
Sufficient Mutation Operators for Measuring Test
Effectiveness

Akbar Siami Namin
Dept. of Computer Science

Univ. of Western Ontario
London, Ont., Canada

N6A 5B7
asiamina@csd.uwo.ca

James H. Andrews
Dept. of Computer Science

Univ. of Western Ontario
London, Ont., Canada

N6A 5B7
andrews@csd.uwo.ca

Duncan J. Murdoch
Dept. of Statistics and

Actuarial Sciences
Univ. of Western Ontario
London, Ont., Canada

N6A 5B7
murdoch@stats.uwo.ca

ABSTRACT

Mutants are automatically-generated, possibly faulty variants of
programs. The mutation adequacy ratio of a test suite is the ratio
of non-equivalent mutants it is able to identify to the total number
of non-equivalent mutants. This ratio can be used as a measure of
test effectiveness. However, it can be expensive to calculate, due
to the large number of different mutation operators that have been
proposed for generating the mutants.
In this paper, we address the problem of finding a small set of

mutation operators which is still sufficient for measuring test ef-
fectiveness. We do this by defining a statistical analysis procedure
that allows us to identify such a set, together with an associated lin-
ear model that predicts mutation adequacy with high accuracy. We
confirm the validity of our procedure through cross-validation and
the application of other, alternative statistical analyses.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—testing

tools

General Terms

Experimentation, Measurement

Keywords

Mutation analysis, testing effectiveness

1. INTRODUCTION
Measurement of the cost and effectiveness of a testing technique

is an important component of research on software testing. With in-
formation from researchers about the cost and effectiveness of var-
ious techniques on various kinds of subject software, a practitioner
can make an informed choice of which technique to use. However,
while there are several clear criteria for measuring the cost of a test-
ing technique (number of test cases, running time, effort required
to develop), clear criteria for measuring effectiveness are elusive.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08,May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

Recently researchers have used mutation analysis to measure
testing effectiveness [6, 5, 19, 9, 24]. To perform mutation anal-
ysis on a subject program, we apply operators called mutation op-
erators to the program source code, generating mutants of the code.
Each mutant represents a possibly faulty variant of the original pro-
gram. We then measure the effectiveness of a test suite or a testing
technique by running it on all mutants, and computing its mutation
adequacy score, referred to here asAM , that is the ratio of mutants
detected to total number of non-equivalent mutants.
It has been shown that AM can be a good predictor for the ef-

fectiveness of a test suite on real faults [2, 3]. It can therefore be
used for experimental subject software for which real faults are not
known. However, a problem with this technique is that mutation
analysis can take an infeasibly long time due to the large number
of mutants generated. For instance, we have found that the 108 op-
erators of the Proteum mutant generation system [7] applied to a
program of 137 net lines of code produces a total of 4,937 mutants.
Measuring the effectiveness of a testing technique using such large
numbers of mutants can simply take too long.
We would therefore prefer to measure mutation adequacy scores

with respect to a smaller set of operators. The question is, what set
of operators will allow us to obtain a sufficiently accurate measure-
ment of overall mutation adequacy? Such a set of mutation opera-
tors is referred to as a sufficent set in the mutation literature [20].
The sufficient set question has been studied by several researchers
[26, 20, 4], but only from the perspective of the related practice of
mutation testing, not mutation analysis.
The sufficient set question can be seen as an instance of the prob-

lem variously known as the variable reduction, variable subset se-
lection or model selection problem, in which we try to find a set of
predictor variables that can accurately predict a response variable.
In this paper, which completes and extends an analysis presented in
[23], we adapt existing statistical techniques in order to identify a
set of mutation operators that generates a small number of mutants,
but that still allows us to predict accurately the mutation adequacy
of a testing technique on the full set of mutants.
The key research contributions of the paper are:

1. We identify a statistical procedure that can be used to find
a sufficient set of mutation operators, while considering all
possible subsets rather than a small number of specific sub-
sets.

2. We apply the procedure in order to identify a sufficient set
that can be used to accurately measure mutation adequacy
for a large, comprehensive set of mutation operators.

351

3. We confirm the validity of this sufficient set by cross-validation
and by applying other, alternative statistical analyses.

This research therefore moves testing researchers closer to the goals
of being able to quickly and accurately measure and compare how
effective different testing techniques are at finding faults, and of be-
ing able to communicate this information to testing practitioners.

1.1 Definitions
We assume a set {µ1, . . . , µz} of mutation operators. Each mu-

tation operator is a function from a program P to a set µi(P) of
mutants of P . For this paper, we use the 108 mutation operators of
Proteum [7], i.e. z = 108. We say that a test case kills a mutant if
it exposes the failing behaviour of that mutant. As is conventional,
we assume that the original program is a “gold version” without
important faults, and we assume that a test case kills a mutant if the
mutant gives different output from the gold version. If a mutant is
such that no test case can kill it, we say that the mutant is equiva-
lent (to the gold version). We say that a test suite S kills a mutant
if any test case in S kills the mutant.
For a given P , we define:

• Nmi(P) is the number of non-equivalent (NE) mutants gen-
erated by operator µi on P .

• NM(P) is the total number of NE mutants generated by all
operators, i.e.

NM(P) =
zX

i=1

Nmi(P)

For a given P and test suite S, we define:

• Kmi(P, S) is the number of NE mutants generated by oper-
ator µi on P , that are killed by S.

• KM(P, S) is the total number of NE mutants generated by
all operators on P , that are killed by S, i.e. KM(P, S) =Pz

i=1 Kmi(P, S).

