Bayesian Methods for Data Analysis in Software Engineering Bayesian Classification and Regression

Mohan Sridharan¹ Akbar Siami Namin²

¹Stochastic Estimation and Autonomous Robotics (SEAR) Lab Department of Computer Science Texas Tech University

²AdVanced Empirical Software Testing and Analysis (AVESTA) Research Group

Department of Computer Science Texas Tech University

May 3, 2010; Cape Town

Session 2: Classification, Regression and Inference

• **9.00–10.30**:

- Introduction.
- Statistical analysis; hypothesis testing.
- Basic probability, Bayes' rule.
- 11.00–12.30:
 - Bayesian classification.
 - Bayesian regression.
 - Bayesian inference.
- **14.00–15.30**:
 - Information theory.
 - Stochastic sampling.
- 16.00–17.30:
 - Markov decision processes.
 - Partially observable Markov decision processes
 - Discussion.

ntroduction Bayesian Classification Summary

Session 2: Bayesian Classification

• **9.00–10.30**:

- Introduction.
- Statistical analysis; hypothesis testing.
- Basic probability, Bayes' rule.

• 11.00–12.30:

Bayesian classification.

- Bayesian regression.
- Bayesian inference.
- **14.00–15.30**:
 - Information theory.
 - Stochastic sampling.
- 16.00–17.30:
 - Markov decision processes.
 - Partially observable Markov decision processes
 - Discussion.

Introduction Bayesian Classification Summary

Classification Basics

- Broad categories: supervised (labeled samples); unsupervised (no labeled samples).
- Group data based on similarity measures.
- Several sophisticated techniques exist:
 - Supervised: decision trees, support vector machines, naive Bayes.
 - Unsupervised: nearest neighbors, clustering.
- Choice of classifier based on data and application.
- Probabilistic methods explicitly model the noise in input data!

Introduction Bayesian Classification Summary

Classification Basics

- Broad categories: supervised (labeled samples); unsupervised (no labeled samples).
- Group data based on similarity measures.
- Several sophisticated techniques exist:
 - Supervised: decision trees, support vector machines, naive Bayes.
 - Unsupervised: nearest neighbors, clustering.
- Choice of classifier based on data and application.
- Probabilistic methods explicitly model the noise in input data!

Introduction Bayesian Classification Summary

Classification Basics

- Broad categories: supervised (labeled samples); unsupervised (no labeled samples).
- Group data based on similarity measures.
- Several sophisticated techniques exist:
 - Supervised: decision trees, support vector machines, naive Bayes.
 - Unsupervised: nearest neighbors, clustering.
- Choice of classifier based on data and application.
- Probabilistic methods explicitly model the noise in input data!

Introduction Bayesian Classification Summary

Clustering Data Samples

- K-Means clustering of input data samples.
- Data grouped into three clusters.

Introduction Bayesian Classification Summary

Bayesian Classification

• Bayes' rule (once again):

$$p(x, y) = p(x|y) \cdot p(y) = p(y|x) \cdot p(x)$$
(1)
$$p(x|y) = \frac{p(y|x) \cdot p(x)}{p(y)} = \frac{\text{likelihood . prior}}{\text{normalizer}}$$

• Classify based on Bayes decision rule: $p(w_1|x) > p(w_2|x) \implies \text{choose } w_1; \text{else choose } w_2$ (2)

• Decision rule extends to multiple classes: $p(w_i|x) > p(w_j|x) \quad \forall j \neq i \implies \text{choose } w_i$ (3)

Introduction Bayesian Classification Summary

Illustrative Example 1

- C_1 : fault; C_2 : \neg fault; x : data.
- $p(C_1) = p(C_2) = 0.5; \ p(x|C_1) = 0.6; \ p(x|C_2) = 0.3$

Introduction Bayesian Classification Summary

Multi-Class Extension

- Model likelihoods and priors based on training samples.
- Update belief incrementally based on evidence.
- Use multi-class Decision rule:

$$p(w_i|x) > p(w_j|x) \quad \forall j \neq i \implies \text{choose } w_i$$
 (4)

- Question: what representation to use to model the likelihoods?
- Answer: Typically, functions with well-understood properties are used e.g. Gaussians.

