MOLECULAR MASS AND FORNULA MA5S

Molecular mass = sum of the atomic weights of all atoms in the molecule.

Formula mass = sum of the atomic weights of all atoms in the formula unit.

おOLECULAR ओASS AND FORWULA $ر \dot{A}$ AS

- Ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
- Magnesium perchlorate, $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$
- Carbon tetrachloride, CCI_{4}
- Diphosphorus pentoxide $\mathrm{P}_{2} \mathrm{O}_{5}$
$16.00 \mathrm{amu}+12.01 \mathrm{amu}+16.00 \mathrm{amu}=44.01 \mathrm{amu}$

Counting Atoms

Chemistry is a quantitative science-we need a "counting unit."

MOLE

1 mole is the amount of substance that contains as many particles (atoms, molecules) as there are in 12.0 g of ${ }^{12} \mathrm{C}$.

518 g of $\mathrm{Pb}, 2.50 \mathrm{~mol}$

Parricles in a Mole

Avogadro's Number
Amedeo Avogadro 1776-1856

6.0221415×10^{23}

There is Avogadro's number of particles in a mole of any substance.

Molecular mass $=$ sum of the atomic weights of all atoms in the molecule.

Molar mass = molecular weight in grams

Molar Mass

1 mol of ${ }^{12} \mathrm{C}$
$=12.00 \mathrm{~g}$ of C $=6.022 \times 10^{23}$ atoms of C
12.00 g of ${ }^{12} \mathrm{C}$ is its MOLAR MASS

Taking into account all of the isotopes of C , the molar mass of C is $12.011 \mathrm{~g} / \mathrm{mol}$

One-mole Amounts

PROBLEM: What amount of Mg is represented by 0.200 g ? How many atoms?

Mg has a molar mass of $24.3050 \mathrm{~g} / \mathrm{mol}$.

$$
0.200 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{24.31 \mathrm{~g} t}\right)=8.23 \times 10^{-3} \mathrm{~mol}
$$

How many atoms in this piece of Mg?

$$
8.23 \times 10^{-3} \mathrm{~mol}\left(\frac{\left.6.022 \times 10^{23} \mathrm{atoms}\right)}{1 \mathrm{~mol}} \frac{\dot{j}}{}\right.
$$

$=4.95 \times 10^{21}$ atoms Mg

1 mol contains
$2 \mathrm{~mol} \mathrm{C}(12.01 \mathrm{~g} \mathrm{C} / 1 \mathrm{~mol})=24.02 \mathrm{~g} \mathrm{C}$
$6 \mathrm{~mol} \mathrm{H}(1.01 \mathrm{~g} \mathrm{H} / 1 \mathrm{~mol})=6.06 \mathrm{~g} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{O}(16.00 \mathrm{~g} \mathrm{O} / 1 \mathrm{~mol})=16.00 \mathrm{~g} \mathrm{O}$
TOTAL $=$ molar mass $=46.08 \mathrm{~g} / \mathrm{mol}$

- Formula =
- Molar mass =
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
$151.2 \mathrm{~g} / \mathrm{mol}$

Molar Mass

Percensi Consposijion

- Percent composition is the percentage by mass of each element in the compound.
- $\% \mathbf{A}=$ mass of $A \quad \times 100$ mass of compound
- Sum of percentages should equal 100

P'ercesisi Coupposition

A pure compound always consists of the same elements combined in the same proportions by weight.
Therefore, we can express molecular composition as PERCENT BY WEIGHT

$$
\begin{aligned}
& \text { Ethanol, } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \\
& 52.13 \% \text { C } \\
& 13.15 \% \mathrm{H} \\
& \mathbf{3 4 . 7 2 \%} \mathbf{O} \\
& \hline
\end{aligned}
$$

Pexreenit Couppostiton

Consider NO_{2}, Molar mass = ?
What is the weight percent of N and of O ?

$$
\text { Wt. } \% \mathrm{~N}=\frac{14.0 \mathrm{~g} \mathrm{~N}}{46.0 \mathrm{~g} \mathrm{NO}_{2}} \times 100 \%=30.4 \%
$$

$$
\text { Wt. } \left.\% \mathrm{O}=\frac{2(16.0 \mathrm{~g} \mathrm{O} \text { per mol NO}}{2}\right) ~\left(46.0 \mathrm{~g} \mathrm{NO}_{2} \quad \times 100 \%=69.6 \%\right.
$$

What are the weight percentages of N and O in NO ?