• Ami(P, S) is mutation adequacy ratio of S with respect to
the NE mutants generated by µi, i.e. Ami(P, S) =
Kmi(P, S)/Nmi(P).

• AM(P, S) is mutation adequacy ratio of S with respect to
the full set of NE mutants, i.e.

AM(P, S) = KM(P, S)/NM(P)

When it is clear from context, we drop P and/or S, writing only
Ami, AM , etc.
We interpret the sufficient subset problem as the search for a sub-

set of mutation operators and a linear model that will allow us to
predict AM accurately from the Ami measures, while generating
only a small number of mutants. That is, we wish to find a set
{s1, s2, . . . , sj} ⊂ {1, 2, ..., z}, an intercept k and a set of coeffi-
cients {c1, c2, . . . , cj} such that

AM ∼= k + c1Ams1 + c1Ams1 + · · · + cjAmsj

We refer to the set, intercept and coefficients as a model ofAM . In
searching for the set of operators, we balance the accuracy of our
prediction against the number of mutants generated by µs1 . . . µsj .
We prefer a small number of mutants, but not so small a number
that we cannot find an accurate model of AM .

1.2 Paper Organization
In Section 2, we review related work. In Section 3, we describe

the experimental procedure that we followed to collect the raw data
on which the analyses are based. In Section 4, we describe the
statistical analysis of the data, the results of the analysis, and the
cross-validation procedures and their outcomes. In Section 5, we
offer discussion of the experiment and its results. In Section 6, we
conclude and describe potential future work.

2. RELATED WORK
The previous research most closely related to ours has to do with

mutation testing, the sufficient subset problem, and mutation anal-
ysis.

2.1 Mutation Testing
Mutation testing, first proposed by Hamlet [14] and DeMillo et

al. [8], is a process by which mutation is used to enhance a test
suite. In mutation testing, the tester generates mutants of the SUT,
and runs all current test cases on all mutants. The tester then clas-
sifies any mutants that are not killed by the test suite. If the tester
judges the mutant to be equivalent to the original (an undecidable
problem in general, but one that can sometimes be judged by the
tester with high confidence), the mutant is eliminated from con-
sideration. Otherwise, the tester adds to the suite a test case that
kills the mutant. Ideally, the process ends when the test suite has
achieved an AM of 1.0, i.e. when it kills all non-equivalent mu-
tants.
In mutation testing, each mutant is intended to represent a pos-

sible fault that a program could have, so generating (and killing)
more mutants means greater confidence in the thoroughness of a
test suite. However, so many mutants can be generated that it be-
comes infeasible to perform full mutation testing. Various ways of
speeding up mutation testing have been proposed, including com-
piling many mutants in one executable, partially automatic detec-
tion of equivalent mutants, and execution of mutants just long enough
to determine with reasonable accuracy whether the mutant has been
killed [21].
Since the first research on source code mutation [8], many mu-

tation operators have been proposed. Agrawal et al. [1] list and
describe 76 operators. The Proteum mutant generation system [7],
the most comprehensive system that we are aware of, implements
108 operators, including most of the ones described by Agrawal
et al. More mutation operators means more mutants and theoreti-
cally more thorough test suites, but it is not clear whether the many
proposed mutation operators are actually necessary. For instance,
since the mutation of changing a logical operator often has a sim-
ilar effect to negating a decision, it is reasonable to ask whether
both operators are really necessary. This has motivated the search
for a sufficient set of mutation operators, defined, in the context of
mutation testing, as a set such that a test suite achieving an AM
of 1.0 on mutants generated from the set is likely to achieve a high
AM on the full set of mutants.

2.2 Sufficient Operators
Given a subset σ of the mutation operators {µ1, . . . , µz} and

a test suite S, we define AMSσ(S) as the fraction of the non-
equivalent mutants generated by σ that are killed by S. The muta-
tion testing sufficient set problem is that of finding a set σ such that
AMSσ(S) = 1.0 implies a high AM(S) with high probability.
Previous empirical work on a sufficient set of operators for mu-

tation testing is limited. Wong [26] compared a set of 22 mutation
operators to a set w of two mutation operators; he found that test
suites with AMRw = 1.0 had an average AM of 0.972, while w

352

generated 82.54% fewer mutants on average than the full set of 22
mutation operators did. Offutt et al. [20] compared the same set
of 22 mutation operators with four fixed subsets of those mutation
operators. They judged one subset, called E (a subset with five mu-
tation operators) to be best, based on the fact that test suites with
AMSE = 1.0 had high AM (average 0.995) while E generated
77.56% fewer mutants on average.
Finally, Barbosa et al. [4] defined a sequence of six guidelines for

selecting a sufficient set, such as “Consider one operator of each
mutation class” and “Evaluate the empirical inclusion among the
operators”. They carried out the guidelines on the 71 operators that
were implemented in Proteum as of 2001. They thus obtained a
set SS27 of 10 operators such that test suites with AMSSS27 =
1.0 had AM of 0.996 on average, while SS27 generated 65.02%
fewer mutants than the full set. They showed that on their subject
programs, the final sufficient set determined a higher AM than the
Offutt et al. or Wong sets.
The experimental subjects across the two experiments of theWong

study were eight Fortran programs, which were translated into C so
that coverage could be measured; the C programs had a total of
463 raw lines of code (lines including comments and whitespace),
or an average of approximately 57.9 raw lines of code each. The
subjects in the Offutt et al. study were 10 Fortran programs with a
total of 206 statements, or an average of 20.6 statements each, and
the subjects in the Barbosa et al. study were 27 C programs with
a total of 618 LOC, or an average of 22.89 LOC each. The Wong
subjects have no struct definitions, and the descriptions of the
Offutt et al. and Barbosa et al. subjects suggest that they also have
few complex data structures, making it unclear whether the results
of their experiments would carry over to complex C programs and
object-oriented programs.
There are three main differences between this previous work and

our work. First, we use somewhat larger subject software (see Sec-
tion 3.1) that has a wide range of control and data structures, in-
cluding structs. Second, while the previous studies are focused
on mutation testing, ours is focused on mutation analysis. We are
therefore interested in finding a sufficient set that will allow us to
predictAM accurately across a wide range of values, not just close
to the 1.0 level. Third, we treat the problem as a standard variable
reduction problem. We thus take into account all possible subsets
of operators, including those not considered by the operator selec-
tion procedures used by previous researchers.

