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Abstract

Background: MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs
(smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression
by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high
sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are
limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive
processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and
associated smRNAs are biomarkers which can be computationally modeled for gene discovery.

Principal Findings: We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome
tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of
MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of
antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-
coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the
antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using
thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA
abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the ‘‘ancient’’
(deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for ‘‘new’’ rapidly-
evolving MIRNA genes.

Conclusions: Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and
other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription,
miRNA evolution, and post-transcriptional gene regulation.
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Introduction

Small RNAs (smRNAs), including microRNAs (miRNAs),

endogenous small-interfering (siRNAs), and piwiRNAs are in-

volved in transcriptional and post-transcriptional silencing path-

ways in plants and animals [1–5]. Their discovery has resulted in a

paradigm shift: non-coding RNAs (ncRNAs) function as epigenetic

regulators of transcription, splicing, export, stability, and transla-

tion superimposed on the Molecular Dogma. miRNAs are

transcribed by RNA Polymerase II or III (Pol II or III) [6–8]

and fold into characteristic stable hairpin secondary structures that

are processed by Dicer enzyme complexes into mature 20–24

nucleotide (n.t.) sequences [5,9]. After biogenesis and integration

of the mature miRNA into the RNA Interference Silencing

Complex (RISC), the miRNA acts as a specificity determinant by

forming Watson- Crick pairs with the target mRNA molecule. The

result is endonucleolytic cleavage and subsequent degradation of

the message, translational inhibition, and/or transitive production

of siRNAs by RNA interference-related mechanisms [5,10–15].

Computational and experimental efforts in plants have explored

long non-coding RNAs (ncRNA), RNA species with limited or no

capacity to encode proteins [16]. Teramoto et al. first identified a

CR20 gene repressed by cytokinin, stress and/or developmental

conditions in cucumber and a homolog in Arabidopsis that

encodes no long ORFs [17]. A tyrosine kinase-like gene was found

to have an antisense transcript, ATH132404, which does not

appear to encode any protein [18]. Other ncRNAs were

discovered by DNA library screening such as ZCF83, RXF6, and

RXW18, in which ZCF83 is antisense to a helix-loop-helix gene

[19]. In 1999 and 2000, At4 and its homolog, AtIPS1, from IPS1/
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Mt4 family were shown to be induced by phosphate (Pi)

deprivation [20,21]. AtIPS1 inhibits the activity of Pi starvation-

induced miR399 by a mechanism termed ‘target mimicry’ of base

pairing without RISC cleavage [22]. Computational searches and

experimental validation of expressed sequence tags (EST) have

been the main focus for discovery of ncRNAs, from which

hundreds of sequences have been identified [23–29]. Interestingly,

miR162a and miR869 primary transcripts were originally

described as ncRNAs, demonstrating the efficacy of finding

miRNA-like sequences by characterizing ncRNAs.

Antisense transcription is a pervasive but poorly understood

phenomenon associated with RNA interference and miRNAs in

plants and animals. The function of miRNAs, their relationship to

antisense transcripts, their subcellular pools, and the precise

mechanisms by which these processes suppress gene expression

remain elusive and controversial [30–33]. A homologue (ARS2) of

the Arabidopsis zinc finger-containing protein SERRATE that

functions in pre-mRNA splicing and miRNA processing has

recently been shown to be a component of the nuclear RNA cap-

binding complex in mice and to mediate both antiviral defense

and developmental patterning in Drosophila [34,35], establishing

that RNAi- and miRNA-dependent processes are deeply con-

served between plants and animals. Prokaryotes and simple

eukaryotes have ncRNAs and antisense transcripts [36–39], but

ncRNAs increasingly dominate the genomes of multicellular

organisms as their complexity increases, in contrast to protein-

coding genes [40–43], providing a plausible explanation for the

‘‘C-value paradox.’’ It is estimated that 40% of all transcription

units in human and mouse genomes exist in cis-antisense co-

expressed pairs [44,45] and there is correlative evidence for a

regulatory function of antisense in animals and plants [46,47]. The

59UTRs and first exons of genes with overlapping antisense

transcripts are significantly longer than the genomic average, and

a similar size distribution is observed for genes silenced by CpG

island methylation in human cancer, supporting a role for

antisense transcripts in regulation [48]. Recent results show that

human genes are regulated transcriptionally by promoter-

associated and terminator-associated antisense RNAs [49–53].

Studies of plant development and environmental stress responses

have converged on the roles of ncRNAs and their metabolism as

primary regulators of gene action, but it is still under debate to

what extent those antisense transcripts are associated with siRNAs

that couple exogenous signals to gene regulation [46,54–64].

Understanding the origins of antisense ncRNAs may lead to new

insights into fundamental processes such as tissue-specific and

developmental gene regulation, chromatin dynamics, dsRNA

biogenesis and processing, and genome evolution.

Plant miRNAs have high levels of complementarity to their

target mRNAs, which greatly facilitates homology-based compu-

tational methods for MIRNA gene and target discovery in plants

[65–76]. Nonetheless many recently discovered miRNAs and

miRNA-associated smRNAs were instead uncovered functionally

by deep sequencing of smRNA libraries [77–81]. We hypothesize

that antisense transcription detected in plant whole genome tiling

array transcriptome [82–84] and deeply sequenced smRNA

datasets [85,86] can serve as a biomarker to discover miRNAs

and ncRNAs. Here we characterize MIRNA gene transitivity

(antisense siRNAs mapping to miRNA hairpins) for Arabidopsis,

C. elegans and rice and the topology (exon-intron signal-to-noise

ratios) of strand-specific signals for annotated protein-coding

genes. We identified several Arabidopsis MIRNA gene homologues

and hundreds of potentially mis-annotated ncRNAs mapping to

the antisense strand of annotated ‘unknown’ orphan protein-

coding genes. A Support Vector Machine (SVM) was employed to

analyze the importance of smRNA abundance features and sense/

antisense topology as predictors of miRNA target sites and MIRNA

genes. Our results suggest the utility of modeling whole genome

tiling array transcriptome datasets for gene discovery and genome

annotation.

Materials and Methods

Perl [87] was used to extract, examine and manipulate data;

scripts are available upon request. Before analysis of microarray

data, those C-rich probes found previously to be affected by a

sample amplification artifact [88] were removed. Other key

programs were Unafold [89], SOAP (Short Oligonucleotide

Alignment Program) [90], BLAST (Basic Local Alignment Search

Tool) [91], and SVM for Matlab [92]. Unafold is based on

dynamic programming principles of over-calculating the solution

of thermodynamic free energy as a quicker solution than absolute

calculation. Unafold’s web-based portal is located at http://

dinamelt.bioinfo.rpi.edu/quikfold.php. SOAP maps short probes

from whole genome tiling arrays onto large databases of genomic

DNA sequence more quickly than BLAST, but has a tradeoff of

accuracy for speed. SOAP is not designed to work in conjunction

with the Massively Parallel Signature Sequence (MPSS) smRNA

databases [85], which is mostly comprised of 17 nt sequences

where SOAP only performs at 50% accuracy. SVM for Matlab

(MathWorks, Natick, Massachusetts; http://www.mathworks.

com/products/matlab/) creates a prediction model to discrimi-

nate between training sets using supervised learning methods that

require a set of features and a class label. Support vector machine

(SVM) is an algorithm that learns by example to assign labels to

samples [93]. SVMs have been successfully applied in various

biological problem domains, particularly classification problems.

Its popularity is due to its high generalization performance, sound

mathematical foundation, and ease of use. The classification can

be done on binary class data or multi-class data. Our dataset is of

binary class. That is, the class labels are either +1 (target genes), or

21 (paralogs). SVM learns a prediction model from training

samples. The model is used to predict an unseen sample’s class

label. The prediction model can be a decision line in two-

dimensional data, a plane in three-dimensional data, or a

hyperplane in higher-dimensional data. If a sample, or equiva-

lently a point, lies above or on the decision plane it is predicted as

‘+1’ (target gene), or otherwise as ‘21’ (paralog). SVM constructs a

decision plane which lies furthest from the samples of both classes.

That is why SVM classifier is called the maximum-margin

hyperplane and this is the most distinguishing characteristic

compared to other classification algorithms.

