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ABSTRACT

Recently, logic programs under the stable model semantics, have emerged as

a new paradigm for declarative programming. In this new approach, a logic program

is used to represent the knowledge of the domain, and various tasks are reduced to

computing the stable models of this program. This paradigm has been successfully

used in a wide range of applications including planning, diagnostics, graph problems,

etc. The basic algorithm for computing stable models is implemented by several

efficient systems. The most efficient implementation to date is called Smodels. Even

though Smodels was demonstrated to be capable of solving several large industrial

problems, there are some simple logic programs for which Smodels′ performance is

unexpectedly slow. This problem is not related to the implementation. Rather, it is

the result of the one rule at a time inference used by the basic algorithm.

The goal of this work is to improve the efficiency of the basic algorithm ex-

tending the set of inference rules with a new rule called the Extended Evaluation

Rule (EER). EER efficiently retrieves information spread across several rules of a

program. An algorithm, new smodels, was developed incorporating the EER. A

system Surya, based on the new smodels algorithm was implemented. It was found

that the EER considerably improves the efficiency of the system.
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CHAPTER I

INTRODUCTION

The main goal of this chapter is to describe the problem of optimizing the

computation of stable models, and to propose a solution which uses merged rules.

The chapter is structured as follows : First, background information necessary to

understand the subject is presented, then the problem we intend to solve is described,

and finally a sketch of the solution proposed in this thesis is discussed.

1.1 Background

Programming languages can be divided into two main categories, algorithmic

and declarative. Programs in algorithmic languages describe sequences of actions for

a computer to perform, while declarative programs can be viewed as collections of

statements describing the objects of a domain and their properties. This set of state-

ments is often called a knowledge base. The semantics of a declarative program Π

is normally given by defining its models, i.e., possible states of the world compatible

with Π. The work of computing these models, or consequences, is often done by an

underlying inference engine. For example, Prolog is a logic programming language

that has such an inference engine built into it. The programmer does not have to
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specify the steps of the computation and can therefore concentrate on the specifica-

tions of the problem. It is this separation of logic from control that characterizes

declarative programming [7, 10, 9].

Declarative programs need to meet certain requirements. Some of these re-

quirements are[7]:

• The syntax should be simple and there should be a clear definition of the mean-

ing of the program.

• Knowledge bases constructed in this language should be elaboration tolerant.

This means that a small change in our knowledge of a domain should result in

a small change to our formal knowlegde base.[11]

• Inference engines associated with declarative languages should be sufficiently

general and efficient. It is often necessary to find a balance between the expres-

siveness of the language and the desired efficiency.

One such declarative language is A−Prolog [7], a logic programming language

under the answer set semantics [8]. The syntax of A−Prolog is similar to Prolog. The

following example of a program in A−Prolog will be used through the introduction.

Precise definition will be given in section 2.1.
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Example 1.1 Consider the program Π below:

q(a).

q(b).

p(X) :− q(X).

Π consists of three rules defining properties {p, q} of objects { a, b }. X is a variable

which is substituted or replaced by the objects in the program during its evaluation.

The A−Prolog language has the ability to represent a wide variety of problems

such as reasoning with incomplete knowlegde and the causal effects of actions [3].

There are currently several inference engines for computing the answer sets of A-

Prolog programs. Some of them are Smodels [14], DLV [1], Romeo [18], etc. The

efficiency of these engines has led to some important applications including the use

of Smodels, in the development of a decision support system for the space shuttle[2].

Other important applications are wire routing and satisfiability planning [6], encoding

planning problems [4] and applications in product configuration [15], etc.

The smodels algorithm is a standard algorithm used for the computation of

answer sets or stable models of a program. The Smodels system is one of the state-

of-the-art implementations of the smodels algorithm. The System has a two level

architecture. The frontend called lparse [16], takes a program with variables and

returns a ground program by replacing all variables by constants in the program.

Example 1.2 The grounding of program Π shown in example 1.1 would result in the
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program:

q(a).

q(b).

p(a) :− q(a).

p(b) :− q(b).

In reality, lparse does more than just replacing variables by constants, but for

simplicity sake we do not discuss its other functionalities here. The second part of

the Smodels system is the inference engine smodels. It takes the ground program

output by lparse and computes the stable models of the program.

The system Smodels has extended the language of A-Prolog with choice rules,

cardinality rules and weight rules [12]. These rules increase the expressive power of

the language in the sense that programs can be written more concisely using these

extended rules. Here is an example of a cardinality rule in smodels language.

Example 1.3 Consider a rule r,

h :− 2{ a, b, c }.

h is called the head of r and 2{ a, b, c } is called the body of r. The literals in the body

of r are {a, b, c}. The rule is read as follows : “h is true if at least 2 literals from the

body of r are true.” Here 2 is called the lower bound of the rule.

