
The Influence of Environmental Parameters on
Concurrency Fault Exposures - An Exploratory Study

Sahitya Kakarla
Advanced Empirical Software Testing and

Analysis Research Group (AVESTA)
Department of Computer Science

Texas Tech University
sahitya.kakarla@ttu.edu

Akbar Siami Namin
Advanced Empirical Software Testing and

Analysis Research Group (AVESTA)
Department of Computer Science

Texas Tech University
akbar.namin@ttu.edu

ABSTRACT
Testing multi-threaded applications is a daunting problem
mainly due to the non-deterministic runtime behavior of par-
alleled programs. Though the execution of multi-threaded
applications primarily depends on context switches, it is not
clear which environmental factors and to what degree control
the threads scheduling. In this paper, we intend to identify
environmental factors and their effects on the frequency of
concurrency fault occurrences. The test practitioners and
researchers will find the identified factors beneficial when
testing paralleled applications. We conduct an exploratory
study on the effect of multicore platforms on fault expo-
sures. The result provides no support of the hypothesis that
number of cores has some impact on fault exhibitions.

Categories and Subject Descriptors
D.2 [Software Engineering]: Testing and Debugging

General Terms
Experimentations, Measurement

Keywords
Multi-Core, Solaris Containers, Concurrency, Threading.

1. INTRODUCTION
It is believed that testing and debugging multi-threaded

applications is much harder than sequential programs pri-
marily because of non-deterministic behavior imposed by
scheduling mechanisms, which control the execution order
of threads. The threads contentions or context switches oc-
cur when the underlying system prioritizes the execution
of threads. Though explicit programming commands (e.g.
yield and sleep) may be used to enforce desirable switching
of contexts, some other implicit factors (e.g., environmental
factors) may intervene threads scheduling and yield unde-
sired computations, known as interleaving defects.

Detecting failures caused by undesired interleavings is an
extremely complex task. Stoller [4] states that though model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM ’10, September 16-17, 2010, Bolzano-Bozen, Italy.
Copyright 2010 ACM 978-1-4503-0039-01/10/09 ...$10.00.

checking techniques can be utilized to explore all possible
threads scheduling, the model checking approaches lack effi-
ciency and suffer from the scalability problem. Stoller sug-
gests adapting heuristic techniques to invoke likely context
switches which lead to faults and interleaving failures.

Eytani et al. [3] point out that concurrency defects are
hard to detect because of not only the large number of pos-
sible interleavings, but also the difficulty of reproducing in-
terleaving faults. Eytani et al. introduce a randomization
algorithm which targets events causing interleaving defects.
Burckhardt et al. [2] state that interleaving bugs are usually
caused by unanticipated interactions among a few instruc-
tions, which are shared by the threads. Burckhardt et al.
present a probabilistic concurrency testing scheduler that
runs a test program several times with given inputs and
computes the probability of finding bugs for each test run.

Though heuristic and probabilistic techniques might be
effective to inflate the frequency of interleaving faults ex-
posures, non-algorithmic approaches are also of paramount
interests. Some environmental factors such as operating sys-
tems, virtual machines, language compilers, hardware archi-
tectures, CPU and memory speeds, bus interrupt timings,
and number of cores may also influence the runtime behavior
of paralleled programs. It has already been shown that dif-
ferent versions of Java virtual machines perform differently
with respect to performance and cost [1]. However, it is
not clear whether different versions of Java virtual machines
have any significant impact on concurrency fault exhibitions.

In this paper, we intend to identify environmental parame-
ters which influence the runtime behavior of paralleled appli-
cations. The test practitioners and end-users of concurrent
applications will benefit from the results when configuring
test-beds and operational field platforms. Hence, it is desir-
able to configure testing (operational) environments thereby
the likelihood of revealing faults increases (decreases). The
main contributions of this paper are: (1) identifying envi-
ronmental factors that influence the runtime behavior of par-
alleled applications. (2) An exploratory study on a number
of parallel applications to determine the influence of multi-
core systems on behavior of multi-threaded programs and the
frequency of concurrency fault exhibitions.

