Bayesian Reasoning for Software Testing

Position Paper

Akbar Siami Namin
Department of Computer Science
Texas Tech University, USA
akbar.namin@ttu.edu

Mohan Sridharan
Department of Computer Science
Texas Tech University, USA
Mohan.sridharan@ttu.edu

International Workshop on Future of Software Engineering (FoSER 2010)
Santa Fe, NM, USA, November 2010
Outline

- Motivation
- Bayesian reasoning and software testing
- Practical challenges
Motivation

- Many software testing challenges are NP-hard problems.
- Notkin[26]:
 - “we may need to approach testing and analysis more like theoreticians pursue NP-hard problems”
 - “in the absence of efficient, precise algorithms, the theoreticians pursue probabilistic and epsilon-approximate algorithms”

Motivation

Problems with Existing Software Testing Approaches

- Specificity
 - Always quasy-experimental studies
- Intractability
 - Infinite number of test inputs
- Inability to adopt
 - Unable to account for the uncertainties
Motivation

Software Testing and Machine Learning

- Software engineering is a fertile ground and many software engineering problems can be formulated as learning problem using machine learning techniques\[35\]

- Machine learning techniques
 - Offline learning
 - The rigid models are developed
 - E.g. Decision trees, SVMs
 - Online learning
 - Adaptive algorithms
 - E.g. Bayesian reasoning, MDP

\[35\] D. Zhang and J.J.P. Tsai. Machine Learning and software engineering.
Motivation

Software Testing and Bayesian Reasoning

- Software testing is among the most challenging domains for machine learning over the next ten years [11]
- Most of software testing problems are a clean application for machine learning and Bayesian reasoning
- Though
 - Offline learning has been used extensively
 - Online learning has not been utilized enough

Bayesian Reasoning & Software Testing

Probabilistic Representations

- Probabilistic representation for modeling uncertainties
- Tracking multiple hypotheses about the state of system
 - A higher probability
 - A higher likelihood that a hypothesis is true
- Bayesian reasoning
 - Incrementally updates the believes
Bayesian Reasoning & Software Testing

Basic Form of Bayes Rule

\[p(a \mid b) = \frac{p(b \mid a)p(a)}{p(b)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{normalizer}} \]

- Computing the posterior (conditional) probability of event \(a \) given \(b \)
 - Based on:
 - Likelihood \(p(b \mid a) \)
 - Prior probability \(p(a) \)
 - Probability \(p(b) \), the normalized
Bayesian Reasoning & Software Testing

Bayes Rule for Multi-Class Classification

\[
p(C_i \mid z) = \frac{p(z \mid C_i) \cdot p(C_i)}{\sum_{j=1}^{N} p(z \mid C_j) \cdot p(C_j)}
\]

- Classification with classes C’s
 - N: the number of classes
- $P(C \mid z)$: Incrementally updates the probability of each C given observation z
- $P(z \mid C)$: The prior likelihood
- $P(C)$: The prior probability of this class
Goal: estimate the probabilistic belief of system state x at time t:

$$t : bel(x_t) = p(x_t \mid x_0, u_1, z_1, ..., x_{t-1}, u_t, z_t)$$

The Markov assumption:

$$p(x_t \mid x_0, u_1, z_1, ..., x_{t-1}, u_t, z_t) = p(x_t \mid x_{t-1}, z_t, u_t)$$

The state at time t can be estimated conditionally independent of all prior states, actions and observations:

- Observed through a series of observations z
- The observations z obtained through a set of actions:

$$u : \{u_1, z_1, ..., x_{t-1}, u_t, z_t \}$$
Bayesian Reasoning & Software Testing

Monte Carlo Sampling

- Applicable to domains with multiple hypotheses
- Each sample is an instance of a hypothesis
 - Associated with a probabilistic value representing the likelihood the hypothesis is true
- The general procedure:
 - A small set of samples are selected initially
 - Each hypothesis is modified to account for any change
 - The probability of each hypothesis is updated
 - A larger number of samples are selected for hypotheses with larger probability values
Bayesian Reasoning & Software Testing

Application

- Monte Carlo importance sampling
 - Mutation testing
 - Already studied by authors [28]
 - Applicable to
 - Statistical fault localization
 - Adaptive random testing
 - Static analysis
 - Probabilistic model checking
 - Etc.

[28] M. Sridharan, A. Siami Namin, Prioritizing Mutation Operators based on Probabilistic Sampling
Practical Challenges

- Generalization issues
 - Remember “External Threats” at the end of most papers
 - Probabilistic representations are robust to such issues
- Sensitivity to priors
 - In addition, estimating the likelihood function
 - The performance of Bayesian reasoning is robust to such issues, i.e. Convergence takes longer
- Steep learning curve
 - Difficulty in learning and using statistics and probability
Thank You