
Finding Sufficient Mutation Operators via Variable
Reduction

Akbar Siami Namin and James H. Andrews
Department of Computer Science
University of Western Ontario

London, Ontario, CANADA N6A 5B7
Email: {asiamina,andrews} (at) csd.uwo.ca

Abstract— A set of mutation operators is “sufficient” if it can
be used for most purposes to replace a larger set. We describe
in detail an experimental procedure for determining a set ofsuf-
ficient C language mutation operators. We also describe several
statistical analyses that determine sufficient subsets with respect
to several different criteria, based on standard techniques for
variable reduction. We have begun to carry out our experimental
procedure on seven standard C subject programs. We present
preliminary results that indicate that the procedure and analyses
are feasible and yield useful information.

I. I NTRODUCTION

When performing mutation testing or mutation analysis, we
applymutation operatorsto programs in order to create faulty
versions of those programs. Typically, a mutation operatorcan
be applied at many different locations in the source code or
program structure graph, and may yield more than one mutant
from each location. Hence, applying one mutation operator to
one source program can result in more than one mutant, and
may result in many mutants.

Over the years, many mutation operators have been pro-
posed. Generating all mutants from all proposed operators
would often result in an infeasibly large number of mutants.
Researchers have therefore looked for a reduced set of mu-
tation operators that will generate fewer mutants but stillbe
“sufficient” for our purposes.

Offutt et al. [1] cast the sufficient mutation operators prob-
lem as follows: Given a set P of mutation operators, find a
subset Q of P such that Q generates “many fewer” mutants
than P, but such that a test suite that kills all the mutants from
Q tends to kill “most” of the mutants from P. The phrases in
quotation marks are necessarily imprecise, and how good the
set Q is must be a matter of judgement.

In this paper, we generalize the question as follows: Given
a set P of mutation operators, find a subset Q of P such that Q
generates “many fewer” mutants than P, but such that from the
behaviour of a test suite on the mutants from Q, we can obtain
an “accurate” prediction of its behaviour on the mutants from
P. We find the subset Q by using severalvariable reduction
techniques based on the statistical literature, and combining
the results of all the techniques. We use C programs as our
experimental subjects rather than the Fortran programs of some
previous studies. The purpose of this workshop paper is to
describe our experimental technique and statistical analyses in

detail, and to present some preliminary results based on one
subject program.

A. Structure of Paper

The remainder of this paper is structured as follows. In
Section II, we discuss previous work. In Section III, we present
our procedure for obtaining the raw data on which we base our
analyses. In Section IV, we describe the statistical analyses
that we perform for obtaining our set of sufficient mutation
operators. In Section V, we present our preliminary results
and analyze how well the proposed set performs. In Section
VI, we discuss the threats to validity and the implications of
our results, and in Section VII we conclude.

II. PREVIOUS WORK

A. Mutation Testing and Analysis

Mutation testing [2] needs no introduction to the participants
of this workshop. We use the related phrasemutation analysis
to refer to the practice of using mutants in experiments to
analyze the effectiveness of software testing techniques.In
a testing experiment, we typically want to see how effective
and efficient different testing techniques are. Our measureof
effectiveness is how many faults the technique finds. Mutation
has been used by many researchers in order to generate faulty
versions for such experiments, and recent work has shown that
these mutants can behave very similarly to real faults [3].

Mutant generator systems that have been written and made
available include Mothra [4] for Fortran programs, Proteum[5]
for C programs, and MuJava [6] for Java programs. Mothra
implements 22 mutation operators, while Proteum implements
a wider set of 108 mutation operators. MuJava implements
only the 5 conventional (non-OO) operators found by the
Offutt et al. study [1], but also implements 24 class mutation
operators. Since we are interested in revisiting the question
of sufficient conventional mutation operators, Proteum is our
best available choice.

B. Sufficient Mutation Operators

Previous empirical work on sufficient mutation operators is
limited. Wong [7] compared a set of 22 mutation operators to
a set of two mutation operators in two experiments, and found
that the reduced set was significantly smaller but behaved
similarly to the full set. Offutt et al. [1] compared a set of 22

mutation operators with four fixed subsets of those mutation
operators. They judged one subset, called E (a subset with
five mutation operators) to be best, based on the fact that test
suites created to kill all the mutants generated from that set of
operators had high mutation adequacy ratios (average 99.51%)
while requiring 77.56% fewer mutants on average.

The experimental subjects across the two experiments of
the Wong study were eight Fortran programs, which were
translated into C so that coverage could be measured; the C
programs had an average of approximately 57.9 raw lines of
code each (lines including comments and whitespace). The
subjects in the Offutt et al. study were 10 Fortran programs
having an average of 20.6 statements each. The Wong subjects
have nostruct definitions and very few pointers, and the
descriptions of the Offutt et al. subjects suggest that theyalso
have no or few structures or pointers. The significance of
this is that pointer and structure field assignment statements
(a) are affected by relatively few of the commonly-described
mutation operators (in particular, they are affected by none of
the operators in the sufficient sets identified by either Wong
or Offutt et al), (b) are common in larger C programs, and (c)
correspond to object field assignment statements, which are
common in larger O-O programs.