2.3 Mutation Analysis
In the early 1990s, researchers began to measure and compare

accurately the effectiveness of testing strategies by measuring how
many faults the testing strategies find. Frankl and Weiss [12] and
Hutchins et al. [15] manually seeded faults in subject software, and
measured how many faults were found by different test procedures.
Later, Frankl and Iakounenko [11] performed similar experiments,
but on a subject for which real faults identified during testing and
operational use were known; the faults were re-seeded into the soft-
ware to create the faulty versions.
Other researchers, such as Briand et al. [6, 5], Mayer and Sch-

neckenburger [19], Do and Rothermel [9], and Tuya et al. [24], later
seeded faults in subject software using mutation operators from the
mutation testing literature. The advantage of this practice over
hand-seeding is greater replicability, and the advantages of using
mutants over both hand-seeded faults and real faults include de-
creased effort and greater numbers of potentially faulty versions,
leading to greater statistical significance of results.
Andrews et al. [2, 3] showed that, despite the relative simplic-

ity of the faults introduced by mutation operators, mutants behaved

Program NLOC NTC NMG NM

printtokens 343 4130 11741 1551

printtokens2 355 4115 10266 1942

replace 513 5542 23847 1969

schedule 296 2650 4130 1760

schedule2 263 2710 6552 1497

tcas 137 1608 4935 4935

totinfo 281 1052 8767 1740

Table 1: Description of subject programs. NLOC: Net lines of

code. NTC: Number of test cases. NMG: Number of mutants

generated by all mutation operators. NM: Number of selected

mutants that were non-equivalent.

very similarly to real faults for the purposes of measuring test effec-
tiveness. TakingAF to stand for the fraction of hand-seeded or real
faults eliminated by a test suite, they showed that average AM(S)
was similar to average AF (S) for the real faults of the Frankl and
Iakounenko software [12] but higher than average AF (S) for the
hand-seeded faults of the Hutchins et al. software [15]. This in
turn suggests that automatically generating mutants and computing
AM is a reasonable method for evaluating test effectiveness.
In a preliminary study of the sufficient set problem for mutation

analysis, Siami Namin and Andrews [23] treated the problem as a
variable reduction problem, and used three analysis procedures to
identify a reduced set of operators. In this paper, we complete and
extend this work, replacing the forward-selection procedure used
there for all-subsets regression by a more accurate and appropriate
procedure (cost-based LARS, to be described below). We also ex-
tend it by performing cross-validation of the results, and analyzing
the resulting sufficient set and model.
In [23] and this paper, we measure test suite effectiveness rela-

tive to non-equivalent mutants only, not relative to all (equivalent
or non-equivalent) mutants. We do this in order to focus on finding
a good set of mutation operators for researchers who are doing ex-
periments in which testing techniques are compared. By definition,
equivalent mutants are those that cannot be killed by any testing
technique, so in such experiments, researchers are typically unin-
terested in the (identically poor) effectiveness of testing techniques
on those mutants.
However, it should be noted that ignoring equivalent mutants

produces larger differences in measured effectiveness between test-
ing techniques, since all kill ratios are scaled up. Similar research
to ours could be done with test effectiveness measured relative to all
mutants, and this might change the results, since some mutation op-
erators might generate higher numbers of equivalent mutants than
others.

3. EXPERIMENTAL PROCEDURE
In this section, we describe the subject software used in the ex-

periment, our method for collecting the raw data on which the sta-
tistical analysis was based, and our method for calculating the costs
of the mutation operators.

3.1 Subject Software
Our subject software is the seven Siemens programs [15], avail-

able via the Subject Infrastructure Repository (SIR) at the Univer-
sity of Nebraska-Lincoln. This is a diverse collection of C pro-
grams that include code involving integer and floating-point arith-
metic, structs, pointers, memory allocation, loops, switch state-
ments and complex conditional expressions. The programs total

353

2188 NLOC (net lines of code, or lines of code without comments
or whitespace), and thus have an average of 312.57 NLOC each.
One advantage of the Siemens programs is that each comes with
a large pool of diverse test cases, first written by Hutchins et al.
and augmented by Rothermel et al. [22]. These pools allow a wide
range of different test suites to be constructed following different
algorithms or coverage criteria, each of which may represent an ar-
bitrary test suite chosen by a software engineer. Detailed descrip-
tive statistics of the Siemens programs are found in Table 1.
There are practical constraints on the size of programs we were

able to use. To do all the computations that went into the ex-
periments reported here took about 10 weeks of continuous CPU
time, not counting false starts. Most of this CPU time consisted
of running all test cases on a large, representative sample from
the generated mutants. Increasing the size of the subject programs
would have meant quadratically increasing the amount of CPU time
needed, since a larger program means both more mutants and more
test cases. Larger programs might contain more complex paths and
more complex cause-effect chains from faults to failures, so it is
possible that such programs might behave differently than those
we studied. However, the Siemens programs contain most of the
control and data structures used in even large-scale C programs,
mitigating this threat to external validity.