There are three main tasks in the workflow of establishing a

classification model using an SVM that could have the ability to

predict miRNA target binding sites: 1) identify useful attributes

(features) for prediction and encode them into a dataset; 2) learn

an SVM classification model; and 3) evaluate its performance. We

identified and used three attributes to encode a candidate miRNA

target gene: RNA transcript abundance from whole genome tiling

microarrays; novel smRNA counts from deep sequencing of

smRNA libraries; and free energy of binding of miRNAs to their

cognate target genes.

Expression data
The expression data is a novel feature for our classification

system. We explored the antisense transcripts in relation to the

miRNA targets by extracting the expression data for Arabidopsis

miRNA target genes from existing high-resolution (25–36 b.p.

probe size) whole-genome tiling micro-array datasets [82,83]. All
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microarray data is MIAME compliant and has been extracted

from NCBI Gene Expression Omnibus raw data series GSE601,

605, 636–639, and 2247. Graphical representation of the sense

and antisense tiling array signals for all Arabidopsis and rice

genomic sequences and AGI annotations can be viewed at www.

systemix.org. The expression values for the sequences relative to

the location in the genome were retrieved from the expression files

using mapping coordinates built from the Arabidopsis Small RNA

Project (ASRP) and Sanger mirBase databases [94,95]. The results

are compiled from five different biological samples, three of which

correspond to different parts of the plant (flower, leaves, roots), and

the other two from independent suspension-cultured dedifferen-

tiated callus lines. Expression data corresponded to 800 base pairs

(b.p.) surrounding the miRNA binding site on the miRNA target

gene or MIRNA gene. These values were then normalized and

were added at each position on all target genes to assess average

effects.

The control (null) set for the miRNA target genes was created

using homology-based bioinformatics searches to identify appro-

priate paralog ‘‘pseudo-target’’ genes from Arabidopsis. Paralogs

are evolutionarily related to a miRNA target gene because of their

high sequence homology except for the apparent lack of a remnant

miRNA binding site. Paralogs were determined for the cognate

genes by BLAST searches and manual inspection and assignment

of ‘‘mock’’ miRNA binding site coordinates, and a file containing

theoretical ‘‘binding site’’ locations was built. Using a similar

approach as for the validated miRNA target sites, expression

datasets were created with Perl scripts.

The tiling expression data [14] for the test sets (86 validated

Arabidopsis miRNA targets representing 25 of 27 miRNA

families; all MIRNA genes) and control (125 paralogs representing

16 families; Datafile S2) were normalized such that summation of

expression values for a sample becomes 1 before they were applied

to SVM. Expression signals at the locations ranging from 800 b.p.

downstream and upstream relative to the miRNA binding site in

target genes or miRNA* for MIRNA genes was stored into its own

feature number at 25 b.p. resolution for the sense and antisense

strand, resulting in 130 individual features for the general feature

of expression levels.

smRNA Counts
The second expression feature implemented for the SVM was

smRNA counts mapping to the gene, based on previous results

showing a statistically significant association of smRNAs with

miRNA target genes [14]. In our analysis, the smRNA feature

represented the number of expressed distinct signatures and their

normalized abundance (transcripts per quarter-million reads,

TPQ) obtained from MPSS and deep pyrosequencing datasets

of different tissues and genotypes affected in smRNA metabolism,

a conservative and quantitative method [85]. The list of potential

miRNA target genes and MIRNA genes was processed by a bulk

query of the MPSS [85] web portal (http://mpss.udel.edu). The

normalized (TPQ) data was summed for unique reads (found only

once in the genome) from multiple libraries. This treatment allows

gene-by-gene comparisons of smRNA abundances. The MPSS

dataset comprised four independent samples (FLR, inflorescence;

RDR, rdr2 mutant; two seedling libraries SD1 and SD2) that were

used as separate features. The final feature was more qualitative

than MPSS-based features: the sum of all normalized (TPQ) next-

generation (454 pyrosequencing) smRNA datasets compiled from

several different groups [78,79,94,96,97]. All Arabidopsis MIRNA

genes that were listed as validated in ver. 11.0 of mirBase [95]

were analyzed. The smRNA features were incorporated along side

the expression levels. If there were no smRNA counts associated

with a gene, the features were set to zeroes.

Antisense smRNAs with and without 59 triphosphate moieties

cloned from C. elegans somatic tissues [98] were BLASTed against

mirBase stem-loops to map their topologies relative to mature

miRNAs, miRNA*, and the hairpin loop.

Thermodynamic Energy of Binding
The established method of quantifying miRNA complementar-

ity to the target gene is accounted for in the thermodynamic

energy of binding feature [99]. Target gene sequences were

extracted and connected by a series of seven uridines to the

matching miRNA sequence in order to create a ‘‘pseudo-hairpin’’

for reproducible folding. This string was analyzed by batch query

of the UNAfold algorithm [89]. The ratio of the calculated free

energy of miRNA: target to the free energy if the miRNA had

perfect complementarity to the target gene (percent minimum free

energy) was the final feature.

Building a classification model
After building the dataset with the features consisting of

expression data, smRNA counts and energy values for each of

the possible target genes and the paralogs, ten-fold cross validation

analysis was performed. The SVM was supplied training values for

genes, actual target genes were given a positive class label (+1) and

paralogs were given a negative class label (21). The SVM

developed a model based on the labels relative to the features and

created a discriminant method using a linear kernel with default

parameters to predict plausible target genes from paralogs.

Results

Evidence from smRNA and whole genome tiling array
datasets for miRNA-associated transitivity

In order to interpret antisense transcripts more broadly in a

functional context, the datasets were qualified by characterization

of signals associated with miRNAs [14] and ribosomal genes, the

latter which serve as controls by virtue of being deeply conserved

and highly expressed (see Supplemental Text File S1). Availability

of whole genome tiling array and smRNA datasets for rice [84,86]

allow us to test the hypothesis that transitivity associated with

miRNAs (antisense transcription leading to production of siRNAs

that flank miRNA target sites or MIRNA loci) is broadly conserved

in plants. Because there are few validated miRNA target genes in

rice [100–102], we mapped and quantified unique rice smRNAs

from deep sequencing datasets [86] to MIRNA hairpins available

in miRBase [95] as a function of relative position to the mature

miRNA and miRNA* and compared the topology to that of

Arabidopsis siRNAs mapping to MIRNA hairpins (Figure 1;

Datafile S1). Similar to our previous results [14] in Arabidopsis,

abundant rice sense and antisense smRNAs were found for

MIRNA genes (Figure 1B) with an apparent bias for 59 upstream

(relative to the sense strand) of the miRNA*. These data suggest

activity of the miRNA (or miRNA*) binding to miRNA* (or

miRNA) sites which triggers transitivity (spreading of siRNAs) in

both directions on both strands. Recent results from C. elegans [98]

have shown that two classes (26 n.t. 59- monophosphate and

22 n.t. 59-triphosphate species) of antisense siRNAs are produced

against many transcripts in a two-step amplification by RNA-

dependent RNA polymerases RRF-3 and RRF-1, respectively, in

conjunction with DICER, Argonautes and other specificity

determinants. We mapped 59-monophosphate (primary) and 59-

triphosphate (secondary) antisense siRNAs to C. elegans miRNA

hairpins and show in Supplemental Figure S1 (Datafile S6) that the

Antisense & Unknown ORFs
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most common primary and secondary siRNA map positions are

the miRNA* and loop positions, respectively, similar to the

observed topology of rice and Arabidopsis siRNAs in MIRNA

genes (Figure 1).