Deterusining Fopmoulas

in chemical analysis we determine the \% by weight of each element in a given amount of pure compound and derive the EMPIRICAL or SIMPLEST formula.

PROBLEM: A compound of B and H is $81.10 \% \mathrm{~B}$. What is its empirical formula?

A compound of B and H is $81.10 \% \mathrm{~B}$. What is

- Because it contains only B and H, it must contain $18.90 \% \mathrm{H}$.
- In 100.0 g of the compound there are 81.10 g of B and 18.90 g of H .
- Calculate the number of moles of each constituent.

A compound of B and H is $81.10 \% \mathrm{~B}$. What is

Calculate the number of moles of each element in 100.0 g of sample.

$$
\begin{aligned}
& 81.10 \mathrm{~g} \mathrm{~B}\left(\frac{1 \mathrm{~mol}}{10.81 \mathrm{~g} \dagger}\right)=7.502 \mathrm{~mol} \mathrm{~B} \\
& 18.90 \mathrm{~g} \mathrm{H}\left(\frac{1 \mathrm{~mol})}{1.008 \mathrm{~g}}\right)=18.75 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

A compound of B and H is $81.10 \% \mathrm{~B}$. What is

Take the ratio of moles of B and H. Always
divide by the smaller number. $\frac{18.75 \mathrm{~mol} \mathrm{H}}{7.502 \mathrm{~mol} \mathrm{~B}}=\frac{2.499 \mathrm{~mol} \mathrm{H}}{1.000 \mathrm{~mol} \mathrm{~B}}=\frac{2.5 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~mol} \mathrm{~B}}$

But we need a whole number ratio.
$2.5 \mathrm{~mol} \mathrm{H} / 1.0 \mathrm{~mol} B=5 \mathbf{~ m o l ~ H}$ to $2 \mathbf{~ m o l ~ B}$
EMPIRICAL FORMULA $=\mathrm{B}_{2} \mathrm{H}_{5}$

A compound of B and H is $81.10 \% B$. Its empirical formula is $\mathrm{B}_{2} \mathrm{H}_{5}$. What is

Is the molecular formula $\mathrm{B}_{2} \mathrm{H}_{5}, \mathrm{~B}_{4} \mathrm{H}_{10}$, $\mathrm{B}_{6} \mathrm{H}_{15}, \mathrm{~B}_{8} \mathrm{H}_{20}$, etc.?

$B_{2} H_{6}$ is one example of this class of compounds.

A compound of B and H is $\mathbf{8 1 . 1 0 \%} \mathrm{B}$. Its empirical

We need to do an EXPERIMENT to find the MOLAR MASS.

Here experiment gives $53.3 \mathrm{~g} / \mathrm{mol}$
Compare with the mass of $\mathrm{B}_{2} \mathrm{H}_{5}$
$=26.66 \mathrm{~g} / \mathrm{unit}$
Find the ratio of these masses.

$$
\begin{array}{r}
\frac{53.3 \mathrm{~g} / \mathrm{mol}}{26.66 \mathrm{~g} / \mathrm{unit} \text { of } \mathrm{B}_{2} \mathrm{H}_{5}}=\frac{2 \text { units of }_{2} \mathrm{H}_{5}}{1 \mathrm{~mol}_{2}} \\
\text { Molecular formula }=\mathrm{B}_{4} \mathrm{H}_{10}
\end{array}
$$