3.2 Data Collection
For each subject program, we generated all the mutants from all

the operators defined by Proteum; see column NMG in Table 1 for
the total numbers. Exploratory work with the smallest program
(tcas) indicated that using all mutants in our experiment would
take too much processing to be feasible, so for each of the other
programs we selected 2000 mutants randomly. In order to spread
the selected mutants evenly over all mutation operators, we com-
puted the ratio 2000/NM(P) and selected that ratio of the mutants
from each mutation operator.
We then ran all test cases in the entire test pool on all selected

mutants, and recorded which test cases killed which mutants. Mu-
tants that were not killed by any test cases were considered equiv-
alent, for the purposes of the experiment. The remaining number
of non-equivalent mutants is listed as column NM in Table 1. Note
that the number for tcas is higher because we did not start by
selecting 2000 mutants.
For each program, we generated 100 test suites, consisting of

two of each size from one test case to 50 test cases. We chose
these sizes because exploratory work indicated that this provided
test suites with a broad range of AM values, from 0.0 to 1.0. The
test cases that went into each suite were randomly chosen. We then
tabulated which test suites killed which mutants, and computed the
value of Ami(S) for each mutation operator µi and each test suite
S. Finally, we computed the actual AM value for all test suites.
Note that the notion of equivalence used in the calculation of AM
is based on all test cases in the test pool, not just on the selected test
suites; thus the calculation takes into account both “easy” mutants
(those killed by many test cases) and “hard” mutants (those killed
by few test cases).
The data collection therefore yielded, for each of the seven pro-

grams, and for each of the 100 subject test suites, values for AM
and for Ami for each i, 1 ≤ i ≤ 108. These are the values that we
used in the subsequent analysis.

3.3 Cost Calculation
Since we are interested in comparing the numbers of mutants

generated by different sets of mutation operators, we also computed
the “cost” associated with each operator, such that an operator µi

has a lower cost than an operator µj if µi generates fewer mutants
than µj , when averaged across all subject programs.
Thus we define cost(i, P), the cost of µi for program P , as the

number of non-equivalent mutants generated by µi, divided by the
total number of non-equivalent mutants of P generated by all op-
erators. We then computed the overall cost cost(i) of µi as the
average of cost(i, P) across all subject programs P . This com-
putation avoids biasing the measurement of cost toward programs
which have more mutants overall.

4. ANALYSIS AND CROSS-VALIDATION
In this section, the main section of the paper, we first (Section

4.1) describe alternative approaches to the model selection prob-
lem, including the method (cost-based LARS) that we adopted. In
Section 4.2, we describe the results of the model selection proce-
dure on the data from all seven subject programs.
In our application of linear models, an important concern is the

risk of overfitting, i.e. the risk of finding a model of the data that
fits the available data (including the noise in that data) so well that
it would fail to fit other data. To check our procedure for over-
fitting, we performed a sevenfold cross-validation. The procedure
and results of this cross-validation are contained in Section 4.3.
As a further check on our results, we applied two other subset

selection procedures to see whether they yielded substantially dif-
ferent results. The outcome of this study is contained in Section
4.4.

4.1 Approaches to Subset Selection
As pointed out in Section 1.1, we seek a subset of the mutation

operators, and a linear model, that will allow us to predict AM ac-
curately from the Ami measures associated with the subset. This
can be viewed as a classic variable reduction or subset selection
problem, where we try to find a subset of predictor variables and a
linear model that predicts accurately the value of a response vari-
able. In our study, the predictor variables are the Ami measures,
and the response variable is AM .
An obvious, and inefficient, approach to the subset selection

problem is to construct all possible subsets, perform a linear regres-
sion on each of them, and then derive a sequence M1, M2, . . . , Mi

of models in which eachMi is the best model with the same cost or
lower cost. Since for us this would mean constructing 2108 models,
this is not feasible.
Other traditional subset selection algorithms include the greedy

algorithm known as forward selection [10]. In forward selection,
we first select the predictor variable with the highest correlation
to the response variable, and then iteratively select the predictor
variable with the highest correlation to the residual resulting from
the application of the previous predictors. These algorithms are
effective when the number of variables is small, but can fail to find
the best model when the number of variables increases.
Least Angle Regression (LARS) is a generalization of the for-

ward selection and other algorithms, employing a more effective
formula and therefore using less computer time [10]. Like for-
ward selection, the LARS procedure starts with a model with all
coefficients equal to zero. The procedure finds the predictor vari-
able, xj1 , which is the most correlated predictor with the response
variable. The procedure takes a step in the direction of this predic-
tor until some other predictor, xj2 , has the most correlation with
the current residual. Unlike forward selection, however, instead
of continuing along xj1 , LARS proceeds in a direction equiangu-
lar between the two predictors until a third variable xj3 shows up.
LARS then proceeds in a direction equiangular between xj1 , xj2

and xj3 , and so on. LARS is preferred over the traditional methods,

354

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted Detection Ratio

A
c
tu

a
l
D

e
te

c
ti
o
n
 R

a
ti
o

Figure 1: Actual vs. predicted value of AM for the chosen

model, with x = y line.

because it is computationally less expensive and yields models that
predict the response variable more accurately.
For our application, we needed a slight modification to LARS.

