Tetrahedron Letters 55 (2014) 6627-6630

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An efficient synthesis of 4-substituted coumarin derivatives via a palladium-catalyzed Suzuki cross-coupling reaction

Trideep Rajale, Shikha Sharma, Daniel A. Stroud[†], Daniel K. Unruh, Emily Miaou, Kimberly Lai, David M. Birney^{*}

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

ARTICLE INFO

Article history: Received 24 September 2014 Revised 10 October 2014 Accepted 13 October 2014 Available online 18 October 2014

Keywords: Suzuki cross-coupling Organotrifluoroborates Coumarins Atropisomerism

Introduction

The coumarin ring system is present in a variety of natural products and biologically active compounds.¹ These important heterocycles are known for their diverse physiological activities such as antibacterial, anticoagulant, antioxidant, and anti-inflammatory.² The 4-arylcoumarin skeleton forms the major structural component of neoflavones, a type of neoflavonoids.³

A number of methods are known in the literature to access coumarin scaffolds.⁴ Among these, direct substitution at C-4 of the preformed coumarin ring is reported as an efficient strategy.⁵ Finet and co-workers have reported the synthesis of polyoxygenated 4-heteroaryl substituted coumarins by the Suzuki-Miyaura cross-coupling utilizing heteroaryl boronic acids and 4-trifluoromethylsulfonyloxycoumarins.⁶ Very recently Duan et al.^{7a} reported Pd-catalyzed oxidative Heck coupling to access 4-arylcoumarins using coumarins and arylboronic acids. Glass and co-workers^{7b} reported a fluorescent chemosensor for studying neurotransmitters for which a key synthetic step was a Suzuki coupling of phenylboronic acid to a chlorocoumarin (Scheme 1).

As part of our continuing interest in pseudopericyclic 3,5-sigmatropic rearrangements⁸ we sought a convenient synthesis of 3,4-disubstituted coumarin **1a**. We expected that **1a** could be readily converted into acetate **2** and isoelectronic trichlo-

ABSTRACT

An efficient Pd-catalyzed Suzuki cross-coupling reaction of sterically crowded 4-chlorocoumarin derivatives with air- and moisture-stable potassium organotrifluoroborates is developed. This methodology has been used to generate a series of novel alkyl, aryl, and vinyl substituted coumarin derivatives in good to excellent yields. The twisted conformation of the vinyl groups in the X-ray crystal structures of (2-oxo-4vinyl-2*H*-chromen-3-yl)methyl acetate (**2**) and (2-oxo-4-vinyl-2*H*-chromen-3-yl)methyl 2,2,2-trichloroacetimidate (**3**), along with the atropisomerism of 3-(hydroxymethyl)-4-(2-methoxyphenyl)-2*H*-chromen-2-one (**1d**), are evidence of the steric crowding in these adducts.

© 2014 Elsevier Ltd. All rights reserved.

Scheme 1. Prior examples of Suzuki and Heck couplings of coumarins.

roacetimidate **3** (Scheme 2). The acetate **2** contains a pentadienyl ester, a bonding pattern which we have previously shown can undergo a 3,5-sigmatropic rearrangement, in preference to a 3,3-rearrangement.⁸

In our effort to synthesize compound **1a**, we have developed an efficient protocol to access new analogs of 4-substituted coumarins that potentially have biological activity. Coumarin **5** was prepared in high yield in two steps starting from commercially available 4-hydroxycoumarin. Following a literature procedure,⁹ 4-hydroxy-coumarin underwent a Vilsmeier–Haack reaction using POCl₃/ DMF to yield 4-chlorocoumarin aldehyde **4**. Selective reduction of the aldehyde **4** under typical NaBH₄ reduction condition led to

Tetrahedroi

^{*} Corresponding author. Tel.: +1 806 834 7167; fax: +1 806 742 1289. *E-mail address:* david.birney@ttu.edu (D.M. Birney).

 $^{^\}dagger$ Current address: University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.