Finding Sufficient Mutation Operators via Variable
Reduction

Akbar Siami Namin and James H. Andrews
Department of Computer Science
University of Western Ontario
London, Ontario, CANADA N6A 5B7
Email: {asiamina,andrews} (at) csd.uwo.ca

Abstract— A set of mutation operators is “sufficient” if it can detail, and to present some preliminary results based on one
be used for most purposes to replace a larger set. We describesybject program.
in detail an experimental procedure for determining a set ofsuf-
ficient C language mutation operators. We also describe sers@ A. Structure of Paper

statistical analyses that determine sufficient subsets witrespect . . .
to several different criteria, based on standard techniqus for The remainder of this paper is structured as follows. In

variable reduction. We have begun to carry out our experimetal ~ Section I, we discuss previous work. In Section llI, we jeras
procedure on seven standard C subject programs. We present our procedure for obtaining the raw data on which we base our
prelimingry results.that indicat.e that the procedure and analyses analyses. In Section IV, we describe the statistical aealys
are feasible and yield useful information. that we perform for obtaining our set of sufficient mutation
operators. In Section V, we present our preliminary results
and analyze how well the proposed set performs. In Section
When performing mutation testing or mutation analysis, Wél, we discuss the threats to validity and the implicatioris o
apply mutation operatorgo programs in order to create faultyour results, and in Section VII we conclude.
versions of those programs. Typically, a mutation operegor
be applied at many different locations in the source code or
program structure graph, and may yield more than one mut#nt Mutation Testing and Analysis

from each location. Hence, applying one mutation operator t npytation testing [2] needs no introduction to the particitsa
one source program can result in more than one mutant, afghis workshop. We use the related phrasetation analysis
may result in many mutants. to refer to the practice of using mutants in experiments to
Over the years, many mutation operators have been pggralyze the effectiveness of software testing techniqtres.
posed. Generating all mutants from all proposed operat@{sesting experiment, we typically want to see how effective
would often result in an infeasibly large number of mutantand efficient different testing techniques are. Our measfire
Researchers have therefore looked for a reduced set of raffectiveness is how many faults the technique finds. Muoati
tation operators that will generate fewer mutants but b&ll has been used by many researchers in order to generate faulty
“sufficient” for our purposes. versions for such experiments, and recent work has shown tha
Offutt et al. [1] cast the sufficient mutation operators prolthese mutants can behave very similarly to real faults [3].
lem as follows: Given a set P of mutation operators, find a Mutant generator systems that have been written and made
subset Q of P such that Q generates “many fewer” mutarfgailable include Mothra [4] for Fortran programs, Protd6in
than P, but such that a test suite that kills all the mutamis fr for C programs, and MuJava [6] for Java programs. Mothra
Q tends to kill “most” of the mutants from P. The phrases ifinplements 22 mutation operators, while Proteum implesient
quotation marks are necessarily imprecise, and how good thévider set of 108 mutation operators. MuJava implements
set Q is must be a matter of judgement. only the 5 conventional (non-O0) operators found by the
In this paper, we generalize the question as follows: Givedffutt et al. study [1], but also implements 24 class mutatio
a set P of mutation operators, find a subset Q of P such thabgerators. Since we are interested in revisiting the cuesti
generates “many fewer” mutants than P, but such that from tbesufficient conventional mutation operators, Proteumus o
behaviour of a test suite on the mutants from Q, we can obtdsst available choice.
an “accurate” prediction of its behaviour on the mutantsnfro o)
P. We find the subset Q by using sevevatiable reduction B- Sufficient Mutation Operators
techniques based on the statistical literature, and cdnbin Previous empirical work on sufficient mutation operators is
the results of all the techniques. We use C programs as diarited. Wong [7] compared a set of 22 mutation operators to
experimental subjects rather than the Fortran programsmés a set of two mutation operators in two experiments, and found
previous studies. The purpose of this workshop paper is tttat the reduced set was significantly smaller but behaved
describe our experimental technique and statistical aralin similarly to the full set. Offutt et al. [1] compared a set &f 2

I. INTRODUCTION

Il. PREVIOUS WORK

mutation operators with four fixed subsets of those mutati@ach other such that the first scale, as first component, shows
operators. They judged one subset, called E (a subset wittear combination of the original correlated variablesose
five mutation operators) to be best, based on the fact thiat tegntribution toward variance are the highest. PCA does not
suites created to kill all the mutants generated from thadke help us directly, since it still assumes that we collect aliiv
operators had high mutation adequacy ratios (average @).5%bles and then summarize them in a smaller set of variables.
while requiring 77.56% fewer mutants on average. However, the variable reduction techniques developed @k P

The experimental subjects across the two experiments avé relevant.
the Wong study were eight Fortran programs, which were Jolliffe in his papers [9] and [10] introduced some variable
translated into C so that coverage could be measured; theeduction methods to be used in PCA. He introduced eight
programs had an average of approximately 57.9 raw lines different approaches in three groups, referred to as etivel
code each (lines including comments and whitespace). Taealysis, principal component analysis, and cluster aigly
subjects in the Offutt et al. study were 10 Fortran progranil]. It has been claimed that all eight different technigue
having an average of 20.6 statements each. The Wong subjgctgiuce the same set of operators, plus or minus one. However
have nost ruct definitions and very few pointers, and thdt has been proven that the variable reduction problem has a
descriptions of the Offutt et al. subjects suggest that #lsg non-unique solution [12].
have no or few structures or pointers. The significance of[9] and [10] present some fundamental skeleton approaches
this is that pointer and structure field assignment statésnefor variable reduction techniques. These approaches naist b
(a) are affected by relatively few of the commonly-desalibetailored to a particular problem’s criteria for preferrirgpe
mutation operators (in particular, they are affected byenoh variable over another, and this is what we did for the sufficie
the operators in the sufficient sets identified by either Womgutation operator problem. To our knowledge, this approach
or Offutt et al), (b) are common in larger C programs, and (¢ the sufficient mutation operator problem is new.
correspond to object field assignment statements, which are
common in larger O-O programs.