We further mapped Arabidopsis whole genome tiling array

sense and antisense transcript signals to 93 ‘‘ancient’’ MIRNA

genes (those with at least one homolog in other distant plant

species (27 families) and compared average normalized signal

topology with 68 recently evolved ‘‘new’’ MIRNA genes (64

families) [77–79] by adding signals at each position of the data

(Figure 2; Datafile S2). Ancient MIRNA genes had more abundant

transcript signals on both sense and antisense strands, especially on

the region of 200 n.t. upstream and downstream (relative to sense

strand) of the miRNA* position (normalized expression . = 2.0,

Figure 2A, arrows), whereas ‘‘new’’ MIRNA transcripts are not

clearly evident above noise except for a peak signal precisely at the

miRNA* position (normalized expression = ,1.2, Figure 2B,

arrow). It is apparent that the ancient MIRNA genes have a ‘ping-

pong-like’ expression topology (downstream sense, upstream

antisense; Figure 2A, arrows) similar to that previously described

for miRNA target mRNAs [14]. In order to extend the analysis to

rice tiling array data, we analyzed whole genome tiling array

signals for Arabidopsis and rice that had perfect matches to mature

miRNAs, miRNAs*, siRNAs (17 nt reads from MPSS data [86]),

and to probes mapping to other regions of the cognate hairpin.

The results are shown in Table 1. Relative to the previously

established signal cutoff of log2 .0.73 based on background

signals from probes for both strands of promoters of ,4,600

verified Arabidopsis genes [82], it is apparent that Arabidopsis

MIRNA hairpin expression was low for most probes. Consistent

with Figure 2A (upstream of miRNA* site), there was significantly

more sense and antisense signals associated with miRNAs than

elsewhere in the hairpins (Table 1; Datafile S3). For rice whole

tiling array data there was higher signal associated with sense

strand of miRNAs and antisense strand of miRNA* (Table 1),

consistent with Arabidopsis data (Figure 2A), but the differences

compared to other regions of the hairpin were not statistically

significant and the rice tiling array data were not considered

further. Supplemental Figures S2, S3, Supplemental Table S1,

and Datafiles S4 and S5 document the quality of tiling array data

by analyzing signal to noise ratios of ribosomal genes.

Assessment of Arabidopsis whole genome tiling array
antisense signals

To characterize the quality of sense and antisense whole

genome tiling array transcript signals for Arabidopsis, we

endeavored to better understand the ‘topology’ of gene tiling

array signals by calculating genome-wide the average exonic and

intronic signal strengths for tiling array probes mapping uniquely

to the sense strand of all 27,344 annotated protein-coding genes in

Figure 1. Abundance and topology of unique MPSS smRNA signatures with perfect matches to MIRNA hairpins. A) Arabidopsis MIRNA
hairpins. B) Rice MIRNA hairpins. smRNA signatures were obtained from the MPSS Plus Database [85] (http://mpss.udel.edu) and searched against
MIRNA hairpin sequences (http://microrna.sanger.ac.uk) and reference genome sequences (http://www.ncbi.nlm.nih.gov) by BLAST [91]. The
normalized abundance of unique MPSS signatures (Log2, transcripts per quarter million [TPQ]) was plotted as a function of the normalized position of
signatures relative to the start of the miRNA site on each individual hairpin. Sense smRNAs are indicated as open blue circles; antisense smRNAs are
displayed as red closed circles. A cartoon for miRNA hairpin is shown under panel B to align the first nucleotide of mature miRNA (coordinate ‘‘0’’ on
X-axis, purple box) and the first nucleotide of miRNA* (relative coordinate ‘‘1’’ on X-axis, yellow box) to the hairpin. See Datafile S1 for details.
doi:10.1371/journal.pone.0010710.g001
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TAIR9 and 50,090 rice genes (TIGR6.1, http://rice.plantbiology.

msu.edu/, see Datafiles S4 and S5) that had tiling array [84] probe

matches to exons. We divided average exon sense strand probe

signals by the corresponding average antisense exonic signals to

obtain a ratio of sense expression/antisense expression for each

gene. We then sorted the genes (Datafiles S4 and S5) from lowest

to highest based on this ratio, hypothesizing that highly expressed

protein-coding genes (such as ribosomal protein genes) would be at

the bottom of the ranking (sense expression .. antisense).

Similarly we hypothesized that those validated miRNA target

genes previously shown to produce abundant smRNAs and

antisense transcripts in Arabidopsis [10,12–14,103] would be

towards the top of the ranked genes because they produce more

antisense transcripts (that in turn spawn antisense smRNAs).

Table 2 presents results of an analysis of Arabidopsis ribosomal

genes (Table 2, row 1) and miRNA target genes that produce

abundant antisense siRNAs in Arabidopsis (row 2) as a function of

ranking in the genome list for antisense exonic expression. As

predicted from results of Supplemental Figure S2, there were ten

times as many Arabidopsis ribosomal protein-coding genes in the

bottom half of the antisense expression-ranked genome as the top

half (Table 2; Datafile S4), but only 2.7 times as many rice

Figure 2. Normalized average percentage expression levels for 93 ‘‘ancient’’ (22 families) (A) and 68 recently evolved ‘‘new’’ (64
families) MIRNA genes (B), with miRNA* position as ‘‘0’’. Sense strand is colored red and antisense blue. Note the abundant antisense signals
mapping at or upstream to miRNA* sites (small arrow), and downstream sense signals for ancient MIRNA genes (large arrowhead) similar to miRNA
target genes previously described [14]. See Datafile S2 for details.
doi:10.1371/journal.pone.0010710.g002
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ribosomal protein-coding genes (Supplemental Table S1, row 1;

Datafile S5). For those select miRNA target genes in Arabidopsis

known to produce antisense smRNAs, there were 3.3 times as

many genes in the top half of the antisense transcript abundance

genome list, which was statistically significant. No such relation-

ship was observed for the validated and predicted homologues in

rice (Supplemental Table S1, row 2).

Arabidopsis antisense whole genome tiling array signals
suggest some ‘unknown’ predicted proteins may be
mis-annotated non-coding RNAs, including new MIRNA
homologues

Rice and Arabidopsis genomes have been recently re-annotated

based on multiple gene-finding and annotation algorithms that

attribute confidence scores to exons based on different types of

experimental and computational evidence [104,105]. Taking

advantage of the new features of the TAIR9 Arabidopsis genome

release, we analyzed our genome-wide lists of Arabidopsis genes

ranked as a function of relative antisense strand tiling array

expression, focusing on annotated protein-coding genes defined as

expression-confidence classes (star rankings) for Arabidopsis

‘unknown’ genes and ‘unknown’ expressed or ‘hypothetical’ genes

(no expression data available) for rice. The results are summarized

in Table 2 and Supplemental Table S1, respectively. For

Arabidopsis it is evident that hundreds of ‘unknown’ genes with

low expression confidence rankings (zero or one star) and those

producing antisense smRNAs are significantly more abundant

(about three-fold) in the top half of the genome ranked as a

function of low sense/antisense exon signal ratio (Table 2). For

those unknown Arabidopsis genes with high confidence expression

data (four or five stars), the abundance ranking based on antisense

expression is actually fewer in the upper versus lower halves of the

genome, consistent with results for highly expressed ribosomal

protein-coding genes (Table 2). The trend for more ‘unknown’

(including ‘expressed’) genes in the upper half of the rice genome

ranked on antisense tiling array expression was barely discernable

(Supplemental Table S1) and not statistically significant in the

context of analogous Arabidopsis genes. We interpret this finding

as consistent with the low quality antisense tiling array expression

data for rice. A recent report described the antisense strand

expression of some rice hypothetical genes [106].

The potential significance of results in Table 2 is that ‘orphan’

Arabidopsis genes predicted by gene-finding algorithms and

having relatively abundant antisense strand expression may

actually be ncRNA genes. We computationally tested this

hypothesis five ways, and in addition found supporting expression

evidence from ESTs (see below). The binomial distribution (upper

vs. lower halves of the ranked transcriptome ratio of gene sense

exon/antisense exon signals) of predicted unknown protein-coding

genes that overlap recently published antisense ncRNAs [58]

showed a similar pattern of two- to four-fold enrichment for

TAIR9 expression confidence classes less than four stars (Table 2,

rows ‘‘with as-TU’’; Datafile S4). Two additional independent tests

comprised the bionomial distributions for two exclusive sets

comprising 1,044 predicted ‘unknown’ ORFs [27](Y. Xiao and

C.D. Town, personal communication). Table 2 shows that for

these two subsets of unknown genes (rows ‘‘sORFs’’ and ‘‘qRT-

PCR verified’’), similar to the genome-wide general pattern and

the pattern for ncRNAs mapping to unknown genes, there were

significantly more genes in the upper half of the ranked sense/

antisense transcriptome for TAIR9 lower expression confidence

rankings (star rating), especially for the qRT-PCR predictions

(weighted mean of upper/lower ratio for zero-three star

confidence = 3.9, data not shown). As predicted by the working

hypothesis that antisense transcripts are processed into smRNAs,

genes that produce antisense siRNAs [107] were over-represented

in the upper binomial distribution for exon antisense signal

abundance, with strong evidence for over-representation of

unknown protein-coding genes with independent ncRNAs map-

ping to them [58] or encoding unknown qRT-PCR tested genes

(Y. Xiao and C.D. Town, personal communication) compared to

all protein-coding genes (Table 2, compared bottom two rows).

