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Calculating, Interpreting, and Reporting Estimates of “Effect Size”1

(Magnitude of an Effect or the Strength of a Relationship)

I. “Authors should report effect sizes in the manuscript and tables when reporting statistical
significance” (Manuscript submission guidelines, Journal of Agricultural Education).

II. “For the reader to fully understand the importance of your findings, it is almost always
necessary to include some index of effect size or strength of relationship in your Results
section . . . . The general principle to be followed, however, is to provide the reader not only
with information about statistical significance but also with enough information to assess the
magnitude of the observed effect or relationship” (APA, 2001, pp. 25-26).

III. “Statistical significance is concerned with whether a research result is due to chance or
sampling variability; practical significance is concerned with whether the result is useful in
the real world” (Kirk, 1996, p. 746).

IV. Effect Size (Degree of Precision) as a Confidence Interval Around a Point Estimate of a
Population Parameter.

A. Estimating the population mean (ì): Metric (interval or ratio) variables

1. Basic concepts

When a random sample is drawn from a population --

 is an unbiased estimate of ì    (  = sample statistic;  ì = population parameter)

Sampling error: Amount of error due to chance when estimating a population parameter from
a sample statistic.

Sampling error  =  Statistic  -  Parameter
Sampling error  =            -        ì

When a random sample is drawn, sampling error can be estimated by calculating a
confidence interval.
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2. Calculation of confidence interval (Hopkins, Hopkins, & Glass, 1996, pp.
155-158).

              (Standard error of the mean)

3. Example B: 95% Confidence Interval around an unbiased estimate of ì

Research question: For the population of graduate students completing the
Research Methods course, estimate the mean score on the Final Exam.
(n = 50)
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.975 49df = 50 - 1 = 49; Critical value of  t  = 2.009

83.84 ± (2.009) (1.47)
83.84 ± 2.95

Lower limit = 83.84 - 2.95 = 80.89
Upper limit = 83.84 + 2.95 = 86.79

C (80.9  #  ì  # 86.8) = .95

Interpretation – Inference to the population. It is estimated with 95%
confidence that the mean score on the Final Exam: Research Methods for
the population of graduate students is within the interval 80.9 to 86.8.

4. Interpretation of confidence intervals

Construct a confidence interval around a sample statistic and on a population
parameter.

Interpretation:        % (level of confidence) confident that the population
parameter being estimated falls within the interval specified by the lower and
upper limits of the confidence interval. Level of confidence = (1 - á).

If the researcher were to draw random samples and construct confidence intervals
indefinitely, then (1 - á)% of the intervals produced would be expected to contain
(capture) the population parameter.
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B. Relationship between interval estimation and hypothesis testing (Example B)

Research question: For the population of graduate students completing the
Research Methods course, is the mean score on the Final Exam equal to 85?

0Statistical Hypothesis:    H : ì = 85 [Nondirectional (two-tailed) test]

1Alternative Hypothesis:  H :  ì � 85
Level of alpha:     á = .05

Sample data: n = 50

Calculate test statistic: Test statistic is t; probability distribution is t

49distribution with n - 1 degrees of freedom (t )

Calculated t:

.975 49Critical t:  t  = 2.009

0Decision: Calculated , t , < critical , t ,, fail to reject H
Probability associated with calculated t (.435) greater than á (.05),

0fail to reject H

For a given level of alpha:

< When the confidence interval includes the value hypothesized for the

0population parameter, fail to reject H

< When the confidence interval does not include the value hypothesized for

0the population parameter, reject H

C. Estimating the proportion of cases in the population (ð) in a category of interest:
categorical (nominal or ordinal) variable

1. Basic concepts

When a random sample is drawn from a population --

p-statistic is an unbiased estimate of ð
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p = sample statistic: proportion of cases in the sample in the category of interest

    (f = number cases in sample in category; n = size of sample)

ð = population parameter: proportion of cases in the population in the category of 
       interest

Sampling error = p  -  ð

When a random sample is drawn, sampling error can be estimated by calculating a
confidence interval

2. Calculation of confidence interval (Hopkins, Hopkins, & Glass, 1996,
pp.221-233)

 ;  = standard error of the proportion

If the sampling fraction   > .05;  

3. Example C: 95% Confidence Interval around an unbiased estimate of ð

Research question: For the population of graduate students completing the
Research Methods course, estimate the proportion who were Ph. D.
candidates.
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p ± (1.96) (.029) (.834)
p ± .047

Lower limit: .493 - .047 = .446
Upper limit: .493 + .047 = .540

C (.446 # ð # .540) = .95

Interpretation – Inference to the population. It is estimated with 95%
confidence that the proportion of graduate students enrolling in the
Research Methods course who were Ph. D. candidates is within the
interval .446 and .540.