Introduction Bayesian Classification Summary

Multi-Class Extension

- Model likelihoods and priors based on training samples.
- Update belief incrementally based on evidence.
- Use multi-class Decision rule:

$p(w_i|x) > p(w_j|x) \ \forall j \neq i \implies$ choose w_i

- Question: what representation to use to model the likelihoods?
- Answer: Typically, functions with well-understood properties are used e.g. Gaussians.

Introduction Bayesian Classification Summary

Illustrative Example 2

- Four-class problem; ten training data samples per class.
- Model individual class likelihoods as Gaussians.

Introduction Bayesian Classification Summary

Illustrative Example 2: Modeling

• Compute Gaussian means and covariances:

$$\mu_{1} = [2.16, 2.49]; \quad \mu_{2} = [3.95, -0.84]$$
(5)

$$\mu_{3} = [-1.57, 3.5]; \quad \mu_{4} = [-6, -6.14]$$

$$\Sigma_{1} = \begin{pmatrix} 9.32 & 10.12 \\ 10.12 & 11.85 \end{pmatrix}$$

$$\Sigma_{2} = \begin{pmatrix} 8.36 & 8.87 \\ 8.87 & 13.02 \end{pmatrix}$$

$$\Sigma_{3} = \begin{pmatrix} 7.63 & 2.98 \\ 2.98 & 9.78 \end{pmatrix}$$

$$\Sigma_{4} = \begin{pmatrix} 8.62 & -5.71 \\ -5.71 & 9.26 \end{pmatrix}$$

Introduction Bayesian Classification Summary

Illustrative Example 2: Classification

• Decision boundaries for all four classes:

Introduction Bayesian Classification Summary

- Elegant belief update and decision rule for classification.
- Bayes error: minimum classification error that cannot be eliminated.
- Little or no tuning of arbitrary thresholds.
- Challenge 1: what functional form and parameters to use for modeling likelihoods and priors?
- Challenge 2: how to obtain enough data to model the likelihoods and priors?
- Demo: Matlab-based comparison with other classifiers.

Introduction Bayesian Classification Summary

- Elegant belief update and decision rule for classification.
- Bayes error: minimum classification error that cannot be eliminated.
- Little or no tuning of arbitrary thresholds.
- Challenge 1: what functional form and parameters to use for modeling likelihoods and priors?
- Challenge 2: how to obtain enough data to model the likelihoods and priors?
- Demo: Matlab-based comparison with other classifiers.

Introduction Bayesian Classification Summary

- Elegant belief update and decision rule for classification.
- Bayes error: minimum classification error that cannot be eliminated.
- Little or no tuning of arbitrary thresholds.
- Challenge 1: what functional form and parameters to use for modeling likelihoods and priors?
- Challenge 2: how to obtain enough data to model the likelihoods and priors?
- Demo: Matlab-based comparison with other classifiers.

Introduction Bayesian Classification Summary

For more information

- C. Bishop. *Pattern Recognition and Machine Learning*. Springer publishing house, 2007.
- D. Stork and E. Yom-Tov. *Computer Manual in MATLAB to accompany Pattern Classification*. Wiley-Interscience, 2004.
- R. Duda and P. Hart and D. Stork. *Pattern Classification*. Wiley-Interscience, 2000.
- Weka 3: Data Mining Software in Java, 2010. http://www.cs.waikato.ac.nz/ml/weka/.
- Matlab Statistics Toolbox 7.3, 2010. http: //www.mathworks.com/products/statistics/

ntroduction 3ayesian Regression

Session 2: Bayesian Regression

• **9.00–10.30**:

- Introduction.
- Statistical analysis; hypothesis testing.
- Basic probability, Bayes' rule.

• 11.00–12.30:

- Bayesian classification.
- Bayesian regression.
- Bayesian inference.
- **14.00–15.30**:
 - Information theory.
 - Stochastic sampling.
- 16.00–17.30:
 - Markov decision processes.
 - Partially observable Markov decision processes
 - Discussion.