The Empirical Formula

A sample is made up of $1.61 \mathrm{~g} P$ and 2.98 g F. Find the EF.
Determine the masses of each element:

$$
1.61 \mathrm{~g} \mathrm{P} \quad 2.98 \mathrm{~g} \mathrm{~F}
$$

Convert the masses into moles of each element:

$$
1.61 \mathrm{~g}^{P} \times \frac{1 \mathrm{~mol} P}{30.97 \mathrm{~g} P}=0.0520 \mathrm{~mol} \mathrm{P}
$$

$$
2.98 g F \times \frac{1 \mathrm{molF}}{19.00 \mathrm{~g} F}=0.157 \mathrm{~mol} F
$$

Express the moles as the smallest possible ratio:

$$
\frac{0.0520}{0.0520}=1.00 \quad \frac{0.157}{0.0520}=3.02
$$

Write the EF using the values above as subscripts:

$$
\mathrm{PF}_{3}
$$

The Empirical Formula

A compound is found to contain $\mathbf{2 0 . 0}$ \% carbon, 2.2 \% hydrogen and 77.8% chlorine. Determine the EF. Determine the masses of each element assuming 100 g :

$$
20.0 \mathrm{~g} \mathrm{C} \quad 2.2 \mathrm{~g} \mathrm{H} \quad 77.8 \mathrm{~g} \mathrm{Cl}
$$

Convert the masses into moles of each element:

$$
\begin{gathered}
20.0 \mathrm{gC} \times \frac{1 \mathrm{molC}}{12.01 \mathrm{gC}}=1.67 \mathrm{molC} \\
2.2 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} H}=2.18 \mathrm{~mol} \mathrm{H} \\
77.8 \mathrm{gCx} \frac{1 \mathrm{molCl}}{35.45 \mathrm{gCl}}=2.19 \mathrm{~mol} \mathrm{Cl}
\end{gathered}
$$

Express the moles as the smallest possible ratio:

$$
\frac{1.67}{1.67}=1.00 \quad \frac{2.18}{1.67}=1.30 \quad \frac{2.19}{1.67}=1.30
$$

Write the EF using the values above as subscripts:

$$
\mathrm{CH}_{1.3} \mathrm{Cl}_{1.3}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{4} \quad \begin{gathered}
\text { Must have a whole } \\
\text { number ratio! }
\end{gathered}
$$

The Molecular Formula

Fructose is found to contain 40.0 \% carbon, 6.71 \% hydrogen and the rest oxygen. The molar mass of fructose is $\mathbf{1 8 0 . 1 6 ~ g / m o l . ~ D e t e r m i n e ~ t h e ~ E F ~ a n d ~ m o l e c u l a r ~ f o r m u l a . ~}$ Determine the masses of each element assuming 100 g :

$$
40.0 \mathrm{~g} \mathrm{C} \quad 6.71 \mathrm{~g} \mathrm{H} \quad 53.29 \mathrm{~g} \mathrm{O}
$$

Convert the masses into moles of each element:

$$
\begin{gathered}
40.0 \mathrm{gC} \times \frac{1 \mathrm{molC}}{12.01 \mathrm{gC}}=3.33 \mathrm{~mol} \mathrm{C} \\
6.71 \mathrm{gA} \times \frac{1 \mathrm{molH}}{1.008 \mathrm{~g} \mathrm{H}}=6.66 \mathrm{~mol} \mathrm{H} \\
53.29 \mathrm{gOx} \frac{1 \mathrm{molO}}{16.00 \mathrm{gO}}=3.33 \mathrm{~mol} \mathrm{O}
\end{gathered}
$$

Express the moles as the smallest possible ratio:

$\mathrm{CH}_{2} \mathrm{O}$

The Molecular Formula

Fructose is found to contain 40.0 \% carbon, 6.71 \% hydrogen and the rest oxygen. The molar mass of fructose is $180.16 \mathrm{~g} / \mathrm{mol}$. Determine the EF and molecular formula. Determine the mass of the EF $\left(\mathrm{CH}_{2} \mathrm{O}\right)$:
$12.01 \mathrm{~g} / \mathrm{mol}+2(1.008 \mathrm{~g} / \mathrm{mol})+16 \mathrm{~g} / \mathrm{mol}=30.03 \mathrm{~g} / \mathrm{mol}$
Determine the number of EF units in the molecule:

$$
\frac{\text { Molar mass compound }}{\text { Molar mass EF }}=\frac{180.16 \mathrm{~g} / \mathrm{mol}}{30.03 \mathrm{~g} / \mathrm{mol}}=6
$$

Write the molecular formula:

$$
\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

DETERMINE THE FORMULA OF A COMPOUND OF Sn AND I

(a) Weighed samples of tin
(left) and iodine (right).

(b) The tin and iodine are heated in a solvent.

(c) The hot reaction mixture is filtered to recover unreacted tin.

(d) When the solvent cools, solid, orange tin oxide forms and is isolated.

(c) Brooks/Cole, Cengage Learning

$\mathrm{Sn}(\mathrm{s})+\operatorname{some}_{\mathbf{2}}(\mathrm{s}) \mathrm{fSnl}_{\mathrm{x}}$

Data to Determine the formula of

 a Sn -I Compound- Reaction of Sn and I_{2} is done using excess Sn .
- Mass of Sn in the beginning $=1.056 \mathrm{~g}$
- Mass of iodine $\left(\mathrm{I}_{2}\right)$ used $=1.947 \mathrm{~g}$
- Mass of Sn remaining = 0.601 g

Tin and Iodine Compound

Find the mass of Sn that combined with $1.947 \mathrm{~g} \mathrm{I}_{2}$.
Mass of Sn initially $=1.056 \mathrm{~g}$ Mass of Sn recovered $=0.601 \mathrm{~g}$ Mass of Sn used $=\quad \mathbf{0 . 4 5 5} \mathbf{g}$
Find moles of Sn used:

$$
0.455 \mathrm{~g} \mathrm{Sn}\left(\frac{1 \mathrm{~mol}}{118.7 \mathrm{~g} t}\right)=3.83 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}
$$

Tin and Iodine Compound

Now find the number of moles of I_{2} that combined with $3.83 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}$. Mass of I_{2} used was 1.947 g .

$$
1.947 \mathrm{~g} \mathrm{I}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{I}_{2}}{253.81 \mathrm{gl}_{2}}\right)=7.671 \times 10^{-3} \mathrm{~mol} \mathrm{I}_{2}
$$

How many mol of iodine atoms?

$$
7.671 \times 10^{-3} \mathrm{~mol} \mathrm{I}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{l} \mathrm{atoms}}{1 \mathrm{~mol} \mathrm{I}_{2}}\right)
$$

$=1.534 \times 10^{-2} \mathrm{~mol} \mathrm{I}$ atoms

Tin and Iodine Compound

Now find the ratio of number of moles of moles of I and Sn that combined.

$$
\frac{1.534 \times 10^{-2} \mathrm{~mol} \mathrm{I}}{3.83 \times 10^{-3} \mathrm{~mol} \mathrm{Sn}}=\frac{4.01 \mathrm{~mol} \mathrm{I}}{1.00 \mathrm{~mol} \mathrm{Sn}}
$$

Empirical formula is SnI_{4}

Percent Composition

If you know the percent composition of a compound, you can find the amount of any element in a known amount of the compound.

How many g of potassium are in 154.6 g of $\mathrm{K}_{2} \mathrm{~S}$? ($\mathrm{MW}=110.26 \mathrm{~g} / \mathrm{mol}$) Method 1:

Method 2:

Use the percent composition as a conversion factor, $\mathrm{g} \mathrm{K} / 100 \mathrm{~g} \mathrm{~K}_{2} \mathrm{~S}$

$$
154.6 \mathrm{~g} K_{2} \mathrm{~S} \times \frac{70.92 \mathrm{gK}}{100 \mathrm{~g} K_{2} \mathrm{~S}}=109.6 \mathrm{~g} \mathrm{~K}
$$

