
The Influence of Environmental

Parameters on Concurrency Fault

Exposures
An Exploratory Study

Sahitya Kakarla

AdVanced Empirical Software Testing and Analysis

(AVESTA)

Department of Computer Science

Texas Tech University, USA

sahitya.kakarla@ttu.edu

Akbar Siami Namin

AdVanced Empirical Software Testing and Analysis

(AVESTA)

Department of Computer Science

Texas Tech University, USA

akbar.namin@ttu.edu

International Symposium on Empirical Software Engineering and Measurements (ESEM 2010)

Bozano-Bozen, Italy, September 2010

2

 Motivation

 Environmental parameters

 Multi-core systems: A case study

 Experimental procedure

 Data analysis

 Discussion

 Conclusion

Outline

3

 The advent of multicore systems

 The future trends in exploiting the power of multiple

cores

 The software industry needs programmers capable of

developing multi-threaded applications

 Developing parallel applications is harder than

programming sequential code

 Testing concurrent programs is much harder than testing

sequential applications

 Parallel programs specifically those using threading

can be non-deterministic

Motivation
The Importance of Concurrency

4

 Interleaving faults occur when there exists threads

contentions that produce faulty behaviours

 Reproducing and debugging such systems might be very

challenging

 How to reproduce the interleaving defects

 How to increase the frequency of interleaving faults

occurring?

Motivation
Research Question

5

 Existing programming solutions

 Reproduce the faulty interleaving using

programming commands (e.g. yield and sleep)

(Eytani et al., 2007)

 Model checking techniques (Stoller, 2002)

 Statistical probabilistic techniques (Burckhardt et al,

2010)

 Our approach

 An alternative view seeking influential

environmental parameters that influence the

frequency of interleaving faults occurring

Motivation
Existing Techniques and Our Approach

6

 Hardware parameters

 Software algorithms

 Concurrency defect types

 Concurrency levels

Environmental Parameters
Classification of Possible Parameters

7

 Hardware architecture

 #cores

 Cache and buffer size

 CPU, memory, and bus interrupt speeds

 Examples

 Threads context switch when clock ticks

 The time allocated for executing threads reaches

its limit (memory speed)

Environmental Parameters
Hardware Parameters

8

 Core management technology

 Dataflow-based

 The task assignments are based on data-

dependencies

 Master-slave

 A single core manages task assignments

 CoolThreads, Hyperthreads, and virtualizations

Environmental Parameters
Hardware Parameters

9

 Scheduling algorithms implemented by VM and OS

 First-Come First-Served

 Round Robin

 Shortest-Job-First

 Shortest Remaining Time

 Examples

 Solaris OS – 60 threads priorities

 Windows XP – 32 threads priorities

 Linux 2.5 – 140 threads priorities

Environmental Parameters
Software Parameters

10

 Interleavings

 Deadlock

 Livelock

 Starvation

 Race condition

 Orphaned thread

Environmental Parameters
Concurrency Defects Types

11

 Number of threads

 Direct relationship with complexity of execution of

concurrent programs

 Needs for a model to determine the relationship between

number of threads created and number of faults

exhibited

Environmental Parameters
Concurrency Levels

12

Multicore Systems: A Case Study
Goal and Approach

 Goal

 Study the effect of multicore systems on frequency

of interleaving faults exhibitions

 Approach

 A number of experiment on various computer

systems offering multiple cores and with different

threads implementations on a number of programs

with known interleaving defects

 Controlling the cores assigned to an application

using Solaris containers

13

Multicore Systems: A Case Study
Computer Systems Used

 Sun Fire T1000

 UltraSPARC T1 processor 1.2 GHz, 32 GB memory

 Supporting 32 concurrent hardware threads

 Suitable for:

 Tightly coupled multi-threaded applications

 Computational less expensive threads: serving more threads

 Sun SPARC Enterprise M3000

 SPARC64 VII processor 2.75 GHz, 64 GB memory

 Supporting eight concurrent hardware threads

 Suitable for:

 Single threaded workloads

14

Multicore Systems: A Case Study
Subject Programs Used

Program NLOC Fault Type

bubble sort 236 Data Race

airline 61 Data Race

account 119 Deadlock, Data Race

deadlock 95 Deadlock

allocation vector 163 No Lock

Developed and maintained by IBM Haifa

15

Multicore Systems: A Case Study
Generation of Solaris Containers

 Introduced by Solaris 10

 Resource management for applications using projects

 Workload control

 Security control by restricting access

 Generation

1. k = number of CPUs

2. For k in 1, 2, 4, 6, 8, 16

3. create (pset.max = k, pset.min=pset.max)

 Monitor using mpstat command

16

Multicore Systems: A Case Study
Setup

 For T1000 machine:

 Created 5 containers (projects)

 One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU

 For M3000 machine:

 Created 3 containers (projects)

 One-CPU, Two-CPU, Four-CPU

 Commands used:

 poolcfg : To create pools and processor sets

 projadd : To create projects

 mpstate : to monitor the assignment and utilization

17

Multicore Systems: A Case Study
Setup (con’t)

 Ran each benchmark for 100 times for each pair of:

 <concurrency level, container>

 Count the number of times the interleaving fault

exhibited

 Statistically compared the counted values for their

significance

 Only two concurrency levels (little and lot) were

considered

18

Multicore Systems: A Case Study
Data Analysis – The Mean Values of Defect Exposures

19

Multicore Systems: A Case Study
Data Analysis

20

Multicore Systems: A Case Study
Data Analysis

21

 There is no evidence to believe that there is a dependency

between number of cores and interleaving faults

 The number of threads influences the variance of fault

exposures

 The concurrency level influences the variance of fault

exposures

 The two computer systems had some effects on the

frequencies of faults exhibited

 Recall: two different threading mechanisms and

architectures

Discussion
Some Observations

22

 Identify environmental factors influencing the frequency

of concurrency faults exhibitions

 A case study investigating the effect of multicore

environment on concurrency faults

 The research is still in its early stages

Conclusion & Research Directions

23

Thank You

International Symposium on Empirical Software Engineering and Measurement (ESEM 2010)

Bolzano-Bozen , Italy

September 2010