The results of the previous experiments might not carry overWe take as our primary goal to discover a subset of mutation
to mutation adequacy for typical programs in C for a numbeperators, generating a small number of mutants, suchttbat t
of reasons. These reasons include the syntactic diffesamee adequacy of a test suite on the subset of mutants can be used to
tween Fortran and C, the differences between small andrlargecurately predict the adequacy of the test suite on all mtsita
programs, and the differences between programs manipglatDur subsidiary goals are to consider as large and complex
structures and pointers and those doing so very little or natograms as are experimentally feasible, and to use as many
at all. The only way to confirm whether the results do cargpproaches as possible to constructing the test suiteg Her
over is to do a new experiment. we describe the experimental procedure used to collect the

The previous work on the subject also does not deal witaw data. We first describe the setup of the subject programs
the guestion of the all-mutants adequacy of test suites tlaatd the mutant generator. We then define precisely what sets
achieve sufficient-mutant adequacy ratiosledsthan 100%. of data we produce for each group of test suites, and what
For instance, while we might know that test suites achievirgeasurements we take from them. We describe the groups
100% sufficient-mutant adequacy achieve an overall adgquag test suites that we generate, and end by stating how we
of 99.51%, this does not necessarily mean that test suitgsnbine data from different subject progrdms

I1l. EXPERIMENTAL PROCEDURE

achieving 70% sufficient-mutant adequacy achieve an aeer:iqu
all-mutants adequacy of 69.51%. - Setup

) _ Our experimental subject programs are the seven well-
C. Variable Reduction known Siemens programs, used first by Hutchins et al. [13]

In our experiments, we apply a set of 108 mutation operataasd developed further as research instruments by Rother-
to programs, and measure the adequacy of test suites onrtied, Harrold and others [14]. We obtained the Siemens pro-
mutants resulting from each operator, and on all mutants cograms from the Galileo Research Group Subject Infrastractu
bined. We therefore have a set of 109 experimental variabRepository (SIR) at the University of Nebraska - Lincolncka
(the per-operator mutation adequacy ratios and the overeillthe programs comes with a large number of test cases,
mutation adequacy ratio), and we want to choose a subsetefierred to as theest pool Each also comes with alternate
the first 108 that allows us to predict the 109th. This problewmersions containing faults, which were not needed for this
is known in statistics as theariable elimination, discarding, study.
disregarding, selectiolr reductionproblem. We will refer to ~ The Siemens programs have an average of approximately
it by the termvariable reductionin this paper. 327 NLOC (lines of code without comments or whitespace).

Some multivariate techniques to decrease the number Tdfis number of lines of code is bigger than that of previous
variables have been proposed. Among them principal costudies. Furthermore, three of the Siemens programs use
pone'nt ana.lySIS (PCA) 18] I.S the ﬂ.rSt one, in which we reducelRather than describing our finished, in-progress and pregework in a
the dimension space of variables into some new I’IOI’I-COG[HaFmere of past, present and future tenses, we describé it dhe present
variables. The scales of new variables are perpendiculartdase, and then make clear in Section V what we have done .so far

structures (Cstructs), and five use pointers in a non- « TNMNE is the total number of mutants that are non-
trivial manner. However, the programs are still smallemtha equivalent; i.e. TNMNE= """ NMNE;.
most C programs in use today, since the heavy processing We say that test cas€ kills mutantM, or M is killed
requirements of our experiments constrain their size. We do by C, if outcomd M, C) = f.
plan to evaluate the sufficient mutation operator sets theat w « Kills;(C), for a test case’, is the set of mutants\/
obtain on larger programs in the future. generated using; that are killed byC.

We obtained the C mutant generator Proteum from José. kills(C), for a test cas€, is the set of all mutants killed
Carlos Maldonado at the University of S&o Paolo. Proteum by C; i.e. kills(C) = J"_kills;(C).
definesn. = 108 mutation operators. We refer to these muta- For each test suit§ = {Cj,...,Cy} that we generate,
tion operators ag, through,,. Examples include ORRN, theye calculate the most important sets and numbers of our
operator for replacing one relational operator by anotaed experiments.
SBRC, the operator for replacingla eak statement with a
cont i nue statement. The operators overlap somewhat with . . .
the 76 operators defined for C by Agrawal et al. [15], and that are killed by some test case) i.e. kills;(5) =

ther operators are as described by Delamaro et al. [16] anO.I kil'is(S) is the set of all mutants that are killed by
Vincenzi et al. [17].

