

TEXAS TECH UNIVERSITY"

Bedding and boarding while transporting pigs to slaughter-choosing the right amount

Avi Sapkota, TTU Anna Butters-Johnson, Assoc. Professor, ISU John J. McGlone, PhD, Professor, TTU

June 6th, 2012

Overview and Background

- •Total number of pigs transported each year: over 100 million
- •Rate of DOA: 0.17%
- •Rate of NA: > 0.2%

•Pigs with negative welfare problems during transport to market: over 40,000 per year

Overview and Background

Issues:

- •Welfare issue
- •Public concern
- •Economic impact for both farm and plant

So, a major issue

At temperatures 0 to 5 C, less NANI pigs with dry bedding as compared to no bedding
But overall, percentage of DOA and IOT pigs was less in dry bedding trailer as compared to no bedding, but percentage of NANI pigs was higher as compared to no or wet bedding. (Sutherland et al, 2009)

Measure	Number of trailer loads	DOA	IOT	NANI	N&D
DUI					
Bedding					
Dry	9220	0.167º (0.011)	0·038° (0·003)	0·255 ^d (0·009)	0.460 (0.016)
None	3359	0·204 ^d (0·016)	0·066 ^d (0·005)	0·162 ^b (0·014)	0.432 (0.023)
Wet	3711	0·177 ^{cd} (0·019)	0.027 (0.006)	0·207° (0·017)	0.436 (0.028)

DOA: dead on arrival, IOT: injured in trailer, NANI: down on trailer or before weighing (non ambulatory, non injured), N&D: total dead

Overview and Background

Field data indicate that the rate of non-ambulatory, non-injured pigs increases in **cold weather**, but DOA rate increases with outside temperature (Sutherland, 2009).

Background

Field data indicate that the rate of DOA pigs increases in **warm weather** (Sutherland, 2009).

- •Selection of right breed
- •Proper handling techniques
- •Following a proper guideline and method
- •Modifications in existing facilities

The ultimate research goal is to develop industry recommendations for internal trailer environment management protocols that will optimize internal trailer temperature, maintain pig comfort and core body temperature and minimize transport losses.

- Transporter must have access to clean bedding approved by the packer, and must be used during transport.
- Provide extra bedding (wood shavings, wheat straw, corn stubble) during winter

TQA Program

TQA recommendations:

Truck Set – Up Procedures During Temperature Extremes			
Air Temp (°F)	Bedding	Side-Slats	
<10	Heavy	90% Closed	10% Open*
10-20	Medium	75% Closed	25% Open*
20-40	Medium	50% Closed	50% Open
40-50	Light	25% Closed	75% Open
> 50	Light [†]	0% Closed	100% Open

* Minimum openings are needed for ventilation even in the coldest weather. † Consider using sand or wetting bedding if it is not too humid and trucks are moving.

Bedding Study

• To define the bedding requirements of pigs during

transportation in commercial settings during

• Cold weather

Objective

- Mild weather
- Warm weather

Study Design and Sample Size

Months	Bedding levels, bales/trailer*	Air Temperature Range
Jan-Feb	6, 12	8 to 68 F -13 to 20 C
March-May	3, 6, 12	28 to 70 F -2 to 21 C
June-July	3, 5, 7, 9	61 to 113 F 16 to 45 C

* 22.7 kg/bale or 50 lb
 0.2 m³/bale or 7 ft³/bale

Background

Number of bales/deck	mm	inches	Eights of an inch
1	9.5	3/8	3/8
1.5	11.1	3.5/8	3.5/8
3	15.9	5/8	5/8
6	25.4	1	8/8

For a straight deck 53' X 102" trailer

Study Design and Sample Size

Months	Temperature	Number Trailers	Number pigs
Jan-Feb	Cold	174	28,855
March-May	Mild	345	58,007
June-July	Warm	254	41,824
Total		773	128,686

Materials and Methods

At finishing site:

- Random assignment of bedding level
- Information on bedding level, number of loads on that bedding, boarding percentage
- Five sensors collected temperature and humidity in different four compartments and one outside the trailer from start of load to unload
- Handling methods, handling devices, intensity (on a scale of 1 to 5, 1 being the mildest; 5 being aggressive/abusive)

At finishing site:

- Number of vocalizations, slips/falls, signs of stress
- Management aspects of farms: type of barn, facilities like pen size, aisle, chute, floor type, walls etc., and weather information (temperature, humidity, and wind speed)
- Surface skin temperatures on the pigs flank/side of 10 randomly selected pigs (5 of first 50 and 5 of last 50 pigs loaded into the trailer) in each load using laser thermometer with sensitivity of 0.1° F

Materials and methods

At plant:

- Air temperature, humidity, surface temperature of 10 pigs (as in finishing site)
- Handling device(s), handling intensity (as in finishing site), vocalizations, slips/falls, time of arrival, waiting and unloading
- Collected bedding samples to determine moisture %
- Record DOA, NA and D & D in each trip

Primary models, by season, effects of:

- Level of bedding
- Air temperature (in 5°C bins)
- Interaction of bedding and air temperature

All data entered in Excel and analyzed using SAS (General Linear Model). Regression lines calculated using Excel and SAS.

