -0.8157 

TOM -7.1923 0.1624 <0.0001 -0.2951 

 

 

Effect of farm size 

The estimates, standard errors, p values and marginal impact of farm size on adoption compared to other states are 

provided in Table8.  Even though the area planted to cotton was significant in predicting the likelihood of adoption 

of two or more practices and yield monitor, the marginal impact was very low.  A hundred acres increase in area 

planted to cotton is predicted to increase the likelihood of adoption of two or more practices by 0.002 percentage 

points only. 

 

Table 8. The estimates, standard errors, p values and marginal impact of farm size 

Practice Estimate SE p Marginal impact 

CON 0.001 0.001 0.2096 0.0000059 

SOIL 0.002 0.001 0.0615 0.0000096 

YM 0.005 0.001 <0.001 0.0000223 

TOM 0.005 0.001 <0.001 0.0000091 

 

Effect of Age 

The estimates, standard errors, p values and marginal impact of age of the decision maker on adoption of precision 

agriculture practices are provided in Table 9.  Age, as expected is predicted to have a negative impact on adoption of 

all of the technologies, but the marginal effects are very low.  Older farmers are less likely to employ a consultant by 

0.0016 percentage for each year increase in age. Older farmers are likely to adopt soil survey maps 0.001 percentage 



lesser for each year increase in age. The likelihood of adoption of two or more technologies are also lesser for the 

older farmers at the rate of 0.001 percentage per year. 

 

Table 9. The estimates, standard errors, p values and marginal impact of age of the decision maker 

Practice Estimate SE p Marginal impact 

CON -0.0231 0.0060 <0.0001 -0.0162 

SOIL -0.0200 0.0067 0.0031 -0.0013 

YM -0.0241 0.0082 0.0034 -0.0009 

TOM -0.0095 0.0116 0.4146 -0.0014 

 

Impact of Education 

Education also has a positive impact on adoption of soil maps and on the adoption of two or more technologies. One 

more year of education increases the likelihood of adoption of soil maps by 0.01 percentage and the likelihood of 

adoption of two or more practices by 0.004 percentage.  Against the general perception that more educated farmers 

will be more technologically capable and use less of the service of a consultant, the impact of education on the 

likelihood of employing a consultant was not statistically significant. 

 

Table 10. The estimates, standard errors, p values and marginal impact of education of the decision maker 

Practice Estimate SE p Marginal impact 

CON 0.0330 0.0265 0.2126 0.0009 

SOIL 0.1587 0.0285 <0.0001 0.0107 

YM 0.1079 0.0350 0.0021 0.0043 

TOM 0.0237 0.0531 0.6548 0.0002 

 

Impact of use of computers 

The famers who are using a computer for farm operations are less likely to employ a consultant by 0.03 percentage 

compared to those not using a computer.  This is an expected result as the farmers using computers are more capable 

of performing the data analysis themselves.  The famers who are using a computer for farm operations are more 

likely to adopt soil survey maps, yield monitor and two or more practices compared to the non adopters 

 

Table 11. The estimates, standard errors, p values and marginal impact of use of computers 

Practice Estimate SE p Marginal impact 

CON -0.1850 0.1983 0.3511 -0.0291 

SOIL 0.5271 0.2232 0.0183 0.0290 

YM 1.0643 0.2912 0.0003 0.0503 

TOM 1.2502 0.4255 0.0034 0.0262 

 

Impact of income  

The effect of income for adoption was significant only for employing a consultant and adoption of yield monitor. 

This is as expected because only wealthy farmers can afford yield monitors and wealthy farmers are generally 

observed to utilize the service of consultants.  The farmers with income higher than $200,000 are more likely to 

employ a consultant by 0.03 percentage compared to farmers with income less than $ 100,000. Similarly the farmers 

with income higher than $200,000 are more likely to adopt yield monitor by 0.01 percentage compared to farmers 

with income less than $ 100,000. 

 
Table 12. The estimates, standard errors, p values and marginal impact of INC 2 

Practice Estimate SE p Marginal impact 

CON -0.2516 0.2363 0.2872 0.0247 

SOIL 0.2174 0.2263 0.3367 0.0158 

YM 0.3544 0.2663 0.1835 0.0189 

TOM -0.0963 0.2151 0.6543 0.0033 

 

 

 

 



Table 13. The estimates, standard errors, p values and marginal impact of INC3 

Practice Estimate SE p Marginal impact 

CON 0.4614 0.2174 0.0339 0.0349 

SOIL 0.1626 0.2498 0.5153 0.0051 

YM 0.2383 0.2946 0.4187 0.0073 

TOM 0.5503 0.2494 0.0275 0.0109 

 

Summary 

 

A multinomial logit model was used to analyze the 2009 southern precision farming survey to assess impact of the 

farm and farmer characteristics on the adoption of different precision agriculture practices by the cotton farmers of 

southern United States. The results revealed that cotton farmers in Texas are less likely to adopt different precision 

agricultural practices.  Farmer characteristics like age, education and income had considerable impact on the choice 

of variability detection technology.  Farm size also significantly affected the choices, but the marginal impact was 

very small. Even though the general results are in agreement with the previous research findings, the strong 

assumption of independence from irreverent alternatives for the nested logit model may have a negative impact on 

the accuracy of the predictions of the model.   
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