some test case i§; i.e. kills(S) = U;”Zlkills(Cj), or
B. Definitions of Sets and Measurements equivalently kill{.S) = ;- kills; ().
For each subject prograr®, we collect and calculate a « Am;(S), the Adequacy ratio for Mutants of operator
number of measures and sets in our experiments. Here we for test suiteS, is defined askills;(S)|/NMNE;.
define these measures and sets precisely. « AM(S), the Adequacy ratio for all Mutants, is defined as
Examples of measures and sets defined below include [Kills(S)|/TNMNE.
“NMG;(P)” and “outcomégM, C, P)". Because the subject Note that we define the adequacy ratio relative to the number
program P is a parameter of all these measures and seg$, non-equivalent mutants. We do this because our primary
we simplify our notation by leaving ouP as a parameter interest is in the use of mutants in experiments, and in the
wherever possible. Thus, for instance, we speak of NMIBI context of experiments it is both feasible and desirable to

outcom&M, C), leaving parameteP implicit. accurately determine which mutants are equivalent.
Generally we use upper-case names (e.g. “NMG”) for

numbers, and lower-case names (e.g. “outcome”) for no@- Test Suite Groups
numeric entities such as sets.

« kills;(S) is the set of mutants/ generated using:;

i Ideally, for a given test suit&, the number of sufficient-
We generate mutants oP using each of ther = 108 got mytants thas kills would let us predict accurately the
Proteum mutation operatoys, . .., yin. number of all mutants tha§ kills. However, there are many
« NMG,; is defined as the number of mutantsiofenerated gifferent ways to build test suites, and a set of sufficient
using pi. _ _ _ operators for one of these ways might not suffice for another
« clasgM), for a given mutanfi/ of P, is defined as thé \yay. We therefore discover sufficient operators with respec
such thatM is one of the mutants generated by applying, various ways of constructing test suites, and later coepa
mutation operatoy; to P. In our experiments, clad/) ine discovered sets of operators.
can be retrieved directly from the name assigned to thegq, each subject program, we generate nine groups of test

mutant. suites: one group of singleton test suites, referred teiss,
A small number of the generated mutants do not compile, fjur groups of randomly-selected test suites, referredsto a
do not link properly. RAND10,RAND20,RAND50, andRAND100, and four groups
« NMC; is defined as the number of mutantsfofienerated of coverage-based test suites, referred t@ias, DEC, CUSE,
using u; that actually compiled and linked. andPUsE We will now describe these groups in turn.
We run each compilable mutaf of P on each test case sING, for each subject program, is a group of 100 test suites
C in the test pool forP. consisting of one test case in each suite. That is, to caststru

« outcoméM, C) =t if the output of M on test cas&€' is SING, we choose 100 distinct test cases from the test pool,
identical to the output of the gold version &f on test and put each in a separate test suite. We discover sufficient
caseC; otherwise outcom@\/,C) = f. operators for this group in order to see if the set of sufficien

« failureqM) is the set of test case€ such that operators for test suites can also be used to evaluate dodilvi
outcomégM,C) = f. We do not store outconi®d/,C) test cases.
directly, but rather store the set failu(@¢) in a file The test suites iInRRAND10 are generated by randomly
specific to that mutand/. picking 10 test cases from the test pool for the subject

« We say thatV/ is anequivalentmutant if failureg)M) is program. We generate 100 test suites for each subject pnogra
the empty set; otherwise we say thidtis non-equivalent in this way. These suites represent “arbitrary” test suitets

« NMNE; is the number of mutants dP generated using constructed by following any coverage goals. The test siiite
u; that are non-equivalent. RAND20 (resp.RAND50, RAND100) are similarly generated