A fourth computational test of the hypothesis was meta-analysis for

congruence across the datasets, specifically whether 105 unknown

genes recently predicted as small ORFs [27] or predicted and tested

by conventional means (Y. Xiao and C.D. Town, personal

communication) and having independent quantitative and qualitative

evidence of strong antisense expression from tiling array experiments

[58,82,83] clustered as a function of gene model quality. Results in

Supplemental Figure S4 for 105 genes show a positive correlation

(r = 0.61) between expression quality (TAIR9 star ranking) and

measured abundance of antisense transcripts (sense exon/antisense

exon signal ratio , unity), and an inverse correlation (r = 0.83) for

expression quality rankings between recently predicted small

unknown ORFs [27] and previously predicted unknown genes found

by conventional algorithms (Y. Xiao and C.D. Town, personal

communication). The latter class of genes is the subject of targeted

expression studies by qRT-PCR and therefore is better represented in

the two- to five-star expression rank classes.

A final computational test was to BLAST the Arabidopsis

genome with known MIRNA hairpins to search for homologues,

reasoning that some antisense transcripts may encode MIRNA

homologues. Results are shown in Table 3 for candidate MIRNA

gene homologues identified as mapping to the antisense strand of

predicted protein coding genes and producing some antisense

smRNAs. Consistent with our hypothesis, all of the MIRNA

homologues were found in the upper half of the antisense

expression-ranked genome list or on a previously described

antisense non-coding RNA. For miRNA targets, vast majority of

miR846 predicted and validated target genes (jacalin/lectin-like,

which have extended homology to miR846 hairpin [78]) were also

Table 1. Tiling array signals for all Arabidopsis and rice MIRNA
hairpinsa.

Species Region of miRNA hairpinb

miRNA site miRNA* site
other
smRNAs No smRNA

sense anti sense anti sense anti sense anti

(Log2Signal intensity)/probe

(number of probes)

Arabidopsis 0.96c 1.26c 0.52 0.49 0.64 0.15 0.58 0.40

(528) (484) (465) (531) (47) (41) (852) (780)

rice 1.53 0.86 0.46 1.43 1.23 0.34 1.03 1.11

(44) (45) (52) (38) (7) (3) (78) (78)

a: Only the tiling array signals for regions of miRNA hairpins mapped by MPSS
smRNA signatures will be counted. MPSS smRNA data was downloaded from
http://mpss.udel.edu. See Datafile S3 for details.

b: Every probe is unique in the relative genome. A probe was counted as
exclusively mapping to a region of the hairpin if a minimum of 11 contiguous
n.t. in the probe overlapped with the 21 n.t. mature miRNA or miRNA* site, or
7 n.t. overlapped with the 17 n.t. MPSS smRNA signatures.

c: Significantly different than combined no smRNA signals, P,.0008 (Student’s
two tailed t-test, equal variance model).

doi:10.1371/journal.pone.0010710.t001
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Table 2. Antisense transcription signals relative to sense strand expression from Arabidopsis whole genome tiling arraysa.

Gene class
Genes with low sense/
antisense exon signal ratio

Genes with high sense/
antisense exon signal ratio Ratio P valueb

Ribosomal gene 33 333 0.10 7.6e264

miRNA targetc 49 15 3.3 0.00002

All ‘‘unknown’’ genesd 3879 2943 1.3 0.000001

sORFe 426 210 2.0 3.7e218

with as-TUf 692 598 1.16 0.005

qRT-PCR verifiedg 302 106 2.8 3.3e223

‘‘unknown’’(zero rating)h 426 179 2.4 1.7e224

sORF 280 142 2.0 8.6e212

with as-TU 32 12 2.7 0.002

qRT-PCR verified 17 4 4.2 0.004

‘‘unknown’’ (one star) 274 99 2.8 1.1e220

sORF 119 50 2.4 5.7e28

with as-TU 33 13 2.5 0.002

qRT-PCR verified 9 3 3.0 0.07

‘‘unknown’’ (one star) with EST 362 102 3.6 3.4e236

sORF 1 0 N.A. N.A.

with as-TU 43 11 3.9 0.00001

qRT-PCR verified 44 18 2.4 0.007

‘‘unknown’’ (two stars) 412 137 3.0 1.4e233

sORF 2 0 N.A. N.A.

with as-TU 74 26 2.8 0.000001

qRT-PCR verified 39 11 3.5 0.00007

‘‘unknown’’ (three stars) 257 107 2.4 1.2e215

sORF 8 4 2.0 0.19

with as-TU 39 19 2.0 0.006

qRT-PCR verified 27 4 6.7 0.00004

‘‘unknown’’ (four or five stars) 2148 2319 0.9 0.005

sORF 16 15 1.1 1.0

with as-ncTU 471 517 0.9 0.07

qRT-PCR verified 166 66 2.5 0.000001

All ‘‘unknown’’ with as-smRNA 438 187 2.3 1.8e224

with as-TU 56 31 1.8 0.005

qRT-PCR verified 53 10 5.3 0.000001

Protein-coding with as-smRNAi 982 720 1.4 0.000001

with as-TU 161 182 0.9 0.14

qRT-PCR verified 125 20 6.2 0.000001

Table 2. Footnotes.
a: Gene annotation is from TAIR Release 9 (http://www.arabidopsis.org/). Arabidopsis whole genome tiling array data was from previous reports [82,83]. For each gene,
the ratio of sense/antisense exon signal is calculated according to the following formula: ratio = [(sense exon signals/probe numbers)/(antiense exon signals/probe
numbers)]/[(sense intron signals/probe numbers)/(antiense intron signals/probe numbers)]. See Supplemental Text File S1 and Datafile S4 for details.

b: One-tailed binomial distribution, normal approximation model, except as noted.
c: Validated and predicted miRNA targets were extracted from ASRP database for miRNAs 156, 162, 163, 168, 172, 393, 400, 403, 472, 773 and 780 (http://asrp.cgrb.
oregonstate.edu). These targets produce significant numbers of antisense siRNAs [10,12–14];.

d: Genes reported as ‘‘unknown’’ were collected from the TAIR9 release for Arabidopsis genome (http://www.arabidopsis.org).
e: Small open reading frames (sORFs) were from [27].
f: Genes with antisense transcript units were from [58].
g: Genes with antisense transcripts verified by quantitative RT-PCR were from Y. Xiao and C.D. Town, personal communication.
h: Unknown genes with different confidence ratings were from TAIR9 (http://www.arabidopsis.org). Zero rating means no expression data. One star rating means there
is weak EST data, and/or another type of low quality functional evidence. Higher (2–5 star) rankings derive from qualitative meta-analysis of full-length cDNAs,
proteomics, moncot and dicot cross-species sequence alignments, and genomic conservation.

i: Protein-coding genes with antisense smRNAs were from [107]; see Datafile S4.
doi:10.1371/journal.pone.0010710.t002
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found in the top half of the list for higher expression of antisense

transcription (Table 3). Three additional functional evidences

supporting the results are that one predicted miRNA target,

AT1G07650, which has a miR404 hairpin homologue on the

antisense strand for its 39-UTR, is up-regulated in the miRNA

metabolism mutants hst1-15 and hyl1-2 [94,97]. Another example

is AT4G03050/AOP3, which has elevated expression in the hen1-1

miRNA methyltransferase mutant and produces unique smRNAs

sequenced from immuno-precipitated AGO4 complexes [96].

