Optimal Stocking Density and Food Safety Risks in Steer Production Enterprise

William E. Nganje, Simeon Kaitibie, B. Wade Brorsen, and Francis M. Epplin

Paper Presented at the WCC-72 Annual Meeting Las Vegas, Nevada June 9-11, 2003

Background

- Estimated LRP with stochastic plateau
 - Average Daily Gain=f(Forage Allowance)
 - Overstocking less costly than understocking
- Food safety conflict
- Microbial shedding at high stocking densities
- HACCP system (implementation + testing
- Output price and production uncertainties

Objectives

• Determine optimal stocking density under production and output price uncertainty.

 Simulate food safety risk by penalizing output price under the assumption of high microbial shedding.

Methods

- Mathematical Models
 - Linear Response function with a stochastic plateau

$$ADG = \begin{cases} 0.48 + 66.47FA + \varepsilon, \text{ if FA} \le 0.0105\\ 1.18 + \varepsilon & \text{otherwise,} \end{cases}$$

Methods

Total Gain Function

- if
$$I_{(-\infty, GP^{-1})}(FA_{critical}) = \begin{cases} 1, \text{ if } FA^* \leq GP^{-1} \\ 0, \text{ otherwise} \end{cases}$$

$$TG = \left\{ \left(\alpha_0 GP + \alpha_1 \right) (1 - I_{(-\infty, GP^1)}(F\mathring{A})) + ADG_{\max} GPI_{(-\infty, GP^1)}(F\mathring{A}) \right\} + \varepsilon \, x \, GP.$$

$$y = f(GP) + h(GP)\varepsilon$$

Methods

• Expected Utility Maximization (follows Isik, AJAE, August 2002).

 $\max EU(W | GP) = EU(W_0 + (\overline{P} + \theta) \times [f(GP) + h(GP)\varepsilon] - rGP)$

Taylor Series Approximation of Marginal Utility

$$\overline{P}f'(GP) = \frac{\phi h(GP)h'(GP)\sigma_{\varepsilon}^{2}(\overline{P}^{2} + \sigma_{\theta}^{2}) + r}{1 - (\phi \sigma_{\theta}^{2}f(GP))/\overline{P}}$$

Food Safety Application

 Penalize P with penalty c proportional to the level of microbial shedding

 $\max EU(W|GP) = EU(W_0 + (1-c)(\overline{P} + \theta) \times [f(GP) + h(GP)\varepsilon] - rGP)$

Table 1. Optimal Stocking Density under Production and Output Price Uncertainty

Value of gain (\$ per kg)	Optimal grazing pressure (steer-days per hectare)		Optimal stocking density ^a (steers per hectare)	
	Ф=0.00005	Risk neutral farmer	φ= 0.00005	Risk neutral farmer
1.36	104.3210	104.4500	0.8693	0.8704
10 % penalty	101.3090	101.3390	0.8442	0.8445
25 % penalty	99.1160	99.1300	0.8260	0.8261

^a Optimal stocking density is based on a 120-day grazing pressure and an initial standing forage of 1,732 kg per hectare; calculated by dividing optimal grazing pressure by 120.

Table 2. Optimal Stocking Density under Different Sources ofUncertainty

Risk preference	Optimal stocking density (steers per hectare) ^a				
	\$1.36	10 % Penalty	25 % Penalty		
Risk neutral	0.8704	0.8445	0.8261		
	φ=(0.00005)				
Production uncertainty alone	0.8704	0.8445	0.8261		
Value of gain uncertainty alone	0.8694	0.8443	0.8260		
Production and value of gain uncertainty	0.8693	0.8442	0.8260		

^a Optimal stocking density is based on a 120-day grazing pressure and an initial standing forage of 1,732 kg per hectare; calculated by dividing optimal grazing pressure by 120.

Table 3. Expected Cost of non-Optimal Stocking Density under Risk Aversion andProduction and Output Price Uncertainty

Value of gain (\$ per kg)	Stocking density (steers per hectare)	Expected profit (\$ per hectare)	Expected cost of price penalty (microbial shedding) (\$ per hectare)	
1.36				
	0.8693 *	258.20	-	
10 % penalty				
	0.8442 *	224.48	33.72	
25 % penalty				
	0.8260 *	175.17	83.03	

* Optimal stocking density is calculated by dividing optimal grazing pressure by 120.

Conclusions

- Optimal stocking density is marginally higher under risk neutrality than under risk aversion
- Optimal stocking density decreases with price penalty
- The magnitude of returns forgone due to price penalty is high, and increases with price penalty

Additional Work

 Re-estimate linear response plateau function as a composite model – homothetic function

adg=f(FA(SD(microbial shedding)))

 Do expected utility maximization with Monte Carlo integration or Gaussian Quadrature (Risk implications)