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Abstract: Soil salinization is a severe abiotic stress that negatively affects plant growth and develop-
ment, leading to physiological abnormalities and ultimately threatening global food security. The
condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities
such as irrigation, improper land uses, and overfertilization. The presence of Na+, Cl−, and other
related ions in the soil above normal levels can disrupt plant cellular functions and lead to alter-
ations in essential metabolic processes such as seed germination and photosynthesis, causing severe
damage to plant tissues and even plant death in the worst circumstances. To counteract the effects
of salt stress, plants have developed various mechanisms, including modulating ion homeostasis,
ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in
genomic and proteomic technologies have enabled the identification of genes and proteins involved
in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity
stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions
of salt-stress-responsive genes associated with these mechanisms. This review aims at summariz-
ing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key
background knowledge for improving crops’ salt tolerance, which could contribute to the yield and
quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of
the world.
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1. Soil Salinization: A Major Global Issue

Soil salinization is a global threat that affects 1100 Mha of soil, representing approxi-
mately 7% of the earth’s land surface [1]. As a multifactorial phenomenon, soil salinization
occurs through natural geochemical processes and secondary anthropogenic activities [2].
Primary salinization events resulted from atmospheric deposition, elevation in the sea level,
saltwater intrusion into freshwater aquifers, and rising temperature adversely have affected
a significant part of the cultivated lands, whereas an estimated 30% of irrigated lands are
aggravated by secondary salinization due to excessive fertilizer usage, poorly managed
practices, and intensified agriculture [3,4]. The scarcity of fresh water for irrigation and
the ongoing degradation of agricultural lands attributable to salt stress causes substantial
losses in agricultural productivity, particularly in arid and semiarid areas. Soil saliniza-
tion began over hundreds to thousands of years ago. It has now degraded areas such as
the Aral Sea Basin in Central Asia, the Yellow River Basin in China, the Murray-Darling
Basin in Australia, and the San Joaquin Valley in California at an alarming pace in the last
50 years [5].

The occurrence of soil salinization is mainly due to the accumulation of water-soluble
salts, including sodium (Na+), potassium (K+), chloride (Cl−), and sulfate (SO4

2−) in the
root zone, which causes osmotic variations, reducing the ability of plant root cells to absorb
water from soil [6–8]. The existence of the salt ions results in hyperionic salt stress, which is
detrimental to plant cells. Among the salinity-causing water-soluble salts, Na+ and Cl−
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are considered the major ions contributing to soil salinity, and the excessive Na+ among
the exchangeable cations contributes to sodicity [9]. Ancient cells were built to survive
salinity since the early evolution of life originated in primeval oceans with similar or even
more salt than contemporary oceans [10]. Hence, many terrestrial plants can tolerate low
to moderate salinity, whereas naturally occurring salt-tolerant plants, or halophytes, may
thrive at high salinity levels. Most crop species today fall into the glycophyte category
and cannot grow well in saline environments. In fact, many crops such as tomatoes and
rice are very sensitive to soil salinity. The deleterious impacts of salinity on plants are
manifested first with a short-term osmotic stress, then with the long-term accumulation of
phytotoxic ions [11]. The salt-induced osmotic stress occurs at the initial stage of exposure
to salt due to the incremental uptake of salts and subsequent reduction of water potential
around the root zone, which diminishes water conductivity in plant cells and primarily
leads to hindered plant growth [12,13]. Prolonged exposure to high salinity causes the
accumulation of toxic ions such as Na+, Cl−, and SO4

2−, which induce ion toxicity and
impair nutrient uptake, exacerbating the damage to plant cells and tissues [14]. The unde-
sirable consequences of salt stress on plants are manifested in morphology (stunted growth,
chlorosis, and impaired seed germination), physiology (inhibition of photosynthesis and
nutrient imbalance), and biochemical properties (oxidative stress, electrolyte leakage, and
membrane disorganization) [15,16]. The adverse effects of salinity are particularly profound
at the reproductive stage [17]. A plethora of research has been conducted and reviewed on
salt-induced damages and their impacts on plants over the last 20 years.

An increased tolerance to salt stress is one of the major emphases in the genetic im-
provement of crops of agricultural, environmental, horticultural, and economic importance.
Thus far, conventional breeding methods and innovative genetic engineering approaches
have achieved significant advances in obtaining more salt-tolerant plants. Studying salt
tolerance is a critical component of plant biology research, enabling us to understand the
complicated mechanisms of salt tolerance in plants and explore strategies to ameliorate the
detrimental effects of salt stress. This review summarizes the most recent research activities
in plant response to salt stress and the potential salt tolerance mechanisms, which could
guide future efforts in creating highly salt-tolerant crops.

2. Impacts and Consequences of Salt Stress on Plants: A Challenge for
Sustainable Agriculture
2.1. Growth of Plants

Like many other abiotic stresses, salt stress suppresses plant growth, and the rate of
growth reduction depends on several factors, such as plant species, developmental stage,
and the concentration of salt [18]. Stunted growth is an adaptive mechanism for survival,
which allows plants to combat salt stress [19]. Salt stress might reduce the expression of
key regulatory genes involved in cell cycle progression (e.g., cyclin and cyclin-dependent
kinase), leading to decreased cell numbers in the meristem and a growth inhibition which
impacts the plant’s ability to absorb nutrients and water efficiently. Certain plants “panic”
immediately upon salt-stress exposure, react quickly, and stop growing. In contrast, others
do not respond adequately and face the danger of dying by continuing to grow under
severe salt-stress conditions [20].

The plant cell shrinks and dehydrates immediately after salt stress is imposed; how-
ever, it is recovered later. Despite this recovery, cell elongation, and to a lesser extent, cell
division, is affected, resulting in a lower root and leaf growth rate. After the occurrence
of salinity stress, the lateral shoot enlargement is affected, leading to apparent differences
in overall growth and injury between salt-stressed plants and their nonstressed controls.
This response is due to changes in the cell–water relation resulting from osmotic changes
outside the root (osmotic effect). The osmotic effect leads to a reduction in the capability
of plants to absorb water. The effects of salinity on plant growth have been extensively
studied in various plant species, including Eruca sativa Mill [21] and Fragaria × ananassa
Duch [22].
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2.2. Photosynthesis