Avogadro's Number: Use it Wisely! ${ }^{32}$

 How many molecules of CO_{2} are in 123.4 g of CO_{2} ?
$123.4 \mathrm{~g} \mathrm{CO}_{2} \times 1 \mathrm{mot}^{2} \times 6.02 \times 10^{23}$ molecules $44.01 \mathrm{gCO}_{2}$ $1 \mathrm{mof}_{2}$
 $$
=1.69 \times 10^{24} \text { molecules } \mathrm{CO}_{2}
$$

How many 0 atoms are in 123.4 g of CO_{2} ?
$123.4 \mathrm{gCO}_{2} \times \frac{1 \mathrm{molCO}_{2} \mathrm{x}}{44.01 \mathrm{geO}_{2}} \frac{6.02 \times 10^{23} \mathrm{mesCO}_{2} \times}{1 \mathrm{~mol}^{2} \cdot \mathrm{CO}_{2}} \frac{20 \text { atoms }}{1 \mathrm{mcCO}}$

$$
=3.37 \times 10^{24} 0 \text { atoms }
$$

compounds convert directly to molecules elements convert directly to atoms compounds to atoms take an extra step!

How many total atoms are in $\mathbf{4 . 5} \mathbf{g}$ of $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$?
 $98.06 \mathrm{gH}_{2} \mathrm{SO}_{4} \quad 1 \mathrm{molH}_{2} \mathrm{SO}_{4} \quad 1 \mathrm{mCH}_{2} \mathrm{SO}_{4}$
$=1.93 \times 10^{23}$ atoms
How many H atoms are in 4.5 g of $\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4}$?
$4.5 \mathrm{gH}_{2} \mathrm{SO}_{4} \times 1 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{SO}_{4}} \times \underline{6.02 \times 10^{23} \mathrm{mcs}_{\mathrm{H}_{2} \mathrm{SO}_{4}} \times 2 \mathrm{H} \text { atoms }}$ $98.06 \mathrm{gH}_{2} \mathrm{SO}_{4} \quad 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \quad 1 \mathrm{mcH}_{2} \mathrm{SO}_{4}$

$$
=5.53 \times 10^{22} \mathrm{H} \text { atoms }
$$

A question using this concept will be on the exam!!!

Practice Problems: Molar Mass

1. Find the molar mass of the following compounds:
a. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
b. cobalt(III) bromide
c. silicon dioxide
d. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$ (active ingredient in Tylenol)
2. Find the number of moles of each substance:
a. $\quad 11.23 \mathrm{~g}$ iodine
b. $\quad 3.32 \mathrm{~g}$ beryllium nitrate
c. $0.477 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{20}$
d. $659 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Practice Problems: Avogadro's \# 35

Find the number of grams in the following compounds:
a. $\mathbf{4 . 3 0} \times 10^{\mathbf{2 2}}$ molecules of $\mathrm{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 4}}$
b. $\quad 6.77 \times 10^{24}$ atoms of aluminum
c. $\mathbf{5 . 4 4 5}$ moles of ammonium hydroxide

Practice Problems: Mass Relationship ${ }^{66}$

1. Potassium sulfate is found in some fertilizers as a source of potassium. How many grams of potassium can be obtained from 143.6 g of the compound?

Practice Problems: Percent Composition

1. Calculate the percent composition of each compound:
a. octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$
b. aluminum acetate
c. calcium dihydrogen phosphate
d. chromium(II) chloride

Practice Problems: Empirical Formula ${ }^{7}$

1. A compound is found to contain 63% manganese and 37% oxygen. Find the empirical formula of the compound.
2. A compound contains 42.05 g of nitrogen and 95.95 g of oxygen. Find its empirical formula.
3. A compound has 68.85% carbon, 4.95% hydrogen and $\mathbf{2 6 . 2 0} \%$ oxygen and has a molar mass of $366 \mathrm{~g} /$ mol. What is the empirical formula for this compound? What is the molecular formula?