by randomly picking 20 (resp. 50, 100) test cases from tlud those 108 that leads to the best linear model for the 109th
test pool. (AM). This is known as the all-subsets regression problem.
The test suites iBLK are generated to meet particular covThus, our first analysis translates the problem into an all-
erage goals. For each coverage percenfagem 50 to 99, we subsets regression problem.
generate two test suites that achieve betwéfhandP + 1% We must choose a target number of operators for this
feasible block coverage, as measured by the ATAC coveraggalysis. Since Wong and Offutt et al. identified a subset
tool. DEC, CUSE, and PUSE are generated in the analogousf 9%-23% of the operators available to them, we set a
way for decision, C-use and P-use coverage respectivebsa htarget number of 20 operators (19%) out of the 108 operators
suites represent test suites that may reasonably be cotestruavailable to us. We perform an all-subsets regressionfitaca
by trying to achieve high code coverage. We select a spreheé set of 20 or fewer operators that yields the best linear
of many coverage percentages because we want to discavedel of AM.
sufficient operators that work over a broad range of coverageThe open-source R statistical package [18] implements
goals, not just close to 100%. We start at 50% coverageveral algorithms for all-subsets regression. For oublpro,
because this seems to be the minimum goal it is likely anyoitds infeasible to use the exhaustive method, so we use the
would want to achieve. We stop at 99% coverage becau$erward” method, which yields good models but may not
preliminary investigations have indicated that it wouldea yield all the best models.
an unreasonably long time to generate test suites thatvachie
100% feasible coverage for the two hardest measures (C—Ese
and P-use). Since we generate two test suites for each gavera A possible criticism of the all-subsets regression is that i
percentage, the size of each group is again 100 test suitesnay tend to unreasonably favour mutation operators that gen
o . erate many mutants for a typical subject program. For itgtan
D. Combining Data from Subject Programs since ORRN replaces one relational operator by another, it
Note that each group of test suites for each subject prograypically generates more mutants than SBRC (replaceak
contains 100 test suites. It would be infeasible to perforstatement bycont i nue statement), thus contributing more
our statistical analyses for each of these test suite grangds to AM for a typical suite. This may lead to ORRN being
each of the subject programs. We therefore combine the datdomatically chosen just because of this higher number of
for the seven subject programs. We calculate the valuesmfitants generated.
Am; and AM for each test suite, and then combine the dataA possible rejoinder to this criticism is that if ORRN gen-
from the different subject programs but the same group inéwates many mutants, this may indicate that the correspgndi
one set of data. Thus, for each 8iNG, RAND10, RAND20, faults are more likely to happen. From that point of view, the
RAND50, RAND100, BLK, DEC, CUSE, and PUSE we obtain ORRN mutants would be better predictors of faulty behaviour
700 observations, each observation consisting of values fo a real program, and so it is justified to weight them
each Am and for AM. more heavily. However, for safety, and in order to reduce the
For each of the nine groups of test suites, we do threember of mutants generated by the sufficient operator set, w
separate analyses on the data generated from the experimaab perform other analyses designed to address the possibl
The goal of each analysis is to discover sufficient mutatiarmiticism.
operators, but the procedure differs between the analysesThe second technique of correlation analysis (Elimination
These analyses are described in the next section. We tBased or EBC) considers the correlation value between two
end up with 27 sets of mutation operators, each judged rasitation operators in the decision to reject or keep the
“sufficient” by a different analysis or with respect to a dif€nt operators. Our approach is slightly different from the angdi
group of test suites. We then compare these 27 sets of nmutatdmd [10] since, in that approach, the correlation valueséen
operators in order to identify the operators that appeamthet a particular variable andll other variables will be computed
often. and the variable with the highest correlation values witter
variables will be rejected. However, in our approach, we
IV. STATISTICAL ANALYSIS consider the highest correlation value betwéen variables
We base our three variable reduction techniques on thawed reject one of them.
introduced in [9] and [10], adapting them whenever it comes This technique makes a decision to reject an operator based
to the choice of rejecting or keeping a mutation operatoreHeon the number of generated mutation operators, rejectieg th
we call the techniques All-Subsets Regression analysi8fSUone whose number of generated mutants is higher. Although
Elimination-Based Correlation (EBC) analysis, and Clusté&BC is intuitive, there is no guarantee of constructing esstib

Elimination-Based Correlation Technique (EBC)

Analysis (CA). of variables that will achieve the best solution. But as aegein
. rule, it is essential to achieve the desired results in séver
A. All-Subsets Regression (SUB) different ways in order to draw a conclusion. EBC is given as

One valid view of the sufficient-operators problem is that ilgorithm 1.
is merely a linear regression problem. We have 108 variablesThe algorithm starts by constructing the correlation matri
(the Am; variables), and we are trying to find a small subs@mong mutation operators, by using thdim; values. Then

Algorithm 1 Elimination-Based Correlation Analysis (EBC) two sibling nodes are. Figure 1 shows one such dendrogram,

Input: Data from a grouff’S of test suites derived from thet cas program and the&kAND100 group of
Output: A set suf of sufficient mutation opera-test suites. It tells us, for instance, that the two rightmos
tors operators (DirVarincDec and OABN) are more closely related
10 M+ {p;]1 <1 <108} > All mutation operators to each other than either is to any other mutation operator.
2: suf + 0 However, it also tells us that they are less closely related t
3: Construct the correlation matri$, for values of Am;, e€ach other than the next two operators in (OLAN and VDTR)
between mutation operators € M are to each other.
4: while 3p;, p; € M s.t. |cor(Am;, Am;)| > 0.9 do
5: (:um7 ;un) — {(;umv ,U'n) ‘ |COT(Amm-, Amn) ‘ = Similarity of Sufficient Mutation Operators for tcas—100

Mazx{|cor(Am,, Am,)|}

6: if fmutants,, # tmutants,, then
7 Remove fromM the one with more generated mu- =
tants, and place it iBuf
8 else o
o: if |cor(Amy,, AM)| # |cor(Am,, AM)| then
10: Remove fromM/ the one which has less correlation
with AM, and place it insuf v
11 else
12: Remove one ofu.,, u, randomly from M and o
place it insuf
13: end if
14: end if ° -

g
u_OCNG

15: end while
16: Returnsuf

u 6EAA

u_Ccsr

u_STRP
1_CovAllEd

gBitNeg
u_OLLN

gAriNeg

u_OLNG

u_OALN

u_OASN

g_lncDec

1I_FunCalDel

u_OLBN

u_ORSN

|_RetStaDel

u_OLSN
IndVarAriNeg
DirvVarRepCon
u_SRSR

u_OLAN

gRepReq
11_Ar
IndVarBitNeg
IndVarlncDec
IndVarLogNeg
11_Ar
11_Ar
u_VDTR
DirVarincDec
u_OABN

I_Ar

Fig. 1. Dendrogram for similarity of sufficient mutation optors fort cas

it proceeds while there are two operators whose correldgionwith test suite size 100
greater than théhresholdvalue of 0.9 (considered to be “very
high” correlation by the standard Guilford scale [19]). The By clustering two variables in a specific cluster with high
algorithm then rejects the operator whose number of gmra§imilarity rate, one is able to reje_ct one of the variables in
mutants is greater. favor of the other, therefore reducing the number of clgster