Given two sets of operators that yield models of identical accuracy,
we prefer not necessarily the set that is smaller, but the set that
yields fewer mutants, i.e. that has the lowest total cost (see Sec-
tion 3.3). The third author therefore adapted the implementation of
LARS in the R statistical package [25] so that it optimized total cost
of predictor variables, rather than merely the number of predictor
variables. The resulting algorithm, which we refer to as Cost-Based
LARS (CBLARS), was applied to the data from the seven subject
programs.

4.2 CBLARS Subset Selection
CBLARS yielded a sequence of models with increasing total cost

of mutation operators and increasingly good prediction of AM ,
as measured by the adjusted R2 value1. We chose the first model
in the sequence with an adjusted R2 value of 0.98 or more. This
threshold is subjective, and was based on our subjective balancing
of the cost and accuracy of the selected models; however, we note
that our cross-validation (see below) indicated that overfitting did
not occur at this level. Inspection of leverage and Cook distance
measures2 provided by R indicated that the model was not being
unduly skewed by any of our individual observations. As a test
for goodness of fit, we checked the residuals of the model using a
quantile-quantile plot3. This showed that the residuals have normal
distributions, as desired.
Summary statistics of the resulting model are shown in Table

2. The model itself is shown in Table 3, with the operators in the

1R2 is a measure of goodness of fit, but tends to automatically
reward models with a large number of predictors. Adjusted R2

is a related measure that avoids this problem by imposing a small
penalty for each additional predictor.
2The leverage of a data point is a measure of how large an effect
the point has on a regression model; the Cook distance of a data
point is a measure of how much a model would change if the point
were deleted.
3A quantile-quantile plot is a method for visualizing whether two
data sets have similar distributions. It can be used to detect whether
the residuals (the differences between predicted and actual values)
have the desired normal distribution.

Model number in sequence 42

Number of operators 28

Number of mutants 1139

Percentage of mutants 7.40

Adjusted R2 0.98

Df 671

Residual standard error 0.03

Variance of predicted values 0.04

MSE < 0.01

Table 2: Summary statistics of the model selected by the

CBLARS procedure.

model listed by abbreviation, description, and coefficient of Ami;
the intercept of the model is also given. The descriptions come
from the literature on C mutation operators [1] and the Proteum
tool [7]. A plot of the actual value of AM (y-axis) vs. the value
predicted by the model (x-axis) is found in Figure 1.
The model identifies a sufficient set of 28 mutation operators that

generate only 1139 mutants across all seven programs. This repre-
sents 7.40% of the mutants generated by all 108 Proteum operators,
or a saving of approximately 92.6%. Thus, although a relatively
large number of mutation operators are included in the sufficient
set, they tend to all generate a relatively small number of mutants.
We defer further discussion of the particular model selected by the
CBLARS procedure until Section 5.

4.3 Cross-Validation
To check our procedure for overfitting, we performed a seven-

fold cross-validation. In cross-validation, we use a subsample of
the available data as a training set to develop a model, apply the
model to the rest of the data (the test set), and measure how well the
model applies to the test set. In K-fold cross-validation, we parti-
tion the data intoK subsamples, and performK cross-validations,
using each subsample as a test set. For our application, the most ap-
propriate selection of the data for each subsample is the data from
one particular program, since we want to see how accurately the
model resulting from our subset selection procedure would be for
other programs.
For each program P , we therefore set aside the data for P as

the test set, and performed the CBLARS procedure on the training
set formed by the data from the other six programs. Because we
wanted to achieve a reduction in number of mutants generated of at
least 90%, we considered only the models from the sequence that
generated 10% or fewer of the mutants of the program. We then
applied each model in the sequence to program P , measuring how
well it fit by measuring the mean squared error (MSE).
We found that within the sequence of models observed, the MSE

initially fluctuated but then went down to a reasonable level. An
example of this phenomenon is illustrated in Figure 2, where the
x-axis represents the ordinal number of the model generated by
CBLARS, the y-axis represents the MSE of the model on the test
set, and each point represents one model from the sequence.
We noted that for all programs, the first model that achieved an

adjusted R2 of 0.98 or more had close to minimal MSE. We there-
fore selected 0.98 as our threshold for adjusted R2, and selected
the first model that achieved that level of adjusted R2 or higher. To
measure the goodness of fit of the selected model, we computed the
square of the Pearson correlation (r2), which measures how much
of the variability of actual AM could be explained by variation in
predictedAM . Since an important application of mutation analysis

355

Name Description Coefficient NumMut

IndVarAriNeg Inserts Arithmetic Negation at Non Interface Variables 0.162469 126

IndVarBitNeg Inserts Bit Negation at Non Interface Variables 0.168583 121

RetStaDel Deletes return Statement 0.051984 67

ArgDel Argument Deletion -0.016532 12

ArgLogNeg Insert Logical Negation on Argument 0.131566 30

OAAN Arithmetic Operator Mutation 0.041376 71

OABN Arithmetic by Bitwise Operator -0.02075 27

OAEA Arithmetic Assignment by Plain Assignment -0.194022 2

OALN Arithmetic Operator by Logical Operator 0.022149 40

OBBN Bitwise Operator Mutation -0.023452 3

OBNG Bitwise Negation -0.00275 6

OBSN Bitwise Operator by Shift Operator -0.035337 3

OCNG Logical Context Negation 0.097971 57

OCOR Cast Operator by Cast Operator 0.024727 9

Oido Increment/Decrement Mutation 0.069952 14

OLAN Logical Operator by Arithmetic Operator 0.027124 119

OLBN Logical Operator by Bitwise Operator -0.00362 67

OLLN Logical Operator Mutation 0.041048 25

OLNG Logical Negation 0.06966 78

OLSN Logical Operator by Shift Operator -0.003438 45

ORSN Relational Operator by Shift Operator 0.160376 91

SGLR goto Label Replacement 0.07605 1

SMTC n-trip continue 0.031519 9

SMVB Move Brace Up and Down -0.062404 2

SSWM switch Statement Mutation -0.020412 15

STRI Trap on if Condition 0.094324 85

SWDD while Replacement by do-while 0.032363 1

VGPR Mutate Global Pointer References -0.091281 13

(Intercept) -0.036398

Table 3: Sufficient set and linear model resulting from cost-based LARS analysis of the mutation operators.