Two hairpin-containing genes, At1G55045, At5g26262, and a 7SL-

like signal recognition particle ncRNA (Ath-383) [29] on the sense

strand of At2g31141 were uncovered by manual inspection of the

predicted small ORF unknown genes for production of smRNAs

predominantly from one strand (Table 3). At1g55045 and

At5g26262 antisense transcripts can fold into stable hairpins

(Supplemental Figure S5A; data not shown), produce moderately

abundant phased 23–24 n.t. antisense siRNAs (Supplemental

Figure S5B; data not shown), and the genes are methylated by

DNA maintenance and de novo establishment methyltransferases

MET1 [108] and DRM1-2/DRM2-2/CMT3-11 [109] respec-

tively. At5g26262 has significant homology (E,0.03) to a rice

transposon ORSgTETNOOT00686 (http://plantrepeats.

plantbiology.msu.edu/search.html) and seven other intergenic loci

in the genome (data not shown). Because of the lack of a candidate

miRNA/miRNA* duplex that maps to the At1g55045 hairpin, this

foldback does not meet the criteria of a miRNA [110] but may be

a case of an evolving or devolving MIRNA-or TAS-like locus

subject to transitivity [78,111,112] and processive cleavage by

DICER-LIKE3/4 complexes.

Manual inspection of ESTs associated with unknown genes that

produce abundant antisense whole tiling array signals (average

sense exon/antisense ratio , = 0.5) found 33 documented cases of

Table 3. New miRNA homologs and hairpin-like sequences found on antisense strand of annotated protein coding genesa.

miRNA
hairpin

Homologous genes
with low sense/antisense
exon signal ratio

Homologous genes
with high sense/
antisense exon signal ratio

TAIR9 annotation,
position of
homology

Expression
data quality
(star rating)b

Antisense
EST?

E-value homology of
AGI sequence to
cognate hairpin

miR156g AT2G19420 Unknown, intron 1 2 e254

miR404 AT2G19300 None Unknown, exon 5 3 e27

AT1G07650c None LRR-kinase, 39UTR 4 AV529349 4 e211

miR414h AT1G68870 None Unknown, exon 5 5 e28

AT2G21420 None Zinc-finger like 5 2 e216

miR415 AT1G74458 None Unknown, exon 4 4 e224

miR783h AT1G66300 AT1G66290 F-box like, exon 2; 1 2 e234; 3 e240

AT1G66310 AT1G66640 5; 1 7e224; 1 e217

AT1G66320 1 2e221

miR824a AT4G24410 Unknown, exon 1 BX820858 1 e274

miR826 AT4G03050d None AOP3e, exon 5 4 e210

miR841 AT4G13570 None HTA4e; intron/exon 3 2 e230

miR843 antisense-TU Group4327f Prmtr At3g48030 5 e29

miR846 AT1G61230g (including
11 candidate targets)g

(including 2
candidate targets)g

jacalin-like, exon 2 9 e219

miR855h AT2G06095 None Unknown, exon 2 EG435138 5 e232

Hairpins AT1G55045 Unknown, exon 0 phased 0.03i

AT5G26262 0 smRNAs

7SL-like
ncRNAj

AT2G31141 Unknown, exon 5 smRNAs 3 e220

Table 3. Footnotes.
a: Gene annotation was from TAIR Release 9. For each gene, the ratio of sense/antisense exon signal is calculated according to the following formula: ratio = [(sense
exon signals/probe numbers)/(antiense exon signals/probe numbers)]/[(sense intron signals/probe numbers)/(antiense intron signals/probe numbers)]. All Arabidopsis
genes were ranked based on this sense/antisense exon signal ratio. See Supplemental Text File S1 and Datafile S4 for details. All listed genes produce antisense
smRNAs except for AT1G68870 which has a sense smRNA [78,85,94]. AT1G74458 encodes miR415 homologue on the sense strand. See http://mpss.udel.edu.

b: The star rating for gene expression refers to the legend of Table 2.
c: expression elevated in miRNA metabolism mutants hst-15 and hyl1-2 [94]. AT1G07650 was previously predicted as a target of miR404 [159].
d: expression elevated in a miRNA metabolism mutants, hen1-1 [94].
e: Homologues AT4G03060/AOP2/and AT2G38810/HTA8 were previously described as evolutionarily-related loci for miR826 and miR841, respectively [78]. Interestingly,

AT4G03050/AOP3 is a source of smRNAs sequenced from immuno-precipitated AGO4 [96].
f: A 2.2 kb antisense non-coding RNA described by Matsui et al. [58] that overlaps with At3g48030 and its promoter.
g: validated and predicted jacalin/lectin targets [77,78,94]. Genes with low sense/antisense exon signal ratio: AT1G52050, AT1G52060, AT5G28520, AT1G52120;

AT1G52130, AT1G60130, AT5G38550, AT5G49870, AT5G49850, AT1G57570, AT1G60110; Genes with high sense/antisense exon signal ratio: AT2G25980, AT1G52070.
h: There is bioinformatic evidence these are not bona fide miRNAs: miR414 is homologous to transposon ATHAT1 and rice ORSgTETN00400025 (E = 2 e210) [105]
(http://plantrepeats.plantbiology.msu.edu/search.html); miR783 is homologous to AT1G46120 transposable element gene (E = 3 e257) and maps between predicted
F-box-like homologues AT1G66300 and AT1G66331; miR855 has significant homology to antisense strand of miR401 (E = 2e237; noted also in [65]), VANDAL17, and
Gypsy_Ty3-like transposons (E = 1e2108).

i: Significant homology to unclassified rice transposon ORSgTETNOOT00686 (http://plantrepeats.plantbiology.msu.edu/search.html).
j: 7SL is the ncRNA component of the signal recognition particle involved in targeting and translocation of proteins to the endoplasmic reticulum. There are three 7SL
homologues described in Arabidopsis; AT2G31141 produces abundant smRNAs from the sense strand and was previously described as Ath-383 7SL-like ncRNA [29].
doi:10.1371/journal.pone.0010710.t003
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antisense ESTs and 65 pairs of overlapping genes forming nat-cis-

antisense transcripts [46,56]. In addition, 11 predicted small

unknown ORFs map immediately adjacent and on the same

strand as neighboring genes, which suggests these transcripts

represent unannotated 59 and 39 exons. Supplemental Table S2

lists the genes and their expression features, which represent all

subclasses in Table 2 including genes with high confidence TAIR9

expression rankings (four and five star).

Sense/Antisense tiling array transcriptome topology and
smRNA abundance as expression-based features of
Support Vector Machines (SVM) for MIRNA gene/target
prediction

Machine learning algorithms for MIRNA gene and target site

prediction utilize sequence complementarity as the primary feature,

which is tractable in plants due to extensive homology between

miRNAs and their targets but of limited use in animals [75]. Because

plant and animal miRNA pathways share mechanisms and

components with RNA interference and post-transcriptional gene

silencing, we hypothesized that antisense expression-based topolog-

ical features may be a useful predictor of miRNA targets and MIRNA

genes. A molecular mechanism has been established [80,113,114] for

the observed abundant downstream sense strand tiling array signal of

miRNA target genes in which 39 exonuclease degradation of the

upstream cleavage product by EXORIBONUCLEASE4 (XRN4) is

postulated. However the mechanism resulting in upstream antisense

signal for target genes [14] and MIRNA genes (Figure 2A) has yet to

be elucidated. The downstream-sense/upstream antisense Arabidop-

sis whole genome tiling expression data for validated miRNA target

genes versus non-target paralogs was adopted as a key expression

feature, along with smRNA abundances and thermodynamic energy

of binding to implement an SVM for prediction of miRNA targets

and genes. The normalized tiling array expression signals from 800

base pairs upstream and downstream on the sense and antisense

strand, respectively, of miRNA binding sites [14] was extracted. This

resulted in 130 values associated with each of the genes in the training

set. The next feature consisted of smRNA counts and resulted in five

additional features for the SVM. Four of the features correspond to

the MPSS data from four different Arabidopsis samples: flowers,

RNA-dependent RNA Polymerase 2 (rdr2) mutant, and two seedling

libraries [79]. The fifth smRNA feature corresponded to the sum of

all normalized (TPQ) unique smRNA reads mapping to loci from

many pyrosequencing experiments [78,79,94,96,97] (Datafile S2).