As is shown in the algorithm, there might be some cas@gd, consequently, the number of variables. While applying
in which not only the correlation value between two operatofA to our data, we faced two questions:
is over the threshold value, but also the number of generated) How deeply we can proceed in the elimination of
mutants of both operators are equal. In those cases, we see variables (mutation operators) in a dendrogram?
which one of those operators has more correlation with AM, 2) Which operator is the best choice for elimination?
the adequacy ratio for all mutants. We took into account the Addressing (1), it is not our goal to end up with a single
comparison with AM in order to have better model in the endluster with just two operators. We need to set a condition
C. Cluster Analysis (CA) between two operators iq order to measure the. relationship

between them in a particular cluster. We again take the

We also apply cluster analysis [11] to get another pictuggrelation coefficient between the variables into accaont
of our data pattern. The goal of cluster analysis is to dgvelgyis. We start from a leaf cluster and measure the correlatio
a classification scheme that will partition the rows of a datgy e petween its operators, again rejecting a variabladf t
matrix into £ distinct groups or clusters [20]. Since we wer@gyre|ation between them is higher than 0.9. The technique
interested in clustering mutation operators (variablesher proceeds until the correlation value between the pair i eac
than test suites (observations), we computed the transpRs§ cluster is over 0.9. Addressing (2), we again consitlere
matrix of the data matrix and treated the mutation operatgfse operator with the highest number of generated mutants as

as observations. S the best candidate for rejection. CA is described in full as
Cluster analysis represents the level of similarity of variy|gorithm 2.

ables by a dendrogram, a binary tree with variables at its

leaves. (R is also capable of generating such dendrograms.) V. PRELIMINARY RESULTS

Generally, two variables whose lowest common ancestor nodéVe have applied our procedure so far onlyttoas, the

is n levels up are more closely related than two whose loweshallest and simplest of the seven Siemens programs, and
common ancestor node & > n levels up. The length of generated only the test suites §1ING, RAND10, RAND20,
branches in the dendrogram represents how closely relareedhD50, andRAND100. To compensate for the lack of data

Algorithm 2 Cluster Analysis (CA) ?8?{;’“‘1 _/NDGSC“F’“O” ﬂm“taniz
N T -DirvarAriNeg
Input: Data from a groufl’S of test suites Inserts Arithmetic Negation at Interface Variables
Output: A set suf of sufficient mutation opera- | I-DirvarRepReq 220
tors Replaces Interface Variables by Required Constants
. I-IndVarLogNeg 19
1 M+ {u;]1 <1 <108} > All mutation operators Inserts Logical Negation at Non Interface Variables
2. D, + the data matrix I-IndvarRepReq . . 91
. Dt D h ob Replaces Non Interface Variables by Required Constants
3: D} « trans(D) > the transpose U-OABN 3
4: repeat Arithmetic by Bitwise Operator
5. dend < CAp: > Cluster Analysis onD? “'&'—isc';‘l Onerator by Shitt Ooerator 34
6: PAIRS «+ {c|c € dend s.t. le| = 2} > the set U_VSTR P Y P 11
of clusters of length 2 in dendrogram Domain Traps
7. for eachcluster ce PAIRS do U-VGSR 794
) . Mutate Global Scalar References
8: Ident'fy M1y U2 €c > ‘C‘ =2 u-vTWD 74
o: if |cor(Am,,, Am,,)| > 0.9 then Twiddle Mutations
10: It gmutantso, 7 gmutants,p, then ”-IﬁggelFto%glgei?:al Negation on Argument °
11: Reject the one with more generated mutantsTo; 1393
from D!
12 clse TABLE |
13: it |cor(Am,,, AM)| + |cor(Am,,, AM)| CORE SET FROM ALL-SUBSETS REGRESSION ANALYSI$CORESUB)
: K1 K2
then
14: Reject the one which has less correlation with
AM from D! . e
15: else For each test suite group, we identified the set of all
16: Reject one of theu, us from D! randomly operators that appeared in at least one of the best models
17: end if ' * generated (correlation of 0.995 or greater). There was no
18: end if reason to believe that all five sets would be equal, and they
19: end if were not. However, the slightly surprising result was thaté¢
20. end for was very little commonality among the operator sets. Only
21: until I, po € M S.t. |cor(Am,,, Am,,,)| > 0.9 ten operators appeared in all five sets. We refer to the set of
: , L. , > 0. s i
22: suf < {u € D'} - He these ten operators as there-SUBset of sufficient mutation
23: Returnsuf * operators. This set of operators, along with their dedorigt

found in the Proteum binaries, is shown in Table I. More
detailed descriptions of these operators can be found ip [15

from the other six programs, we generated 300 rather than 1[(118]’ [17].

test suites in each group. For this workshop paper, we repBtt EBC Analysis

on the results of the analyses and our explorations of howafier doing the EBC analysis, we again ended up with
we can combine the sets of mutation operators derived frongifferent set of operators for each test suite group. Seven
them. The results support the conclusion that our procedureyperators appeared in all five sets. We refer to these opsrato
experimentally feasible and yields informative data rd@& a5 thecore-EBCset, and they can be found in Table II. Another

sufficient mutation operators. surprise is that only one of them (I-IndVarLogNeg) is shared
We began by generating mutants focas. 4937 mutants \ith the core-SUB group.