The results of the previous experiments might not carry over
to mutation adequacy for typical programs in C for a number
of reasons. These reasons include the syntactic differences be-
tween Fortran and C, the differences between small and larger
programs, and the differences between programs manipulating
structures and pointers and those doing so very little or not
at all. The only way to confirm whether the results do carry
over is to do a new experiment.

The previous work on the subject also does not deal with
the question of the all-mutants adequacy of test suites that
achieve sufficient-mutant adequacy ratios ofless than 100%.
For instance, while we might know that test suites achieving
100% sufficient-mutant adequacy achieve an overall adequacy
of 99.51%, this does not necessarily mean that test suites
achieving 70% sufficient-mutant adequacy achieve an average
all-mutants adequacy of 69.51%.

C. Variable Reduction

In our experiments, we apply a set of 108 mutation operators
to programs, and measure the adequacy of test suites on the
mutants resulting from each operator, and on all mutants com-
bined. We therefore have a set of 109 experimental variables
(the per-operator mutation adequacy ratios and the overall
mutation adequacy ratio), and we want to choose a subset of
the first 108 that allows us to predict the 109th. This problem
is known in statistics as thevariable elimination, discarding,
disregarding, selectionor reductionproblem. We will refer to
it by the termvariable reductionin this paper.

Some multivariate techniques to decrease the number of
variables have been proposed. Among them principal com-
ponent analysis (PCA) [8] is the first one, in which we reduce
the dimension space of variables into some new non-correlated
variables. The scales of new variables are perpendicular to

each other such that the first scale, as first component, showsa
linear combination of the original correlated variables, whose
contribution toward variance are the highest. PCA does not
help us directly, since it still assumes that we collect all vari-
ables and then summarize them in a smaller set of variables.
However, the variable reduction techniques developed for PCA
are relevant.

Jolliffe in his papers [9] and [10] introduced some variable
reduction methods to be used in PCA. He introduced eight
different approaches in three groups, referred to as correlation
analysis, principal component analysis, and cluster analysis
[11]. It has been claimed that all eight different techniques
produce the same set of operators, plus or minus one. However,
it has been proven that the variable reduction problem has a
non-unique solution [12].

[9] and [10] present some fundamental skeleton approaches
for variable reduction techniques. These approaches must be
tailored to a particular problem’s criteria for preferringone
variable over another, and this is what we did for the sufficient
mutation operator problem. To our knowledge, this approach
to the sufficient mutation operator problem is new.

III. E XPERIMENTAL PROCEDURE

We take as our primary goal to discover a subset of mutation
operators, generating a small number of mutants, such that the
adequacy of a test suite on the subset of mutants can be used to
accurately predict the adequacy of the test suite on all mutants.
Our subsidiary goals are to consider as large and complex
programs as are experimentally feasible, and to use as many
approaches as possible to constructing the test suites. Here
we describe the experimental procedure used to collect the
raw data. We first describe the setup of the subject programs
and the mutant generator. We then define precisely what sets
of data we produce for each group of test suites, and what
measurements we take from them. We describe the groups
of test suites that we generate, and end by stating how we
combine data from different subject programs1.

A. Setup

Our experimental subject programs are the seven well-
known Siemens programs, used first by Hutchins et al. [13]
and developed further as research instruments by Rother-
mel, Harrold and others [14]. We obtained the Siemens pro-
grams from the Galileo Research Group Subject Infrastructure
Repository (SIR) at the University of Nebraska - Lincoln. Each
of the programs comes with a large number of test cases,
referred to as thetest pool. Each also comes with alternate
versions containing faults, which were not needed for this
study.

The Siemens programs have an average of approximately
327 NLOC (lines of code without comments or whitespace).
This number of lines of code is bigger than that of previous
studies. Furthermore, three of the Siemens programs use

1Rather than describing our finished, in-progress and projected work in a
mixture of past, present and future tenses, we describe it all in the present
tense, and then make clear in Section V what we have done so far.

structures (Cstructs), and five use pointers in a non-
trivial manner. However, the programs are still smaller than
most C programs in use today, since the heavy processing
requirements of our experiments constrain their size. We do
plan to evaluate the sufficient mutation operator sets that we
obtain on larger programs in the future.

We obtained the C mutant generator Proteum from José
Carlos Maldonado at the University of São Paolo. Proteum
definesn = 108 mutation operators. We refer to these muta-
tion operators as�1 through�n. Examples include ORRN, the
operator for replacing one relational operator by another,and
SBRC, the operator for replacing abreak statement with a
continue statement. The operators overlap somewhat with
the 76 operators defined for C by Agrawal et al. [15], and
other operators are as described by Delamaro et al. [16] and
Vincenzi et al. [17].

B. Definitions of Sets and Measurements

For each subject programP , we collect and calculate a
number of measures and sets in our experiments. Here we
define these measures and sets precisely.

Examples of measures and sets defined below include
“NMG i(P)” and “outcome(M;C; P)”. Because the subject
programP is a parameter of all these measures and sets,
we simplify our notation by leaving outP as a parameter
wherever possible. Thus, for instance, we speak of NMGi and
outcome(M;C), leaving parameterP implicit.

Generally we use upper-case names (e.g. “NMG”) for
numbers, and lower-case names (e.g. “outcome”) for non-
numeric entities such as sets.