Photosynthesis is plants’ most widely recognized and vital characteristic, which con-
verts solar energy into chemical energy. Various factors, including impaired chlorophyll
biosynthesis [23], altered enzymatic activity [24], stomatal closure, reduced CO2 supply [25],
and damaged photosynthetic apparatus [26], are correlated with a salt-induced photosyn-
thetic reduction. The decline in chlorophyll content has been reported under salt-stress
conditions due to increased oxidation and degradation of chlorophyll initiated by the accu-
mulation of reactive oxygen species (ROS), and the chlorophyll reduction is proportional to
the level of salinity [27,28]. Pseudocyclic electron transport resulting from inhibiting the
electron transport chain causes an excessive production of ROS [29]. Consequently, ROS
alters photosynthetic proteins and the photosystem assembly [30]. In addition, exposure
to short-term salt stress at higher concentrations disturbs the dynamics of the chloroplast
ultrastructure by inducing thylakoid swelling and starch accumulation [31]. Plenty of stud-
ies have been performed on various plant species, including Solanum melongena, Portulaca
oleracea, Oryza sativa, and Jatropha curcas, on the impacts of salts on photosynthesis, and
all these studies reached the same conclusion that salt stress leads to reduced photosyn-
thetic rates at low salt concentrations and severely damages chloroplast structures and
photosynthetic machinery at moderate to high salt concentrations [16,32–34].

2.3. Nutrient Balance

The growth of plants in the absence of salinity is typically represented by the “gen-
eralized dose–response curve” [35] in relation to the concentrations of essential nutrient
elements in the root media. Plant growth under suboptimal levels of nutrients around
the root zone may be impeded due to either a nutrient-induced deficiency or toxicity. The
difficulty of mineral nutrient acquisition under salt-stress conditions can be attributed
prevalently to the reduction of nutrient availability due to the competition with major
ions (Na+ and Cl−). Such interaction frequently results in deficiencies in Ca2+, K+, and
Mg2+ [36]. The relationship between salt stress and essential mineral nutrients such as
nitrogen, phosphorous, and potassium is complex. Nitrogen is an essential mineral element
and constituent of plant cellular components. Under saline conditions, an increased uptake
and accumulation of Cl− can decrease the total shoot nitrogen uptake due to Cl−/NO3

−

antagonism [37]. Salt stress also affects the uptake of phosphorous, which is required for
photosynthesis, storage, and energy transfer. When the soil contains excessive Cl− and
SO4

2−, phosphorous uptake gets reduced, possibly due to the high ionic strength of the
media and low solubility of the Ca ± P minerals. Potassium is a vital inorganic solute
necessary for protein synthesis and water relations. Under saline conditions, there is intense
competition between K+ and Na+. The cellular balance between sodium and potassium
is essential for plant survival in saline soil. However, they both have a molecular similar-
ity, which causes potassium replacement by sodium even though it cannot take over the
function of potassium in cellular processes. An increased Na+ concentration decreases K+

and Ca2+ concentrations, as Na+ and K+ compete at root uptake sites. The reduction in K+

uptake in plants caused by Na+ is a competitive process, regardless of whether the solution
is dominated by Na+ salts, Cl−, or SO4

2− salts [36]. A substantial body of information
in the literature, including Manihot esculenta and Zea mays, indicates that salinity causes
nutrient imbalances and reduces crop productivity [38–42].

2.4. Water Relations

The rapid absorption of ions leads to the accumulation of ions in plant cells, nega-
tively affecting plant–water relations. Under salinity stress, the osmotic potential of plant
cells becomes more negative due to the presence of a high salt concentration in the soil,
which creates an osmotic gradient that drives water out of the plant cells and decreases
turgor pressure [43]. Research with Corchorus olitorius by Chaudhuri and Choudhuri (1997)
showed a decrease in various parameters, such as relative water content, water uptake, and
transpiration rate, when plants are exposed to short-term salinity stress [44]. Recent studies
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further affirm the abovementioned results [45,46]. The osmotic potential in the rooting
medium and the mode of imposed salinity stress determines the magnitude of plant cells’
decline in leaf water potential and osmotic potential. Maintaining turgor pressure at the
steady-state level is achieved in plants by reducing their osmotic potential compared to
the total water potential under progressive salinity stress [47]. Pertaining to the water
movement, in general, water moves from the soil to the root xylem via an apoplastic path
driven by a hydrostatic pressure gradient under transpiring conditions. However, when
transpiration is limited by salinity, water flows across membranes mainly through the
cell-to-cell path [46,48–50].

2.5. Yield

Apart from the plant developmental aspects discussed above, salinity also impairs
protein synthesis, energy metabolism, and cell signaling. Therefore, it ultimately hinders
agricultural productivity by necessitating a high metabolic expenditure for plant adaptation,
growth maintenance, and stress responses, which causes an overall decrease in yield [51].
Salt-induced osmotic stress and salt absorption rate determine the biomass yield reduction
and intensity of the subsequent membrane injury, respectively [52]. The concept of defining
a threshold level of salinity at which yield is reduced drastically was introduced by Maas
Hoffman in 1977 [53]. Thus far, various studies have been conducted in various plant
species including bioenergy grass Miscanthus × giganteus and Sorghum bicolor to investigate
crop yield responses under salinity conditions [54–56]. A comprehensive understanding of
the pervading consequences of salinity stress on plants could assist scientists in fine-tuning
the salt-induced response and eventually leading to the improvement of crop productivity
under salinity stress.

3. Alleviation of Salt Stress by Various Strategies in Plants

Plants have evolved flexible systems to cope with salinity stress by changing at the
morphological, physiological, biochemical, and molecular levels. Salt tolerance can be
attained by managing cytoplasmic ion content, which involves ion homeostasis and com-
partmentalization, osmotic adaptation, and increased antioxidation metabolism, such as a
higher capacity for scavenging ROS [57,58]. Several endogenous phytohormones such as
abscisic acid (ABA), auxin, salicylic acid (SA), jasmonic acid (JA), cytokinins, gibberellins,
ethylene, and brassinosteroids (BR) are critical in modulating plant response to salinity
stress, and in the establishment of a higher salinity tolerance [59,60]. Many salinity-stress-
specific genes and transcription factors are upregulated upon exposure to salinity stress,
enabling plants to adapt to the salt-stress environment.

3.1. Accumulation of Osmotic Adjustment Substances

The accumulation of compatible organic solutes such as proline, soluble sugars, glycine
betaine, and polyols is one of the most common responses in plants grown under salt-stress
conditions. These soluble and low molecular weight compounds serve as osmoprotec-
tants and contribute to the intracellular osmotic adjustment and ROS detoxification while
protecting the membrane structure without impairing cellular metabolism [61].