2. ENVIRONMENTAL PARAMETERS
Testing multi-threaded applications is an open grand prob-

lem primarily due to non-deterministic runtime behaviors.
The debugging procedures can be improved substantially
when the concurrency defects are reproducible. The pri-
mary purpose of this research is to identify a comprehensive

list of environmental parameters which may influence fault
exposures of paralleled faulty applications. The work will
explore a research direction where the identified parameters
can be set in controlled experiments in order to ample the
exhibitions of concurrency defects and hence agile debug-
ging. In an analogous way, the identified parameters can be
set appropriately in configuring the operational platforms
in order to lessen the faulty exhibitions of possible faults
remaining. We classify the influential parameters into four
categories: a) Hardware, b) Software, c) Defect types, and
d) Concurrency levels1.

Hardware Parameters. Hardware components such as
hardware architecture, number of CPU cores, cache and
buffer size, CPU, memory, and bus interrupt speeds may
have some impacts on the behavior of multi-threaded ap-
plications. For instance, context switches happen in ac-
cordance with the CPU’s clock tick. The shared memory
area maintained within main memory and the correspond-
ing memory speed may also cause context switches when
the time allocated for executing a thread is reached its limit.
The core management technology deployed in multicore sys-
tems such as master-slave or dataflow-based core manage-
ment may also affect the executions2. Furthermore, re-
cent technology advances in integrating software and hard-
ware threads handling such as CoolThreads, hyperthreadings,
and virtualizations3 may also influence the runtime behav-
ior of paralleled applications. The more recent technology
trend in multicore systems enables allocating multiple cores
to running applications and hence improving computations.
Though the hardware factors may influence the fault expo-
sures, it is of paramount interest to assess the degrees of
influence of these hardware factors on runtime exhibitions
of multi-threaded applications.

Software Parameters. The scheduling algorithms im-
plemented by operating systems play vital roles in threads
contentions. Some of the well-known scheduling algorithms
such as First-Come First-Served, Round Robin (RR), Shortest-
Job-First (SJF), and Shortest Remaining Time (SRT) en-
able CPUs to serve processes and consequently threads dif-
ferently. For instance:

• Scheduling mechanism implemented by Solaris oper-
ating system is based on threads instead of processes.
Threads are assigned priority numbers (between 0 and
59) which in turn each is assigned a time quantum.
At the end of each quantum, the priority of thread is
lowered until it reaches the lowest value (i.e. zero).

• Similar to Solaris operating system, scheduling on Win-
dows XP is based on threads and not processes. How-
ever, the scheduling algorithm is preemptive priority
thereby multiple queues are maintained for threads
with 32 priority levels.

• Similar to Windows XP., Linux 2.5 uses preemptive
priority algorithms. Unlike Windows XP, however, 140
possible priority levels are defined.

In addition to operating systems, language compilers and
virtual machines also implement scheduling algorithms of
their own. Therefore, it is expected that operating systems

1The classification is not mean to be a complete list.
2In the master-slave technology, a single core manages task
assignments, whereas, in the dataflow-based core manage-
ments, the assignments are based on data dependencies.
3A technology to hide the physical characteristic of comput-
ing platforms.

Table 1: Programs used. NLOC: net lines of code.
Race: Thread execution order and speed problem.
Deadlock: Resource allocation contention problem.
No Lock: Resource use contention resolution prob-
lem.

Program NLOC Bug Type
bubble sort 236 Race
airline 61 Race
account 119 Deadlock, Race
deadlock 95 Deadlock
allocation vector 163 No Lock

and virtual machines influence concurrency fault exposures
significantly. However, the degree of impacts is an important
challenging issue, which needs to be addressed.