We generate mutants ofP using each of then = 108
Proteum mutation operators�1; : : : ; �n.� NMGi is defined as the number of mutants ofP generated

using�i.� class(M), for a given mutantM of P , is defined as thei
such thatM is one of the mutants generated by applying
mutation operator�i to P . In our experiments, class(M)
can be retrieved directly from the name assigned to the
mutant.

A small number of the generated mutants do not compile, or
do not link properly.� NMCi is defined as the number of mutants ofP generated

using�i that actually compiled and linked.
We run each compilable mutantM of P on each test caseC in the test pool forP .� outcome(M;C) = t if the output ofM on test caseC is

identical to the output of the gold version ofP on test
caseC; otherwise outcome(M;C) = f .� failures(M) is the set of test casesC such that
outcome(M;C) = f . We do not store outcome(M;C)
directly, but rather store the set failures(M) in a file
specific to that mutantM .� We say thatM is anequivalentmutant if failures(M) is
the empty set; otherwise we say thatM is non-equivalent.� NMNEi is the number of mutants ofP generated using�i that are non-equivalent.

� TNMNE is the total number of mutants that are non-
equivalent; i.e. TNMNE=Pni=1NMNEi.� We say that test caseC kills mutantM , or M is killed
by C, if outcome(M;C) = f .� killsi(C), for a test caseC, is the set of mutantsM
generated using�i that are killed byC.� kills(C), for a test caseC, is the set of all mutants killed
by C; i.e. kills(C) = Sni=1killsi(C).

For each test suiteS = fC1; : : : ; Cmg that we generate,
we calculate the most important sets and numbers of our
experiments.� killsi(S) is the set of mutantsM generated using�i

that are killed by some test case inS; i.e. killsi(S) =Smj=1killsi(Cj).� kills(S) is the set of all mutants that are killed by
some test case inS; i.e. kills(S) = Smj=1kills(Cj), or
equivalently kills(S) = Sni=1killsi(S).� Ami(S), the Adequacy ratio for Mutants of operator�i
for test suiteS, is defined asjkillsi(S)j=NMNEi.� AM(S), the Adequacy ratio for all Mutants, is defined asjkills(S)j=TNMNE.

Note that we define the adequacy ratio relative to the number
of non-equivalent mutants. We do this because our primary
interest is in the use of mutants in experiments, and in the
context of experiments it is both feasible and desirable to
accurately determine which mutants are equivalent.

C. Test Suite Groups

Ideally, for a given test suiteS, the number of sufficient-
set mutants thatS kills would let us predict accurately the
number of all mutants thatS kills. However, there are many
different ways to build test suites, and a set of sufficient
operators for one of these ways might not suffice for another
way. We therefore discover sufficient operators with respect
to various ways of constructing test suites, and later compare
the discovered sets of operators.

For each subject program, we generate nine groups of test
suites: one group of singleton test suites, referred to asSING,
four groups of randomly-selected test suites, referred to as
RAND10, RAND20, RAND50, andRAND100, and four groups
of coverage-based test suites, referred to asBLK , DEC, CUSE,
and PUSE. We will now describe these groups in turn.

SING, for each subject program, is a group of 100 test suites
consisting of one test case in each suite. That is, to construct
SING, we choose 100 distinct test cases from the test pool,
and put each in a separate test suite. We discover sufficient
operators for this group in order to see if the set of sufficient
operators for test suites can also be used to evaluate individual
test cases.

The test suites inRAND10 are generated by randomly
picking 10 test cases from the test pool for the subject
program. We generate 100 test suites for each subject program
in this way. These suites represent “arbitrary” test suitesnot
constructed by following any coverage goals. The test suites in
RAND20 (resp.RAND50, RAND100) are similarly generated

by randomly picking 20 (resp. 50, 100) test cases from the
test pool.

The test suites inBLK are generated to meet particular cov-
erage goals. For each coverage percentageP from 50 to 99, we
generate two test suites that achieve betweenP% andP +1%
feasible block coverage, as measured by the ATAC coverage
tool. DEC, CUSE, and PUSE are generated in the analogous
way for decision, C-use and P-use coverage respectively. These
suites represent test suites that may reasonably be constructed
by trying to achieve high code coverage. We select a spread
of many coverage percentages because we want to discover
sufficient operators that work over a broad range of coverage
goals, not just close to 100%. We start at 50% coverage
because this seems to be the minimum goal it is likely anyone
would want to achieve. We stop at 99% coverage because
preliminary investigations have indicated that it would take
an unreasonably long time to generate test suites that achieve
100% feasible coverage for the two hardest measures (C-use
and P-use). Since we generate two test suites for each coverage
percentage, the size of each group is again 100 test suites.

D. Combining Data from Subject Programs

Note that each group of test suites for each subject program
contains 100 test suites. It would be infeasible to perform
our statistical analyses for each of these test suite groupsand
each of the subject programs. We therefore combine the data
for the seven subject programs. We calculate the values of
Ami and AM for each test suite, and then combine the data
from the different subject programs but the same group into
one set of data. Thus, for each ofSING, RAND10, RAND20,
RAND50, RAND100, BLK , DEC, CUSE, and PUSE, we obtain
700 observations, each observation consisting of values for
each Ami and for AM.

For each of the nine groups of test suites, we do three
separate analyses on the data generated from the experiment.
The goal of each analysis is to discover sufficient mutation
operators, but the procedure differs between the analyses.
These analyses are described in the next section. We thus
end up with 27 sets of mutation operators, each judged as
“sufficient” by a different analysis or with respect to a different
group of test suites. We then compare these 27 sets of mutation
operators in order to identify the operators that appear themost
often.