were generated by Proteum. For 49 of the operators, no

mutants were generated, so we had for our analyses only &9 Cluster Analysis

variables to deal with. 4935 of the mutants compiled, and As with the other two analyses, we identified a different set

none were equivalent to the original program (thus TNMNBf sufficient operators for each group of test suites, bue her

= 4935). there was greater agreement, with 13 operators appearing in

. every group. This set of operators, ttare-CAset, appears in

A. SUB Analysis] Table Ill. One operator from the core-SUB set appear in this
For each group of test suitesi{iG, RAND10, RAND20, get, and also four operators from the core-EBC set; however,

RAND50, andRAND100), running all-subsets regression in Rhe operator that appears in both core-SUB and core-EBC (I-

yielded a list of linear models based on 20 or fewer operatofggyvarLogNeg) doesiot appear, leading to the conclusion that
R also reported what correlation each model achieved Wi gperator appears in all three core sets.

the data from the test suite group. Even though we used the _ o

incomplete “forward” method for all-subsets regressitiere D- Comparing Sufficient Operator Sets

were over 20 very good models for each test suite groupTable IV shows a comparison of the savings achieved by the
(correlation with AM of 0.995 or greater). operator sets given by the three analyses. Core-EBC achieve

Operator / Description fmutants

I-IndVarAriNeg 19
Inserts Arithmetic Negation at Non Interface Variables

I-IndVarLogNeg 19
Inserts Logical Negation at Non Interface Variables

II-ArgRepReq 5
Argument Replacement by Required Constants

u-OALN 2
Arithmetic Operator by Logical Operator

u-OASN 2
Arithmetic Operator by Shift Operator

u-OCNG 8
Logical Context Negation

u-OLLN 17
Logical Operator Mutation

Total 72

TABLE Il

CORE SET FROM ELIMINATION-BASED CORRELATION ANALYSIS

(COREEBC)

Operator / Description fmutants

I-CovAllEdg 12
Coverage of Edges

|-DirVarRepCon 38
Replaces Interface Variables by Used Constants

I-IndVarAriNeg 19
Inserts Arithmetic Negation at Non Interface Variables

|-RetStaDel 17
Deletes Return Statement

1I-ArgincDec 54
Argument Increment and Decrement

u-OABN 3
Arithmetic by Bitwise Operator

u-OALN 2
Arithmetic Operator by Logical Operator

u-OASN 2
Arithmetic Operator by Shift Operator

u-OCNG 8
Logical Context Negation

u-OLNG 51
Logical Negation

u-ORSN 30
Relational Operator by Shift Operator

u-SRSR 60
return Replacement

u-STRP 70
Trap on Statement Execution

Total 366

TABLE Il
CORE SET FROM CLUSTER ANALYSISCORECA)

Core-SUB | Core-EBC

1393 72
%Total 28.22% 1.45% 7.41%
%Saving 71.78% 98.55% 92.59%
fOperators 10 7 13
%Total 9.25% 6.48% 12.03%
%Saving 90.75% 93.52% 87.97%

TABLE IV
COMPARISON OF CORE SETS

Core-CA
366

fMutants

Core Set
1 | Core-SUB

Multiple Regression Model
AM ~ 0.012+
—0.049 * AmI—DirVarAriNeg+
0.258 * AmMj_ pirVarRepReq+
0.005 * ATVLI—IndVarLogNeg+
0.120 * Amy_1ndVarRepReq+
—0.001 %« Am,_oaBN+
0.080 * Am,_orsn+
0.062 x Am,,_vprR+
0.376 * Am,_vGgsr+
0.102 * Am,_vrwp+
0.036 * Amrr_ ArgLogNeg
AM ~ —0.059-+
0.363 * ATVLI—IndVarAM'Neg+
0.195 * Amj_ndvarLogNeg~+
0.078 % AmII,ArgRepReq+
—0.037 * Amy_oaLN+
0.059 * Amy_opasn+
0.161 % Am,_ocng+
0.180 * Amy_orLLN
AM ~ 0.029-+
0.128 x Amr_covAllEdgT
0.182 % Amiji’rVa,rReannJ'_
0.167 * Amr_rndvarAriNeg+
0.154 * AmI*Retsta,DelJ”
0.043 * AmII—Ar_qIncDec"’
—0.008 * Amy_oABN+
—0.007 %« Am,,_oaLN+
0.023 * Am,_oasN+
0.013 % Amy_ocNnG+
0.093 x Am,_orLnG+
0.190 * Am,_oRrsN+
0.047 * Amy_srsr+
—0.054 * Am.,_sTrp

TABLE V
LINEAR MULTIPLE REGRESSION MODELS RESULTING FROM CORE SETS

2 | Core-EBC

3 | Core-CA

the greatest savings, followed by Core-CA and Core-SUB. As
expected, the SUB analysis, which does not take number of
mutants into account, generates the largest number of tsutan
However, all three analyses yield reasonable results, evidm
Core-SUB leading to an over 71% reduction in number of
mutants generated (recall that Offutt et al’s five opesator
yielded a 77.56% savings).

In order to compare the usefulness of the subsets for predict
ing AM (the overall mutation adequacy ratio), we performed
multiple linear regressions to build a linear model for AM
from the sets of operators given, using all data from all five
test suite groups. These models are shown in Table V. Each
model can be taken as a way of predicting what AM will be
for a test suite, given only the Anvalues from the sufficient
set.