Glycine betaine is a quaternary ammonium compound that accumulates abundantly
in response to dehydration and salt stress in many plants [62,63]. Glycine betaine is synthe-
sized in the chloroplast, where it accumulates to play a role in the osmotic adjustment of
the thylakoid membrane, therefore maintaining photosynthetic efficiency [64]. In response
to salinity stress, glycine betaine is synthesized in many plants to alleviate the adverse
effects of salt stress to maintain the osmotic status of the cell. Glycine betaine is studied
broadly by modifying its metabolic pathways through transgenic approaches. For example,
the betaine aldehyde dehydrogenase gene from the halophyte plant Suaeda liaotungensis,
which encodes an enzyme converting the betaine aldehyde to betaine, is overexpressed
in transgenic tobacco plants and has exhibited a significantly increased salt tolerance [65].
The choline oxidase gene from Arthrobacter globiformis was introduced into the Indica rice,
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and the transgenic rice could tolerate salt stress up to 150 mM. The elevated salt tolerance
is possibly due to the conversion and consequent accumulation of glycine betaine from
choline catalyzed by choline oxidase as a two-step oxidation reaction [66]. Apart from
the success of engineered plants in increasing salt tolerance, other techniques were also
used. For example, exogenous application of glycine betaine in common beans (Phaseolus
vulgaris L.) substantially reduced the uptake of Na+, induced the uptake of K+ and therefore
maintained an elevated ratio of K+/Na+, which enhanced the salt tolerance in common
beans [67]. Another group of scientists illustrated that the exogenous application of glycine
betaine in Dalbergia odorifera enhanced plant growth [68].

Proline, as a vital compatible osmolyte and antioxidant, rises under salinity stress and
it assists plants in maintaining cell turgor. The elevated amount of proline content has been
identified and used as a physiological hallmark in plant response to salinity stress [69]. The
expression of genes involved in proline biosynthesis is activated by salinity stress, which
subsequently leads to the production and accumulation of proline in plant cells [70,71].
Pyrroline-5 carboxylate synthetase (P5CS) is an enzyme responsible for catalyzing the first
step in proline biosynthesis. P5CS1 is one of the two isoforms of P5CS and plays a vital
role in salt-stress-induced proline accumulation. Studies have shown that knocking out
P5CS1 in Arabidopsis thaliana leads to a hypersensitivity to salt stress [72]. An exogenous
application of proline in Capsicum annuum L. significantly reduced the inhibitory effects
of salinity and improved plant growth and yield under salt stress conditions [73]. Proline
accumulation in the desert plant Pancratium maritimum L. under salinity conditions helps
maintaining the activities of antioxidative enzymes, upregulating the production of stress-
protective dehydrin proteins and improving salt tolerance [74].

Soluble sugars predominantly comprise glucose, sucrose, and trehalose, and they are
involved in the salt stress tolerance of plants. A higher accumulation of soluble sugars
protects soluble enzymes from the toxicity of greater concentrations of intracellular inor-
ganic ions under salt stress [75]. For example, a distinctive feature of trehalose that enables
reversible water absorption capacity could protect molecules from osmotic damage [76].
Transgenic Arabidopsis plants overexpressing a salt-related wheat gene TaSST exhibited
more soluble sugar content than wild-type Arabidopsis plants under a NaCl treatment [77].
Despite the involvement of soluble sugars, polyols also serve as compatible solutes and
scavengers of ROS. For example, mannitol, an acyclic polyol, plays a substantial role in os-
motic regulation and enhances salt tolerance in higher plants. Pujni et al. (2007) introduced
the E. coli mannitol-1-phosphate dehydrogenase gene (mt/D), a gene involved in mannitol
synthesis, into Indica rice, and the transgenic rice plants exhibited a correlation between
the increased salt tolerance and the mannitol accumulation [78]. Therefore, the knowledge
of the relevant mechanisms of specific osmolytes could be helpful in the generation of
salt-tolerant crops.

3.2. Ion Homeostasis and Compartmentalization

The ionic imbalance caused by salinity stress affects many aspects of plant growth
and development. For example, cellular metabolism, photosynthesis, and root architecture
are interrupted by a reduced uptake of mineral nutrients under salt-stress conditions.
However, plants have evolved to maintain intracellular ion homeostasis by controlling ion
influx and its compartmentalization to cope with salinity stress. Ion homeostasis refers
to a basic dynamic process in plants involving an energetically costly gradient to uptake
required ions and eliminate toxic ions. Plants, whether glycophytes or halophytes, are
vulnerable to greater concentrations of Na+ in the cytoplasm. Sodium uptake in plants
occurs predominantly at the root–soil interface, and it is likely facilitated by nonselective
cation channels, such as cyclic nucleotide-gated channels (CNGCs) and glutamate receptors
(GLRs). In addition, high-affinity potassium transporters (HKTs) and aquaporins are
also employed in Na+ uptake in plants [79,80]. The translocation of Na+ from roots to
shoots occurs through the apoplastic pathway, transitioning to the symplast of the root
epidermis before being loaded into the tracheids of the xylem, eventually reaching the
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shoots, particularly the leaf blades, where its effects are most pronounced [6]. Overall,
plants have developed different strategies to protect the cytoplasm against the toxic effects
of Na+ by restricting the Na+ influx into the cell, enhancing the Na+ exclusion out of the
cell, and maximizing the compartmentalization of Na+ into the vacuole.

3.2.1. Salt Overly Sensitive (SOS) Genes

Of the three main strategies, exporting Na+ to an external medium or apoplast has
been demonstrated by the well-defined salt overly sensitive (SOS) signaling pathway that
involves three genes, SOS1, SOS2, and SOS3, in Arabidopsis thaliana [81–83]. Among the
three loci, SOS1 controls the ion homeostasis of essential ions such as K+ and Ca2+ and the
subsequent achievement of salt tolerance. The SOS1 gene encodes a plasma membrane-
localized Na+/H+ antiporter that exports a Na+ in exchange for a proton [81]. The necessity
of SOS1 for controlling the long-distance movement of Na+, the capacity of Na+ efflux, and
the successive maintenance of low concentrations of Na+ in root cells was demonstrated
by physiological, genetic, and biochemical analyses [81]. The SOS1 complementation of
yeast Na+/H+ antiporter mutants and the preferential expression of SOS1 in parenchyma
cells at the xylem/symplast boundary has indicated that SOS1 is involved in ion efflux
from the cytosol to the surrounding medium and regulating Na+ retrieval from xylem
sap [84]. Several studies have shown that either an overexpression or co-overexpression of
SOS1 with other salt-tolerant genes leads to a significantly enhanced salt stress tolerance in
various plants, including Arabidopsis [84–86], tobacco [87], and rice [88].

