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Figure S1. The tasi-RNA TAS4b-3’-D4(-) triggers production of phasiRNAs from VvMYBA6 and VvMYBA7 in grape. (A) Cartoon map of MYBA6 (GSVIVT01030822001, XM_002274956) and MYBA7 (GSVIVT01030819001, XM_002274986) mRNAs showing the relative position of sense phasiRNAs found in eight sRNA libraries from various tissues (GSE34169 [1]; GSM458927-30 
 ADDIN EN.CITE 
[S2]
; GSE28755).  Perfectly matched 21 nt species are shown mapped above and below the MYBA6 and MYBA7 mRNAs, respectively (horizontal bars with phase register labels).  Vertical arrows show predicted cleavage sites of TAS43’-D4(-) that set the register, and the vertical bar (gray) shows predicted binding site of miR828 at the 3’ end of the second SANT (SWI3, ADA2, N-CoR and TFIIIB) DNA-binding domain (black rectangles). (B) Watson-Crick complementary base pairing of Vvi-miR828a (gray) and three isoforms (abc; black font) of Vvi-TAS43’D4(-) to VvMYBA6 and MYBA7 mRNAs.  For miR828a, the MYBA7 mRNA nucleotide differences from MYBA6 are shown above in uppercase gray bold where the changes improve binding affinity, and lower case for changes that reduce affinity.  For TAS43’-D4 isoforms listed below, the same rules apply.  Vertical arrow indicates cleavage, setting register for phasiRNA production.  (C)  Sum of normalized (Transcripts Per Million) perfect match 21 nt sense siRNA reads (log scale) from eight libraries (one tendril, two leaf, two flower, two fruit, one mixed) mapping to VvMYBA6 and VvMYBA7 as a function of 21 nt phase registers (vertical gray lines).  Methods: Illumina sRNA-Seq datasets were downloaded from NCBI (www.ncbi.nlm.nih.gov) and converted to “fastq” format with the Sequence Read Archive Toolkit application “fastq-dump.”  The datasets were pre-processed with “FastQC” (version 0.10.1; www.bioinformatics.babraham.ac.uk/projects/fastqc/) and adapters removed with “Cutadapt” [S3].  BOWTIE (version 0.12.8) [S4] was used to map reads to V. vinifera sequences [S5] compiled from BLASTN [S6] searches performed at www.phytozome.org (release 9.0) and at the NCBI Plant EST database.
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Figure S2.  Normalized abundances of unique perfect match 21 nt Vvi-TAS4 siRNAs and 22 nt miR828 in eight different sRNA libraries from different grape tissues. (A) Vvi-TAS4a.  (B) Vvi-TAS4b. There were no D2 species found.  (C) VVi-TAS4c.  There were no D3(-) species found. (D) miR828 and miR828* abundances.  Legend on right shows tissue sources, from NCBI datasets GSE34169 [S1], GSM458927-30 
 ADDIN EN.CITE 
[S2]
, and GSE28755.  miR828 activity directly gives rise to the primary TAS4 product (D1[+]), whereas the 3’D4(-) effector for VvMYBA6 and VvMYBA7 cleavage directly sets the register for the observed VvMYBA6/7 phasiRNAs shown in Supplementary Figure S1.  Thus, correlations of abundances for these two most abundant phased species for highly expressed TAS4a and TAS4b across three tissues (leaf, flower, fruit) by two independent experiments (GSM458927-30 
 ADDIN EN.CITE 
[S2]
, and GSE28755) allows an assessment of the reproducibility of the quantitative method (relative Transcripts Per Million, TPM) [S7].  Such analysis provides a means to infer by association the relative functionality of TAS4b-3’D4(-) isoform over TAS4a-3’D4(-) for the resultant phasiRNAs shown in Suppl. Fig. S1C.  Although TAS4c-3’D4(-) is predicted to bind VvMYBA6/7 with higher affinity than the TAS4b species (shown in Suppl. Fig. S1B), it is expressed at >500-fold lower levels and therefore does not likely play a major role in the production of MYBA6/7 phasiRNAs.

Methods

The phylogenetic tree in Figure 3 was constructed using the PhyML and TreeDyn [S8] by the neighbor-joining method with full length MYB amino acid sequences (www.phytozome.org) and the MUSCLE algorithm [S9] (http://www.phylogeny.fr).  Figure 4 tangentially addresses the potential role of miR858 in regulation of MYBs associated with polyphenolic metabolism.  MIR858 homologs have not been described for grape (although homologies can be found; data not shown), but in any case candidate miR858 binding sites in VvMYBA6 and MYBA7 (at nt 354 and 342, respectively) are poor, with mismatches at nt 4-6 that argue against function based on the known topology of miRNA:target duplexes and AGO structure.
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