Predicting Multi-Core Performance
A Case Study Using Solaris Containers

Akbar Siami Namin Mohan Sridharan Pulkit Tomar
AdVanced Empirical Software Department of Computer Science AdVanced Empirical Software
Testing and Analysis (AVESTA) Texas Tech University, USA Testing and Analysis (AVESTA)
Department of Computer Science Mohan.sridharan@tu.edu Department of Computer Science
Texas Tech University, USA Texas Tech University, USA
Akbar.namin@ttu.edu Pulkit.tomar@ttu.edu

International Workshop on Multi-core Software Engineering, INMSE 2010, Cape Town, South Africa
May 2010

Outline

= Motivation

= Related work

= Experimental procedure
= Data analysis

= Discussion

= (Conclusion and research direction

Motivation

Problem Statement

= Utilization of the multi-core technology

= Auto-tuning - Development of proper techniques for
= (Creating an optimum number of threads

= Allocating threads to an optimum number of CPUs

* Handled by the resource manager provided by the
operating system

Motivation
Research Question and Our Approach

= Research question:

= Investigate the effect of two parameters on performance:

= The number of threads

. The number of CPUs

* Modeling using linear regression and neural networks

Performance = f(No.Threads, No.CPUs)

Related work

Java Benchmarks

» Java Grande Benchmark (Bull et al., 2000)

= Three sections with inputs for the size of the data
1. Low level operations
2. Kernels computation

3. Large scale applications

= Sequential converted to parallel (Smith et al, 2001)

u USiIlg threads, Barrier, fork, join, synvhronization

= DeCapo (Blackburn et al., 2006)

= Three inputs: small, default, and large

= Tak Benchmark, Java Generic Library (JGL), RMI, JavaWorld

Related work

Auto-Tuning Performance

* Dynamic allocation of threads and CPUs

* Identifying the near optimum configuration of tuning

parameters from a search space (Werner-Kytl and Tichy,
2000)

= Reducing the search space using the characteristic
information of parameterized parallel patterns (Schaefer,

2009)

= Number of threads, load per worker, number of worker threads,
etc.

* Dynamic approach of increasing and decreasing the
number of threads (Hal et al., 1997)

= Adaptive thread management

Experimental Procedure
Goal and Approach

* Goal - Study relationships among performance, number
of threads, and number of CPUs

= Approach
= Modeling

= Multiple linear regressions
= Neural networks
= Run a selected benchmark

= Observe: performance while number of threads and CPUs are
controlled

= Apply linear regressions and neural networks:

= Independent variables “number of threads™ and “number of
CPUs”

= Dependent variable “performance”

Experimental Procedure

Generation of Solaris Containers

* Introduced by Solaris 10

* Resource management for applications using projects
= Workload control

= Security control by restricting access

= Generation
1. k=number of CPUs
2. Forkinl,2,4,6,8,16
3. create (pset.max = k, pset.min=pset.max)

= Monitor using mpstat command

Experimental Procedure
Machines Used

= Sun Fire T1000
= UltraSPARC TI processor 1.2 GHz, 32 GB memory

= Supporting 32 concurrent hardware threads

= Suitable for:

= Tightly coupled multi-threaded applications

= Computational less expensive threads: serving more threads

= Sun SPARC Enterprise M3000
= SPARC64 VII processor 2.75 GHz, 64 GB memory
= Supporting eight concurrent hardware threads

= Suitable for:

= Single threaded workloads

Experimental Procedure
Benchmarks Used

= Java Grande benchmark

Section one: low level computations

" ForkJoin: Forking and joining threads
* Barrier: Barrier synchronization
= Syn: Synchronization of blocks

Section two: kernel processes

= Fourier coefficient analysis
= LU factorization

= Over-relaxation

= [DEA encryption

= Sparse matrix multiplication

Section three: large scale applications
= Molecular simulation
= Monte Carlo simulation

= 3D ray tracer

10

Experimental Procedure
Setup

= For T1000 machine:

= (Created 5 containers (projects)

= One-CPU, Two-CPU, Four-CPU, Eight-CPU, Sixteen-CPU
= For M3000 machine:

= (Created 3 containers

= One-CPU, Two-CPU, Four-CPU
* (Commands used:
" poolcfg: To create pools and processor sets

" projadd :To create projects

" mpstate :to monitor the assignment and utilization

11

Experimental Procedure
Setup (con’t)

= Ran each benchmark for:
= A set of threads ranging from 1 to 50
= For each container on each machine

= Performance was measured

= @Given by the output of the benchmark used

12

Data
Analysis

]

Visualization

i
3

Zaction Darrhr Teunemam = TP

= e CPl
T CIPLY
Fear CFLI
gt CPL
By TR

i
'

i
1

(a) Sectionl-Barrier Tournament

L

b Ferrr e

(d)