Introduction Bayesian Regression

Regression Basics

• Consider polynomial curve fitting of target variable *t*:

$$t = y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$
 (6)

• Consider data sampled from a sinusoidal waveform:

• Can use polynomials of different degrees.

Introduction Bayesian Regression

Illustrative Example 1

 Polynomial curve fitting of data: best performance for degree = 3.

However over-fitting can lead to problems.

Introduction Bayesian Regression

Regularization

• Regularization in sum-of-squares error function:

$$E(\boldsymbol{w}) = E_D(\boldsymbol{w}) + \lambda E_w(\boldsymbol{w})$$

$$= \frac{1}{2} \sum_{n=1}^{N} \{t_n - y(x_n, \boldsymbol{w})\}^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$
(7)

- λ is the regularization co-efficient. Models cost of over-fitting.
- Demo: Matlab-based curve-fitting toolbox.

Introduction Bayesian Regression

RMS Errors

• Standard vs. regularized performance:

Introduction Bayesian Regression

Regularization Parameter Tuning

 Polynomial co-efficients as a function of the regularization parameter:

	$\ln\lambda=-\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

• $ln(\lambda) = -\infty$: no regularization.

Introduction Bayesian Regression

Basis Functions

Model curve fitting using basis functions:

$$t = y(\boldsymbol{x}, \boldsymbol{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\boldsymbol{x}) = \boldsymbol{w}^T \Phi(\boldsymbol{x})$$
(8)

- The $\phi_j(\mathbf{x})$ are the *basis functions*.
- Normally $\phi_0(\mathbf{x}) = 1$ i.e. w_0 is the bias.
- Polynomial functions: $\phi_d(\mathbf{x}) = \mathbf{x}^d$

Introduction Bayesian Regression

Basic Bayesian Approach

Assume a zero-mean Gaussian noise model:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
(9)
$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), 1/\beta)$$

Extension to data set with N samples: X = {x₁,..., x_N} with target values: t₁,..., t_N:

$$p(\boldsymbol{t}|\boldsymbol{X}, \boldsymbol{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_i | \boldsymbol{w}^T \phi(\boldsymbol{x}_i), \frac{1}{\beta})$$
(10)

Introduction Bayesian Regression

Maximum Likelihood Estimation

• Compute the log likelihood:

1

$$ln p(\mathbf{t} | \mathbf{w}, \beta) = \frac{N}{2} ln(\beta) - \frac{N}{2} ln(2\pi) - \beta E_D(\mathbf{w})$$
(11)
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \phi(x_i)\}^2$$

- Partial differentials of the log likelihood provides maximum likelihood estimates of the parameters: w_{ML} , β_{ML}
- Extends to multiple outputs, incremental updates and regularized least squares.

Introduction Bayesian Regression

Bayesian vs. Frequentist

- Consider curve-fitting with observed data D = {t₁,..., t_N} and parameter values w.
- Frequentist and Bayesian: estimate $p(\mathcal{D}|\mathbf{w})$.
- Frequentist approach (MLE): *w* is chosen to maximize p(D|w). Error bars obtained by considering distribution of data sets D.
- Bayesian approach: only one data set \mathcal{D} available. Uncertainty in parameters expressed using probability distribution of w.

$$p(\boldsymbol{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})}$$
(12)

Introduction Bayesian Regression

Bayesian vs. Frequentist

- Consider curve-fitting with observed data D = {t₁,..., t_N} and parameter values w.
- Frequentist and Bayesian: estimate $p(\mathcal{D}|\boldsymbol{w})$.
- Frequentist approach (MLE): w is chosen to maximize p(D|w). Error bars obtained by considering distribution of data sets D.
- Bayesian approach: only one data set \mathcal{D} available. Uncertainty in parameters expressed using probability distribution of w.

$$p(\boldsymbol{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})}$$
(12)