The last feature was that of sequence complementarity represented

mathematically as relative thermodynamic stability. The most stable

combinations of miRNA and the target gene or MIRNA genes were

normalized to percent minimum free energy which works well for

plant miRNAs because plants possess near perfect complementarity

between miRNA and target genes [65,115].

In machine learning such as SVM where the goal is to classify

samples, the ‘‘Gold Standard’’ refers to a set of data that can be used

to train the prediction model and to test predictions. Our dataset was

based on validated miRNA targets including the previously

documented cases of transitivity (i.e. PPR and AGO1 genes [10,13]).

We used various measures of SVM classification performance to

evaluate the individual features, assigning validated Arabidopsis

target genes the value of unity and the negative control paralogs [14]

the value of negative one. The dataset was then analyzed through ten-

fold cross validation. The various combinations of features were

analyzed to evaluate the importance of each in identifying correctly

the validated miRNA target genes.

Accuracy, Specificity, Sensitivity, and Precision. The

accuracy was calculated for the ten-fold cross validation performed

on the dataset. Table 4 lists the results for each feature alone and

in combination for this statistic. The smRNA counts and tiling

array expression topology alone and in combination were weakly

predictive (,60–70%), but not robust compared to the biological

standard of thermodynamic stability (97%; Table 4). These results

suggest the expression features under study may be useful features,

but additional specificity determinants must be identified to

strengthen an SVM for miRNA target gene prediction based

primarily on expression. Table 4 also reports further statistical

analyses of SVM specificity, sensitivity and precision. Specificity

refers to how well a classification test can identify the negative

cases, namely the probability to classify a gene as 21 if the target

gene is a paralog with no miRNA binding site. All three features

performed well for specificity 96–100%). The sensitivity of SVM is

an evaluation of the test to predict the targets (+1 class). smRNAs

were a weakly sensitive feature, and expression topology was

insensitive as a predictor of miRNA targets (Table 4). The Positive

Predictive Value, or the precision, addresses the evaluation of the

machine. The number represents the probability that if the SVM

predicted the gene to be a target, how likely is it a bona fide target

gene. This test is the reverse of the previous two; the sensitivity and

specificity test the machine in the respect of if the actual label is

known, how likely is it to identify it correctly. smRNAs were a

fairly good (87%) feature of SVM performance, but expression

topology was not (Table 4).

Further SVM testing on MIRNA genes. MIRNA genes are

transcribed by RNAPol II [7,8,116] and therefore polyadenylated

MIRNA precursor gene transcripts should be detected in the whole

Table 4. Accuracy, Sensitivity, Precision and Specificity of an expression-based Support Vector Machine for miRNA target gene
prediction trained on 86 Arabidopsis miRNA target genes and 125 non-target paralogs.

Combination Accuracy Sensitivity Precision Specificity

Expression Levels, smRNA Counts, Energy 0.972 0.977 0.955 0.968

smRNA Counts, Energy 0.972 0.977 0.955 0.968

Expression Levels, Energy 0.972 1.000 0.935 0.952

Expression Levels, smRNA Counts 0.697 0.314 0.844 0.960

smRNA Counts 0.697 0.302 0.867 0.968

Energy 0.970 1.000 0.945 0.960

Expression Levels 0.592 0.000 NaNa 1.000

a: NaN: Not A Number, due to division by zero.
See Datafile S2 for details.
doi:10.1371/journal.pone.0010710.t004
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genome tiling microarray datasets and evidence (Figure 2) supports

this model. Analysis of smRNA abundances and map positions on

the antisense strand of MIRNA genes (which are generated by

transitive processes) established that MIRNA genes, viz. at the

complementary ‘‘miRNA*’’ position of the foldback, produce

phased antisense siRNAs in a process similar to the working model

of miRNA target genes that produce siRNAs [14](Figure 1A).

Using the analogous features of the miRNA target genes and

paralogs, the SVM was implemented on the miRNA* dataset in

order to examine its utility for predicting MIRNA genes, since they

are transcribed similarly and have complementarity at the

miRNA* position to mature miRNAs (and thus homology to

miRNA target genes). To facilitate SVM evaluation, the miRNA*

were labeled as +1, assuming the sequences would exhibit

properties of miRNA targets. Table 5 displays results of the

SVM evaluations. Using normalized expression topology, energy

of binding, and the sum of sense and antisense smRNA reads

mapping to regions of the hairpin other than mature miRNA or

miRNA*, the SVM produced results nearly as predictive (81%

versus 97%) as the Gold Standard training set of miRNA target

genes (compare Tables 4 and 5). The comparison of ancient versus

new MIRNA gene predictions by the SVM was consistent with the

expression topologies; the ancient miRNA*s display the ‘‘ping-

pong’’ topology (Figure 2A) analogous to that seen in the miRNA

target genes [14] and produced the better result (84%) from the

SVM analysis (Table 5).

Discussion

Antisense transcripts detected by whole genome tiling
arrays are real

Our analyses [14] and those of others [117,118] establish by

multiple independent criteria that Arabidopsis antisense tran-

scripts are real and of biological significance. Results from different

whole genome tiling array technologies and platforms have shown

congruence (e.g. Supplemental Table S2) for many antisense

transcripts [58,82,83]. We have shown that MIRNA genes from

both Arabidopsis and rice produce antisense smRNAs ‘spreading’

from the miRNA and miRNA* sites. Consistent with Figure 2A

(upstream of miRNA* site), there was significantly more sense and

antisense signals associated with miRNAs than elsewhere in the

hairpins (Table 1; Datafile S3). Functional evidence of the

antisense transcripts is seen by statistically significant over-

representation in the upper half of the Arabidopsis transcriptome

ranked on exon sense/antisense signal abundance for all genes

including well-annotated protein-coding genes that produce

antisense siRNAs (Table 2, last row). An additional evidence is

strong over-representation in the upper half binomial distribution

of unknown protein-coding genes with independent ncRNAs

mapping to them [58] (Table 2, ‘‘with as-TU’’ rows). The breadth

of extant antisense EST coverage (Supplemental Table S2) which

includes genes with high confidence TAIR9 expression rankings

(four and five star) is prima facie evidence that antisense transcripts

identified by whole genome tiling arrays are biologically significant

and support our computational evidence that a significant number

of unknown predicted protein-coding genes are actually ncRNAs.

The extant Arabidopsis tiling array data quality is high, but that of

rice is not (Supplemental Figures S2, S3). This situation is likely

due to the lower number of probes with perfect matches between

the Oryza sativa var. indica reference genome (from which the tiling

array probes were designed) and the MIRNA hairpin sequences in

miRBase which have been sequenced predominantly from

japonica (Nipponbare) varieties. A recent report describes

antisense transcripts and siRNAs associated with hypothetical

genes in rice [106], consistent with our results (Supplemental

Table S1; Datafile S5).

Expression-based computation as a means to ncRNA
discovery and genome annotation

In this study we approach the broad question of applying

computation to deep experimental expression datasets to develop

methods for gene discovery, focusing on miRNAs, ncRNAs, and

antisense transcripts. Because these RNA classes span eukaryotic

kingdoms where the molecular processes are deeply conserved but

the molecules themselves are not, genomic analysis of antisense

expression patterns in plants may reveal associations (a la ‘a

smoking gun’) that can provide insight into animal miRNA and

ncRNAs, where complementarity is less conserved. Analogous

approaches for miRNA target genes classified according to the

promoter features of the cognate MIRNA genes have been

described [119,120]. We show that the phenomenon of spread-

ing/transitivity of smRNAs associated with miRNA target genes

and MIRNA genes in Arabidopsis is conserved in rice (Figure 1).