A = 1000
- Crm TP
& Tewm CPLU
= FoarOPU
= [Eght P
& s TP
]
L e < “‘H‘! 3
g g - e E
2 phy e T T
;:"_h“"‘-r_'_ i e ke
I R s, sl
o 2 2 = « o=
HoTE
] Sectiond-

SparseMotmultKernelSize A

g i e

Srcihond Moy nunSaad = Ty

= g P
Towr CFR
Foar TP

1+
1
W

Elgnt CPU
a ity SO

(o) Section3-MaolDynBEunSizeA

SscflaniForslinSmee ~ T1000

L
L]

(k) Sectionl-ForkJoinSimple

Sesgas? LuPecsameEizes - Tramd

OawitPL
& T TR
=+ FourCHJ

gl Pt
L] 2
1 1

Bl = i i)
T
ES
E
i
-

- P
o o e s e T
g
o o
T T T T T T
= 10 m = - m
YaTheamn

(h) Section3-MonteCarloBaunsize A

Exclioe | Sy neeftos -~ TI1000

Cwem T

L

1
LES]

1

]

d#

o wafoam e
]

12

FioThsadn

(o) Sectionl-Synechethod

Secticn IS0 AR ameSices = TEI00

= — iren TFU
. Tasg TR
=+ P DS
- - = iEighl TR
.‘_‘”.. Shmaar P
O

(f) Section2-50RKernelSizeA

vy [imcai™ = T3]

- s T
& TwaTE)
=+ Faur 48U
5 = gt

= .."'ﬁ-'-"-u B . e
E -I'l"'-l:l'_rmhpq.d'f‘_t__t"_';l- m{. 1:|. f_i_ﬂ-_:l""":H."-
g i e it o e

(1) Section3dBayTracerBunisizes

Data Analysis

Multiple Linear Regressions

= Fitting various models of the form:
Y=C,+C.X,+C,. X, +..+C X +¢
C,: Intercept

. Coefficients regression

X .: Explanatory variables

Y : Response variable

* Goodness of fit:
R-squared: how much of variation of one variable cab be
explained by another one.

Mean Square Error (MSE): mean of least squared error 14

Data Analysis

Multiple Linear Regressions

= Fitting various models of the form:
Performance=C, +C,.(# CPU)
Performance = C, + C,.(#threads)
Performance = C, + C,.log(# CPU)
Performance = C, + C,.log(#threads)
log(Performance) = C, + C,.log(# CPU)
log(Performance) = C, + C,.log(#threads)
Performance =C, + C,.(# CPU) + C,.(#threads)
Performance = C, + C,.log(# CPU) + C,.(#threads)
Performance =C, + C,.(# CPU) + C,.log(#threads)
Performance = C, + C,.log(# CPU) + C,.log(#threads)

log(Performance) = C, + C,.log(# CPU) + C,.log(#threads)

15

Data Analysis

Multiple Linear Regressions

" The best model found:
log(Performance) = C, + C,.log(# CPU) + C,.log(#threads)

Benchmark T T MBI

Programs Ca 'y ' R | MSE | % 1 (2 R® | MSE
sectionl:Barriersimple 11460 [0149 | -1.350 | 0805 [0151 | 124973 | 0360 [-1.366 | 0800 | 0164
Sectionl: Barrier Tonrnament 11.457 | 1.554 | -3.772 | O.T18 | 5.234 0817 0.817 | -3.071 | 0.651 | 4.024
sectionl:ForkJoinSimple 0.958 0519 | -1.620 | 0.742 | 0.776 | 9.951 0.899 | -1.212 | 0.977 | 0.026
Sectionl:SynchMethod 12,846 | -0.036 | -0.915 | 0.804 [0.076 [15.384 | -0.489 [-1.033 | 0.681 | 0.650
sSectionl:SyncChbject 12,819 | -0.040 | -0.907 | 0801 [0.078 [15435 | -0.450 [-1.052 | 0.677 | 0.439
sectiond: SerieslernelSize A 5424 0892 | 01=4 [08944 | 0.047 | 7507 [0.962 | 0.037 | 0,950 | 0.015
section2: LUFact KernelSizeA 4.602 1098 | -2.331 | 0753 | 1.763 | 3.454 0.5095 | 2,168 [0.790 | 1.000
section2: CrvptlernelSizeA 7483 0787 | -0.053 | 0.741 | 0.208 | 8.769 0887 | -0.023 [0.713 | 0.101
section2: SORKernelSized 2.179 0.799 | -0.748 | 0841 | 0,198 | 3.305 0.711 | -1L.062 [0866 | 0.160
section2: SparseMatmultKernelSize A | 2,452 | 0.710 [0,352 | 0836 [0039 | 5238 | 0.943 | 0132 [0.874 | 0.207
sectiond: MolDvnEunsize A 11768 | O.735 [-1.130 [O35 [02094 [131209 | 0412 [-1.451 [0807 | 0.172
sectiond: MolDwvn'TotalSize A 2317 | 0.735 | -1.133 | 00842 | 0283 | -0.930 | 0414 [-1.445 | 0.909 | 0.168
Sectiond: MonteCarloBEunSize A 5.112 0.828 0.153 | 0.938 | 0.044 T.1854 0.944 0.064 | 0.93% | 0.019
Sectiond: MonteCarloTotalSizeA -4.08 0.742 | 0,131 | 0.936 | 0.036 | -2.141 | 0,925 | 0.066 | 0,931 | 0.020
sectiond: RayTracerInitSizeA =851 0.240 | -0.200 [0,499 | 0.561 0.865 0187 | -0.547 | 0,194 | 0,958
sectiond: RayTracerRunSize A 6382 0.759 | 0008 | 0,933 | 0.039 | 9.324 0.856 | -0.445 [0847 | 0.070
sectiond: RayTracer TotalSizeA -3.568 | 0.741 | -0.027 | 0931 [0.039 [-0.601 | 0.790 [-0.516 | 0.861 | 0.065