3.2.2. High-Affinity Potassium Transporters (HKTs)

HKT transporters are usually known as monovalent cation transporters and belong to
the Trk/Ktr/HKT superfamily. They have been broadly characterized in various plants and
have been shown to play a critical role in salt tolerance by excluding Na+ ions from sensitive
shoot tissues of the plants [89–91]. On their transport selectivity, HKTs can mediate Na+

import and thereby can be considered Na+/K+ symporter, and some members of HKTs
may mediate Mg2+/Ca2+ permeability across the plasma membrane of plant cells [92]. The
structural feature of HKTs is defined by four repetitions of MPM, where “M” refers to the
transmembrane segment and “P” refers to the “pore-loop domain”. The assembly of the
repetition M1A-PA-M2A–M1D-PD-M2D and the structural determinant located in the first P
domain, PA, define the two categories of HKTs: HKT1-type and HKT-2 type [89]. HKT2-
type proteins carry a Gly residue at the MPAM motif that determines the permeability
of Na+ or K+, therefore acting as a Na+/K+ symporter. When Gly is substituted by Ser,
HKT transporters solely exhibit a Na+ selective permeability and fall into the HKT1-type
category [93], where they inhibit the transport and accumulation of Na+ in shoots by
unloading excessive sodium from xylem sap and sequester it into xylem parenchyma
cells [94].

3.2.3. Proton Pumps

Both glycophyte and halophyte plants maintain cytosolic Na+ concentration at non-
toxic levels by compartmenting the excessive Na+ in the vacuole or exporting them out of
the cytosol, which are considered key mechanisms in averting the deleterious effects of
salinity. Regulating toxic levels of Na+ accumulation and escalating K+ uptake are crucial
events in salt tolerance, and they are broadly interpreted in the context of a high cytosolic
K+/Na+ ratio. Consequently, membrane proton pumps, ion transporters, and channels be-
come part of salt-stress-tolerance mechanisms in plants. The primary plant proton pumps,
alias “work horses”, include plasma membrane H+-ATPase (P-type H+ ATPase), vacuolar
H+-ATPase, and vacuolar H+-pyrophosphatase (H+-PPase). P-type H+ ATPase is composed
of a single polypeptide and embedded in the plasma membrane as a homodimer molecule.
Although all plant tissues contain several isoforms of P-type H+ ATPase to varying degrees,
some isoforms exhibit a spatial expression more specifically, as indicated by Sussman in
1994 [95]. Apart from the salt-tolerance trait of energizing the secondary transporters,
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P-type H+ ATPase also has housekeeping functions such as mediating the turgor pressure,
cell wall extension, and intracellular pH. Meanwhile, vacuolar H+-ATPase is a complex, bi-
partite structure assembled as two major subcomplexes: an integral membrane V0 complex
and a peripheral V1 complex representing the proton transporter and the driven ATPase.
The significance of this proton pump is well characterized under salt-stress conditions and
thus has been portrayed as an ecoenzyme. In contrast with the vacuolar H+-ATPase, the
vacuolar H+-pyrophosphatase is a single polypeptide composed of a homodimer with sub-
units of 80 kDa. This electrogenic proton pump utilizes inorganic pyrophosphate (Mg2PPi)
as the energy source to generate a proton gradient difference for the uphill transport of
protons from the cytosol to the vacuolar lumen. The membrane-bound H+-PPases were
encoded by three genes in Arabidopsis thaliana. Of those, only one H+-PPase, also known as
type-1 H+-PPase (AtVHP1 or AVP1), is targeted at the vacuolar membrane [96]. Vacuolar
H+-PPases are not merely functioning in regulating cytosolic PPi homeostasis but also
generate an electrochemical proton gradient across the vacuolar membrane, which leads
to a proton motive force (PMF). Under salinity-stress conditions, the PMF is utilized by
secondary transporters such as proton-coupled Na+ and K+ antiporters to actively sequester
excessive toxic ions from the cytosol into the vacuole [97,98]. A vast exploration of AVP1’s
function has been conducted by overexpressing AVP1 alone or co-overexpressing with other
beneficial genes to study salt tolerance in Arabidopsis [99–103], creeping bentgrass [104],
cotton [105–108], peanut [109], and barley [110].

3.2.4. Na+/H+ Antiporter (NHX)

Several transporters function in counteracting the accumulation of Na+ and eliminat-
ing its noxious effect in the cytosol. The vacuolar NHXs sequester a Na+ into the vacuole in
exchange with a H+. These monovalent ion exchangers in Arabidopsis are categorized into
the NHX family with eight members based on their subcellular localization. AtNHX7/SOS1
and AtNHX8 are localized to the plasma membrane, and AtNHX1-4 are localized to the
vacuolar membrane, while the rest of the members AtNHX5 and AtNHX6 are localized to
the inner membrane (AtNHX5 on the Golgi membrane also assists in trafficking Na+ into
the vacuole) [111]. An elevated expression of AtNHX1 leads to an increased salt tolerance
in various plant species such as Arabidopsis [85,112], rice [113,114], cotton [115,116], and
tomato [117].

Plants also minimize salt injury by restricting Na+ influx to the aerial parts, mainly
actively growing and photosynthesizing shoots and leaves. Apoplastic barriers and Na+

immobilization are considered effective strategies for reducing the accumulation of Na+.
Casparian strips and suberin lamellae function as extracellular hydrophobic apoplastic
barriers located in the endodermal cell wall and play important roles in restricting the free
diffusion of solutes. A Casparian strip in the endodermal root cells imposes a restriction
barrier to the movement of ions from root to shoot. Ions must move from the apoplast to the
symplast pathway to cross the cell membrane and move through the endodermis to avoid
the Casparian barrier. This transition pathway allows plants to partially exclude harmful
ions, thus restricting their movement to the xylem. Suberin lamellae play a relatively minor
role by reducing Na+ leakage into endodermal cells, reducing plant energy requirements.
Several studies have reported reinforcing apoplastic barriers as an effective approach for
reducing Na+ influx. For instance, Krishnamurthy et al. (2011) demonstrated that extensive
apoplastic barriers in roots led to a reduced Na+ uptake, enhanced survival, and salt-stress
tolerance in Oryza sativa L. [118].