Similar processes occur on worm MIRNA gene transcripts

(Supplemental Figure S1), likely mediated by multiple interactions

between RNA-dependent RNA polymerases RRF-1 and RRF-3

and associated with DICER and Argonautes NRDE-3 and

ERGO-1 [98]. It is interesting to note that those MIRNA genes

(e.g. miR158, miR159/319, miR164, miR167, miR168, miR172)

whose transcripts accumulate in post-transcriptional processing

mutants [80,114,116] also produce abundant smRNAs (Datafile

S2)[14]. Xue et al. also observed antisense smRNAs associated

with several rice miRNAs and miRNA*s [121] and noted an

example (miR55) from C. elegans. Taken together with reports of a

novel RNA-dependent RNA polymerase in Drosophila [122] and

functional antisense miRNAs in Drosophila and mouse [123–125],

our data in rice, C. elegans, and Arabidopsis [14] lend credence to

the notion that similarly complex transitivity mechanisms operate

on plant and animal miRNAs. We show that antisense

transcription signals for MIRNA and protein-coding genes are

detectable by whole genome tiling arrays (Figure 2; Supplemental

Figures S2, S3; Table 1), providing evidence of the molecular

mechanism of smRNA production. However, the low abundance

of the antisense signals requires high quality microarray data

(Figure 2; Supplemental Figures S2, S3) that are not yet available

for rice (Supplemental Figure S2, Supplemental Table S1). Deep

sequencing of mRNAs and epigenetic marks on DNA reveal

hidden facets of RNA processing, chromatin remodeling, and gene

regulation, but the method is expensive. Computational analysis of

smRNA datasets, which are less costly on a molar basis to

generate, in conjunction with inexpensive high resolution custom

tiling microarrays can provide a more integrated view of gene

expression, especially in genomes with limited annotation.

Table 5. Accuracy of the Support Vector Machine in
predicting Arabidopsis MIRNA genes based on energy,
expression topology and smRNAs.

Test Accuracy of Prediction

‘‘93 Ancient’’ MIRNA genes 0.841

‘‘88 Newly-evolved’’ MIRNA genes 0.765

Total miRNA 0.808

See Datafile S2 for details.
doi:10.1371/journal.pone.0010710.t005
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We incorporated expression data, smRNA counts, and

thermodynamic energy of binding as features for a Support

Vector Machine to build a model for prediction of miRNA target

sites in Arabidopsis. Using a dataset based on validated

Arabidopsis miRNA targets, the machine was internally tested

based on accuracy, precision, sensitive and specificity. The results

were modestly supportive of a predictive value for smRNA counts

over tiling array expression signals, suggesting both these features

have potential utility as filters in miRNA prediction methods over

thermodynamic stability alone. The performance of the SVM was

further tested with an external dataset: MIRNA genes. Although

the miRNAs* corresponding to ancient miRNAs produced more

supportive results, the newly discovered miRNAs* were also fairly

predicted (Table 5). Mathematically modeling the ‘downstream

sense, upstream antisense’ tiling array signal to describe more

precisely the transitive activity and reduce the dimensionality

might improve the performance of the SVM. The extreme case is

seen when considering only those probes with perfect matches to

miRNA hairpin domains (Table 1), which decreases noise and

feature dimensions of the machine. Improvements such as utilizing

a non- linear kernel and optimizing the ‘‘slack’’ parameter may

improve the power of the SVM. The machine can be further

developed with datasets of predicted miRNA targets [65–70], as

well as candidate MIRNA genes and targets from purely

computational methods. Thousands of predicted miRNAs in

Arabidopsis and rice have no functional evidence to support their

being expressed or having bona fide targets, and therefore

represent a large investment to qualify by wet lab methods. The

SVM could facilitate prioritizing those that have a greater

likelihood of being real based on collective expression topologies.

However, our results that qualify the rice tiling array expression

data as low-quality (Table 1, Supplemental Figure S2, Supple-

mental Table S1) limit the potential of an expression-based SVM

for rice until a high-quality tiling expression dataset is available.

Optimizing the SVM features based on biology (e.g. sizes of the

siRNAs, ‘‘phasing’’) are other candidate features for adoption.

Two new miRNA families (miR2118, miR2775) conserved in

monocots (and Phaseolus for miR2118 [126]) were recently

discovered by analysis of rice phased siRNAs produced from

TASi-like target ncRNAs [127].

Gene models suffer from errors in reading frame, exon border

definition, and exon identification. It is estimated that 13% of the

Arabidopsis proteome is incomplete due to approximately equal

numbers of missing and incorrect gene models [128,129],

suggesting that there is ample scope for gene discovery even in

well-annotated genomes. Whole-genome tiling arrays have utility

for characterizing alternative splicing [130]. Tiling array expression

and TAIR9 confidence rankings are useful metrics for ncRNA

discovery (Supplemental Figure S3, Supplemental Table S2). Our

computational results begin to address expression ‘topology,’ the

relationship between RNA expression signals and gene structure.

We show, in the case of exons versus introns, that expression

topology is a valuable metric for interrogating genome annotation.

Arabidopsis signals show excellent congruence with exon/intron

annotations in all five samples (from two different technology

platforms) with only a slight bias of expression signal toward the 39

end of the gene and minimal signal in the 39-UTRs (Supplemental

Figure S2; Datafile S4). This aspect of gene expression topology can

be developed further by calculating an integral for each separate

functional domain of a gene (promoter, 59 UTR, exons, introns, 39

UTR) and modeling expression topology to identify outliers that

could facilitate gene discovery and genome annotation. Several

groups have recently published Arabidopsis whole genome tiling

array transcriptome studies on stress responses [58,119,120,131]

and note changes in 59 and 39 UTR and MIRNA gene expression.

The existence of promoter-associated antisense transcripts in

animals that regulate transcriptional activation and repression by

RNAi-associated processes [49,50,132–137] suggest that tiling array

interrogation of promoter-associated RNAs can indentify similar

classes of ncRNAs in plants.

Applying machine learning algorithms, we could identify

associations between miRNA target genes or MIRNA genes and

smRNAs (Tables 4, 5) and between protein-coding genes and

ncRNAs (Supplemental Table S2) that fit a model of transitivity

based on their antisense expression topology. Our methods reveal

the potential of expression-based machine learning and unsuper-

vised association to discover new miRNAs, target genes and

ncRNAs based on expression features such as strand bias for

production of phased siRNAs (Supplemental Figure S5). Contin-

gent upon generation and availability of high quality datasets,

whole genome tiling array transcriptomes and deep smRNA

datasets such as for rice [85,86] and other species will be suitable

subjects for further computational methods testing and analysis.

Expression-based determinants have potential applications for

ncRNA discovery in other kingdoms and species where miRNA

binding site free energies are lower, especially in transitive

processes which are poorly understood.

The method presented is equally applicable to transcriptome

data generated from ultra high-throughput sequencing (UHTS)

approaches. Conceptually, short read data can be represented in a

format similar to tiling array data (genomic location versus read

frequency instead of array signal). The added benefit of UHTS is

that signals for any genomic coordinate are potentially generated

rather than fixed a priori with predetermined probes in tiling array

experiments. Therefore, UHTS data is conceptually equivalent to

tiling array data with probes derived from every nucleotide of the

genome- once the transcriptome data is converted to genomic

coordinate versus signal representation, the methods described can

follow without change.

The presented approach is applicable to animal systems. C. elegans

and D. melanogaster are likely to be the best candidates to directly apply

this approach, because their genomes are well annotated with whole

genome tiling array and EST data [138–140]. Moreover, their gene

structures and intron-exon sizes are comparable to the model plants

Arabidopsis and rice. However, higher levels of transcriptional

complexity in animals with prevalence of alternate splicing and

overlapping antisense transcripts need to be properly accounted for.

Genomes of higher mammals pose additional difficulties due to the

presence of short exons separated by large intronic regions and low-

complexity transposon-related sequences in their gene structures

which spawn smRNAs.

The biological significance of antisense ncRNAs
The congruence of antisense tiling array signals to the exonic

regions [14] manifest in antisense S/N ratios ..1 for most

annotated genes (Supplemental Figure S3, Datafile S4) is

remarkable and strongly suggests that the majority of antisense

transcription occurs predominantly on spliced mRNAs and is

dependent on the activity of RNA-dependent RNA polymerases.

A recent report suggests nuclear RNA distorts transcriptome

microarray results, consistent with our inference that cytoplasmic

RNA is a major source of antisense RNAs [141]. However, deep

sequencing of smRNAs from Arabidopsis does uncover a small

percentage that map to intron-exon junctions and introns,

suggesting that precursor-mRNAs, or more likely DNA in the

nucleus is also a source of antisense transcription [78].