356

Figure 2: Plot of model number (x-axis) vs.MSE (y-axis) for the

sequence of cross-validation models generated by the CBLARS

procedure on the printtokens subject program.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted

A
c
tu

a
l

Figure 3: Values for AM predicted by cross-validation models

vs. actual values for AM , with x = y line and smoothing spline
trend line. The graph shows all data points from all subject

programs.

Program MSE r2 Spearman Kendall

printtokens 0.008 0.930 0.769 0.601

printtokens2 0.003 0.924 0.967 0.849

replace 0.008 0.963 0.973 0.876

schedule 0.003 0.747 0.873 0.725

schedule2 < 0.001 0.982 0.911 0.755

tcas 0.022 0.936 0.965 0.866

totinfo 0.015 0.841 0.900 0.765

Table 4: Goodness-of-fit measures on cross-validation models.

Each row represents the model trained on the other programs

and applied to the indicated program.

is in comparing testing techniques, we also computed the Spearman
and Kendall rank correlations, as measures of the degree to which
the predictedAM would rank the effectiveness of two given testing
techniques correctly.
The results, for each of the seven cross-validation models, are

in Table 4. The r2 values are never lower than 0.747, and the
Spearman and Kendall correlations are low only in the case of the
printtokens subject program, for which most predicted and ac-
tual values of AM are clustered around 0.8, and for which MSE
was low and r2 high. These values indicate that overfitting was not
a major problem when applying the stated procedure to the data
from any six of the programs. This in turn lends support to the be-
lief that the model based on the data from all seven programs is not
overfitted, and that it would be a reasonable model to use on other
C programs.
Figure 3 offers a visualization of this data, by combining the data

from all seven cross-validation models into one figure. Each point
represents the predicted and actual values of AM for some test
suite of some subject program.

4.4 Other Subset Selection Procedures
To further validate our sufficient set selection procedure, we per-

formed two other statistical procedures from the literature [16, 17]
for the variable reduction problem. These procedures took cost into
account, but did not attempt to fit an optimal linear model. They
therefore provide a fresh perspective on the problem.
In Elimination-Based Correlation Analysis (EBCA), we repeat-

edly identify which pair of predictor variables is most highly cor-
related with each other, and we eliminate the one that has a higher
cost. We continue the procedure until no pair of variables has a cor-
relation higher than 0.90, the “very high” level from the standard
Guilford scale [13].
Cluster Analysis (CA) represents the level of similarity of vari-

ables by a dendrogram, a binary tree with variables at its leaves
such that more similar variables are grouped closer together. (R
is capable of generating such dendrograms.) Generally, two vari-
ables whose lowest common ancestor node in a CA dendrogram is
n levels up are more closely related than two whose lowest com-
mon ancestor node is m > n levels up. When applying CA to
the variable elimination problem, we identify sibling pairs of vari-
ables in the dendrogram that have correlation greater than 0.90 and
eliminate the one that has a higher cost. This may result in a some-
what different set of variables from that given by EBCA, since the
elimination of a variable may make two variables new siblings.
Performing EBCA and CA on our data yielded one sufficient set

for each procedure. Both sets were strict supersets of the set identi-
fied by CBLARS, indicating that CBLARS was indeed identifying
a core useful set of operators.
As with the CBLARS procedure (see Section 4.3), we performed

sevenfold cross-validation on the EBCA and CA procedures, to
see how cost-effectively they produced a sufficient set compared
to CBLARS. For each training set, we generated the EBCA and
CA sufficient sets, and then performed a linear regression to get the
best model resulting from the sets. We then measured the accuracy
of the model using the Mean Squared Error (MSE), and the cost of
the models using the percentage of mutants generated.
Figure 4 shows the results. CBLARS had a high MSE for one of

the subject programs (tcas), but on average its MSEwas not much
greater than that of the other two methods. However, the CBLARS
sufficient set generated over 30% fewer mutants on average than
either of the other techniques. This result lends support to the belief
that our CBLARS subset selection procedure made a good tradeoff
between cost and accuracy of the selected subset.

357

tc
a
s

to
ti
n
fo

s
c
h
e
d
u
le

s
c
h
e
d
u
le

2

p
ri
n
tt
o
k
e
n
s

p
ri
n
tt
o
k
e
n
s
2

re
p
la

c
e

a
v
e
ra

g
e

MSE_EBCA
MSE_CA
MSE_cbLARS

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(M
S

E
)

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

tc
a
s

to
ti
n
fo

s
c
h
e
d
u
le

s
c
h
e
d
u
le

2

p
ri
n
tt
o
k
e
n
s

p
ri
n
tt
o
k
e
n
s
2

re
p
la

c
e

a
v
e
ra

g
e

Cost_EBCA
Cost_CA
Cost_cbLARS

C
o
s
t
(%

U
s
e
d
 M

u
ta

n
ts

)

0
2
0

4
0

6
0

8
0

1
0
0

Figure 4: Comparison of mean squared error (left) and

cost (right) of cross-validation models produced by CBLARS,

EBCA and CA.

