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Motivation

Problem Statement

= Utilization of the multi-core technology

= Auto-tuning - Development of proper techniques for
=  (Creating an optimum number of threads

=  Allocating threads to an optimum number of CPUs

* Handled by the resource manager provided by the
operating system



Motivation
Research Question and Our Approach

= Research question:

= Investigate the effect of two parameters on performance:

=  The number of threads

. The number of CPUs

* Modeling using linear regression and neural networks

Performance = f(No.Threads, No.CPUs)



Related work

Java Benchmarks

» Java Grande Benchmark (Bull et al., 2000)

=  Three sections with inputs for the size of the data
1. Low level operations
2. Kernels computation

3. Large scale applications

= Sequential converted to parallel (Smith et al, 2001)

u USiIlg threads, Barrier, fork, join, synvhronization

= DeCapo (Blackburn et al., 2006)

=  Three inputs: small, default, and large

= Tak Benchmark, Java Generic Library (JGL), RMI, JavaWorld



Related work

Auto-Tuning Performance

* Dynamic allocation of threads and CPUs

* Identifying the near optimum configuration of tuning

parameters from a search space (Werner-Kytl and Tichy,
2000)

= Reducing the search space using the characteristic
information of parameterized parallel patterns (Schaefer,

2009)

=  Number of threads, load per worker, number of worker threads,
etc.

* Dynamic approach of increasing and decreasing the
number of threads (Hal et al., 1997)

=  Adaptive thread management



Experimental Procedure
Goal and Approach

* Goal - Study relationships among performance, number
of threads, and number of CPUs

= Approach
= Modeling

=  Multiple linear regressions
=  Neural networks
=  Run a selected benchmark

= Observe: performance while number of threads and CPUs are
controlled

=  Apply linear regressions and neural networks:

= Independent variables “number of threads™ and “number of
CPUs”

=  Dependent variable “performance”



Experimental Procedure

Generation of Solaris Containers

* Introduced by Solaris 10

* Resource management for applications using projects
=  Workload control

=  Security control by restricting access

= Generation
1. k=number of CPUs
2. Forkinl,2,4,6,8,16
3. create (pset.max = k, pset.min=pset.max)

=  Monitor using mpstat command



Experimental Procedure
Machines Used

=  Sun Fire T1000
=  UltraSPARC TI processor 1.2 GHz, 32 GB memory

= Supporting 32 concurrent hardware threads

= Suitable for:

=  Tightly coupled multi-threaded applications

=  Computational less expensive threads: serving more threads

=  Sun SPARC Enterprise M3000
= SPARC64 VII processor 2.75 GHz, 64 GB memory
=  Supporting eight concurrent hardware threads

= Suitable for:

=  Single threaded workloads



Experimental Procedure
Benchmarks Used

= Java Grande benchmark

Section one: low level computations

" ForkJoin: Forking and joining threads
* Barrier: Barrier synchronization
=  Syn: Synchronization of blocks

Section two: kernel processes

=  Fourier coefficient analysis
= LU factorization

=  Over-relaxation

= [DEA encryption

=  Sparse matrix multiplication

Section three: large scale applications
=  Molecular simulation
=  Monte Carlo simulation

= 3D ray tracer
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Experimental Procedure
Setup

=  For T1000 machine:

= (Created 5 containers (projects)

= One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU
=  For M3000 machine:

= (Created 3 containers

=  One-CPU, Two-CPU, Four-CPU
* (Commands used:
" poolcfg: To create pools and processor sets

" projadd :To create projects

" mpstate :to monitor the assignment and utilization
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Experimental Procedure
Setup (con’t)

= Ran each benchmark for:
= A set of threads ranging from 1 to 50
=  For each container on each machine

=  Performance was measured

= @Given by the output of the benchmark used
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Data
Analysis

]

Visualization

i
3

Zaction Darrhr Teunemam = TP

= e CPl
T CIPLY
Fear CFLI
gt CPL
By TR

i
'

i
1

(a) Sectionl-Barrier Tournament

L

b Ferrr e

(d)

A = 1000
- Crm TP
& Tewm CPLU
= FoarOPU
= [Eght P
& s TP
]
L e < “‘H‘! 3
g g - e E
2 phy e T T
;:"_h“"‘-r_'_ i e ke
I R s, sl
o 2 2 = « o=
HoTE
] Sectiond-