IV. STATISTICAL ANALYSIS

We base our three variable reduction techniques on those
introduced in [9] and [10], adapting them whenever it comes
to the choice of rejecting or keeping a mutation operator. Here
we call the techniques All-Subsets Regression analysis (SUB),
Elimination-Based Correlation (EBC) analysis, and Cluster
Analysis (CA).

A. All-Subsets Regression (SUB)

One valid view of the sufficient-operators problem is that it
is merely a linear regression problem. We have 108 variables
(the Ami variables), and we are trying to find a small subset

of those 108 that leads to the best linear model for the 109th
(AM). This is known as the all-subsets regression problem.
Thus, our first analysis translates the problem into an all-
subsets regression problem.

We must choose a target number of operators for this
analysis. Since Wong and Offutt et al. identified a subset
of 9%-23% of the operators available to them, we set a
target number of 20 operators (19%) out of the 108 operators
available to us. We perform an all-subsets regression, locating
the set of 20 or fewer operators that yields the best linear
model of AM.

The open-source R statistical package [18] implements
several algorithms for all-subsets regression. For our problem,
it is infeasible to use the exhaustive method, so we use the
“forward” method, which yields good models but may not
yield all the best models.

B. Elimination-Based Correlation Technique (EBC)

A possible criticism of the all-subsets regression is that it
may tend to unreasonably favour mutation operators that gen-
erate many mutants for a typical subject program. For instance,
since ORRN replaces one relational operator by another, it
typically generates more mutants than SBRC (replacebreak
statement bycontinue statement), thus contributing more
to AM for a typical suite. This may lead to ORRN being
automatically chosen just because of this higher number of
mutants generated.

A possible rejoinder to this criticism is that if ORRN gen-
erates many mutants, this may indicate that the corresponding
faults are more likely to happen. From that point of view, the
ORRN mutants would be better predictors of faulty behaviour
in a real program, and so it is justified to weight them
more heavily. However, for safety, and in order to reduce the
number of mutants generated by the sufficient operator set, we
also perform other analyses designed to address the possible
criticism.

The second technique of correlation analysis (Elimination-
Based or EBC) considers the correlation value between two
mutation operators in the decision to reject or keep the
operators. Our approach is slightly different from the one in [9]
and [10] since, in that approach, the correlation values between
a particular variable andall other variables will be computed
and the variable with the highest correlation values withother
variables will be rejected. However, in our approach, we
consider the highest correlation value betweentwo variables
and reject one of them.

This technique makes a decision to reject an operator based
on the number of generated mutation operators, rejecting the
one whose number of generated mutants is higher. Although
EBC is intuitive, there is no guarantee of constructing a subset
of variables that will achieve the best solution. But as a general
rule, it is essential to achieve the desired results in several
different ways in order to draw a conclusion. EBC is given as
Algorithm 1.

The algorithm starts by constructing the correlation matrix
among mutation operators, by using theirAmi values. Then

Algorithm 1 Elimination-Based Correlation Analysis (EBC)
Input: Data from a groupTS of test suites
Output: A set suf of sufficient mutation opera-
tors

1: M f�ij1 � i � 108g � All mutation operators
2: suf ;
3: Construct the correlation matrixS, for values ofAmi,

between mutation operators�i 2M
4: while 9�i; �j 2M s.t. j
or(Ami; Amj)j > 0:9 do
5: (�m; �n) f(�m; �n)j j
or(Amm; Amn)j =Maxfj
or(Amm; Amn)jg
6: if ℄mutants�m 6= ℄mutants�n then
7: Remove fromM the one with more generated mu-

tants, and place it insuf
8: else
9: if j
or(Amm; AM)j 6= j
or(Amn; AM)j then

10: Remove fromM the one which has less correlation
with AM, and place it insuf

11: else
12: Remove one of�m; �n randomly fromM and

place it insuf
13: end if
14: end if
15: end while
16: Returnsuf
it proceeds while there are two operators whose correlationis
greater than thethresholdvalue of 0.9 (considered to be “very
high” correlation by the standard Guilford scale [19]). The
algorithm then rejects the operator whose number of generated
mutants is greater.

As is shown in the algorithm, there might be some cases
in which not only the correlation value between two operators
is over the threshold value, but also the number of generated
mutants of both operators are equal. In those cases, we see
which one of those operators has more correlation with AM,
the adequacy ratio for all mutants. We took into account the
comparison with AM in order to have better model in the end.

C. Cluster Analysis (CA)

We also apply cluster analysis [11] to get another picture
of our data pattern. The goal of cluster analysis is to develop
a classification scheme that will partition the rows of a data
matrix into k distinct groups or clusters [20]. Since we were
interested in clustering mutation operators (variables) rather
than test suites (observations), we computed the transpose
matrix of the data matrix and treated the mutation operators
as observations.