The above-mentioned transporters and channels related to salt-stress tolerance con-
tribute to the uptake, transportation, and distribution of Na+ and K+. Several other impor-
tant transporters, such as K+ uptake permease (KUP)/K+ transporter, stelar K+ outward
rectifier (SKOR), and Ca2+/cation exchanger have been cloned and shown to maintain
cytosolic ion homeostasis under salt-stress conditions.
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3.3. Oxidative Stress and Antioxidant Defense under Salt-Stress Conditions

The salt-induced accumulation of ROS has a strong oxidative ability, which causes
oxidative damage to membrane lipids, proteins, and nucleic acids, causing irreversible
metabolic dysfunction. Plants have antioxidant enzymes and nonenzymatic molecules to
detoxify salt-induced ROS that are probably generated from the electron transport chains
of mitochondria and chloroplasts. Superoxide dismutase (SOD), catalase (CAT), peroxidase
(POX), and ascorbate peroxidase (APX) are the antioxidant enzymes, whereas glutathione
(GSH), ascorbates (ASC), and carotenoids are categorized as nonenzymatic antioxidant
molecules [119,120]. The enhanced levels of ROS, such as hydrogen peroxide (H2O2), singlet
oxygen (1O2, hydroxyl radicals (OH−), and superoxide (O2

−) under salt-stress conditions
are quenched or scavenged by these antioxidant enzymes and molecules. The sequential
detoxification process begins with the production of SOD in plant cells. SOD acts as the first
line of defense and it eliminates superoxide radicals by converting superoxide radicals into
oxygen and hydrogen peroxide, thereby reducing hydroxyl radicals. Superoxide radicals
reduce metal ions (Fe3+ and Cu2+), which leads to the formation of hydroxyl radicals that
cause severe damage to lipids and cellular membranes due to their oxidating ability.

Hydrogen peroxides and their derivatives generated under salt-stress conditions are
then broken down by POX and CAT [121]. Many studies have shown the correlation
between salt tolerance and the increased activities of antioxidants. For example, a recent
study on A. tricolor foliage plants showed an elevated amount of SOD, ascorbate, and
APX in a salt-tolerant variety (VA14) to assist ROS detoxification [122]. The production of
more malondialdehyde (MDA) under salt-stress conditions is a sign of membrane damage
induced by salt stress. Hussain et al. (2022) investigated the salt tolerance of contrasting
wheat genotypes and concluded that a lower MDA production in salt-tolerant varieties
correlated with a lower-membrane lipid peroxidation [123]. Another study showed that
the overexpression of the peroxidase gene GsPRX9 from wild-type soybean increased salt
tolerance with a concomitant enhancement of the antioxidant response [124]. Anthocyanins
are a group of antioxidants and their accumulation in plants under salt stress is well docu-
mented. Anthocyanin-impaired-response-1 (air1) is a mutant gene isolated in Arabidopsis,
and it is involved in salt tolerance via regulating various steps of the flavonoid and antho-
cyanin biosynthesis pathways as the mutant is unable to accumulate anthocyanins under
salt stress [125]. These results indicate that many enzymes, molecules, and pigments play
protective roles in alleviating oxidative damages towards enhancing plant salt tolerance.

3.4. Phytohormone-Mediated Salt Tolerance

Plant hormones or phytohormones are vital endogenous regulatory molecules that
regulate plant growth and development. There are nine well-characterized and diverse
groups of plant hormones that play sophisticated roles in phytohormone-mediated stress
tolerance in plants [126]. Among them, ABA, ethylene, SA, and JA are categorized as
stress-responsive hormones, while auxin, GA, cytokinins, brassinosteroids (BRs), and
strigolactones (SLs) are considered growth-promotion hormones [59,126]. The phytohor-
mones are intricately interconnected; therefore, stress-response mechanisms are not solely
limited to any particular hormone [127]. In this context, the regulation of plant growth
adaptation via phytohormone-mediated salt-stress tolerance is briefly discussed.

ABA is an irreplaceable hormone, and it functions as a central integrator to acti-
vate an adaptive signaling cascade and regulate gene expression in response to salt stress.
Endogenous ABA levels elevate immediately to activate a kinase cascade upon salt-stress ex-
posure [128]. Stomatal closure occurs due to the increased ABA levels to regulate water and
osmotic homeostasis. Salt-stress-induced osmotic stress leads to enhanced ABA signaling
transduction pathways, which involve a primary component known as sucrose nonfer-
menting 1-related protein kinases (SnRK2s) [129]. Under salt-stress conditions, the kinase
activities of SnRK2.2/2.3/2.6 and the activities of the transcription factors ABA-responsive
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element (ABRE)-binding protein/ABRE-binding factor (AREB/ABF) further promote stom-
atal closure [130]. These master transcription factors also regulate the ABRE-mediated
transcription and express the downstream target genes for salt tolerance. Additionally,
abscisic acid insensitive 1 (ABI1) negatively regulates salt tolerance by inhibiting the kinase
activity of SnRK2 and thereby mediates primary root growth [131]. Upon salt-stress expo-
sure, the transcript levels of several ABA biosynthesis genes are upregulated, causing the
production of ABA through the methylerythritol 4-phosphate (MEP) pathway. Zeaxanthin
oxidase (ZEP), 9-cis-epoxycarotenoid (NCED), and short-chain alcohol dehydrogenase
(SCAD) are enzymes induced under salt-stress conditions and they play essential roles in
the regulation of the ABA biosynthesis pathway [128,132]. Furthermore, the Ca2+ and SOS
pathways also coordinate with ABA signaling by preventing SOS2 overactivation [133].
Therefore, ABA employs a complex mechanism in mediating salt-stress response.

Plants take an adaptive mechanism of inhibiting growth to survive harsh salinity envi-
ronments. Auxin regulates root growth plasticity under salt stress. A reduced polar auxin
transport and associated lower auxin accumulation in the roots [134] and the downregula-
tion of auxin-receptor encoding genes (TRANSPORT INHIBITOR RESPONSE 1 and AUXIN
SIGNALING F-BOX) [135] cause a lower auxin signaling and therefore downregulate auxin-
mediated root growth. Bioactive gibberellin levels are adjusted at different growth stages
of plants to enhance salt tolerance through retarded growth. DELLA protein SLR1, an
inhibitor of GA signaling [136], and several other GA metabolism-related genes [137] cause
reduced GA levels or GA signaling after germination, which is necessary to enhance plant
tolerance to salt stress. Cytokinin promotes cell growth, development, and differentiation
and is involved in many physiological and biochemical processes in plants. Cytokinin
self-sacrifices itself to assist in salt-stress tolerance since it plays opposing roles in the plant
adaptation to salt stress. For instance, a loss of the isopentenyl transferase (IPT, a critical
enzyme in the cytokinin synthesis pathway) or an overexpression of cytokinin oxidase
(CKX, an enzyme that inactivates cytokinin) causes an elevated salt tolerance [138]. As a
stress-responsive hormone, ethylene accumulates under salt stress and mediates several
critical biological processes. In addition, ethylene signaling also modulates salinity re-
sponses. For instance, in a study, the loss of function of the ethylene receptors, ETHYLENE
RESPONSE 1 (ETR1) and ETHYLENE INSENSITIVE 4 (EIN4), caused an enhanced salt
tolerance. In contrast, the loss of function in the ethylene-positive regulators, EIN2 and
EIN3, leads to a hypersensitivity to salt stress [139]. Therefore, phytohormones and their
sophisticated crosstalks are vital to salinity stress signaling, and they maintain a balance
between plant growth and stress responses.