SparseMotmultKernelSize A

g i e

Srcihond Moy nunSaad = Ty

= g P
Towr CFR
Foar TP

1+
1
W

Elgnt CPU
a ity SO

(o) Section3-MaolDynBEunSizeA

SscflaniForslinSmee ~ T1000

L
L]

(k) Sectionl-ForkJoinSimple

Sesgas? LuPecsameEizes - Tramd

OawitPL
& T TR
=+ FourCHJ

gl Pt
L] 2
1 1

Bl = i i)
T
ES
E
i
-

- P
o o e s e T
g
o o
T T T T T T
= 10 m = - m
YaTheamn

(h) Section3-MonteCarloBaunsize A

Exclioe | Sy neeftos -~ TI1000

Cwem T

L

1
LES ]

1

]

d#

o wafoam e
]

12

FioThsadn

(o) Sectionl-Synechethod

Secticn IS0 AR ameSices = TEI00

= — iren TFU
. Tasg TR
=+ P DS
- - = iEighl TR
.‘_‘”.. Shmaar P
O

(f) Section2-50RKernelSizeA

vy [ imcai™ = T3]

- s T
& TwaTE)
=+ Faur 48U
5 = gt

= .."'ﬁ-'-"-u B . e
E -I'l"'-l:l'_rmhpq.d'f‘_t__t"_';l- m{. 1:|. f_i_ﬂ-_:l""":H."-
g i e it o e

(1) Section3dBayTracerBunisizes



Data Analysis

Multiple Linear Regressions

= Fitting various models of the form:
Y=C,+C.X,+C,. X, +..+C X +¢
C,: Intercept

. Coefficients regression

X .: Explanatory variables

Y :  Response variable

* Goodness of fit:
R-squared: how much of variation of one variable cab be
explained by another one.

Mean Square Error (MSE): mean of least squared error 14



Data Analysis

Multiple Linear Regressions

= Fitting various models of the form:
Performance=C, +C,.(# CPU)
Performance = C, + C,.(#threads)
Performance = C, + C,.log(# CPU)
Performance = C, + C,.log(#threads)
log(Performance) = C, + C,.log(# CPU )
log(Performance) = C, + C,.log(#threads)
Performance =C, + C,.(# CPU) + C,.(#threads)
Performance = C, + C,.log(# CPU) + C,.(#threads)
Performance =C, + C,.(# CPU) + C,.log(#threads)
Performance = C, + C,.log(# CPU ) + C,.log(#threads)

log(Performance) = C, + C,.log(# CPU ) + C,.log(#threads)
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Data Analysis

Multiple Linear Regressions

" The best model found:
log(Performance) = C, + C,.log(# CPU ) + C,.log(#threads)

Benchmark T T MBI

Programs Ca 'y ' R | MSE | % 1 (2 R® | MSE
sectionl:Barriersimple 11460 [ 0149 | -1.350 | 0805 [ 0151 | 124973 | 0360 [ -1.366 | 0800 | 0164
Sectionl: Barrier Tonrnament 11.457 | 1.554 | -3.772 | O.T18 | 5.234 0817 0.817 | -3.071 | 0.651 | 4.024
sectionl:ForkJoinSimple 0.958 0519 | -1.620 | 0.742 | 0.776 | 9.951 0.899 | -1.212 | 0.977 | 0.026
Sectionl:SynchMethod 12,846 | -0.036 | -0.915 | 0.804 [ 0.076 [ 15.384 | -0.489 [ -1.033 | 0.681 | 0.650
sSectionl:SyncChbject 12,819 | -0.040 | -0.907 | 0801 [ 0.078 [ 15435 | -0.450 [ -1.052 | 0.677 | 0.439
sectiond: SerieslernelSize A 5424 0892 | 01=4 [ 08944 | 0.047 | 7507 [ 0.962 | 0.037 | 0,950 | 0.015
section2: LUFact KernelSizeA 4.602 1098 | -2.331 | 0753 | 1.763 | 3.454 0.5095 | 2,168 [ 0.790 | 1.000
section2: CrvptlernelSizeA 7483 0787 | -0.053 | 0.741 | 0.208 | 8.769 0887 | -0.023 [ 0.713 | 0.101
section2: SORKernelSized 2.179 0.799 | -0.748 | 0841 | 0,198 | 3.305 0.711 | -1L.062 [ 0866 | 0.160
section2: SparseMatmultKernelSize A | 2,452 | 0.710 [ 0,352 | 0836 [ 0039 | 5238 | 0.943 | 0132 [ 0.874 | 0.207
sectiond: MolDvnEunsize A 11768 | O.735 [ -1.130 [ O35 [ 02094 [ 131209 | 0412 [ -1.451 [ 0807 | 0.172
sectiond: MolDwvn'TotalSize A 2317 | 0.735 | -1.133 | 00842 | 0283 | -0.930 | 0414 [ -1.445 | 0.909 | 0.168
Sectiond: MonteCarloBEunSize A 5.112 0.828 0.153 | 0.938 | 0.044 T.1854 0.944 0.064 | 0.93% | 0.019
Sectiond: MonteCarloTotalSizeA -4.08 0.742 | 0,131 | 0.936 | 0.036 | -2.141 | 0,925 | 0.066 | 0,931 | 0.020
sectiond: RayTracerInitSizeA =851 0.240 | -0.200 [ 0,499 | 0.561 0.865 0187 | -0.547 | 0,194 | 0,958
sectiond: RayTracerRunSize A 6382 0.759 | 0008 | 0,933 | 0.039 | 9.324 0.856 | -0.445 [ 0847 | 0.070
sectiond: RayTracer TotalSizeA -3.568 | 0.741 | -0.027 | 0931 [ 0.039 [ -0.601 | 0.790 [ -0.516 | 0.861 | 0.065
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Data Analysis