Cluster analysis represents the level of similarity of vari-
ables by a dendrogram, a binary tree with variables at its
leaves. (R is also capable of generating such dendrograms.)
Generally, two variables whose lowest common ancestor node
is n levels up are more closely related than two whose lowest
common ancestor node ism > n levels up. The length of
branches in the dendrogram represents how closely related

two sibling nodes are. Figure 1 shows one such dendrogram,
derived from thetcas program and theRAND100 group of
test suites. It tells us, for instance, that the two rightmost
operators (DirVarIncDec and OABN) are more closely related
to each other than either is to any other mutation operator.
However, it also tells us that they are less closely related to
each other than the next two operators in (OLAN and VDTR)
are to each other.

0
2

4
6

8

Similarity of Sufficient Mutation Operators for tcas−100

II_
A

rg
R

ep
R

eq
u_

S
TR

P
I_

C
ov

A
llE

dg
u_

O
C

N
G

u_
O

A
LN

u_
O

A
S

N
II_

A
rg

In
cD

ec
II_

Fu
nC

al
D

el
u_

O
LB

N
u_

O
R

S
N

I_
R

et
S

ta
D

el
I_

In
dV

ar
B

itN
eg

I_
In

dV
ar

In
cD

ec
I_

In
dV

ar
Lo

gN
eg

u_
O

LS
N

I_
In

dV
ar

A
riN

eg
I_

D
irV

ar
R

ep
C

on
II_

A
rg

A
riN

eg
u_

O
LN

G
u_

S
R

S
R

II_
A

rg
B

itN
eg

u_
O

LL
N

u_
C

cs
r

u_
O

E
A

A
u_

O
LA

N
u_

V
D

TR
I_

D
irV

ar
In

cD
ec

u_
O

A
B

N

Fig. 1. Dendrogram for similarity of sufficient mutation operators fortcas
with test suite size 100

By clustering two variables in a specific cluster with high
similarity rate, one is able to reject one of the variables in
favor of the other, therefore reducing the number of clusters
and, consequently, the number of variables. While applying
CA to our data, we faced two questions:

1) How deeply we can proceed in the elimination of
variables (mutation operators) in a dendrogram?

2) Which operator is the best choice for elimination?
Addressing (1), it is not our goal to end up with a single

cluster with just two operators. We need to set a condition
between two operators in order to measure the relationship
between them in a particular cluster. We again take the
correlation coefficient between the variables into accountin
this. We start from a leaf cluster and measure the correlation
value between its operators, again rejecting a variable if the
correlation between them is higher than 0.9. The technique
proceeds until the correlation value between the pair in each
leaf cluster is over 0.9. Addressing (2), we again considered
the operator with the highest number of generated mutants as
the best candidate for rejection. CA is described in full as
Algorithm 2.

V. PRELIMINARY RESULTS

We have applied our procedure so far only totcas, the
smallest and simplest of the seven Siemens programs, and
generated only the test suites inSING, RAND10, RAND20,
RAND50, andRAND100. To compensate for the lack of data

Algorithm 2 Cluster Analysis (CA)
Input: Data from a groupTS of test suites
Output: A set suf of sufficient mutation opera-
tors

1: M f�ij1 � i � 108g � All mutation operators
2: Ds the data matrix
3: Dts trans(Ds) � the transpose ofD
4: repeat
5: dend CADts � Cluster Analysis onDts
6: PAIRS f
j
 2 dend s.t. j
j = 2g � the set

of clusters of length 2 in dendrogram
7: for eachcluster c2 PAIRS do
8: Identify �1; �2 2
 � j
j = 2
9: if j
or(Am�1 ; Am�2)j � 0:9 then

10: if ℄mutantsop1 6= ℄mutantsop2 then
11: Reject the one with more generated mutants

from Dts
12: else
13: if j
or(Am�1 ; AM)j 6= j
or(Am�2 ; AM)j

then
14: Reject the one which has less correlation with

AM from Dts
15: else
16: Reject one of the�1; �2 from Dts randomly
17: end if
18: end if
19: end if
20: end for
21: until 9�1; �2 2M s.t. j
or(Am�1 ; Am�2)j � 0:9
22: suf f� 2 Dtsg
23: Returnsuf
from the other six programs, we generated 300 rather than 100
test suites in each group. For this workshop paper, we report
on the results of the analyses and our explorations of how
we can combine the sets of mutation operators derived from
them. The results support the conclusion that our procedureis
experimentally feasible and yields informative data regarding
sufficient mutation operators.

We began by generating mutants fortcas. 4937 mutants
were generated by Proteum. For 49 of the operators, no
mutants were generated, so we had for our analyses only 59
variables to deal with. 4935 of the mutants compiled, and
none were equivalent to the original program (thus TNMNE
= 4935).

A. SUB Analysis

For each group of test suites (SING, RAND10, RAND20,
RAND50, andRAND100), running all-subsets regression in R
yielded a list of linear models based on 20 or fewer operators.
R also reported what correlation each model achieved with
the data from the test suite group. Even though we used the
incomplete “forward” method for all-subsets regression, there
were over 20 very good models for each test suite group
(correlation with AM of 0.995 or greater).

