
The Influence of Environmental

Parameters on Concurrency Fault

Exposures
An Exploratory Study

Sahitya Kakarla

AdVanced Empirical Software Testing and Analysis

(AVESTA)

Department of Computer Science

Texas Tech University, USA

sahitya.kakarla@ttu.edu

Akbar Siami Namin

AdVanced Empirical Software Testing and Analysis

(AVESTA)

Department of Computer Science

Texas Tech University, USA

akbar.namin@ttu.edu

International Symposium on Empirical Software Engineering and Measurements (ESEM 2010)

Bozano-Bozen, Italy, September 2010

2

 Motivation

 Environmental parameters

 Multi-core systems: A case study

 Experimental procedure

 Data analysis

 Discussion

 Conclusion

Outline

3

 The advent of multicore systems

 The future trends in exploiting the power of multiple

cores

 The software industry needs programmers capable of

developing multi-threaded applications

 Developing parallel applications is harder than

programming sequential code

 Testing concurrent programs is much harder than testing

sequential applications

 Parallel programs specifically those using threading

can be non-deterministic

Motivation
The Importance of Concurrency

4

 Interleaving faults occur when there exists threads

contentions that produce faulty behaviours

 Reproducing and debugging such systems might be very

challenging

 How to reproduce the interleaving defects

 How to increase the frequency of interleaving faults

occurring?

Motivation
Research Question

5

 Existing programming solutions

 Reproduce the faulty interleaving using

programming commands (e.g. yield and sleep)

(Eytani et al., 2007)

 Model checking techniques (Stoller, 2002)

 Statistical probabilistic techniques (Burckhardt et al,

2010)

 Our approach

 An alternative view seeking influential

environmental parameters that influence the

frequency of interleaving faults occurring

Motivation
Existing Techniques and Our Approach

6

 Hardware parameters

 Software algorithms

 Concurrency defect types

 Concurrency levels

Environmental Parameters
Classification of Possible Parameters

7

 Hardware architecture

 #cores

 Cache and buffer size

 CPU, memory, and bus interrupt speeds

 Examples

 Threads context switch when clock ticks

 The time allocated for executing threads reaches

its limit (memory speed)

Environmental Parameters
Hardware Parameters

8

 Core management technology

 Dataflow-based

 The task assignments are based on data-

dependencies

 Master-slave

 A single core manages task assignments

 CoolThreads, Hyperthreads, and virtualizations

Environmental Parameters
Hardware Parameters

9

 Scheduling algorithms implemented by VM and OS

 First-Come First-Served

 Round Robin

 Shortest-Job-First

 Shortest Remaining Time

 Examples

 Solaris OS – 60 threads priorities

 Windows XP – 32 threads priorities

 Linux 2.5 – 140 threads priorities

Environmental Parameters
Software Parameters

10

 Interleavings

 Deadlock

 Livelock

 Starvation

 Race condition

 Orphaned thread

Environmental Parameters
Concurrency Defects Types

11

 Number of threads

 Direct relationship with complexity of execution of

concurrent programs

 Needs for a model to determine the relationship between

number of threads created and number of faults

exhibited

Environmental Parameters
Concurrency Levels

12

Multicore Systems: A Case Study
Goal and Approach

 Goal

 Study the effect of multicore systems on frequency

of interleaving faults exhibitions

 Approach

 A number of experiment on various computer

systems offering multiple cores and with different

threads implementations on a number of programs

with known interleaving defects

 Controlling the cores assigned to an application

using Solaris containers

13

Multicore Systems: A Case Study
Computer Systems Used

 Sun Fire T1000

 UltraSPARC T1 processor 1.2 GHz, 32 GB memory

 Supporting 32 concurrent hardware threads

 Suitable for:

 Tightly coupled multi-threaded applications

 Computational less expensive threads: serving more threads

 Sun SPARC Enterprise M3000

 SPARC64 VII processor 2.75 GHz, 64 GB memory

 Supporting eight concurrent hardware threads

 Suitable for:

 Single threaded workloads

14

Multicore Systems: A Case Study
Subject Programs Used

Program NLOC Fault Type

bubble sort 236 Data Race

airline 61 Data Race

account 119 Deadlock, Data Race

deadlock 95 Deadlock

allocation vector 163 No Lock

Developed and maintained by IBM Haifa

15

Multicore Systems: A Case Study
Generation of Solaris Containers

 Introduced by Solaris 10

 Resource management for applications using projects

 Workload control

 Security control by restricting access

 Generation

1. k = number of CPUs

2. For k in 1, 2, 4, 6, 8, 16

3. create (pset.max = k, pset.min=pset.max)

 Monitor using mpstat command

16

Multicore Systems: A Case Study
Setup

 For T1000 machine:

 Created 5 containers (projects)

 One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU

 For M3000 machine:

 Created 3 containers (projects)

 One-CPU, Two-CPU, Four-CPU

 Commands used:

 poolcfg : To create pools and processor sets

 projadd : To create projects

 mpstate : to monitor the assignment and utilization

17

Multicore Systems: A Case Study
Setup (con’t)

 Ran each benchmark for 100 times for each pair of:

 <concurrency level, container>

 Count the number of times the interleaving fault

exhibited

 Statistically compared the counted values for their

significance

 Only two concurrency levels (little and lot) were

considered

18

Multicore Systems: A Case Study
Data Analysis – The Mean Values of Defect Exposures

19

Multicore Systems: A Case Study
Data Analysis

20

Multicore Systems: A Case Study
Data Analysis

21

 There is no evidence to believe that there is a dependency

between number of cores and interleaving faults

 The number of threads influences the variance of fault

exposures

 The concurrency level influences the variance of fault

exposures

 The two computer systems had some effects on the

frequencies of faults exhibited

 Recall: two different threading mechanisms and

architectures

Discussion
Some Observations

22

 Identify environmental factors influencing the frequency

of concurrency faults exhibitions

 A case study investigating the effect of multicore

environment on concurrency faults

 The research is still in its early stages

Conclusion & Research Directions

23

Thank You

International Symposium on Empirical Software Engineering and Measurement (ESEM 2010)

Bolzano-Bozen , Italy

September 2010