16

Data Analysis

Neural Network

* A machine language technique for classification and
regression problems

Nodes: Variables

= Inputs: (log(#CPU), log(#threads))
= Qutput: log(performance)

Connections: The relationships between variables
Internal layers:
= W and B: Matrices of weights and bias values (tuning)

= Some other variables (15 in our case)
INTERNAL LAYER

INFUTS =YY MITPUT

17

Data Analysis

Neural Network

= A 60-20-20 split was used

= 60% for training the model and coefficients

= 20% for tuning the model
= 20% for testing the model

Neural Networks.

[Benchmark T 1000 MNSOOD
Programs R | MSE | R° | MSE
s1:Barriersumple D91 | 0051 | 0808 [0003
Sl:Barrier Tournament 0.924 | 0651 | 0.961 | 0.174
S1:ForkJoinSimple 0.996 | 0.034 | 0.995 [0.004
Sl:syvneMethod 0.992 | 0,002 | 0.963 [0.043
S1:8yneObject 0.994 | 0,002 | 0.937 [0.042
=2iherieshernelsize A 0931 [0101 | 0851 | U057
S2:LUFactKernelsizeA 0,982 | 0.036 | 0.961 [0.193
S2:CrvptRernel Size A 0.994 | 0.004 | 0,802 [0.020
52:50RKernelsizeA 0,984 | 0.002 | 0.963 | 0.011
S2:5parsehMatmultKernel- | 0971 | 0,017 | 0.923 | 0.035
sd:MolDyvnRunsizeA 04968 | 0057 | 0.838 [0.045
S3:MolDyn'TotalSize A 0.967 | 0.052 | 0.935 | 0.034
s3:MonteCarloRunSizeA 0.990 | 0003 | 0978 | 0.013
S3:MonteCarloTotalSize A | 0992 | 0,022 | 0.943 | 0.008
s3:Ray lracerlnitSizeA 0612 | 0,385 | 0.505 [0.496
Sd:RayTracerRunSizeA 0.986 | 0.007 | 0.8937 [0.045
=sd:RayTracer TotalSized 0985 | 0,006 | 0.938 | 0.056

18

Data Analysis

Neural Network

» Compared to linear regression model
= Similar model obtained with different coefficients

= Better precision
= Higher R-squared, Lower MSE

Regression: R*=0.98437 Regression: R=0.99159
3 o 15 Data
e S —F't
(] I
9 X151 y=T
"‘q‘j @
@ @
F 1; 14}
3 & 13
d o
l; I!l 12
5 6.5)
2 =11
3 =]]
© 6 o 1ol
6 65 7 75 8 85 10 11 12 13 14 15 16
Target Target

(a) Program Section2:SORKernelSizeA on T1000. (b) Program Sectionl :SyncObject on N3000.

Discussion

Limitations and Generalization

» Middle-size programs
* Simultaneous execution of programs in different containers
* Only one physical CPU for both T1000 and M3000
= Java versions
= 1.50nTI1000
= 1.6 on M3000
* The model developed still was the best

= #CPU and #threads not the only parameters influencing the
performance

20

Conclusion & Research Directions

* A model developed for estimating the performance of
multi-cores systems

* Similar to the practical models developed intuitively
* The optimal performance

= one-to-one thread to CPU assignment
* The work part of a project concerning auto-tuning

* Comparing sequential programs to the paralleled
versions

* Adaptive testing and auto-tuning for multi-core systems

21

Thank You

International Workshop on Multi-Core Software Engineering, IWMSE 2010, Cape Town, South Africa
May 2010

22

	Predicting Multi-Core Performanc...
	Slide2
	Slide3
	Slide4
	Slide5
	Slide6
	Slide7
	Slide8
	Slide9
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide20
	Slide21
	Slide22