Operator / Description ℄mutants
I-DirVarAriNeg 44

Inserts Arithmetic Negation at Interface Variables
I-DirVarRepReq 220

Replaces Interface Variables by Required Constants
I-IndVarLogNeg 19

Inserts Logical Negation at Non Interface Variables
I-IndVarRepReq 91

Replaces Non Interface Variables by Required Constants
u-OABN 3

Arithmetic by Bitwise Operator
u-OLSN 34

Logical Operator by Shift Operator
u-VDTR 111

Domain Traps
u-VGSR 794

Mutate Global Scalar References
u-VTWD 74

Twiddle Mutations
II-ArgLogNeg 3

Insert Logical Negation on Argument
Total 1393

TABLE I

CORE SET FROM ALL-SUBSETS REGRESSION ANALYSIS(CORE-SUB)

For each test suite group, we identified the set of all
operators that appeared in at least one of the best models
generated (correlation of 0.995 or greater). There was no
reason to believe that all five sets would be equal, and they
were not. However, the slightly surprising result was that there
was very little commonality among the operator sets. Only
ten operators appeared in all five sets. We refer to the set of
these ten operators as thecore-SUBset of sufficient mutation
operators. This set of operators, along with their descriptions
found in the Proteum binaries, is shown in Table I. More
detailed descriptions of these operators can be found in [15],
[16], [17].

B. EBC Analysis

After doing the EBC analysis, we again ended up with
a different set of operators for each test suite group. Seven
operators appeared in all five sets. We refer to these operators
as thecore-EBCset, and they can be found in Table II. Another
surprise is that only one of them (I-IndVarLogNeg) is shared
with the core-SUB group.

C. Cluster Analysis

As with the other two analyses, we identified a different set
of sufficient operators for each group of test suites, but here
there was greater agreement, with 13 operators appearing in
every group. This set of operators, thecore-CAset, appears in
Table III. One operator from the core-SUB set appear in this
set, and also four operators from the core-EBC set; however,
the operator that appears in both core-SUB and core-EBC (I-
IndVarLogNeg) doesnot appear, leading to the conclusion that
no operator appears in all three core sets.

D. Comparing Sufficient Operator Sets

Table IV shows a comparison of the savings achieved by the
operator sets given by the three analyses. Core-EBC achieves

Operator / Description ℄mutants
I-IndVarAriNeg 19

Inserts Arithmetic Negation at Non Interface Variables
I-IndVarLogNeg 19

Inserts Logical Negation at Non Interface Variables
II-ArgRepReq 5

Argument Replacement by Required Constants
u-OALN 2

Arithmetic Operator by Logical Operator
u-OASN 2

Arithmetic Operator by Shift Operator
u-OCNG 8

Logical Context Negation
u-OLLN 17

Logical Operator Mutation
Total 72

TABLE II

CORE SET FROM ELIMINATION-BASED CORRELATION ANALYSIS

(CORE-EBC)

Operator / Description ℄mutants
I-CovAllEdg 12

Coverage of Edges
I-DirVarRepCon 38

Replaces Interface Variables by Used Constants
I-IndVarAriNeg 19

Inserts Arithmetic Negation at Non Interface Variables
I-RetStaDel 17

Deletes Return Statement
II-ArgIncDec 54

Argument Increment and Decrement
u-OABN 3

Arithmetic by Bitwise Operator
u-OALN 2

Arithmetic Operator by Logical Operator
u-OASN 2

Arithmetic Operator by Shift Operator
u-OCNG 8

Logical Context Negation
u-OLNG 51

Logical Negation
u-ORSN 30

Relational Operator by Shift Operator
u-SRSR 60

return Replacement
u-STRP 70

Trap on Statement Execution
Total 366

TABLE III

CORE SET FROM CLUSTER ANALYSIS(CORE-CA)

Core-SUB Core-EBC Core-CA℄Mutants 1393 72 366
%Total 28.22% 1.45% 7.41%
%Saving 71.78% 98.55% 92.59%℄Operators 10 7 13
%Total 9.25% 6.48% 12.03%
%Saving 90.75% 93.52% 87.97%

TABLE IV

COMPARISON OF CORE SETS

Core Set Multiple Regression Model
1 Core-SUB AM ' 0:012+�0:049 �AmI�DirV arAriNeg+0:258 �AmI�DirV arRepReq+0:005 �AmI�IndV arLogNeg+0:120 �AmI�IndV arRepReq+�0:001 �Amu�OABN+0:080 �Amu�OLSN+0:062 �Amu�V DTR+0:376 �Amu�V GSR+0:102 �Amu�V TWD+0:036 �AmII�ArgLogNeg
2 Core-EBC AM ' �0:059+0:363 �AmI�IndV arAriNeg+0:195 �AmI�IndV arLogNeg+0:078 �AmII�ArgRepReq+�0:037 �Amu�OALN+0:059 �Amu�OASN+0:161 �Amu�OCNG+0:180 �Amu�OLLN
3 Core-CA AM ' 0:029+0:128 �AmI�CovAllEdg+0:182 �AmI�DirV arRepCon+0:167 �AmI�IndV arAriNeg+0:154 �AmI�RetStaDel+0:043 �AmII�ArgIn
De
+�0:008 �Amu�OABN+�0:007 �Amu�OALN+0:023 �Amu�OASN+0:013 �Amu�OCNG+0:093 �Amu�OLNG+0:190 �Amu�ORSN+0:047 �Amu�SRSR+�0:054 �Amu�STRP

TABLE V

L INEAR MULTIPLE REGRESSION MODELS RESULTING FROM CORE SETS

the greatest savings, followed by Core-CA and Core-SUB. As
expected, the SUB analysis, which does not take number of
mutants into account, generates the largest number of mutants.
However, all three analyses yield reasonable results, witheven
Core-SUB leading to an over 71% reduction in number of
mutants generated (recall that Offutt et al.’s five operators
yielded a 77.56% savings).