3.5. Epigenetic Regulations on Salt-Stress Tolerance

Over the last decade, transcriptional responses have been broadly studied to identify
the distinct signaling cascades involved in salt-stress signaling, leading to the identification
of various regulatory proteins and their targets. Epigenetics is the regulation of gene
expression through heritable covalent alterations in chromatin architecture to facilitate the
accessibility of transcriptional machinery. DNA methylation, histone modifications, histone
variants, and some noncoding RNAs (ncRNA) are the epigenetic components involved in
critical biological processes, including the expression of genes and genome stability [140].

DNA methylation is a widely investigated epigenetic modification, which includes the
insertion of a methyl group at the 5’ position of cytosine in DNA sequence contexts such as
CG, CHG, and CHH (H represents A, T, or C). A perturbation in the methylation patterns
and its consequences on gene expression under saline conditions have been extensively
demonstrated. For example, the methylation level at the promoter of a salt-stress-responsive
gene, the flavonol synthase gene TaFLS1 in wheat, was notably lower in a salt-tolerant
cultivar, suggesting a potential role of DNA methylation in salt tolerance [141]. In addition
to DNA methylation, histone tails or the N’ termini of histone proteins are covalently
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modified by acetylation, methylation, phosphorylation, sumoylation, and ubiquitination.
Specific histone modification enzymes determine these modifications and are imperative
in gene regulation under salt stress. Feng et al. (2022) recently demonstrated the role of
GsMYST1, a protein phylogenetically homologous to histone acetyltransferase in wild
soybean. They showed that the coordinated phosphorylation of GsMYST1 by the GsSnRK1
kinase and the consequent acetylation of the histone H4 on the target genes upregulated
stress-responsive gene expression, leading to an increased salt tolerance [142]. Histone
methylation is a dynamic process that elevates histones’ hydrophobicity and creates novel
binding sites. The methylation at H3K4me3 and H3K27me3 in castor beans regulates the
transcription of a critical salinity response regulator gene, RSM1 (encoding the RADIALIS
LIKE SANT-an MYB related transcription factor), which is involved in the ABA-mediated
salt-stress signaling [143].

Besides the abovementioned factors influencing chromatin dynamics, chromatin re-
modeling also changes gene expression. The disruption of histone–DNA interactions alters
the accessibility of the transcription machinery to the specific DNA region [144]. Chromatin
remodeling factor (CHR), which encompasses various subfamilies of ATPases, such as
SWI/SNF, the imitation switch (ISWI), and chromodomain and helicase-like domain (CHD),
can play a role in both ATP-dependent chromatin remodeling and post-translational histone
modifications [145]. According to a study by Nguyen et al. (2019), the brm-3 mutant showed
increased transcript levels of ABA-related PP2C genes (ABI1, ABI2, and HAI1) when ex-
posed to NaCl treatment [146]. This suggests that BRM, a chromatin-remodeling ATPase
known as BRAHMA, might function as a suppressor of these genes. These researchers
found that the chromatin associated with the PP2C genes changed from a suppression state
(by a repressor) to a transcription state (by an activator) in response to salt stress.

Recent research on epigenetic modifications suggests that gaining a better understand-
ing of these processes and utilizing genome-editing technologies can potentially lead to
crop improvement under salt-stress conditions. As our knowledge of epigenetics continues
to advance, it will be possible to develop alternative strategies for crop breeding that can
enhance salt tolerance and ultimately increase crop yields.

4. Crop Breeding Strategies for Achieving Salt Tolerance

Numerous studies have explored the screening and breeding of crop plants to enhance
salinity tolerance, and the subject has been periodically reviewed previously [147–149].
Advances in identifying genetic markers, molecular markers, germplasm modification, and
mapping have improved salt tolerance. Conventional breeding methods such as hybridiza-
tion, selection, polyploidy, and introgression are considerably effective in enhancing salt
tolerance, and the utilization of wild relatives of crop plants as a source of salt-tolerant genes
to increase the range of variation for salt tolerance improvement is still ongoing. However,
conventional breeding faces a serious challenge due to the limited genetic variation present
in the gene pool of most crop species. Other reasons contribute to the limited success of
conventional breeding, including the labor-intensive nature of the process, the transfer
of undesirable genes along with desirable traits, unpredictable outcomes, the inability to
introduce non-native traits, and reproductive barriers all restrict the transfer of favorable
alleles from interspecific and intergeneric sources [150]. Conventional breeding’s limited
success in enhancing plant stress tolerance can also be attributed to breeders’ inclination to
test genetic materials under ideal conditions. Additionally, the intricate nature of abiotic
stresses and plants’ varying sensitivity to these stresses at different developmental stages
further complicate the selection criteria for increased salt-stress tolerance [151]. In addition
to conventional breeding, breeding strategies such as mutational breeding [152], double
haploid production [153], and marker-assisted breeding [154] seem to be more attractive
alternatives that could contribute to the development of salt-tolerant crops.
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5. Utilization of QTL Knowledge on Salt Tolerance

Quantitative trait loci (QTLs) and marker-assisted selection can provide many benefits
compared to direct phenotypic screening. Using PCR-based techniques to identify the
genetic markers can considerably reduce the time and environmental impacts required to
screen genotypes. It has been substantiated that salt tolerance is a multifaceted trait, and
QTLs genetically control the inheritance of salt-tolerance traits and have both additive and
dominant effects [155,156].

A plethora of studies have been conducted thus far on QTL analyses to identify
QTLs linked to salt tolerance in various crops. For instance, in rice, multiple QTLs have
been associated with salinity tolerance during the reproductive phase, with the “Saltol”
QTL demonstrating a strong association with salinity tolerance [157]. “Saltol” is the most
extensively researched QTL, responsible for a high K+/Na+ ratio and low Na+ uptake
under salinity stress. Furthermore, in a study conducted on a rice backcross inbred line
population, 23 loci were identified for germination parameters at the germination stage. In
comparison, 46 loci were identified for various morphological and physiological parameters
at the seedling stage. This population was developed by crossing an Africa rice (ACC9) with
an Indica cultivar (ZS97) [158]. Another study created a genetic linkage map employing
532 molecular markers spanning 1341.1 cM to identify the loci associated with salt tolerance
in Brassica napus. A candidate gene in this region, Bra003640, was identified as being linked
to salt tolerance [159].