Concurrency Defect Types. Though this paper fo-
cuses primarily on interleaving defects, other concurrency
defects are also of prominent interest. Several concurrency
defects such as deadlock, livelock, starvation and race con-
dition occur when the program counter enters critical sec-
tions. However, other kinds of concurrency defects such as
orphaned threads and weak-reality may occur only under
specific circumstances. Nevertheless, along with interleav-
ing defects, these concurrency defects also need insights in-
vestigations.

Concurrency Levels. Number of threads required and
created during runtime executions of applications may also
play an influential role in the concurrency defect exposures.
It is not clear whether amplifying the number of threads re-
sults in escalading context switching and therefore exhibit-
ing faulty behavior. Intuitively, the number of threads im-
pacts the complexity of threads management unit. However,
the level of impacts and tradeoffs are among grand challeng-
ing questions which need to be addressed. The statistically-
driven models may help in understanding the relationships
between number of threads and faults exhibitions and as-
sessment of their tradeoffs.

3. MULTICORE SYSTEMS: A CASE STUDY
We report the result of a case study conducted to inves-

tigate the influence of multicore platforms on concurrency
fault exposures. The multicore processors are the most rad-
ical shifts in the hardware industry. In addition to hardware
changes, multicore systems have also introduced new chal-
lenges in the software industry. To fully exploit the process-
ing power of multicore processors, software systems need to
be parallelized and tested accordingly. The paramount ob-
jective of this case study is to investigate whether there is
any dependency between the numbers of cores, as an envi-
ronmental parameter, and the concurrency defect exposures.
We describe our experimental procedure and observations in
followings.

Subjects Selection. Table 1 lists the subject programs
used. The programs, prepared by IBM Haifa research labo-
ratory, are parameterized so that the concurrency level (i.e.,
number of threads) can be specified prior to the executions.
The pre-defined values are little, average, and lot concur-
rency levels. For instance, the numbers of threads generated
by setting the concurrency levels to little and lot are 10
and 5000 for the airline program. Furthermore, each pro-
gram implements a particular type of concurrency defects as
described in Table 1.

Computer Systems. Two Sun machines with differ-
ent threading technologies are used. The first machine, a

Table 2: The mean values of defect exposures of Solaris containers defined.
Program M1000 T1000

Default 1-CPU 2-CPU 4-CPU Default 1-CPU 2-CPU 4-CPU 8-CPU 16-CPU
a) Little Concurrency Level
bubble sort 99.1 98.9 98.1 98.4 99.3 97 97.2 96.6 97.5 97
airline 98.7 98.9 98.8 98 99 99 99 99.2 99.4 99.1
account 0 0 0 0 0 0 0.1 0 0 0
deadLock 100 100 100 100 100 100 100 100 100 100
all. vector 5.5 3.5 4.2 4.1 3.1 1.6 2.4 2.4 2.1 1.9
b) Lot Concurrency Level
bubble sort 3.4 3.9 3 4 7.7 6.4 5.4 5.9 5.8 6
airline 76.3 74.3 77 76.2 58.4 56.6 56.9 60.2 55.7 58.2
account 0.5 0.2 0.2 0.4 0.2 0.9 0.5 0.4 0.5 0.7
deadLock 100 100 100 100 100 100 100 100 100 100
all. vector 99 99.8 99.2 99 71.5 77 75.9 74.7 72.6 74.6

Sun Fire T1000 machine with UltraSPARC T1 processor,
is a multi-core system supporting 32 concurrent hardware
threads. According to Sun, this machine is suitable for
tightly coupled multi-threaded applications where threads
need little computations in order to accomplish their jobs
and hence serve more concurrent threads [5]. The T1000 ma-
chine uses CoolThreads technology with eight cores each ca-
pable of handling four threads. The second machine is a Sun
SPARC M3000 Enterprise system powered by a SPARC64
VII processor. The M3000 system supports eight concurrent
hardware threads and is ideal for computationally expensive
single-threaded workloads.