D. Estimating the population correlation coefficient (ñ): Metric (interval or ratio)
variable

1. Basic concepts

The absolute value of the Pearson product-moment coefficient (r) describes the
magnitude (strength) of the relationship between variables; the sign of the
coefficient (- or +) indicates the direction of the relationship.

Factors influencing the value of r:
Measurement error in X or Y can reduce the value of r: The greater the
measurement error, the lower will be the observed r.

Variance of a variable influences r: The greater the variability among the
observations, the greater the value of r.

Shape of distributions (frequency polygons of X and Y) influence r: (a) r
can equal 1.0 only when the frequency distributions have the same shape
and (b) the less similar the shapes of the distributions, the lower the
maximum value of r.
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ñ (rho) designates the correlation coefficient for the population

If n $ 25, r is essentially an unbiased estimate of ñ

0Statistical (null hypothesis): H : ñ = 0

1H : ñ � 0 (nondirectional, two-tailed test)

1H : ñ > 0 (directional, one-tailed test)

1H : ñ < 0 (directional, one-tailed test)

Test statistic: Table values of r for various size of sample and level of alpha.

2. Calculation of confidence interval (Hopkins, Hopkins, & Glass, 1996, pp.
260-263).

rUse Fisher’s Z-transformation (Z ) of r to calculate a confidence interval on the
population correlation coefficient.  

rZ  = Fisher’s transformation of r

rConfidence interval: Standard error of Z :  

3. Example D: 95% confidence interval around estimate of ñ

Research question: For the population of Extension employees, what is the
magnitude and direction of the relationship between the extent
“Organizational Issues” and “Financial Issues” limit their balancing of
work/family roles?

Data:
n = 181
r = .46

rZ  = .497 (Fisher’s Z transformation of r)

95% confidence interval: z = 1.96

.497 ± (1.96) (.075)

.497 ± .147
Lower limit: .497 - .147 = .350 r = .34
Upper limit: .497 + .147 = .644 r = .57

C ( .34 # ñ # .57) = .95
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Interpretation – Inference to the Population. There is a moderate positive
relationship between the extent “Organizational Issues” and “Financial
Issues” limit Extension employees’ balancing work/family roles. With
95% confidence , it is estimated that the magnitude of the relationship is
within the range of .34 to .57.

E. Conventions for describing the magnitude of relationship.

Bartz (1994, p.184)

Value or r Description

                    .80 or higher
                    .60 to .80
                    .40 to .60
                    .20 to .40
                    .20 or lower

Very High
Strong
Moderate
Low
Very Low

Hopkins (1997)

Value or r Description

0.9 - 1.0
0.7 - 0.9
0.5 - 0.7
0.3 - 0.5
0.1 - 0.3
0.0 - 0.1

Nearly perfect, distinct
Very large, very high
High, large,  major
Moderate, medium
Low, small, minor
Trivial, very small, insubstantial 

Cohen (1988, pp. 75-107)

Small effect size: r = .10; r  = .012

Relationships of this size would not be perceptible on the basis of casual
observation; many relationships pursued in “soft” behavioral science are of this
order of magnitude.

Medium effect size: r = .30; r  = .092

This degree of relationship would be perceptible to the naked eye of a reasonably
sensitive observer.

Large effect size: r = .50; r  = .252

This magnitude of relationship falls around the upper end of the range of
correlation coefficients encountered in behavioral science; correlations “about as
high as they come.”



9

V.       Estimating the Magnitude of Association in Contingency Tables: Categorical (nominal)      
      variable.

(Glass & Hopkins, 1996, pp. 130-133; 333-336)
(Hays, 1994, pp. 866-869)

A. 2 x 2 contingency table: Phi coefficient (ö)

A phi coefficient of zero indicates independence (no  association) between variables.

A phi coefficient of 1.0 indicates complete dependence (association) between the
variables.

The phi coefficient is a Pearson product-moment coefficient calculated on two
nominal-dichotomous variables when the categories of both variables are coded 0 and
1.

The phi coefficient can attain the value of 1.0 only if the distributions of the row and
column variables are the same.

B. R x C contingency table: Cramer’s V – Cramer’s statistic

Used to describe the magnitude or association between categorical variables
(nominal) when the number of rows, the number of columns, or both is greater than
two.

Cramer's V must lie between 0 (reflecting complete independence) and 1.0
(indicating complete dependence or association) between the variables. 

If the number of rows or the number of columns in the contingency table is two, the
value of Cramer’s V is identical to the value of phi.

C. Statistical (null) hypothesis (Chi-square test of independence)

0H : Variables A and B are independent.

1H : There is association between Variable A and Variable B.