Ranges of conditions during data collection:

- Load time: 13 to 94 min
- Transit time: 16 to 459 min
- Waiting time at plant: 0 to 198 min
- Total D & D in a trip: 0 to 8
- Handing Intensity ranged: 1-5
- 43/440 (9.8%) loads at finishing sites had a handling intensity of 5 (aggressive, abusive)
- 1/429 (0.23%) observations at plants had a handling intensity of 5

Results – Jan-Feb Bedding Effects

D & D % by Bedding level (P=0.29)

No effect of bedding

Results – Jan-Feb Temp Effects

Results – March-May Bedding Effects

bedding level

Results – March-May Temp Effects

Results – June-July Bedding Effects

D & D % by Bedding Level P=0.076

More bedding is harmful in warm weather

Results – June-July Temp Effects

Overall DOA, NA and D&D % with outside temperature

Skin Surface Temperature

Average skin surface temperature in relation to outside temperature bin

Outside temperature bin, C

P-value:<0.001 The warmer the outside temperature, the warmer was the pig surface

Skin Surface Temperature and Dead and Downs

Total dead and down %

3 bags, second load

Fresh bedding (6 Bags)

6 bags, second load

12 bags, first load, 26% moisture

12 bags, first load

12 bags, second load, 51% moisture

Used bedding inside the trailer

73.87% moisture, 6 bags, 4th load, 60% boarding

Inside trailer temperature

- -Front Top
- -Front Bottom
- -Rear Top
- -Rear Bottom
- -Outside

Inside trailer relative humidity

Conclusions – Bedding

Season	Temp range	Significant bedding effect?	Conclusions	Recom, Bales/trailer
Cold weather	< 32 F	No	Added bedding no advantage beyond 6 bales	6* * No data on less than 6 bales
Mild weather	32 - 70 F	No	Added bedding – no advantage above 3 bales	3
Warm weather	> 70 F	Yes	Added bedding <u>negative</u> effect on DOA	3* * No data on less than 3 or 0 bedding

Economics of Bedding Use

Item	Amount
Approximate number of pigs processed per day in the USA	420,000
Average pigs per truck/trailer	170
Approximate number of trucks/trailers/day	2,470
% fresh bedding used per truck/trailer	50%
Trailers using new bedding/day	1,235

Economics of Bedding Use

Item	Amount	Dollar amount, @ \$6/bale
Trailers using new bedding/day	1,235	
Number of daily bales at 3 extra bales/day (in summer)	3,705	\$22,230
Number of daily bales at 6 extra bales/day (in winter)	7,410	\$44,460
30 days cold, added bedding cost	6 extra bales	\$1,333,800
120 days warm, added bedding	3 extra bales	\$2,667,600
Total added bedding cost	Per year	\$4,001,400

Conclusions – Air Temperature

- Cold weather increased NA
- Warm weather increased DOA
- No interaction between bedding and air temperature

Conclusions – Pig Surface Temperature

- Pig surface temperature changes with air temperature
- In warm weather, increased surface temperature predicts increased DOA

Conclusions

Overuse of bedding causes:

- Increased bedding cost for no return
- Increased pigs losses (dead and down)
- At least a \$ 4 million economic cost just by using extra bedding (exact pig losses due to extra bedding yet to be determined) per year unless bedding levels are adjusted
- A welfare problem in warm weather

What Next??

- Is bedding needed and positive for the pig?
 - Examine zero bales in the summer and less than 6 bales in cold weather for efficacy
- Define the boarding needs for the industry
- Define misting requirements

Boarding Study

Determining the proper use weather boards/plugs in controlling the internal environment of the trailer to provide for the thermal comfort of the pig during cool temperatures.

	% Closed or boarded/plugs*				
Air temperature, F	Current TQA	Treatment 1	Treatment 2	Treatment 3	
10-19 F	75	50	75	90	
20-39 F	50	25	50	75	
40-49 F	25	0	25	50	
50-60 F	0	0	25		

100 trailers per temperature bin (400 trailers in total) will be used

Truck status at the farm

- bedding depth, boarding rate, trailer type (straight deck vs. pot), air temperature and humidity (by Hobos; 4 inside per trailer and 1 outside on a sample of trailers), load time at the farm

- A data sheet completed at the farm site and handed to the driver for delivery to researchers at the plant.

Truck status at the plant

- bedding status, boarding rate, straight deck vs. pot, travel time

- Times
- arrival time at the plant, wait time at the plant, time to unload
- Environmental measurements at the plant:
- air temperature & relative humidity: internal on trailer at pig level & outside
- wind speed & wind chill index will be determined

Truck status at the plant

- pig temperature (at least 10 pigs) skin surface temps
- transport loss incidence (NANI, NAI, DOA; some plants collect only DOA and Non-ambulatory[NA])
- trim loss per trailer

- audit of pigs coming off the truck – slips & falls, vocalizations, incidence of frostbite, signs of stress (ex., open-mouth breathing, skin discoloration, muscle tremors)

- •Only 74 trailers covered (out of 400 required), so analysis is not complete yet.
- •Minimum temp: 32 F, Max: 73.2 F
- •If boarding percentage <40%, then low (total: 29) and
- •If boarding percentage 40-59%, then medium (total: 34)
- •If boarding percentage >59%, then high (total:11)

Results

DOA

NAI

D&D

Result

EOA

Conclusion

•DOA highest when boarded highest

- •NANI, NAI, D & D did not differ significantly with boarding percentage
- •EOA highest when highly boarded

11300030000000 -----

Thank you

Questions?

100

111

111 111 111 111 in int int out

...............

> 110 100 11. 111

101 100 110 ... 110 11.

THEFT.

.........