4.5 Summary
Our cross-validation indicates that the procedure for applying

CBLARS described in Section 4.2, when applied to a set of data
from six of our subject programs, yields an accurate prediction of
AM scores for test suites of the seventh subject program. This in
turn implies that our procedure for applying CBLARS, when ap-
plied to the data from all seven subject programs, would yield an
accurate prediction of AM scores for test suites of some other, ar-
bitrary eighth program.
We therefore believe that researchers faced with the problem of

efficiently evaluating the mutation adequacy ratio of a test suite S
of a program P can get an accurate estimate by carrying out the
following procedure:

• Generate the mutants of P from the 28 operators listed in
Table 3.

• Run S on all the resulting mutants.

• Measure the Ami ratios of S for each class of mutants.

• Apply the linear model in Table 3 to get an estimate of AM .

5. DISCUSSION
In this section, we compare our results to those of previous re-

searchers, give observations on the set of 28 operators selected by
our procedure, and discuss threats to the validity of our empirical
results.

5.1 Comparison to Previous Results
It is difficult to compare our results directly to the previous work

on the sufficient set problem, since we had somewhat different
goals. However, some general principles can be observed.
In the work of Wong [26], Offutt et al. [20], and Barbosa et al.

[4], the measure of goodness of a sufficient set σ was the average
AM of a test suite that achieved AMSσ = 1.0. In our work, the
goodness of a sufficient set is measured instead by measures such as
the adjusted R2 of the associated model. The results are therefore
not comparable directly.

However, we did observe that in the cross-validation, even with-
out applying the linear model – i.e. computing AMS on the suf-
ficient set – when the value of AMS was 1.0, the value of AM
was usually very high. This suggests that by generating the mu-
tants from the 28 identified operators and adding enough test cases
to kill all of them, a tester is likely to obtain a test suite that would
kill a high percentage of the mutants that would be generated by all
operators.
In terms of cost saving, we report a reduction of approximately

92.6% in the number of mutants generated by only the sufficient
set of operators. Although this is a higher saving than the highest
reported so far (82.54% by Wong), it applies to a much larger set
of mutation operators (108 as opposed to the 22 of Wong’s study).
However, the procedure followed in this paper considers all possi-
ble subsets of operators, so it is likely that the results would be com-
petitive with previous results even if we had started with a smaller
initial set of operators.

5.2 Mutation Operators Selected
Here we make some qualitative observations about the mutation

operators selected by the statistical procedure we followed.
We note that in all the selection procedures that we followed,

whether LARS, EBCA or CA, no mutation operator that mutated
constants was ever selected. For instance, the operator Cccr, which
replaces one integer or floating-point constant by another from the
program of the same type, was never selected in any CBLARS
model, and was eliminated by EBCA and CA. This contradicts con-
ventional wisdom on the sufficient set problem, which suggests that
one operator from each operator category (i.e., constant, statement,
variable and operator) should be chosen [4].
The immediate cause of the lack of constant mutation operators

is that the Ami of each of the constant mutation operators was
highly correlated with the Amj of some other operator, but the
constant mutation operators generated more mutants. The deeper
cause may be that the constant mutation operators produce many
mutants, each of which has a very similar behaviour to some mutant
resulting from mutating some source code relational operator or
arithmetic operator.
We also note the high proportion of negation-like mutation oper-

ators in the sufficient set, such as ArgLogNeg (“insert logical nega-
tion on argument”). Of the 108 Proteum operators, only 28 were
selected for the sufficient set, or 26%. However, of the 12 Proteum
operators that mention negation in their description, six were se-
lected, or 50%. This may be because such an operator generates
only one mutant per location, as opposed to, for instance, a mu-
tation that replaces an arithmetic operator with one out of a set of
arithmetic operators.

5.3 Threats to Validity
Threats to external validity include the use of C programs that are

still relatively small compared to commercial programs. This threat
is mitigated by the facts that the C programs are large and complex
enough to include a broad range of control and data structures, and
that the three dominant languages in programming today (C, C++
and Java) all use very similar syntax in their non-OO constructs.
However, larger programs may have more complex control and data
flow patterns, which may lead to different results. We also note
that we have not attempted to handle object-oriented constructs.
Mutant generators that implement class mutation operators, such as
MuJava [18], are better suited to evaluation of sufficient mutation
operator sets for object-oriented programs.
A threat to construct validity is the selection of 2000 mutants

from each program other than tcas. This was necessary to make

358

the study feasible, but could have resulted in decreased accuracy
of measurement. We mitigated this risk by ensuring that the same
proportion of mutants from each operator was chosen, and by run-
ning all test cases on the selected mutants in order to accurately
calculate the AM and Ami measures for all generated test suites
relative to the selected mutants.
Threats to internal validity include the correctness of the mu-

tant generation, compilation, running and data collection processes.
We rely on Proteum for mutant generation, and minimize the other
threats to internal validity by reviewing our data-collection shell
scripts and doing sanity checks on our results.