The progress in molecular biology has paved the way for the emergence of DNA
markers that facilitate the identification of QTLs. In the past two decades, we have wit-
nessed noteworthy advancements in molecular marker technology, enabling the creation of
comprehensive molecular linkage maps. Consequently, there has been substantial headway
in marker-assisted selection procedures, which could eventually facilitate the combination
of favorable trait identification and significantly enhance crop salt tolerance.

6. Genetic Engineering of Salt Tolerance in Plants

Using recombinant DNA techniques and transcriptomic and genomic technologies, a
large number of genes that are either upregulated or downregulated in response to salinity
stress have been discovered and characterized. Some of these differentially regulated genes
encode proteins that play vital roles in stress-related growth and metabolism. In contrast,
other genes encode regulatory proteins, such as salt-responsive transcription factors capable
of controlling the expression of many target genes by binding to the specific cis-elements in
their promoters [119]. Numerous studies in diverse plants species have demonstrated the
functions of salt-stress-responsive transcription factors including ERF/AP2, bZIP, WRKY,
NAC, MYB, and C2H2 zinc finger proteins (C2H2-ZFP) in plant salt tolerance. Evidence
has shown that common regulatory mechanisms operate in different species and genotypes
of plants. For instance, differential expression studies on four different genotypes of Brassica
showed an upregulation of genes that encode components of the SOS pathway such as SOS1
(plasma membrane Na+/K+ antiporter), SOS2 (protein kinase), SOS3 (calcium-binding
protein), and NHX1 (vacuolar Na+/K+ antiporter) in response to salinity stress [160].
Various rice genotypes were investigated for a differential expression analysis under salt
stress, and the results showed a higher expression of OsHKT, OsNHX, and OsSOS1, which
are all related to Na+/K+ homeostasis [161].

Among the various mechanisms involved in salt tolerance, targeting suitable candidate
genes that control water movement through ion homeostasis, uptake and transport, com-
partmentalization, and utilization of aquaporin channels is an effective strategy for devel-
oping salt-tolerant plants [162]. Engineering plants by overexpressing or co-overexpressing
beneficial genes encoding for transporters or antiporters in the root tissues to mitigate exces-
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sive ion uptake and transport proves to be a useful strategy. A list of genetic modifications
of ion transport components in plants for enhanced salt tolerance is shown in Table 1. This
list includes the overexpression of proton pumps (plasma membrane H+-ATPase and vacuo-
lar H+-pyrophosphatases), Na+/H+ antiporters, and potassium transporters. Nonetheless,
complex interactions, regulatory networks, and competitive uptake systems of essential
ions under salt stress must be studied in field conditions, not just laboratory conditions.

In the past few decades, transgenic approaches have revolved around manipulating
genes in various signaling and metabolic pathways, including ion homeostasis, com-
partmentalization, osmoprotectant accumulation, ROS scavenging, and transcriptional
regulations. These successful strategies have enabled scientists to genetically engineer salt
tolerance in transgenic plants precisely and predictably. However, single gene manipulation
would not be an ideal strategy for achieving high salt tolerance as numerous experiments
have indicated that the overexpression of single genes could only increase salt tolerance
to around 100 mM to 150 mM NaCl as evidenced by transgenic plants overexpressing
AtNHX1 [112–116], SOS1 [86,87], and AVP1 [103,104,106,109,110]. To further increase salt
tolerance, an approach using the co-overexpression of two genes that function synergically
was taken by many scientists, and the salt tolerance was increased to 200 mM to 250 mM
NaCl as demonstrated by transgenic plants co-overexpressing AVP1 and SOS1 [85], AVP1
and OsSIZ1 [101], AVP1 and PP2A-C5 [102], and AVP1 and AtNHX1 [105]. Recently, we
showed that it was possible to further increase the salt tolerance to 300 mM NaCl by
co-overexpressing three genes, AVP1, AtCLCc, and PP2A-C5, in transgenic Arabidopsis
plants [99], indicating that co-overexpressing several genes that are relevant to salt tolerance
was indeed an effective approach in achieving a high salt tolerance.

Apart from the abovementioned strategies, recent advancements in new breeding
techniques, such as genome editing, have been used to engineer desired genes in model
plants and crop species [163]. Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (CRISPR/Cas) is one of the newest additions to
genome editing tools, which targets structural genes, regulatory genes, and cis-regulatory
elements associated with salt-response pathways [164]. For instance, the SOS1 locus in
rice was edited by inserting a 60 bp translational enhancer at 35.7% insertion frequency
to achieve a higher salt tolerance [165]. Knocking out a barley gene (i.e., HVP10) through
the CRISPR/Cas9 mediated editing led to the inhibition of plant growth and excessive
Na+ concentration in shoots [166,167]. Additionally, genome editing by using customized
nucleases (zinc-finger nucleases (ZFNs), transcriptional activator-like effector nucleases
(TALENs)) to target mutations allows precise and predictable modifications to be utilized in
crop improvement. Small-RNA-mediated (micro-RNAs and small interfering RNAs) gene
silencing and RNA interference (RNAi) technology has become a widely accepted method
that enables a precise and multiplex editing of target genes without affecting the expression
of other genes. RNAi can function as a master regulator by suppressing the transcription
or mediating post-transcriptional gene silencing, thereby playing a vital role in combating
biotic and abiotic stresses [168–170]. The development of computational tools and databases
ease the identification of stress-responsive miRNAs and their targets regarding improved
salt tolerance. For example, the role of miR172a in soybean was reported to enhance salt
tolerance and facilitate long-distance stress signaling as the engineered plants survived
and grew better than control plants under severe salt-stress conditions [171]. The above
studies demonstrate the manipulation of candidate genes through genome editing and
RNAi technology, which could lead to an increased salt tolerance. Generating transgenic
crops through genetic engineering is still challenging, requiring further research and field
evaluation. Therefore, it is essential to understand the complex nature of salt tolerance in
plants, the regulatory networks of salt signaling, and species-specific differences in salt
tolerance in plants.
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Table 1. List of ion transporter genes genetically engineered to enhance salt tolerance.

