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Abstract

Mutation is the practice of automatically generating pos-
sibly faulty variants of a program, for the purpose of as-
sessing the adequacy of a test suite or comparing testing
techniques. The cost of mutation often makes its applica-
tion infeasible. The cost of mutation is usually assessed in
terms of the number of mutants, and consequently the num-
ber of “mutation operators” that produce them. We address
this problem by finding a smaller subset of mutation oper-
ators, called “sufficient”, that can model the behaviour of
the full set. To do this, we provide an experimental proce-
dure and adapt statistical techniques proposed for variable
reduction, model selection and nonlinear regression. Our
preliminary results reveal interesting information about mu-
tation operators.

1. Introduction

We can assess the adequacy of a set of test cases through
mutation testing, the practice of automatically generating
possibly faulty versions of the software under test and
counting how many are detected. A more recent applica-
tion of mutation (e.g., [2]) is assessing the effectiveness of
software testing techniques, referred to as mutation analy-
sis. Recent research [1] suggests that generated mutants can
indeed be considered representatives of real faults.

Mutants are generated by applying mutation operators.
Many mutation operators have been proposed. The diver-
sity of mutation operators leads to the generation of an enor-
mous number of mutants, making the application of muta-
tion infeasibly expensive. For instance, the application of
one mutant generator tool to a program with 137 lines of
code yields 4937 mutants [5]. Offutt et al. [4] defined a sub-
set of mutation operators as a sufficient set if 1) it generates
fewer mutants, and 2) its behavior resembles the behavior
of all operators. They compared several subsets of a set of
22 mutation operators, to find which subset was the best
candidate for a sufficient set.

We revisit the sufficient set problem. Our approach is

different from [4] in that we consider a larger number of
mutation operators and the whole space of possible subsets
of them, and we find the sufficient set of operators by setting
up an empirical study and adapting statistical techniques.
Variable reduction, model selection, and non-linear regres-
sion are the statistical techniques employed, each tackling
the problem from a different perspective.

2. Experimental Procedure

It is very unlikely that we will find one unique sufficient
subset of mutation operators. In addition to the unique char-
acterictics of each program, the manner of construction of
the test suites might affect the mutants’ behaviors. For the
former issue, we study the seven Siemens [3] subject pro-
grams (average size 327 lines of C code), which are sup-
plemented by a relatively large number of test cases. We
generate mutants with the Proteum tool, which uses a com-
prehensive set of 108 mutation operators.

For the latter issue, both random and coverage-based test
suites are generated. We study coverage-based test suites
with respect to block (BLK), decision (DEC), computa-
tion use (CUSE) and predicate use (PUSE) criteria, as
measured by the ATAC coverage tool. We construct three
different types of test suite groups: 1) A group SING
of test suites having only one test case each; 2) GroupsRANDi of test suites, for i 2 f10; 20; 50; 100g, each of
which contains randomly-selected test suites of size i; and
3) Groups BLK, DEC, CUSE, and PUSE, in which
each test suite achieves a certain percentage 
 of the rele-
vant coverage measure, for 50 � 
 � 99.

We generate 100 test suites in each group for each pro-
gram. For each test suite, we then compute: 1) Ami; the
detection ratio of the mutants generated by the operator �i
s.t. 1 � i � 108, 2) AM; the detection ratio of the mutants
generated by all operators. The detection ratios are frac-
tions with the total number of non-equivalent mutants killed
by the test suite as divisor and the total number of mutants
as dividend. In terms of statistics, the values of Ami andAM for the test suites in a given group represent the set of
predictors and response variables respectively.
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3. Statistical Analysis

Our goal is to find a subset of operators �i for 1 �i � 108 such that by computing the corresponding Ami
for each test suite and fitting a regression line on the detec-
tion ratios of the selected operators, we predict AM accu-
rately for all test suites in the group. To address this refined
problem, we adapt statistical techniques grouped into three
categories:

Model Selection Algorithms: These algorithms aim to
construct and search all possible best-fitted linear models
that attempt to predict AM more accurately. Given a set
of possible predictors, a model selection algorithm selects
a variable Ami having the highest absolute correlation withAM and fits a linear regression between them. The algo-
rithm then proceeds similarly on the residual of the model.
We adapt two model selection algorithms: All-Subset Re-
gression, a greedy algorithm, by which we construct all pos-
sible good models consisting of a desired number of vari-
ables; and Least-Angle Regression, a less greedy and more
accurate algorithm, overcoming the infeasibility traditional
forward selection algorithms.

Variable Reduction Techniques: We use these tech-
niques to reduce the number of predictor variables to a
smaller set by avoiding less important variables while not
losing too much information. We adapt two variable reduc-
tion techniques. In both techniques, we repeatedly identify
a pair of highly similar variables and eliminate the one that
generates more mutants, stopping when all pairs fall below
a certain correlation threshold (i.e., :90). In Elimination-
Based Correlation Analysis (EBC), we evaluate similarity
according to the correlation itself. In Cluster Analysis (CA),
we use a proximity matrix to measure the similarities of
variables, and form a dendrogram to show the similarities.
These techniques may retain variables with distinctive pro-
files that would be discarded by focusing solely on best-
fitted models.

Nonlinear Regression Approach: A possible criticism
of the above approaches is that they avoid any possible non-
linear relationships that might exist among the set of pre-
dictors and response variables. Transforming the data is the
main technique in revealing a nonlinear relation. By non-
linear regression, we construct a complementary set of non-
linear models in addition to the linear ones.

4. Preliminary Results

So far the procedure and analyses have been performed
only on one program (tcas), for the groups SING andRANDi, and using only some of the analyses [5]. Proteum
originally generated 4937 mutants from the program. The
sufficient set from the EBC analysis predictsAM with only
72 mutants and 7 operators, while offering fair accuracy.
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Figure 1. Predicted vs. actual AM

All-subset regression predicts AM with 1393 mutants and
10 operators while offering high accuracy. CA, however,
provides a good middle ground, using 366 mutants and 13
operators with relatively good prediction of AM . Figure
1 shows the plot of predicted vs. actual AM for the linear
regression model from the sufficient set from CA, for all test
suites.

We would like to extend the experiment to larger subject
programs and more mutation operators, but the compute-
intensive nature of the experiment and analysis (thousands
of hours of compute time so far) would make this a chal-
lenge. For now, we are extending the experiment and analy-
sis to the other six Siemens programs and the other test suite
groups.
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