
Predicting Multi-Core Performance
A Case Study Using Solaris Containers

Akbar Siami Namin

AdVanced Empirical Software

Testing and Analysis (AVESTA)

Department of Computer Science

Texas Tech University, USA

Akbar.namin@ttu.edu

Mohan Sridharan

Department of Computer Science

Texas Tech University, USA

Mohan.sridharan@ttu.edu

Pulkit Tomar

AdVanced Empirical Software

Testing and Analysis (AVESTA)

Department of Computer Science

Texas Tech University, USA

Pulkit.tomar@ttu.edu

International Workshop on Multi-core Software Engineering, IWMSE 2010, Cape Town, South Africa

May 2010

2

� Motivation

� Related work

� Experimental procedure

� Data analysis

� Discussion

� Conclusion and research direction

Outline

3

� Utilization of the multi-core technology

� Auto-tuning - Development of proper techniques for

� Creating an optimum number of threads

� Allocating threads to an optimum number of CPUs

� Handled by the resource manager provided by the

operating system

Motivation
Problem Statement

4

� Research question:

� Investigate the effect of two parameters on performance:

� The number of threads

� The number of CPUs

� Modeling using linear regression and neural networks

Motivation
Research Question and Our Approach

).,.(CPUsNoThreadsNofePerformanc ≅

5

� Java Grande Benchmark (Bull et al., 2000)

� Three sections with inputs for the size of the data

1. Low level operations

2. Kernels computation

3. Large scale applications

� Sequential converted to parallel (Smith et al, 2001)

� Using threads, Barrier, fork, join, synvhronization

� DeCapo (Blackburn et al., 2006)

� Three inputs: small, default, and large

� Tak Benchmark, Java Generic Library (JGL), RMI, JavaWorld

Related work
Java Benchmarks

6

Related work
Auto-Tuning Performance

� Dynamic allocation of threads and CPUs

� Identifying the near optimum configuration of tuning

parameters from a search space (Werner-Kytl and Tichy,

2000)

� Reducing the search space using the characteristic

information of parameterized parallel patterns (Schaefer,

2009)

� Number of threads, load per worker, number of worker threads,

etc.

� Dynamic approach of increasing and decreasing the

number of threads (Hal et al., 1997)

� Adaptive thread management

7

Experimental Procedure
Goal and Approach

� Goal - Study relationships among performance, number

of threads, and number of CPUs

� Approach

� Modeling

� Multiple linear regressions

� Neural networks

� Run a selected benchmark

� Observe: performance while number of threads and CPUs are

controlled

� Apply linear regressions and neural networks:

� Independent variables “number of threads” and “number of

CPUs”

� Dependent variable “performance”

8

Experimental Procedure
Generation of Solaris Containers

� Introduced by Solaris 10

� Resource management for applications using projects

� Workload control

� Security control by restricting access

� Generation

1. k = number of CPUs

2. For k in 1, 2, 4, 6, 8, 16

3. create (pset.max = k, pset.min=pset.max)

� Monitor using mpstat command

9

Experimental Procedure
Machines Used

� Sun Fire T1000

� UltraSPARC T1 processor 1.2 GHz, 32 GB memory

� Supporting 32 concurrent hardware threads

� Suitable for:

� Tightly coupled multi-threaded applications

� Computational less expensive threads: serving more threads

� Sun SPARC Enterprise M3000

� SPARC64 VII processor 2.75 GHz, 64 GB memory

� Supporting eight concurrent hardware threads

� Suitable for:

� Single threaded workloads

10

Experimental Procedure
Benchmarks Used

� Java Grande benchmark

� Section one: low level computations
� ForkJoin: Forking and joining threads
� Barrier: Barrier synchronization
� Syn: Synchronization of blocks

� Section two: kernel processes

� Fourier coefficient analysis

� LU factorization

� Over-relaxation

� IDEA encryption

� Sparse matrix multiplication

� Section three: large scale applications

� Molecular simulation

� Monte Carlo simulation

� 3D ray tracer

11

Experimental Procedure
Setup

� For T1000 machine:

� Created 5 containers (projects)

� One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU

� For M3000 machine:

� Created 3 containers

� One-CPU, Two-CPU, Four-CPU

� Commands used:

� poolcfg : To create pools and processor sets

� projadd : To create projects

� mpstate : to monitor the assignment and utilization

12

Experimental Procedure
Setup (con’t)

� Ran each benchmark for:

� A set of threads ranging from 1 to 50

� For each container on each machine

� Performance was measured

� Given by the output of the benchmark used

13

Data

Analysis
Visualization

14

� Fitting various models of the form:

Data Analysis
Multiple Linear Regressions

:

:

:

:

......

0

0

22110

Y

X

C

C

XCXCXCCY

i

i

nn

≠

+++++= ε

Intercept

Coefficients regression

Explanatory variables

Response variable

� Goodness of fit:

R-squared: how much of variation of one variable cab be

explained by another one.

Mean Square Error (MSE): mean of least squared error

15

� Fitting various models of the form:

Data Analysis
Multiple Linear Regressions

)log(#.)log(#.)log(

...

)log(#.)log(#.

)log(#.).(#

).(#)log(#.

).(#).(#

)log(#.)log(

)log(#.)log(

)log(#.

)log(#.

).(#

).(#

210

210

210

210

210

10

10

10

10

10

10

threadsCCPUCCePerformanc

threadsCCPUCCePerformanc

threadsCCPUCCePerformanc

threadsCCPUCCePerformanc

threadsCCPUCCePerformanc

threadsCCePerformanc

CPUCCePerformanc

threadsCCePerformanc

CPUCCePerformanc

threadsCCePerformanc

CPUCCePerformanc

++=

++=

++=

++=

++=

+=

+=

+=

+=

+=

+=

16

� The best model found:

Data Analysis
Multiple Linear Regressions

)log(#.)log(#.)log(210 threadsCCPUCCePerformanc ++=

17

Data Analysis
Neural Network

� A machine language technique for classification and
regression problems

� Nodes: Variables

� Inputs: (log(#CPU), log(#threads))

� Output: log(performance)

� Connections: The relationships between variables

� Internal layers:

� W and B: Matrices of weights and bias values (tuning)

� Some other variables (15 in our case)

18

Data Analysis
Neural Network

� A 60-20-20 split was used

� 60% for training the model and coefficients

� 20% for tuning the model

� 20% for testing the model

19

Data Analysis
Neural Network

� Compared to linear regression model

� Similar model obtained with different coefficients

� Better precision

� Higher R-squared, Lower MSE

20

� Middle-size programs

� Simultaneous execution of programs in different containers

� Only one physical CPU for both T1000 and M3000

� Java versions

� 1.5 on T1000

� 1.6 on M3000

� The model developed still was the best

� #CPU and #threads not the only parameters influencing the

performance

Discussion
Limitations and Generalization

21

� A model developed for estimating the performance of

multi-cores systems

� Similar to the practical models developed intuitively

� The optimal performance

� one-to-one thread to CPU assignment

� The work part of a project concerning auto-tuning

� Comparing sequential programs to the paralleled

versions

� Adaptive testing and auto-tuning for multi-core systems

Conclusion & Research Directions

22

Thank You

International Workshop on Multi-Core Software Engineering, IWMSE 2010, Cape Town, South Africa

May 2010

	Predicting Multi-Core Performanc...
	Slide2
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide21
	Slide22

