MOLECULAR MASS AND FORMULA MASS

1

- Molecular mass = sum of the atomic weights of all atoms in the molecule.
- Formula mass = sum of the atomic weights of all atoms in the formula unit.

MOLECULAR MASS AND FORMULA MASS

- Ammonium sulfate, (NH₄)₂SO₄
- Magnesium perchlorate, Mg(ClO₄)₂
- Carbon tetrachloride, CCl₄
- Diphosphorus pentoxide P₂O₅

Counting Atoms

Chemistry is a quantitative science—we need a "counting unit."

MOLE

1 mole is the amount of substance that contains as many particles (atoms, molecules) as there are in 12.0 g of ¹²C.

518 g of Pb, 2.50 mol

<u>Particles in a Mole</u>

Avogadro's Number

Amedeo Avogadro 1776-1856

6.0221415 x 10²³

There is Avogadro's number of particles in a mole of any substance.

MOLECULAR MASS AND MOLAR MASS

Molecular mass = sum of the atomic weights of all atoms in the molecule.

Molar mass = molecular weight in grams

Molar Mass

1 mol of ${}^{12}C$ = 12.00 g of C = 6.022 x 10²³ atoms of C 12.00 g of ${}^{12}C$ is its MOLAR MASS

Taking into account all of the isotopes of C, the molar mass of C is 12.011 g/mol

One-mole Amounts

PROBLEM: What amount of Mg is represented by 0.200 g? How many atoms?

Mg has a molar mass of 24.3050 g/mol.

0.200 g
$$\left(\frac{1 \text{ mol}}{24.31 \text{ g}^{+}}\right)$$
 = 8.23 x 10⁻³ mo

How many atoms in this piece of Mg?

8.23 x 10⁻³ mol
$$\left(\frac{6.022 \times 10^{23} \text{ atoms}}{1 \text{ mol}}\right)$$

= 4.95 x 10²¹ atoms Mg

What is the molar mass of ethanol, C₂H₆O?

10

1 mol contains 2 mol C (12.01 g C/1 mol) = 24.02 g C 6 mol H (1.01 g H/1 mol) = 6.06 g H 1 mol O (16.00 g O/1 mol) = 16.00 g O TOTAL = molar mass = 46.08 g/mol

- Percent composition is the percentage by mass of each element in the compound.
- %A = <u>mass of A</u> X 100 mass of compound

Sum of percentages should equal 100

- A pure compound always consists of the same elements combined in the same proportions by weight.
- Therefore, we can express molecular composition as **PERCENT BY**

WEIGHT Ethanol, C₂H₆O 52.13% C 13.15% H 34.72% O

Consider NO₂, Molar mass = ? What is the weight percent of N and of O?

Wt. % N =
$$\frac{14.0 \text{ g N}}{46.0 \text{ g NO}_2} \times 100\% = 30.4\%$$

Wt. % O =
$$\frac{2(16.0 \text{ g O per mol NO}_2)}{46.0 \text{ g NO}_2} \times 100\% = 69.6\%$$

What are the weight percentages of N and O in NO?

Determining Formulas In chemical analysis we determine the % by weight of each element in a given amount of pure compound and derive the **EMPIRICAL** or **SIMPLEST** formula. PROBLEM: A compound of B and H is 81.10% B. What is its empirical formula?

A compound of B and H is 81.10% B. What is

- Because it contains only B and H, it must contain 18.90% H.
- In 100.0 g of the compound there are 81.10 g of B and 18.90 g of H.
- Calculate the number of moles of each constituent.

Calculate the number of moles of each element in 100.0 g of sample.

81.10 g B
$$\left(\frac{1 \text{ mol}}{10.81 \text{ g}}\right) = 7.502 \text{ mol B}$$

18.90 g H
$$\left(\frac{1 \text{ mol}}{1.008 \text{ g}}\right)$$
 = 18.75 mol H

Take the ratio of moles of B and H. Always divide by the smaller number. $\frac{18.75 \text{ mol H}}{7.502 \text{ mol B}} = \frac{2.499 \text{ mol H}}{1.000 \text{ mol B}} = \frac{2.5 \text{ mol H}}{1.0 \text{ mol B}}$

But we need a whole number ratio. 2.5 mol H/1.0 mol B = 5 mol H to 2 mol B EMPIRICAL FORMULA = B_2H_5 A compound of B and H is 81.10% B. Its empirical formula is B₂H₅. What is Is the molecular formula B₂H₅, B₄H₁₀, B₆H₁₅, B₈H₂₀, etc.?

 B_2H_6 is one example of this class of compounds.

A compound of B and H is 81.10% B. Its empirical

We need to do an **EXPERIMENT** to find the MOLAR MASS.

Here experiment gives **53.3 g/mol** Compare with the mass of B_2H_5

= **26.66 g/unit** Find the ratio of these masses.