Test statistic:  ÷  ; df = (R - 1) (C - 1)2
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D. Conventions for describing the magnitude of association in contingency tables
(Rea & Parker, p. 203)

Value of ö or Cramer’s V Description

.00 and under .10

.10 and under .20

.20 and under .40

.40 and under .60

.60 and under .80

.80 to 1.00

Negligible association
Weak association
Moderate association
Relatively strong association
Strong association
Very strong association

VI. Estimating Effect Size for the Difference Between Two Means: Independent Groups

A. Calculating a confidence interval around the difference between sample means
(Hopkins, Hopkins, & Glass, 1996, pp. 189-207; 209-213)
(Cumming & Finch, 2001)

Calculating the standard error of the difference between means: 

Pooled variance:  

Pooled standard deviation of difference between means:  

Standard error of difference between means:   =   

Statistical (null) hypothesis:

0 1 2H : ì  - ì  = 0

1 1 2H : ì  - ì  � 0 (nondirectional; two-tailed test)

1 1 2H : ì  - ì  > 0 (directional; one-tailed test)

1 1 2H : ì  - ì  < 0  (directional; one-tailed test)

1 2Test statistic: t; df = n  + n  -2
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B. Cohen’s “effect size” index: d      (Cohen, 1988, pp. 19-74)

1. d = a standardized effect size index.
2. The raw difference (in the original measurement unit) between the sample

means on the dependent variable is divided by the estimated pooled standard
deviation of the dependent variable in the populations from which random
samples are drawn.

3. Cohen’s d statistic expresses the difference between means (effect size) in
standard deviation units.

4. Effect size descriptors:

Small effect size: d = .20

Medium effect size: d = .50

Large effect size: d = .80

5. Calculation of d

0 1 26. Calculation of d from significant t-test of H : ì  - ì  = 0
(Rosenthal, 1994)

1 2When n  = n :   

 

1 2t = calculated t; df = n  + n  - 2
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C. Example E: Effect size for difference between means

Research question: For the populations of graduate students completing the Research
Methods course, do M. S. candidates differ from Ph. D. candidates in the mean
number of courses in statistics and research completed prior to enrollment in
Research Methods?

0 1 2H : ì  - ì  = 0

1 1 2H : ì  - ì  � 0
á = .05

Calculated t = -4.74; p < .001

1 295% confidence interval:    C (-1.34  #  ì  - ì   #  -.55) = .95

Effect size:   
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pbCalculation of r  from d (Rosenthal, 1994)

pbCalculation of  r  from t (Rosenthal, 1994)
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VII.    Estimating Effect Size for the Difference between two means: Dependent Groups (Paired
Observations).

A. Calculating a confidence interval around the difference between sample means
(Hopkins, Hopkins, & Glass, 1996, pp. 208-209)

Difference score for each case:  

Variance of difference scores:  

Standard deviation of difference scores:  

Standard error of difference between means:  

Statistical (null) hypothesis:

0 1 2H : ì  - ì  = 0

1 1 2H : ì  - ì  � 0 (nondirectional; two-tailed test)

1 1 2H : ì  - ì  > 0 (directional; one-tailed test)

1 1 2H : ì  - ì  < 0  (directional; one-tailed test)

Test statistic: t; df = n - 1

Cohen’s “effect size” index: d (Cohen, 1988, pp. 19-74)

Small effect size: d = .20
Medium effect size: d = .50
Large effect size: d = .80

Calculation of d:
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0 1 2Calculation of d from significant t-test of H : ì  - ì  = 0

B. Example F:

Research question: For the population of Extension employees, is there a difference
between the extent “Organizational Issues” and “Financial Issues” limit their
balancing of work/life roles?

Effect size: 

VIII.    Estimating Effect Size for Differences Between k Means (Independent Groups)
One-Way Analysis of Variance

A. Statistical (null) hypothesis:

0 1 2 kH : ì  = ì  = . . . = ì

1 1 2 kH : ì  � ì  � . . . = ì

Test statistic: F; k = number of independent groups
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B. Indices of effect size

1. Eta squared (ç ): proportion of variance in the dependent variable explained2 

by the group (categorical) variable.

 : correlation ratio – magnitude of the relationship between the
dependent variable and the group (categorical) variable.

Calculation of eta squared:   

2. R  : proportion of variance in the dependent variable explained by a linear2

combination of dichotomous dummy independent variables that represent the
group (categorical) variable.

3. Omega squared estimate of the proportion of variance in the dependent
variable accounted for by the categorical independent variable (Hays, 1994,
pp. 408-410)      

 tend “to be somewhat optimistic as an assessment of the true
relationship between group membership and the dependent variable” (Hays,
1994, p. 408)    

Effect size index (Kirk, 1996, p.751)
Small effect size: ù  = .0102

Medium effect size: ù  = .0592

Large effect size: ù  = .1382

       Where k = number of groups

4. Cohen’s effect size index: f    (Cohen, 1988, pp. 280-288)
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Small effect size: f = .10 – standard deviation of the k group means that is
one-tenth as large as the standard deviation of the observations within all
groups; equivalent to d = .20 when there are two independent groups.