In order to compare the usefulness of the subsets for predict-
ing AM (the overall mutation adequacy ratio), we performed
multiple linear regressions to build a linear model for AM
from the sets of operators given, using all data from all five
test suite groups. These models are shown in Table V. Each
model can be taken as a way of predicting what AM will be
for a test suite, given only the Ami values from the sufficient
set.

An interesting feature of these models is the presence of
negative coefficients. For instance, Ami for OALN (replace
arithmetic operator by logical operator) has a negative coef-
ficient in each of the core-EBC and core-CA models. This
suggests that a test suite fortcas that kills more OALN
mutants is predictably likely to killfewer mutants overall.
This observation is corroborated by the fact that OALN is
on the longest branch leading directly from a leaf not in the
dendrogram in Figure 1, suggesting that it is the operator with
the “most different” behaviour.

Figure 2 shows a scatter plot of the value of AM predicted
by the core-SUB linear regression model, against the actual
value of AM. Each circle represents a test suite; the heavy
diagonal line is thex = y line of a hypothetical perfect model,
and the thinner curve is a smoothing spline fitted to the data.
Figures 3 and 4 show the same thing for core-EBC and core-
CA respectively.

While all three models are good, core-SUB is the best,
followed closely by core-CA, which uses far fewer mutants.
Core-EBC does not fare as well, but it uses many fewer
mutants even than core-CA. The goodness of fit may be a
result of the better models using more mutants, or there may
be other factors. Visual inspection of the graphs suggests that
the cluster analysis (CA) is doing the best job at balancing
number of mutants generated with goodness of fit.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted vs. Actual AM for Core−SUB

Predicted AM − SUB

A
ct

ua
l A

M

Fig. 2. Predicted vs. actual plot for Core-SUB linear regression model

Table VI shows another comparison between the predicted
AM achieved by the three techniques and the actual AM.
The high correlation values show that, indeed, they are all
good predictors for AM. The results oft tests (paired and

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted vs. Actual AM for Core−EBC

Predicted AM − EBC

A
ct

ua
l A

M

Fig. 3. Predicted vs. actual plot for Core-EBC linear regression model

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted vs. Actual AM for Core−CA

Predicted AM − CA

A
ct

ua
l A

M

Fig. 4. Predicted vs. actual plot for Core-CA linear regression model

Correlation p-value p-value
with paired t.test Welch two
AM sample t.testAmpred�SUB 0.9994673 0.9998 1Ampred�EBC 0.9883457 1 1Ampred�CA 0.9982409 0.9993 1

TABLE VI

ACTUAL VS. PREDICTEDAM

Welch) are also shown, where the null hypothesis is that mean
difference (resp. difference in means) between AMA
tual and
AMPredi
ted is 0. Thep values are all much greater than the
standard confidence level of 0.05, indicating that we cannot
reject the null hypothesis. This suggests that the prediction is
good in this respect as well.

VI. D ISCUSSION

A. Threats to Validity

We do not expect that the preliminary results fromtcas
will necessarily carry over to the other programs in the
Siemens subject program suite. The other programs are larger
thantcas, and will result in more mutants; they also contain
different and more complex control and data structures, which
may result in Proteum generating more or fewer mutants for
some operators. In particular,tcas is not one of the Siemens
programs that contains Cstructs or non-trivial pointers,
so it has the same issues as the subject programs of earlier
studies. We also expect the greater diversity of programs will
result in regression models that are less accurate than those
for the single programtcas.

Aside from the considerations arising from considering
only one program so far, there are other threats to validity
of our experiments. Threats to internal validity include the
correctness of the mutant generation, compilation, running
and data collection processes. We rely on Proteum for mutant
generation, and minimize the other threats to internal validity
by reviewing our data-collection shell scripts and doing sanity
checks on our results. The use of only non-equivalent mutants
may be taken as a threat to construct validity, but as we noted
in Section III-B, this is appropriate in the context of identifying
a set of sufficient mutation operators for experiments.

Threats to external validity include the use of C programs
that are still relatively small compared to commercial pro-
grams. Even the data collection and analysis done so far took
some tens of hours of CPU time and much more time for
subject preparation, so unfortunately we were not able to use
larger programs. However, this threat is mitigated by the facts
that the C programs are large and complex enough to include
a broad range of control and data structures, and that the
three dominant languages in programming today (C, C++ and
Java) all use very similar syntax in their non-OO constructs.
We do note, however, that we have not attempted to handle
object-oriented constructs. Mutant generators that implement
class mutation operators, such as MuJava [6], are better suited

to evaluation of sufficient mutation operator sets for object-
oriented programs.

B. Data Combination and Analysis

In processing the available data, we are faced with the
question of what order to perform the following steps in:
(a) Combine data from subject programs; (b) Do statistical
analyses; (c) Combine data from test suite groups; (d) As one
evaluation, fit linear models. Clearly (a) must be done first,
since the point of using different subject programs is to collect
information not dependent on any one subject program. We
have initially chosen to do the other steps in the order (b), (c)
and (d). However, the unexpected lack of consensus between
the different test suite groups may suggest that it is betterto
combine all data from all test suite groups before doing an
analysis. This would result in only three sufficient operator
sets to be compared to each other.