Solaris Containers. Solaris containers, introduced as
part of Solaris 10 UNIX operating system, are similar to
Linux affinities and are used to control hardware resources
and in particular the assignments of CPU cores to appli-
cations. Solaris containers are server virtualization tech-
niques enabling allocation of resources to applications. Ap-
plications are clustered based on the amount of resources
they need. The resource management unit in the Solaris
operating system restricts access to resources and isolates
workloads and hence leads to a robust security mechanism.
The processor pools and sets are created using the create

UNIX command. We controlled the number of cores al-
located for a Solaris project using pset.max and pset.min

as parameters of create pset command. Solaris contain-
ers implement a built-in auto-tuning mechanism to control
the minimum number of cores allocated for a running ap-
plication. The minimum number of cores allocated changes
over runtime based upon needs. To reduce possible con-
struct threat, we set the minimum number of cores required
to be equal to the maximum number of cores allocated, i.e.
pset.max=pset.min. Thus, the validity of the desired num-
ber of cores allocated to a project is ensured.

Setup. Five projects (i.e., containers) are created on the
T1000 computer system: 1-CPU, 2-CPU, 4-CPU, 8-CPU, and
16-CPU4. A default container is already pre-defined by the
Solaris operating system where the operating system auto-
matically and dynamically (de)allocates cores to each pro-
cessor set during runtime. Consequently, three containers
are created on M3000 computer: 1-CPU, 2-CPU, 4-CPU. The
number of containers created is based on the availability
of cores on each machine. The UNIX commands poolcfg

and projadd are used to configure the processor sets, pools,
and projects created. Furthermore, the UNIX command mp-

state is used to monitor the utilization of cores and validity
of assignments. We consider only little and lot concur-

4A k − CPU container set asides k cores to the project.

rency levels. We run each program 100 times for each pair
of concurrency level and container defined on each machine.

Data Analysis. Table 2 shows the mean values of the
number of concurrency fault exposed for each program, con-
currency level, and container. The mean values of fault ex-
posures are similar across different containers including the
default container. The mean values indicate that the fre-
quencies of concurrency fault exhibited remain nearly un-
changed across containers defined on each machine, even
though the mean values change for different computer sys-
tems.

In addition to the mean values reported, the variations of
data are also measured to determine the trend of data. The
box plots can be used to represent data variations in terms
of median, upper (75%), and lower (25%) quartiles. The
box plots shown in Figures 1(a)-1(d) depict the variations
of data for each program, concurrency level, and container.
The x-axis holds the program’s name and the y-axis repre-
sents the number of times the concurrency bugs exposed for
100 runs, for each container defined. As figures illustrate the
numbers of bugs exposed for each subject program remain
similar across different containers. Though the variations
across different containers are similar for both little and
lot concurrency levels, the variance of number of bugs ex-
posed for the lot concurrency level is wider than those for
the little concurrency level. Furthermore, the variations
of fault expositions on T1000 are wider than those obtained
for M3000. However, the variations of data obtained for each
machine and program are quite similar across the containers
defined.

In order to have better insights of the hypothesis, we con-
ducted a number of unpaired two-sample Student’s t-test on
the data drawn for each pair of containers created on each
machine. The computed p-values were substantially greater
than 0.05 even without application of the Bonferroni cor-
rection5. As an example, Table 3 reports the results of un-
paired two-sample Student’s t-test on the data obtained for
Machine T1000 with the lot concurrency level. Hence, the
study outcomes do not support the assumption of a casual
dependency between number of cores and defect exposures
on each machine. However, the differences are significant be-

5The Bonferroni adjustment is used when there is an in-
stance of multiple comparisons. An application of Bonfer-
roni adjustment on the significance level α = 0.05 is neces-
sary here because of multiple comparisons required. Hence,
the significance level should be adjusted to α/n where n
times comparison is needed. The n values for M1000 and
T1000 (i.e. for each program and concurrency level) are 6
and 15, respectively.