6. CONCLUSIONS AND FUTUREWORK
Using statistical methods, we have identified a subset of the com-

prehensive Proteum mutation operators that generates less than 8%
of the mutants generated by the full set, but that allows us to accu-
rately predict the effectiveness of a test suite on the mutants gener-
ated from the full set of operators. Cross-validation indicated that
the procedure that we used to identify the set was reasonable and
that our results would extend to other programs. Using the model,
researchers can therefore accurately estimate the effectiveness of a
test suite on a program without having to generate all of the mutants
of the program.
This research is part of a long-term goal of supplying researchers

and practitioners with tools to allow them to accurately measure the
effectiveness of testing techniques. By decreasing the cost of mu-
tation analysis, our work makes this method of effectiveness mea-
surement open to more researchers and may ultimately lead to stan-
dard ways of measuring testing technique effectiveness. The quali-
tative observations we made about the sufficient set we found – for
instance, the absence of constant mutation operators and the pres-
ence of operators that tend to produce few mutants at each location
– may also help in designing a set of mutation operators suitable
for practitioners to use in mutation testing.
Future work includes the application of the same procedure to

test suites constructed to achieve given coverage measures, in order
to ensure that the sufficient set identified is not specific to randomly-
selected suites. We also plan further repetitions and validations
of the proposed subset selection procedures, and extension of the
experiments to mutation operators specific to object-oriented pro-
grams.

7. ACKNOWLEDGEMENTS
Thanks for useful comments and suggestions to the faculty ad-

visors at the Doctoral Symposium at ICSE 2007, in particular to
David Notkin, Mauro Pezze, David Rosenblum, Barbara Ryder,
and Mary Shaw. Thanks to Hyunsook Do and Gregg Rothermel
for their help in accessing the Siemens programs, and to José Car-
los Maldonado and Auri Vincenzi for access to Proteum. Thanks
also to Aditya Mathur for bibliographic references and useful dis-
cussion. The R statistical package [25] was used for all statistical
processing. This work is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and an Ontario
Graduate Scholarship.

8. REFERENCES

[1] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu,
E. W. Krauser, R. J. Martin, A. P. Mathur, and E. Spafford.
Design of mutant operators for the C programming language.
Technical Report SERC-TR-41-P, Department of Computer
Science, Purdue University, Lafayette, Indiana, April 2006.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proceedings of
the 27th International Conference on Software Engineering

(ICSE 2005), St. Louis, Missouri, May 2005. 402-411.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. Siami
Namin. Using mutation analysis for assessing and comparing
testing coverage criteria. IEEE Transactions on Software
Engineering, 32(8):608–624, August 2006.

[4] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi.
Toward the determination of sufficient mutant operators for
C. Software Testing, Verification and Reliability,
11:113–136, 2001.

[5] L. C. Briand, Y. Labiche, and M. M. Sówka. Automated,
contract-based user testing of commercial-off-the-shelf
components. In Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), pages
92–101, Shanghai, China, 2006.

[6] L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to
empirically investigate test coverage criteria based on
statechart. In Proceedings of the 26th International
Conference on Software Engineering (ICSE 2004), pages
86–95, Edinburgh, UK, May 2004.

[7] M. E. Delamaro and J. C. Maldonado. Proteum – a tool for
the assessment of test adequacy for C programs. In
Proceedings of the Conference on Performability in

Computing Systems (PCS 96), pages 79–95, New Brunswick,
NJ, July 1996.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer.
Computer, 11:34–41, April 1978.

[9] H. Do and G. Rothermel. On the use of mutation faults in
empirical assessments of test case prioritization techniques.
IEEE Transactions on Software Engineering, 32(9):733–752,
2006.

[10] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32(2):407–499, 2004.

[11] P. G. Frankl and O. Iakounenko. Further empirical studies of
test effectiveness. In Proceedings of the 6th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, pages 153–162, Lake Buena Vista, FL, USA,
1998.

[12] P. G. Frankl and S. N. Weiss. An experimental comparison of
the effectiveness of branch testing and data flow testing.
IEEE Transactions on Software Engineering, 19(8):774–787,
August 1993.

[13] J. P. Guilford. Fundamental Statistics in Psychology and
Education. McGraw-Hill, New York, 1956.

[14] R. G. Hamlet. Testing programs with the aid of a compiler.
IEEE Transactions on Software Engineering, 3(4):279–290,
July 1977.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering

(ICSE 1994), pages 191–200, Sorrento, Italy, May 1994.

[16] I. Jolliffe. Disgarding variables in a principal component
analysis. I: Artificial data. Applied Statistics, 21(2):160–173,
1972.

[17] I. Jolliffe. Disgarding variables in a principal component
analysis. II: Real data. Applied Statistics, 22(1):21–31, 1973.

359

[18] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava : An automated
class mutation system. Software Testing, Verification and
Reliability, 15(2):97–133, June 2005.

[19] J. Mayer and C. Schneckenburger. An empirical analysis and
comparison of random testing techniques. In Proceedings of
the International Symposium on Empirical Software

Engineering, pages 105–114, Rio de Janeiro, Brazil, 2006.

[20] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and

Methodology, 5(2):99–118, April 1996.

[21] A. J. Offutt and R. Untch. Mutation 2000: Uniting the
orthogonal. In Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, pages 45–55, San
Jose, CA, October 2000.

[22] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Proceedings of the
International Conference on Software Maintenance (ICSM

’98), pages 34–43, Washington, DC, USA, November 1998.

[23] A. Siami Namin and J. H. Andrews. Finding sufficient
mutation operators via variable reduction. In Mutation 2006,
Raleigh, NC, USA, November 2006.

[24] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva. Mutating
database queries. Information and Software Technology,
49(4):398–417, 2007.

[25] W. N. Venables, D. M. Smith, and The R Development Core
Team. An introduction to R. Technical report, R
Development Core Team, June 2006.

[26] W. E. Wong. On Mutation and Data Flow. PhD thesis,
Purdue University, December 1993.

360

