The Influence of Environmental Parameters on Concurrency Fault Exposures An Exploratory Study

Sahitya Kakarla

AdVanced Empirical Software Testing and Analysis (AVESTA) Department of Computer Science Texas Tech University, USA

sahitya.kakarla@ttu.edu

Akbar Siami Namin

AdVanced Empirical Software Testing and Analysis (AVESTA) Department of Computer Science Texas Tech University, USA *akbar.namin@ttu.edu*

International Symposium on Empirical Software Engineering and Measurements (ESEM 2010)

Bozano-Bozen, Italy, September 2010

Outline

- Motivation
- Environmental parameters
- Multi-core systems: A case study
 - Experimental procedure
 - Data analysis
- Discussion
- Conclusion

Motivation *The Importance of Concurrency*

- The advent of multicore systems
- The future trends in exploiting the power of multiple cores
- The software industry needs programmers capable of developing multi-threaded applications
- Developing parallel applications is harder than programming sequential code
- Testing concurrent programs is much harder than testing sequential applications
 - Parallel programs specifically those using threading can be non-deterministic

Motivation Research Question

- Interleaving faults occur when there exists threads contentions that produce faulty behaviours
- Reproducing and debugging such systems might be very challenging
 - How to reproduce the interleaving defects
 - How to increase the frequency of interleaving faults occurring?

Motivation

Existing Techniques and Our Approach

- Existing programming solutions
 - Reproduce the faulty interleaving using programming commands (e.g. yield and sleep) (Eytani et al., 2007)
 - Model checking techniques (Stoller, 2002)
 - Statistical probabilistic techniques (Burckhardt et al, 2010)
- Our approach
 - An alternative view seeking influential environmental parameters that influence the frequency of interleaving faults occurring

Classification of Possible Parameters

- Hardware parameters
- Software algorithms
- Concurrency defect types
- Concurrency levels

Hardware Parameters

- Hardware architecture
- #cores
- Cache and buffer size
- CPU, memory, and bus interrupt speeds
 - Examples
 - Threads context switch when clock ticks
 - The time allocated for executing threads reaches its limit (memory speed)

Hardware Parameters

- Core management technology
 - Dataflow-based
 - The task assignments are based on datadependencies
 - Master-slave
 - A single core manages task assignments
- *CoolThreads*, *Hyperthreads*, and virtualizations

Software Parameters

- Scheduling algorithms implemented by VM and OS
 - First-Come First-Served
 - Round Robin
 - Shortest-Job-First
 - Shortest Remaining Time
- Examples
 - Solaris OS 60 threads priorities
 - Windows XP 32 threads priorities
 - Linux 2.5 140 threads priorities

Concurrency Defects Types

- Interleavings
- Deadlock
- Livelock
- Starvation
- Race condition
- Orphaned thread

Concurrency Levels

- Number of threads
 - Direct relationship with complexity of execution of concurrent programs
- Needs for a model to determine the relationship between number of threads created and number of faults exhibited

Multicore Systems: A Case Study Goal and Approach

- Goal
 - Study the effect of multicore systems on frequency of interleaving faults exhibitions
- Approach
 - A number of experiment on various computer systems offering multiple cores and with different threads implementations on a number of programs with known interleaving defects
 - Controlling the cores assigned to an application using Solaris containers

Multicore Systems: A Case Study Computer Systems Used

- Sun Fire T1000
 - UltraSPARC T1 processor 1.2 GHz, 32 GB memory
 - Supporting 32 concurrent hardware threads
 - Suitable for:
 - Tightly coupled multi-threaded applications
 - Computational less expensive threads: serving more threads
- Sun SPARC Enterprise M3000
 - SPARC64 VII processor 2.75 GHz, 64 GB memory
 - Supporting eight concurrent hardware threads
 - Suitable for:
 - Single threaded workloads

Multicore Systems: A Case Study Subject Programs Used

Program	NLOC	Fault Type
bubble sort	236	Data Race
airline	61	Data Race
account	119	Deadlock, Data Race
deadlock	95	Deadlock
allocation vector	163	No Lock

Developed and maintained by IBM Haifa

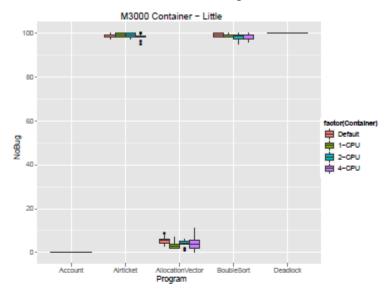
Multicore Systems: A Case Study Generation of Solaris Containers

- Introduced by Solaris 10
- Resource management for applications using *projects*
 - Workload control
 - Security control by restricting access
- Generation
 - 1. k = number of CPUs
 - 2. For k in 1, 2, 4, 6, 8, 16
 - 3. create (pset.max = k, pset.min=pset.max)
- Monitor using mpstat command