An interesting feature of these models is the presence of
negative coefficients. For instance, Afor OALN (replace
arithmetic operator by logical operator) has a negative-coe
ficient in each of the core-EBC and core-CA models. This
suggests that a test suite focas that kills more OALN
mutants is predictably likely to kilfewer mutants overall.
This observation is corroborated by the fact that OALN is
on the longest branch leading directly from a leaf not in the
dendrogram in Figure 1, suggesting that it is the operattr wi
the “most different” behaviour.

Figure 2 shows a scatter plot of the value of AM predictedE
by the core-SUB linear regression model, against the actual
value of AM. Each circle represents a test suite; the hea§
diagonal line is the: = y line of a hypothetical perfect model, <
and the thinner curve is a smoothing spline fitted to the data.
Figures 3 and 4 show the same thing for core-EBC and core-
CA respectively.

While all three models are good, core-SUB is the best,
followed closely by core-CA, which uses far fewer mutants.
Core-EBC does not fare as well, but it uses many fewer
mutants even than core-CA. The goodness of fit may be a
result of the better models using more mutants, or there may
be other factors. Visual inspection of the graphs suggésts t
the cluster analysis (CA) is doing the best job at balancing
number of mutants generated with goodness of fit.

Fig.
Predicted vs. Actual AM for Core-SUB
o]
i
[ee]
g
©
= o 7
<
©
2
< < |
o
=
<
©
o~ a2
s] g
o
S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Predicted AM - SUB
Fig. 2. Predicted vs. actual plot for Core-SUB linear regi@s model

Table VI shows another comparison between the predicted
AM achieved by the three techniques and the actual AM.
The high correlation values show that, indeed, they are all
good predictors for AM. The results df tests (paired and

1.0

0.8

0.6

0.4

0.2

0.0

3.

1.0

0.8

0.6

0.4

0.2

0.0

Predicted vs. Actual AM for Core-EBC

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Predicted AM - EBC

Predicted vs. actual plot for Core-EBC linear regi@s model

Predicted vs. Actual AM for Core—CA

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Predicted AM - CA

Fig. 4. Predicted vs. actual plot for Core-CA linear regi@ssnodel

Correlation p-value p-value . - : ;
with paired ttest| Welch two to_evaluatlon of sufficient mutation operator sets for objec
AM sample t.test oriented programs.
Ampred—sup | 0.9994673 0.9998 1 N .
Ammprea_ppc | 0.9883457 1 1 B. Data Combination and Analysis
Amprea—ca | 0.9982409 [0.9993 1 In processing the available data, we are faced with the
TABLE VI guestion of what order to perform the following steps in:

ACTUAL VS. PREDICTEDAM (&) Combine data from subject programs; (b) Do statistical
analyses; (c) Combine data from test suite groups; (d) As one
evaluation, fit linear models. Clearly (a) must be done first,

since the point of using different subject programs is tdeobl

Welch) are also shown, where the null hypothesis is that me#frmation not dependent on any one subject program. \We
difference (resp. difference in means) between AN.; and have initially chosen to do the other steps in the order @), (
AM p,cdicteq iS 0. Thep values are all much greater than th&nd (_d). However, the unexpected lack of consensus between
standard confidence level of 0.05, indicating that we canni@€ different test suite groups may suggest that it is better

reject the null hypothesis. This suggests that the predigs combine all data from all test suite groups before doing an
good in this respect as well. analysis. This would result in only three sufficient operato

sets to be compared to each other.

Alternatively, the lack of consensus between the different
test suite groups may be nothing but an artifact of using only
A. Threats to Validity one subject program, which will disappear when we consider

We do not expect that the preliminary results fromas More than one. Although considering more than one subject
will necessarily carry over to the other programs in thBay lead to less accurate linear models, all the linear nsodel
Siemens subject program suite. The other programs arer lary€ arrived at fort cas were very good, and all reduced the
thant cas, and will result in more mutants; they also contaifiUmber of mutants substantially. N _ _
different and more complex control and data structuresghvhi Finally, it should be noted that the ability to predict AM is
may result in Proteum generating more or fewer mutants igpt necessarily the only measure of the goodness of a sufficie
some operators. In particuldrcas is not one of the Siemens S€t of mutants for all purposes. The EBC and CA analyses
programs that contains Gt ructs or non-trivial pointers, derive sufficient sets essentially based on how differetfitey
so it has the same issues as the subject programs of eaffigérators behave from one another. A practitioner perfogmi
studies. We also expect the greater diversity of prograniis wiutation testing of a piece of software may take such infor-
result in regression models that are less accurate thame thB§tion as suggesting that they should use all mutants iethes
for the single progrant cas. sufficient sgts, in o_rder to make sure that t_helr test suits ki