Introduction Bayesian Regression

Bayesian vs. Frequentist

- Consider curve-fitting with observed data D = {t₁,..., t_N} and parameter values w.
- Frequentist and Bayesian: estimate $p(\mathcal{D}|\boldsymbol{w})$.
- Frequentist approach (MLE): *w* is chosen to maximize p(D|*w*). Error bars obtained by considering distribution of data sets D.
- Bayesian approach: only one data set \mathcal{D} available. Uncertainty in parameters expressed using probability distribution of w.

$$p(\boldsymbol{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{w})p(\boldsymbol{w})}{p(\mathcal{D})}$$
(12)

Introduction Bayesian Regression

Bayesian vs. Frequentist

- Consider curve-fitting with observed data D = {t₁,..., t_N} and parameter values w.
- Frequentist and Bayesian: estimate $p(\mathcal{D}|\boldsymbol{w})$.
- Frequentist approach (MLE): *w* is chosen to maximize p(D|*w*). Error bars obtained by considering distribution of data sets D.
- Bayesian approach: only one data set \mathcal{D} available. Uncertainty in parameters expressed using probability distribution of **w**.

$$p(\boldsymbol{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})}$$
(12)

Introduction Bayesian Regression

Bayesian vs. Frequentist

- Consider curve-fitting with observed data D = {t₁,..., t_N} and parameter values w.
- Frequentist and Bayesian: estimate $p(\mathcal{D}|\boldsymbol{w})$.
- Frequentist approach (MLE): *w* is chosen to maximize p(D|*w*). Error bars obtained by considering distribution of data sets D.
- Bayesian approach: only one data set \mathcal{D} available. Uncertainty in parameters expressed using probability distribution of **w**.

$$p(\boldsymbol{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})}$$
(12)

Introduction Bayesian Regression

References

- C. Bishop. *Pattern Recognition and Machine Learning*. Springer publishing house, 2007.
- R. Duda and P. Hart and D. Stork. *Pattern Classification*. Wiley-Interscience, 2000.
- Matlab Statistics Toolbox 7.3, 2010. http: //www.mathworks.com/products/statistics/

Introduction Bayes Filtering Summary

Session 2: Bayesian Inference

• **9.00–10.30**:

- Introduction.
- Statistical analysis; hypothesis testing.
- Basic probability, Bayes' rule.

• 11.00–12.30:

- Bayesian classification.
- Bayesian regression.
- Bayesian inference.
- **14.00–15.30**:
 - Information theory.
 - Stochastic sampling.
- 16.00–17.30:
 - Markov decision processes.
 - Partially observable Markov decision processes
 - Discussion.

Introduction Bayes Filtering Summary

The Framework

Inputs:

- Stream of observations *z* and actions *u*: {*u*₁, *z*₁, ..., *u*_t, *z*_t}
- Sensor model: p(z|x)
- Action model: p(x'|u, x)
- Prior probability of system state: *p*(*x*)
- Outputs:
 - Estimate the state **x** of a *dynamical system*.
 - Posterior of state, called the belief:

$$bel(x_t) = p(x_t|u_1, z_1, \dots, u_t, z_t)$$
 (13)

Introduction Bayes Filtering Summary

Markov Assumption

• First-order Markov assumption:

$$p(x_t|x_0,\ldots,x_{t-1}) = p(x_t|x_{t-1})$$
 (14)

Bayesian filtering:

$$p(z_t|x_{0:t}, z_{1:t}, u_{1:t}) = p(z_t|x_t)$$

$$p(x_t|x_{1:t-1}, z_{1:t}, u_{1:t}) = p(x_t|x_{t-1}, u_t)$$
(15)

Introduction Bayes Filtering Summary

Bayes Filters 1

Bayes rule:

$$bel(x_t) = p(x_t | u_{1:t}, z_{1:t})$$
(16)
 $\propto p(z_t | x_t, u_1, z_1, \dots, u_t) p(x_t | u_1, z_1, \dots, u_t)$

• Markov assumption:

 $bel(x_t) \propto p(z_t | x_t, u_1, z_1, \dots, u_t) \ p(x_t | u_1, z_1, \dots, u_t)$ (17) = $p(z_t | x_t) \ p(x_t | u_1, z_1, \dots, u_t)$

Introduction Bayes Filtering Summary

Bayes Filters 1

• Bayes rule:

$$bel(x_t) = p(x_t | u_{1:t}, z_{1:t})$$

$$\propto p(z_t | x_t, u_1, z_1, \dots, u_t) p(x_t | u_1, z_1, \dots, u_t)$$
(16)

Markov assumption:

$$bel(x_t) \propto p(z_t | x_t, u_1, z_1, \dots, u_t) \ p(x_t | u_1, z_1, \dots, u_t)$$
(17)
= $p(z_t | x_t) \ p(x_t | u_1, z_1, \dots, u_t)$

Introduction Bayes Filtering Summary

Bayes Filters 2

• Probability expansion:

$$bel(x_t) \propto p(z_t|x_t) p(x_t|u_1, z_1, \dots, u_t)$$
(18)
= $p(z_t|x_t) \int p(x_t|u_{1:t}, z_{1:t-1}, x_{t-1}) p(x_{t-1}|u_{1:t}, z_{1:t-1}) dx_{t-1}$

• Markov assumption:

$$bel(x_t) \propto p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, u_t) dx_{t-1}$$
(19)

Introduction Bayes Filtering Summary

Bayes Filters 2

• Probability expansion:

$$bel(x_t) \propto p(z_t|x_t) p(x_t|u_1, z_1, \dots, u_t)$$
(18)
= $p(z_t|x_t) \int p(x_t|u_{1:t}, z_{1:t-1}, x_{t-1}) p(x_{t-1}|u_{1:t}, z_{1:t-1}) dx_{t-1}$

Markov assumption:

$$bel(x_t) \propto p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, u_t) dx_{t-1}$$
(19)

Introduction Bayes Filtering Summary

Bayes Filters 3

• Markov assumption:

$$bel(x_t) \propto p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, u_t) dx_{t-1}$$
(20)
$$= p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, z_{t-1}) dx_{t-1}$$

• Recursion:

$$bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1} \quad (21)$$

Introduction Bayes Filtering Summary

Bayes Filters 3

• Markov assumption:

$$bel(x_t) \propto p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, u_t) dx_{t-1}$$
(20)
$$= p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, z_{t-1}) dx_{t-1}$$

• Recursion:

$$bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1} \quad (21)$$

Introduction Bayes Filtering Summary

Bayes Filters Summary

• Recursive belief update based on Markov assumption:

$$bel(x_t) = p(x_t|u_{1:t}, z_{1:t})$$
(22)

$$\propto p(z_t|x_t, u_1, z_1, \dots, u_t) p(x_t|u_1, z_1, \dots, u_t)$$

$$= p(z_t|x_t) p(x_t|u_1, z_1, \dots, u_t)$$

$$= p(z_t|x_t) \int p(x_t|u_{1:t}, z_{1:t-1}, x_{t-1}) p(x_{t-1}|u_{1:t}, z_{1:t-1}) dx_{t-1}$$

$$= p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, u_t) dx_{t-1}$$

$$= p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) p(x_{t-1}|u_1, z_1, \dots, z_{t-1}) dx_{t-1}$$

$$bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

Introduction Bayes Filtering Summary

Bayes Inference

• Bayes prediction and correction:

$$\forall x_t : bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1} \\ \forall k : p_{k,t} = \eta \ p(z_t|X_t = x_k) \sum_i p(X_t = x_k|u_t, X_{t-1} = x_i) \ p_{i,t-1}$$

Bayes filter:

$$\forall x_t : \overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1} \qquad (23)$$

$$bel(x_t) = \eta \ p(z_t | x_t) \overline{bel}(x_t)$$

• Discrete Bayes filter:

$$\forall k : \overline{p}_{k,j} = \sum_{i} p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$
(24)
$$p_{k,i} = \eta \ p(z_t | X_t = x_k) \overline{p}_{k,i}$$