Expression of ncRNAs is commonly regulated by stress and

environmental stimuli, and many different ncRNAs accumulate at

Antisense & Unknown ORFs

PLoS ONE | www.plosone.org 11 May 2010 | Volume 5 | Issue 5 | e10710



specific developmental stages or in specific cell types, or even

within specific subcellular domains, suggesting important and

tightly controlled biological roles [1,16,25,56]. New miRNAs

continue to be discovered by deep sequencing and are expressed at

very low levels or only in a few tissues or at particular times during

development. It is speculated that the antisense miRNA* signal we

observe (Figure 2) is due to hybridization of pre-miRNA

transcripts, but other interpretations are possible such as spurious

labeling of abundant miRNA and miRNA* species, or hybridiza-

tion of miRNA target mRNAs, or mismatch hybridization of

homologues. Analysis of available whole tiling array data RNAi

knockdown mutants of the exosome [116] and other miRNA

metabolism and RNA processing mutants such as xrn4/abh1

double mutant, hyponastic leaves1, argonaute1, nonsense-mediated

decay effectors upf1/upf3, RNA-dependent RNA polymerase2 (rdr2),

DNA methylation triple mutant drm1/drm2/cmt3, and serrate

[114,142–145] should be informative, especially when combined

with machine learning to find other affected loci.

There remains the important question of the biological

significance of antisense transcription as it relates to our findings

and the myriad examples found across eukaryotic phyla. It has

been postulated that evolution of MIRNA genes includes an early

stage when antisense transcription is triggered by long perfect

dsRNA of an inverted repeat or transposon-related repeat

[77,78,111,112]. Our finding of a long inverted repeat with

abundant 21 and 24 n.t. siRNAs mapping within antisense

ncRNA (Group4327) highly homologous to MIRNA843 hairpin

(Table 3) yet not conserved for mature miR843 (data not shown)

suggests a different evolutionary origin of MIRNA843 than

postulated by Fahlgren et al. [77] who noted weak foldback

homology with a protein-coding gene (At3g48340) not targeted by

miR843. Recent findings in pollen and female gametes and their

accessory cells [146,147], endosperm [148–150] and gametes of

mouse [151] and Drosophila [123,152] show endogenous siRNAs

are formed from cis and trans antisense transcripts and function in

epigenetic regulation of germ line gene expression and cell fate

and may serve a ‘memory’ role to mediate RNA- and DNA level

silencing of transposons during vertical transmission to the next

generation. A link between genomic imprinting and RNA

silencing in plants has come from studies of PolIVb/V-dependent

siRNA accumulation in the maternal gametophyte and developing

seed: expression of siRNAs in endosperm is specifically from

maternal chromosomes [150]. Newly discovered gypsy and copia-

like retroelements can transpose in hybrid met1/wild type

epigenomes and in mutants of the chromatin-remodeling ATPase

decrease in dna methylation1 (ddm1); subsequent movements are

suppressed by RNA-directed DNA methylation that requires Pol

IVb,/V and the histone methyltransferase KRYPTONITE (KYP).

These results establish that epigenetic control of retrotransposons

extends beyond transcriptional suppression [153,154]. The

transposon- and TAS-like hairpins we describe (Table 3, Supple-

mental Figure S5) which produce phased siRNAs may be cases of

post-transcriptional antisense regulation of relevance to protein-

coding gene regulation or miRNA evolution [155]. We speculate

that similar mechanisms may affect MIRNA genes and miRNA

targets that produce smRNAs and are subject to DNA methylation

[5,156,157].

Supporting Information

Figure S1 C. elegans primary (59 mono-) and secondary (59-tri-

phosphorylated) antisense siRNAs [98] that map to various

positions of miRNA hairpins. Primary siRNAs map predominant-

ly to miRNA* positions, and secondary siRNAs map predomi-

nantly to loop regions, similar to results seen in Arabidopsis and

rice (Figure 1). See Datafile S6 for details.

Found at: doi:10.1371/journal.pone.0010710.s001 (0.60 MB TIF)

Figure S2 Comparison of Arabidopsis and rice sense strand

signal profiles for highly conserved domains of eight select

ribosomal genes, from whole genome tiling arrays. Signal to noise

(S/N) ratios were calculated from the arithmetic means of probe

signals mapping to exons divided by intron probe signals. For

Arabidopsis, signal line colors indicate RNA samples from T87

callus cultures (blue)[82]; flowers (green); root (magenta); light-

grown leaves (brown); and suspension cells (tan)[83]. Exons are

denoted below the plot as green boxes on the Watson (upper) or

Crick (lower) strands (x-axis). Note the trend for increasing signal

strengths towards the 39 end of the gene (arrows) including 39

UTRs (ovals), especially for rice data, consistent with degradome

studies [80,114].

Found at: doi:10.1371/journal.pone.0010710.s002 (1.32 MB TIF)

Figure S3 Antisense strand signal profiles from Arabidopsis

whole tiling arrays for eight ribosomal genes of Supplemental

Figure S2. Signal to noise (S/N) ratios were calculated from the

arithmetic means of probe signals mapping to exons divided by

intron probe signals. Signal line colors indicate RNA samples from

T87 callus cultures (blue) [82]; flowers (green); root (magenta);

light-grown leaves (brown); and suspension cells (tan) [83]. Exons

are denoted below the plot as green boxes on the Watson (upper)

or Crick (lower) strands (x-axis). Note the antisense signals are

largely congruent with exons, suggesting that antisense transcrip-

tion occurs on mature mRNAs.

Found at: doi:10.1371/journal.pone.0010710.s003 (0.85 MB TIF)

Figure S4 Meta-analysis of two exclusive sets of ‘‘unknown’’

annotated proteins (filled diamonds [27] and open circles [Y. Xiao

and C.D. Town, personal communication]) plotted as functions of

TAIR9 expression quality (y axis) and ratio of sense exon/

antisense exon expression (data from [82,83]). All genes have

independent evidence of antisense expression [58]. The average

expression ratios for all 105 genes correlated positively (r = 0.61) as

a function of expression rating class, whereas there was an inverse

correlation (r = 0.83) between expression rating classes and

numbers of genes with sense/antisense expression ratios ,1.

Found at: doi:10.1371/journal.pone.0010710.s004 (0.72 MB TIF)

Figure S5 (A) Hairpin-containing secondary structure corre-

sponding to phased antisense siRNAs mapping to predicted small

ORF At1g55045. Base-pair probabilities from RNAfold [89] are

shown as heat map. (B) Phased siRNAs [94] to At1g55045 hairpin

mapped with pssRNAMiner [158], P,6e-5 (random hypergeo-

metric distribution). Antisense strand is labeled (-). Approximately

20% of all known smRNAs mapping to this locus are phased.

Found at: doi:10.1371/journal.pone.0010710.s005 (2.37 MB TIF)

Table S1 Antisense transcription signals relative to sense strand

expression from rice whole genome tiling arrays.

Found at: doi:10.1371/journal.pone.0010710.s006 (0.05 MB

DOC)

Table S2 List of unknown protein-coding genes with antisense

ESTs and abundant antisense transcription from whole genome

tiling array data, suggesting mis-annotation of ncRNAs.

Found at: doi:10.1371/journal.pone.0010710.s007 (0.19 MB

DOC)

Text File S1 Assessment of whole genome tiling array data

quality by ribosomal gene expression.

Found at: doi:10.1371/journal.pone.0010710.s008 (0.03 MB

DOC)
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Datafile S1

Found at: doi:10.1371/journal.pone.0010710.s009 (0.35 MB

XLS)

Datafile S2

Found at: doi:10.1371/journal.pone.0010710.s010 (7.22 MB

XLS)

Datafile S3

Found at: doi:10.1371/journal.pone.0010710.s011 (0.89 MB

XLS)

Datafile S4

Found at: doi:10.1371/journal.pone.0010710.s012 (8.56 MB

XLS)

Datafile S5

Found at: doi:10.1371/journal.pone.0010710.s013 (5.88 MB ZIP)

Datafile S6

Found at: doi:10.1371/journal.pone.0010710.s014 (0.07 MB

XLS)
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