M3000 Container − Little

Program

N
oB

ug

0

20

40

60

80

100
●
●

●●

●

●
●

Account Airticket AllocationVector BoubleSort Deadlock

factor(Container)

Default

1−CPU

2−CPU

4−CPU

(a) M3000 - Concurrency Level:Little

M3000 Container − Lot

Program

N
oB

ug

0

20

40

60

80

100

●● ●●

●

●

Account Airticket AllocationVector BoubleSort Deadlock

factor(Container)

Default

1−CPU

2−CPU

4−CPU

(b) M3000 - Concurrency Level:Lot

T1000 Container − Little

Program

N
oB

ug

0

20

40

60

80

100

●

●●
●
●●
●

●

●
●

●

●

●
●

Account Airticket AllocationVector BoubleSort Deadlock

factor(Container)

Default

1−CPU

2−CPU

4−CPU

8−CPU

16−CPU

(c) T1000 - Concurrency Level:Little

T1000 Container − Lot

Program

N
oB

ug

0

20

40

60

80

100

●●

●

●

●

●

●

Account Airticket AllocationVector BoubleSort Deadlock

factor(Container)

Default

1−CPU

2−CPU

4−CPU

8−CPU

16−CPU

(d) T1000 - Concurrency Level:Lot

Figure 1: The box plots of variations of fault exposures for the Solaris containers defined.

Table 3: The p-values of the t-test performed on the
number of faults exposed for the lot concurrency
level on the T1000 computer system. D:Default,
1:1-CPU, 2:2-CPU, 4:4-CPU, 8:8-CPU, 16:16-CPU
containers.
Containers D 1 2 4 8 16

D 1 0.936 0.981 0.93 0.934 0.965
1 – 1 0.955 0.993 0.872 0.971
2 – – 1 0.949 0.917 0.983
4 – – – 1 0.866 0.965
8 – – – – 1 0.9
16 – – – – – 1

tween the computer systems used as well as the concurrency
levels defined.

4. DISCUSSION
The main purpose of this explanatory study is to identify

environmental parameters which influence concurrency fault
exhibitions. Hardware architecture, software components,
concurrency defect types, and concurrency levels are four
major categories which are believed to have potential influ-
ence on runtime behavior of multi-threaded applications. In
this paper, we presented a case study on a number of parallel
applications to investigate whether multicore systems influ-
ence the behavior of paralleled applications. The outcomes
do not support the assumption of any dependency between
number of cores and fault exposures.

We have already pointed out that hardware architecture
and concurrency levels may have some impacts on fault ex-
hibitions. Although our case study focused on the influence
of multcore platforms on fault exposures, the box plots de-
picted in Figure 1 illustrate different outcomes which have
been obtained through various concurrency levels as well as

hardware architectures. We observe that the variation of
fault exposures widens when the number of threads or con-
currency level increases. In addition, different outcomes are
obtained for the computer systems selected. However, fur-
ther insights studies are required.

Our work aims to assist researchers in configuring test-
beds so that the frequency of exposing concurrency faults
increases. In analogy, end users and practitioners can bene-
fit from results in configuring operational field platforms to
lessen the frequency of expositions of possible concurrency
defects remaining. This work is part of our project to in-
vestigate the influential non-programmatic parameters on
runtime behavior of multi-threaded applications.

5. REFERENCES
[1] J. Bull, L. Smith, M. Westhead, D. Henty, and

R. Davey. Benchmarking java grande applications. In
The International Conference on The Practical
Applications of Java, pages 63–73, 2000.

[2] S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. pages 167–178,
2010.

[3] Y. Eytani and T. Latvala. Explaining intermittent
concurrent bugs by minimizing scheduling noise. In
Second Haifa Verification Conference (HVC 2006),
pages 183–197, 2007.

[4] S. D. Stoller. Testing concurrent java programs using
randomized scheduling. In Second Workshop on
Runtime Verification (RV), volume 70, pages 142 – 157,
2002.

[5] Sun. Oracle Sun SPARC Enterprise Servers, 2010.