 $\frac{53.3 \text{ g/mol}}{26.66 \text{ g/unit of } B_2H_5} = \frac{2 \text{ units of } B_2H_5}{1 \text{ mol}}$ Molecular formula = B_4H_{10}

The Molecular Formula

24

Fructose is found to contain 40.0 % carbon, 6.71 % hydrogen and the rest oxygen. The molar mass of fructose is 180.16 g/mol. Determine the EF and molecular formula. **Determine the masses of each element assuming 100 g:** 40.0 g C 6.71 g H 53.29 g O **Convert the masses into moles of each element:** $40.0 \text{ gC} \times 1 \text{ mol C} = 3.33 \text{ mol C}$ 12.01 g C 6.71 g Hx 1 mol H = 6.66 mol H1.008 g H 53.29 g Ox 1 mol O = 3.33 mol O16.00 g O Express the moles as the smallest possible ratio: $CH_{2}O$

The Molecular Formula

25

Fructose is found to contain 40.0 % carbon, 6.71 % hydrogen and the rest oxygen. The molar mass of fructose is 180.16 g/mol. Determine the EF and molecular formula.

Determine the mass of the EF (CH₂O):

12.01 g/mol + 2(1.008 g/mol) + 16 g/mol = 30.03 g/mol

Determine the number of EF units in the molecule:

Molar mass compound180.16 g/mol6Molar mass EF30.03 g/mol

Write the molecular formula:

 $(CH_2O)_6 = C_6H_{12}O_6$

DETERMINE THE FORMULA OF A COMPOUND OF Sn AND I

(a) Weighed samples of tin (left) and iodine (right).

@ Brooks/Cole, Cengage Learning

(b) The tin and iodine are heated in a solvent.

(c) The hot reaction mixture is filtered to recover unreacted tin.

(d) When the solvent cools, solid, orange tin oxide forms and is isolated.

Sn(s) + some $I_2(s)$ f Snl_x

Data to Determine the formula of a Sn—I Compound

- Reaction of Sn and I₂ is done using excess Sn.
- Mass of Sn in the beginning = 1.056 g
- Mass of iodine (I_2) used = 1.947 g
- Mass of Sn remaining = 0.601 g

Tin and Iodine Compound

Find the mass of Sn that combined with 1.947 g l₂.

Mass of Sn initially = 1.056 g Mass of Sn recovered = 0.601 g Mass of Sn used = 0.455 g Find moles of Sn used:

 $0.455 \text{ g Sn} \left(\frac{1 \text{ mol}}{118.7 \text{ g}} \right) = 3.83 \times 10^{-3} \text{ mol Sn}$

Tin and Iodine Compound

Now find the number of moles of I_2 that combined with 3.83 x 10⁻³ mol Sn. Mass of I_2 used was 1.947 g.

1.947 g l₂
$$\left(\frac{1 \text{ mol } l_2}{253.81 \text{ g } l_2}\right) = 7.671 \text{ x } 10^{-3} \text{ mol } l_2$$

How many mol of iodine atoms?

7.671 x 10⁻³ mol I₂
$$\left(\frac{2 \text{ mol I atoms}}{1 \text{ mol I}_2}\right)$$

= 1.534 x 10⁻² mol l atoms

Tin and Iodine Compound

Now find the ratio of number of moles of moles of l and Sn that combined.

 $\frac{1.534 \times 10^{-2} \text{ mol I}}{3.83 \times 10^{-3} \text{ mol Sn}} = \frac{4.01 \text{ mol I}}{1.00 \text{ mol Sn}}$

Empirical formula is SnI4

31

If you know the percent composition of a compound, you can find the amount of any element in a known amount of the compound.

How many g of potassium are in 154.6 g of K_2S ? (MW = 110.26 g/mol)

Method 1:

Practice Problems: Molar Mass 34

- **1.** Find the molar mass of the following compounds:
 - a. C₃H₇OH
 - b. cobalt(III) bromide
 - c. silicon dioxide
 - d. C₈H₉NO₂ (active ingredient in Tylenol)

2. Find the number of moles of each substance:

- a. 11.23 g iodine
- b. 3.32 g beryllium nitrate
- c. 0.477 g C₉H₂₀
- **d.** 659 g C_2H_5OH

Practice Problems: Avogadro's # 35

Find the number of grams in the following compounds:

- a. 4.30 x 10^{22} molecules of C₆H₁₄
- b. 6.77×10^{24} atoms of aluminum
- c. 5.445 moles of ammonium hydroxide

Practice Problems: Mass Relationship⁶

1. Potassium sulfate is found in some fertilizers as a source of potassium. How many grams of potassium can be obtained from 143.6 g of the compound?

Practice Problems: Percent Composition

- **1.** Calculate the percent composition of each compound:
 - a. octane (C_8H_{18})
 - **b.** aluminum acetate
 - c. calcium dihydrogen phosphate
 - d. chromium(II) chloride

Practice Problems: Empirical Formula7

 A compound is found to contain 63 % manganese and 37 % oxygen. Find the empirical formula of the compound.

2. A compound contains 42.05 g of nitrogen and 95.95 g of oxygen. Find its empirical formula.

3. A compound has 68.85 % carbon, 4.95 % hydrogen and 26.20 % oxygen and has a molar mass of 366 g/ mol. What is the empirical formula for this compound? What is the molecular formula?