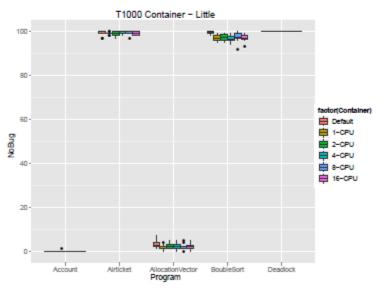
Multicore Systems: A Case Study Setup

- For T1000 machine:
 - Created 5 containers (projects)
 - One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU
- For M3000 machine:
 - Created 3 containers (projects)
 - One-CPU, Two-CPU, Four-CPU
- Commands used:
 - poolcfg: To create pools and processor sets
 - projadd : To create projects
 - mpstate : to monitor the assignment and utilization

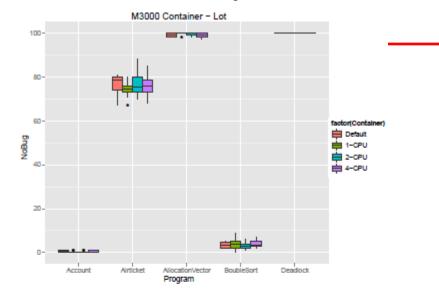
Multicore Systems: A Case Study Setup (con't)

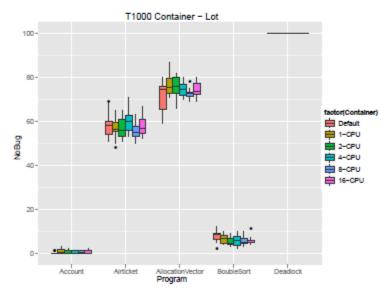

- Ran each benchmark for 100 times for each pair of:
 - <concurrency level, container>
- Count the number of times the interleaving fault exhibited
- Statistically compared the counted values for their significance
- Only two concurrency levels (little and lot) were considered

Multicore Systems: A Case Study


Data Analysis – The Mean Values of Defect Exposures

				e	•	•		
Program	M1000							
_	Default	$1\text{-}\mathrm{CPU}$	$2\text{-}\mathrm{CPU}$	4-CPU				
a) Little Co	ncurrency	Level		<u>.</u>				
bubble sort	99.1	98.9	98.1	98.4				
airline	98.7	98.9	98.8	98				
account	0	0	0	0				
deadLock	100	100	100	100				
all. vector	5.5	3.5	4.2	4.1				
b) Lot Concu	arrency Le	evel						
bubble sort	3.4	3.9	3	4				
airline	76.3	74.3	77	76.2				
account	0.5	0.2	0.2	0.4				
deadLock	100	100	100	100				
all. vector	99	99.8	99.2	99				
						000		
			Defeul		T1000		16 CDU	
			Default	t 1-CPU	$2\text{-}\mathrm{CPU}$	4-CPU	8-CPU	16-CPU
				05	0 - 0	00.0		07
			99.3	97	97.2	96.6	97.5	97
			99	99	99	99.2	99.4	99.1
			0	0	0.1	0	0	0
			100	100	100	100	100	100
			3.1	1.6	2.4	2.4	2.1	1.9
			7.7	6.4	5.4	5.9	5.8	6
			58.4	56.6	56.9	60.2	55.7	58.2
			0.2	0.9	0.5	0.4	0.5	0.7
			100	100	100	100	100	100
			71.5	77	75.9	74.7	72.6	74.6


Multicore Systems: A Case Study


(a) M3000 - Concurrency Level:Little

(c) T1000 - Concurrency Level:Little

(b) M3000 - Concurrency Level:Lot

(d) T1000 - Concurrency Level:Lot

Multicore Systems: A Case Study Data Analysis

Table 3: The *p*-values of the t-test performed on the number of faults exposed for the lot concurrency level on the T1000 computer system. D:Default, 1:1-CPU, 2:2-CPU, 4:4-CPU, 8:8-CPU, 16:16-CPU containers.

Containers	D	1	2	4	8	16
D	1	0.936	0.981	0.93	0.934	0.965
1	_	1	0.955			0.971
$\overline{2}$	_	_	1	0.949	0.917	0.983
$\overline{4}$	_	_	_	1	0.866	0.965
8	_	_	_	_	1	0.9
16	_	_	_	_	_	1

Discussion Some Observations

- There is no evidence to believe that there is a dependency between number of cores and interleaving faults
- The number of threads influences the variance of fault exposures
- The concurrency level influences the variance of fault exposures
- The two computer systems had some effects on the frequencies of faults exhibited
 - Recall: two different threading mechanisms and architectures

Conclusion & Research Directions

- Identify environmental factors influencing the frequency of concurrency faults exhibitions
- A case study investigating the effect of multicore environment on concurrency faults
- The research is still in its early stages

Thank You

International Symposium on Empirical Software Engineering and Measurement (ESEM 2010)

Bolzano-Bozen , Italy

September 2010