Introduction Bayes Filtering Summary

Bayes Inference

Bayes prediction and correction:

$$\forall x_t : bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\forall k : \ p_{k,t} = \eta \ p(z_t|X_t = x_k) \sum_i p(X_t = x_k|u_t, X_{t-1} = x_i) \ p_{i,t-1}$$

• Bayes filter: $\forall x_t : \overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1} \qquad (23)$ $bel(x_t) = \eta \ p(z_t | x_t) \overline{bel}(x_t)$

• Discrete Bayes filter:

$$\forall k : \overline{p}_{k,j} = \sum_{i} p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$
(24)
$$p_{k,i} = \eta p(z_t | X_t = x_k) \overline{p}_{k,i}$$

Introduction Bayes Filtering Summary

Bayes Inference

• Bayes prediction and correction:

$$\forall x_t : bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\forall k : \ p_{k,t} = \eta \ p(z_t|X_t = x_k) \sum_i p(X_t = x_k|u_t, X_{t-1} = x_i) \ p_{i,t-1}$$

• Bayes filter:

$$\forall x_t : \overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$
(23)
$$bel(x_t) = \eta \ p(z_t | x_t) \overline{bel}(x_t)$$

• Discrete Bayes filter:

$$\forall k : \overline{p}_{k,j} = \sum_{i} p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$
(24)
$$p_{k,j} = \eta p(z_t | X_t = x_k) \overline{p}_{k,j}$$

Introduction Bayes Filtering Summary

• Pictorial representation of discrete Bayes:

Examples

$$\forall k : \overline{p}_{k,j} = \sum_{i} p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$
(25)

$$p_{k,j} = \eta \ p(z_t | X_t = x_k) \overline{p}_{k,j}$$

 Kalman filters, Particle filters, Bayesian Networks, Partially Observable Markov Decision Processes (POMDPs), Hidden Markov Models (HMMs) and many more!

Introduction Bayes Filtering Summary

Examples

• Pictorial representation of discrete Bayes:

$$\forall k : \overline{p}_{k,j} = \sum_{i} p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$
(25)

$$p_{k,j} = \eta \ p(z_t | X_t = x_k) \overline{p}_{k,j}$$

 Kalman filters, Particle filters, Bayesian Networks, Partially Observable Markov Decision Processes (POMDPs), Hidden Markov Models (HMMs) and many more!

Introduction Bayes Filtering Summary

- Pattern classification is a necessary task in several application domains.
- Bayesian formulation for classification results in incremental probabilistic updates.
- Regression is a widely-used predictive scheme in several domains.
- Bayesian formulation for regression better models the prediction noise.

Introduction Bayes Filtering Summary

- Pattern classification is a necessary task in several application domains.
- Bayesian formulation for classification results in incremental probabilistic updates.
- Regression is a widely-used predictive scheme in several domains.
- Bayesian formulation for regression better models the prediction noise.

Introduction Bayes Filtering Summary

- Bayesian inference is a general framework for probabilistic state estimation.
- Markov assumption, though not always true, allows for elegant belief updates.
- Incorporates changes in system dynamics independent of the observations of the system.
- Applications: computer vision, robotics, adaptive testing, fault localization.

Introduction Bayes Filtering Summary

- Bayesian inference is a general framework for probabilistic state estimation.
- Markov assumption, though not always true, allows for elegant belief updates.
- Incorporates changes in system dynamics independent of the observations of the system.
- Applications: computer vision, robotics, adaptive testing, fault localization.

Introduction Bayes Filtering Summary

- Bayesian inference is a general framework for probabilistic state estimation.
- Markov assumption, though not always true, allows for elegant belief updates.
- Incorporates changes in system dynamics independent of the observations of the system.
- Applications: computer vision, robotics, adaptive testing, fault localization.

Introduction Bayes Filtering Summary

- Bayesian inference is a general framework for probabilistic state estimation.
- Markov assumption, though not always true, allows for elegant belief updates.
- Incorporates changes in system dynamics independent of the observations of the system.
- Applications: computer vision, robotics, adaptive testing, fault localization.