Neural Network

* A machine language technique for classification and
regression problems

Nodes: Variables

= Inputs: (log(#CPU), log(#threads))
= Qutput: log(performance)

Connections: The relationships between variables
Internal layers:
= W and B: Matrices of weights and bias values (tuning)

=  Some other variables (15 in our case)
INTERNAL LAYER

INFUTS =YY MITPUT
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Data Analysis

Neural Network

= A 60-20-20 split was used

= 60% for training the model and coefficients

= 20% for tuning the model
= 20% for testing the model

Neural Networks.

[ Benchmark T 1000 MNSOOD
Programs R | MSE | R° | MSE
s1:Barriersumple D91 | 0051 | 0808 [ 0003
Sl:Barrier Tournament 0.924 | 0651 | 0.961 | 0.174
S1:ForkJoinSimple 0.996 | 0.034 | 0.995 [ 0.004
Sl:syvneMethod 0.992 | 0,002 | 0.963 [ 0.043
S1:8yneObject 0.994 | 0,002 | 0.937 [ 0.042
=2iherieshernelsize A 0931 [ 0101 | 0851 | U057
S2:LUFactKernelsizeA 0,982 | 0.036 | 0.961 [ 0.193
S2:CrvptRernel Size A 0.994 | 0.004 | 0,802 [ 0.020
52:50RKernelsizeA 0,984 | 0.002 | 0.963 | 0.011
S2:5parsehMatmultKernel- | 0971 | 0,017 | 0.923 | 0.035
sd:MolDyvnRunsizeA 04968 | 0057 | 0.838 [ 0.045
S3:MolDyn'TotalSize A 0.967 | 0.052 | 0.935 | 0.034
s3:MonteCarloRunSizeA 0.990 | 0003 | 0978 | 0.013
S3:MonteCarloTotalSize A | 0992 | 0,022 | 0.943 | 0.008
s3:Ray lracerlnitSizeA 0612 | 0,385 | 0.505 [ 0.496
Sd:RayTracerRunSizeA 0.986 | 0.007 | 0.8937 [ 0.045
=sd:RayTracer TotalSized 0985 | 0,006 | 0.938 | 0.056
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Data Analysis

Neural Network

» Compared to linear regression model
=  Similar model obtained with different coefficients

= Better precision
=  Higher R-squared, Lower MSE

Regression: R*=0.98437 Regression: R=0.99159
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Discussion

Limitations and Generalization

» Middle-size programs
* Simultaneous execution of programs in different containers
* Only one physical CPU for both T1000 and M3000
= Java versions
= 1.50nTI1000
= 1.6 on M3000
* The model developed still was the best

= #CPU and #threads not the only parameters influencing the
performance

20



Conclusion & Research Directions

* A model developed for estimating the performance of
multi-cores systems

* Similar to the practical models developed intuitively
* The optimal performance

= one-to-one thread to CPU assignment
* The work part of a project concerning auto-tuning

* Comparing sequential programs to the paralleled
versions

* Adaptive testing and auto-tuning for multi-core systems
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Thank You

International Workshop on Multi-Core Software Engineering, IWMSE 2010, Cape Town, South Africa
May 2010
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