Medium effect size: f = .25 – standard deviation of the k group means
that is one-quarter as large as the standard deviation of the observations
within all groups; equivalent to d = .50 when there are two independent
groups.

Large effect size: f = .40 – standard deviation of the k group means that
is .40 of the standard deviation of the observations within all groups;
equivalent to d = .80 when there are two independent groups.

C. Example G: (One-way analysis of variance)

Statistical (null) hypothesis:

0 (methods only) (design only) (both courses)H : ì  = ì  = ì 

1 (methods only) (design only) (both courses)H : ì  � ì  �ì 
á = .05
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Effect size:

IX.     Multiple Linear Regression

A. Statistical (null) hypothesis:

0H : R  = 02

1H : R  � 02

(1 - á) (k, n-k-1)Test statistic:  F     k = number independent variables
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B. Cohen’s effect size index: f  (Cohen, 1988, pp. 410-414)2

Effect Size f R R 2 2

Comparable r for
simple linear regression

Small .02 .0196 .14 .10

Medium .15 .1300 .36 .30

Large .35 .2600 .51 .50

C. Example H: Multiple linear regression

Source of data: Wolf, K. N. (1994). The relationship among task expertise, general
problem solving confidence, and self-efficacy to solve work-related problems in a
group setting. Ph. D. Dissertation, The Ohio State University.

Research question: Controlling for level of education completed by hospital dietetic
services personnel, to what extent can variability in the workers’ perceptions of self-
efficacy in group problem solving be explained by their experience in problem solving
groups, expertise in their work area, problem-solving confidence, and orientation
toward group problem solving?
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Table 7
Summary Data: Regression of Self-Efficacy in Group Problem Solving on Selected Independent
Variables (n = 158)

Intercorrelations

1 2 3 4 5 6 7Variables X X X X X X X Y Mean SD

Level of Educationa

1      EDUC_AD  (X ) 1.00 -.16 -.10 -.05 -.03 -.01 .23 -.03 .08 .28

2      EDUC_BS (X ) 1.00 -.18 -.08 .10 .07 .24 .35 .23 .42

3      EDUC_MS (X ) 1.00 .07 .08 .03 .22 .29 .10 .30

4CONFDENT (X ) 1.00 -.16 .37 -.09 -.18 27.41 5.25

5EXPERT1 (X ) 1.00 .09 .28 .53 27.51 8.55

6ORIENT (X ) 1.00 -.02 .02 29.56 4.62

7GROUPSPS (X ) 1.00 .41 .62 .49 b

EFFICACY (Y) 1.00 37.63 13.01

 EDUC_AD: 0 = Not associate degree;  1= Associate degree; EDUC_BS:  0 = Not bachelor's degree;  1 = Bachelor'sa    

degree;  EDUC_MS: 0 = Not master's degree;  1 = Master's degree;  Comparison Group: High School.

 0 = No experience in problem solving;  1 = Experience in problem solving.b
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Table 8
Regression of Self-Efficacy in Group Problem Solving on Level of Education, Confidence in Problem
Solving, Orientation Toward Problem Solving, Expertise in Work Area, and Experience in Group
Problem-Solving (n = 158)

Step 1 Full Model

Variables b t p b t p

Level of Education a

      EDUC_AD 3.55 1.06 .29 1.35 .45 .65

      EDUC_BS 13.18 5.93 <.01 10.11 5.03 <.01

      EDUC_MS 16.32 5.32 <.01 13.01 4.77 <.01

      (Constant) 32.68

CONFDENT -.24 -1.51 .13

EXPERT1 .64 6.75 <.01

GROUPSPS 3.46 1.88 .06b

ORIENT -.02 -.13 .89

 (Constant) 21.48

 EDUC_AD: 0 = Not associate degree;  1= Associate degree;  EDUC_BS:  0 = Not bachelor's degree;  1 = Bachelor'sa   

degree;  EDUC_MS: 0 = Not master's degree;  1 = Master's degree;  Comparison Group: High School.

 0 = No experience in problem solving;  1 = Experience in problem solving.b

Step 1:   R  = .26;   F = 17.70;   p < .0012

(CONFDENT, EXPERT1, GROUPSPS, ORIENT)Step 2: R  change    =  .23;   F = 17.39;  p < .0012

Full Model:   R  = .49;    Adjusted R  = .47;   F = 20.76;   p < .0012 2
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