Alternatively, the lack of consensus between the different
test suite groups may be nothing but an artifact of using only
one subject program, which will disappear when we consider
more than one. Although considering more than one subject
may lead to less accurate linear models, all the linear models
we arrived at fortcas were very good, and all reduced the
number of mutants substantially.

Finally, it should be noted that the ability to predict AM is
not necessarily the only measure of the goodness of a sufficient
set of mutants for all purposes. The EBC and CA analyses
derive sufficient sets essentially based on how differentlythe
operators behave from one another. A practitioner performing
mutation testing of a piece of software may take such infor-
mation as suggesting that they should use all mutants in these
sufficient sets, in order to make sure that their test suite kills
as many diverse kinds of mutants as possible.

VII. C ONCLUSIONS ANDFUTURE WORK

We have interpreted the problem of identifying sufficient
mutation operators as a variable reduction problem, and have
described various approaches to the problem based on the
literature. One of the analyses takes the overall mutation
adequacy AM as the target, and the other two try to find a set of
operators that are the most statistically distinct from each other
as possible. We have described our experimental and analysis
procedure in detail. Our preliminary results suggest that our
procedure is feasible and does yield valuable information.

In the future, we will of course extend the processing
and analysis to all test suite groups and all seven Siemens
programs. This will involve much more computing. We will
also study whether non-linear and other regression methods
result in models that are a better fit to the data we have. Finally,
we will study the resulting data with the goal of identifying
one set of operators (or several sets of operators, each one for
a different situation) that we can reasonably justify claiming
as “sufficient”.

ACKNOWLEDGMENTS

This work is supported by a Discovery Grant from the
Natural Sciences and Engineering Research Council of Canada

(NSERC). Akbar Siami Namin is further supported by an On-
tario Graduate Scholarship. Thanks to Hyunsook Do and Greg
Rothermel for their help in accessing the Siemens programs,to
Jeff Offutt and Yu-Seung Ma for access to MuJava, and to José
Carlos Maldonado and Auri Vincenzi for access to Proteum.
Thanks also to Aditya Mathur for bibliographic references and
useful discussion. The R statistical package [18] was used for
all statistical processing.

REFERENCES

[1] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf,
“An experimental determination of sufficient mutation operators,” ACM
Transactions on Software Engineering and Methodology, vol. 5, no. 2,
pp. 99–118, April 1996.

[2] A. J. Offutt and R. Untch, “Mutation 2000: Uniting the orthogonal,” in
Mutation 2000: Mutation Testing in the Twentieth and the Twenty First
Centuries, San Jose, CA, October 2000, pp. 45–55.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” inProceedings of the 27th International
Conference on Software Engineering (ICSE 2005), St. Louis, Missouri,
May 2005, to appear.

[4] K. N. King and J. Offutt, “A Fortran language system for mutation-based
software testing,”Software Practice and Experience, vol. 21, no. 7, pp.
686–718, July 1991.

[5] M. E. Delamaro and J. C. Maldonado, “Proteum – a tool for the
assessment of test adequacy for C programs,” inProceedings of the
Conference on Performability in Computing Systems (PCS 96), New
Brunswick, NJ, July 1996, pp. 79–95.

[6] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava : An automatedclass
mutation system,”Software Testing, Verification and Reliability, vol. 15,
no. 2, pp. 97–133, June 2005.

[7] W. E. Wong, “On mutation and data flow,” Ph.D. dissertation, Purdue
University, December 1993.

[8] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.
[9] ——, “Disgarding variables in a principal component analysis. I: Arti-

ficial data,” Applied Statistics, vol. 21, no. 2, pp. 160–173, 1972.
[10] ——, “Disgarding variables in a principal component analysis. II: Real

data,” Applied Statistics, vol. 22, no. 1, pp. 21–31, 1973.
[11] A. Rencher, Methods of Multivariate Analysis. Wiley Series in

Probability and Statistics, 2002.
[12] G. McCabe, “Principal variables,”Technometrics, vol. 26, no. 2, pp.

137–144, 1984.
[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of

the effectiveness of dataflow- and controlflow-based test adequacy cri-
teria,” in Proceedings of the 16th International Conference on Software
Engineering, Sorrento, Italy, May 1994, pp. 191–200.

[14] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities of
test suites,” inProceedings of the International Conference on Software
Maintenance (ICSM ’98), Washington, DC, USA, November 1998, pp.
34–43.

[15] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E.W.
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Designof mutant
operators for the C programming language,” Department of Computer
Science, Purdue University, Tech. Rep. SERC-TR-41-P, April 2006.

[16] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P. Mathur,
“Interface mutation test adequacy criterion: An empiricalevaluation,”
Empirical Software Engineering, vol. 6, pp. 111–142, 2001.

[17] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro,
“Unit and integration testing strategies for C programs using mutation,”
Software Testing, Verification and Reliability, vol. 11, pp. 249–268,
2001.

[18] W. N. Venables, D. M. Smith, and The R Development Core Team, “An
introduction to R,” R Development Core Team, Tech. Rep., June 2006.

[19] J. P. Guilford, Fundamental Statistics in Psychology and Education.
New York: McGraw-Hill, 1956.

[20] N. Timm, Applied Multivariate Analysis. Springer, 2002.