Source Organism Gene Transgenic Host Improved Trait under Salinity Stress References

Vacuolar Na+(K+)/H+

antiporter

Arabidopsis thaliana AtNHX1 Actinidia deliciosa Greater osmotic adjustment and
antioxidant capacity in transgenics [172]

Arabidopsis thaliana AtNHX1 Fagopyrum esculentum Accumulation of more rutin [173]

Arabidopsis thaliana AtNHX2 Gossypium hirsutum L. Greater yield of better-quality cotton
fiber [115]

Arabidopsis thaliana AtNHX3 Brassica napus Unaffected seed yield and seed oil
quality under saline conditions [174]

Arabidopsis thaliana AtNHX4 Arachis hypogaea L. Elevated rate of photosynthesis [175]

Arabidopsis thaliana AtNHX3 Beta vulgaris
Increased salt accumulation in leaves,

greater root storage with higher soluble
sugars

[176]

Gossypium hirsutum GhNHX1 Nicotiana tabacum Increased Na+ compartmentalization [177]

Pennisetum glaucum PgNHX1 Oryza sativa Robust root system [178]

Solanum torvum StNHX1 Glycine max
Leaves appearance with lower scorch
scores and a lower content of Na+ and

malondialdehyde
[179]

Plasma membrane
Na+/H+ antiporter

system

Arabidopsis thaliana L.
(wild type) AtSOS1 Arabidopsis thaliana

Better root growth, increased
germination rate, elevated chlorophyll
content, and reduced accumulation of

Na+

[180]

Arabidopsis thaliana AtSOS1 Arabidopsis thaliana Better growth and higher survival rate [86]

Arabidopsis thaliana AtSOS2 Nicotiana tabacum cv.
Xanthi-nc

Superior growth and increased
germination rate [87]

Gossypium hirsutum GhSOS1 Arabidopsis thaliana Lower MDA content and decreased
Na+/K+ ratio [181]

Plasma
membrane-bound

high-affinity potassium
transporters

Arabidopsis thaliana AtHKT1 Solanum tuberosum L. Alleviation of salt-induced damages in
potato [182]

Populus trichocarpa PeHKT1;1 Populus davidiana ×
Populus bolleana

Better relative growth rate, higher
catalase (CAT), peroxidase (POD), and

superoxide dismutase (SOD)
[183]

Glycine max GmHKT1;4 Nicotiana tabacum

Greater amount of K+ and less Na+,
maintaining a lower Na+/K+ ratio in

roots under alkaline and saline
conditions

[184]
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Table 1. Cont.

Source Organism Gene Transgenic Host Improved Trait under Salinity Stress References

Vacuolar
H+-pyrophosphatase

Arabidopsis thaliana AVP1 Arabidopsis thaliana Increased sequestration of solutes into
vacuole [103]

Arabidopsis thaliana AVP1 Arachis hypogaea Greater biomass and elevated
photosynthetic rate [109]

Arabidopsis thaliana AVP1 Gossypium hirsutum
Improved salt tolerance and greater

fiber yield under greenhouse and field
conditions

[106,107]

Arabidopsis thaliana AVP1 Hordeum vulgare Larger biomass and greater grain yield [110]

Co-overexpression of
genes

Arabidopsis thaliana AtNHX1 and
SOS1 Arabidopsis thaliana Salt tolerance up to 250 mM of NaCl [85]

Arabidopsis thaliana AtNHX1 and
Bar gene Vigna radiata L. Wilczek

Transgenic plants with better ion
homeostasis and reduced oxidative

stress
[185]

Arabidopsis thaliana AtNHX1 and
AVP1 Gossypium hirsutum Robust growth with a larger root system

and greater fiber yield [105]

Arabidopsis thaliana and
Oryza sativa

AVP1 and
OsSIZ1

(SUMO E3
Ligase)

Arabidopsis thaliana
(Overexpression)

Increased abiotic stress tolerance
including salt stress [101]

Arabidopsis thaliana and
Larrea tridentata

AVP1 and
Rubisco

activase gene
RCA

Arabidopsis thaliana
(Overexpression) Higher biomass and seed yield [100]

Arabidopsis thaliana

Vacuolar H+-
pyrophosphatase,

catalytic
subunit of

protein
phosphatase

2A, and
chloride ion

channel
protein (AVP1,
PP2A-C5 and

AtCLCc)

Arabidopsis thaliana
(Overexpression)

Robust growth with a greater number of
viable seeds [99]

Arabidopsis thaliana

Vacuolar H+-
pyrophosphatase
and catalytic

subunit of
protein

phosphatase
2A (AVP1 and

PP2A-C5)

Arabidopsis thaliana
(Overexpression)

Enhanced salt tolerance to NaCl, KNO3,
and LiCl [102]
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Table 1. Cont.

Source Organism Gene Transgenic Host Improved Trait under Salinity Stress References

Other proton pumps

Spartina alterniflora
Vacuolar

H+-ATPase
(saVHAc1)

Oryza sativa Enhanced yield observed under salinity
conditions [186]

Sesuvium portulacastrum

Plasma
membrane
H+-ATPase
(SpAHA1)

Arabidopsis thaliana
Robust growth with longer roots,

greater biomass, and a higher rate of
seed germination

[187]

7. Concluding Remarks and Future Perspectives

Over the last decade, significant progress has been made in understanding plant
salt-stress responses and salt-tolerance mechanisms. Plant salt tolerance is achieved via
a complex interaction at the genetic, cellular, and physiological levels. A large body of
evidence has suggested several salt-tolerance mechanisms, such as maintaining ion home-
ostasis, regulating ion transport, osmotic regulation, increasing antioxidant metabolism,
and transgenic approaches have successfully utilized these mechanisms in generating salt-
tolerant plants. Improving salt-stress tolerance in crops has become more feasible with the
successful application of gene editing technologies and computational tools. Nonetheless,
there are still challenges ahead. The integration of information from genomic, transcrip-
tomic, proteomic, and metabolomics research needs to be improved, and a comprehensive
approach is required to discover the major pathways that determine salinity tolerance.
The current knowledge of transmembrane ion transport, sensor, and receptor in signaling
transduction and long-distance signaling is still lacking. The research on intercellular and
intracellular molecular interactions involved in salt-stress response should be prioritized
in the future. Unfortunately, our knowledge of ion transporters involved in salt intake,
exclusion, sequestration, and transport is still limited for most crops. The molecular pro-
cesses driving root-to-shoot interactions must be more thoroughly understood. Future
research should focus on the crosstalk between various hormones in response to salt stress.
Improving salt tolerance is thus a complicated and challenging task, particularly if the goal
is to generate crop plants that are both salt-tolerant and agronomically important.
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