Aside from the considerations arising from consideringS Many diverse kinds of mutants as possible.
only one program so far, there are other threats to validity VII. CONCLUSIONS ANDFUTURE WORK

of our experiments. Threats to intgrnal vaIidiFy ?ncludee th We have interpreted the problem of identifying sufficient
correctness of f[he mutant generation, compilation, "Ny, tation operators as a variable reduction problem, ané hav
and datg collectlor! Processes. We rely on Pro_teum for_m_u"%tscribed various approaches to the problem based on the
generation, and minimize the other threats to intemnabligli jioratire. One of the analyses takes the overall mutation
by reviewing our data-collection shell scripts an_d doingisa adequacy AM as the target, and the other two try to find a set of
checl;s onkour resultﬁ. The use of only ntlnlgjeqlélvalent rm;'t"’“fﬁtperators that are the most statistically distinct fromheatber

may be taken as ‘.’“. reat to cpnstruct validity, but as we notgd possible. We have described our experimental and asalysi
in Section lI-B, this is appropriate in the context of idéying procedure in detail. Our preliminary results suggest that o

a set of sufficient mutation operators for experiments. procedure is feasible and does yield valuable information.
Threats to external validity include the use of C programs |, the future, we will of course extend the processing
that are still relatively small compared to commercial proyng analysis to all test suite groups and all seven Siemens

grams. Even the data collection and analysis done so far t%grams. This will involve much more computing. We will
some tens of hours of CPU time and much more time f@fisy study whether non-linear and other regression methods
subject preparation, so unfortunately we were not able € Ug.gyit in models that are a better fit to the data we have. Ifinal
larger programs. However, this threat is mitigated by thesfa \\e || study the resulting data with the goal of identifying
that the C programs are large and complex enough to incluglgs set of operators (or several sets of operators, eactoone f

a broad range of control and data structures, and that Wjitterent situation) that we can reasonably justify claign
three dominant languages in programming today (C, C++ agd «gfficient”.

Java) all use very similar syntax in their non-OO constructs

We do note, however, that we have not attempted to handle ACKNOWLEDGMENTS

object-oriented constructs. Mutant generators that implet This work is supported by a Discovery Grant from the
class mutation operators, such as MuJava [6], are bettimdsuiNatural Sciences and Engineering Research Council of Ganad

VI. DISCUSSION

(NSERC). Akbar Siami Namin is further supported by an On{g] 1. Jolliffe, Principal Component Analysis Springer-Verlag, 1986.
tario Graduate Scholarship. Thanks to Hyunsook Do and Gré8

Rothermel for their help in accessing the Siemens programsy,g;

Jeff Offutt and Yu-Seung Ma for access to MuJava, and to José

Carlos Maldonado and Auri Vincenzi for access to Proteurf#!]
Thanks also to Aditya Mathur for bibliographic referenced a 4,

useful discussion. The R statistical package [18] was used f
all statistical processing.

REFERENCES

[13]

[1] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf[14]

(2]

(3]

(4]

(5]

(6]

(7]

“An experimental determination of sufficient mutation cgters,” ACM
Transactions on Software Engineering and Methodalagy. 5, no. 2,
pp. 99-118, April 1996.

A. J. Offutt and R. Untch, “Mutation 2000: Uniting the addgonal,” in
Mutation 2000: Mutation Testing in the Twentieth and the fyd=irst
Centuries San Jose, CA, October 2000, pp. 45-55.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutatiom @ppropriate
tool for testing experiments?” iRroceedings of the 27th International
Conference on Software Engineering (ICSE 20@) Louis, Missouri,
May 2005, to appear.

K. N. King and J. Offutt, “A Fortran language system for tation-based
software testing,'Software Practice and Experienceol. 21, no. 7, pp.
686—718, July 1991.

M. E. Delamaro and J. C. Maldonado, “Proteum — a tool foe th
assessment of test adequacy for C programs,Pioceedings of the
Conference on Performability in Computing Systems (PCS Réjv
Brunswick, NJ, July 1996, pp. 79-95.

Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava : An automatethss
mutation system,Software Testing, Verification and Reliabilityol. 15,
no. 2, pp. 97-133, June 2005.

W. E. Wong, “On mutation and data flow,” Ph.D. dissertafi¢®®urdue
University, December 1993.

[15]

[16]

[17]

(18]

[19]

——, “Disgarding variables in a principal component agrsas. |: Arti-
ficial data,” Applied Statisticsvol. 21, no. 2, pp. 160-173, 1972.
——, “Disgarding variables in a principal component bsés. II: Real
data,” Applied Statisticsvol. 22, no. 1, pp. 21-31, 1973.

A. Rencher, Methods of Multivariate Analysis Wiley Series in
Probability and Statistics, 2002.

] G. McCabe, “Principal variables,Technometricsvol. 26, no. 2, pp.

137-144, 1984.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Esiments of
the effectiveness of dataflow- and controlflow-based teefjadcy cri-
teria,” in Proceedings of the 16th International Conference on Saéwa
Engineering Sorrento, Italy, May 1994, pp. 191-200.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “Amprical
study of the effects of minimization on the fault detecti@pabilities of
test suites,” inProceedings of the International Conference on Software
Maintenance (ICSM '98)Washington, DC, USA, November 1998, pp.
34-43.

H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, BV.
Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Desigmutant
operators for the C programming language,” Department ah@der
Science, Purdue University, Tech. Rep. SERC-TR-41-P,| 2006.

M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P.tiMg
“Interface mutation test adequacy criterion: An empirieabluation,”
Empirical Software Engineeringrol. 6, pp. 111-142, 2001.

A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and MDElamaro,
“Unit and integration testing strategies for C programsigsnutation,”
Software Testing, Verification and Reliabilityol. 11, pp. 249-268,
2001.

W. N. Venables, D. M. Smith, and The R Development Corariig“An
introduction to R,” R Development Core Team, Tech. Rep.eJ2006.

J. P. Guilford, Fundamental Statistics in Psychology and Education
New York: McGraw-Hill, 1956.

[20] N. Timm, Applied Multivariate Analysis Springer, 2002.