The smodels algorithm uses inference rules to compute the stable models or

answer sets of a program. These inference rules play an important role in the efficiency
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of the algorithm. There are four important inference rules in the smodels algorithm.

Given a set S of ground literals and a program Π,

1. If the body of a rule r, in Π, is satisfied by S then add the head of r to S.

2. If an atom a is not in the head of any rule in Π, then not a can be added to S.

3. If r is the only rule of Π with h in the head and h ∈ S then the literals in the

body of r can be added to S.

4. If h is in the head of rule r, in Π, not h ∈ S, and all literals in the body of r

except li belong to S, then add not li to S.

Consider the following example which demonstrates the use of inference rule #1.

Example 1.4 Let S = {a, b} be a set of literals and rule r be of the form,

h :− 2{ a, b, c }.

Since literals a and b are true in S, at least two of the literals in the body of r are

true in S; therefore, the body of rule r is satisfied by S. By the inference rule #1 we

can conclude h and add it to S.

1.2 Problem Description

Before describing the problem, to facilitate its understanding, it would be

helpful to explain how we became aware of it. At the beginning of year 2001, Vladimir
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Lifschitz posed a New Year’s party problem for the members of the Texas Action

Group(TAG) [19], to solve. The New Year’s party problem [22] consisted of finding

a suitable seating arrangement for guests in a New Year’s party, where the following

two conditions needed to be satisfied. Guests who liked each other must be seated at

the same table and guests who disliked each other must be seated at different tables.

The number of tables, number of chairs around each table, and number of guests

invited should be given as inputs to the program.

There were 23 solutions developed by TAG members. Most of the solutions

used the Smodels language and the Smodels system to compute the stable models or

answer sets of the program. Once the solutions were posted, the TAG group became

involved in comparing these programs with respect to programming methodology

and efficiency. Two programs (let us call them Π1 and Π2) caught the interest of the

members of TAG in Austin[20] and TTU[21]. Both Π1 and Π2 were very similar. The

only difference was that Π1 had an extra rule which was not present in Π2. The extra

rule, r, was redundant to the program as the information given by r was already

present among other rules of Π1. This was the reason r was not present in Π2. We

found that Π1 was far more efficient than Π2 because of this rule. Though r was

redundant, it helped in reducing the search space for computing the stable model(s)

of Π1. Computing models for Π2 was slower because the information stated explictly

by r, in Π1, was distributed among several rules of Π2.
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The fact that a single rule, though a redundant one, could make such a dif-

ference in efficiency was important and pointed to serious difficulties for the pro-

gramming methodology to be applied. It implies that programmers need to think

and include all rules which gives information already present among other rules. It

also means that the programmer needs to know which rules would make the program

more efficient, and involves a deep understanding of the underlying smodels algorithm

and implementation. Besides adding extra burden to programmers, this leads to less

declarative programs, in the sense that a programmer’s work is not just specifying the

problem, but finding ways to improve efficiency based on the implementation of the

inference engine. It would be preferable that the inference engine would automati-

cally infer such information from the program, rather than requiring the programmer

to write redundant rules.

The least efficient behaviour of Π2 led us to the hypothesis that most of the in-

ference rules of the smodels algorithm involved single A−Prolog rules. This seemed

the most straightforward explanation for the slower computation of the models of

Π2 by the system. If the inference rules could take into account information dis-

tributed among different rules in the program, then the number of inferences would

be substantially higher. The following example illustrates this idea.
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Example 1.5 Consider rules r1 and r2 of a program Π,

r1 h :− 2{ a, b, c }.

r2 h :− 2{ not a, not b, not c }.

It is easy to show that any answer set X of Π contains h. Consider two cases :

(a) At least two of the atoms {a, b, c} belong to X. In this case, h ∈ X by r1. (b)

There are two atoms, say a, b, not belonging to X, then not a, not b ∈ X and h ∈ X

by r2. Notice that this reasoning, though simple, requires a simultaneous arguement

about TWO rules of the program. The current version of smodels can not do such

a reasoning. As a result h will be added to X after multiple tries and errors which

substantially slows the performance.

It becomes clear that efficient implementation depends directly on obtaining as

much information as early as possible and to do that, we need to expand the collection

of inference rules of smodels. This is the problem we are interested in addressing in

this thesis.

1.3 Proposed Solution

The work presented in this thesis consists of adding a new inference rule called

the Extended Evaluation Rule (EER) to the smodels algorithm, in order to merge the

information distributed among different rules of the program. This inference rule is
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applied to programs containing choice or cardinality rules. Given such a program Π,

the EER inference rule consists of two steps:

1. Expand program Π, by adding a new rule merge(R), where R is a set of cardi-

nality rules of Π with same head. The construction guarantees that, “A set of

literals S satisfies R iff S satisfies R ∪ merge(R)”.

2. Check if the body of merge(R) is satisfied by all stable models of Π containing

S. If so then expand S by h.

Consider again example 1.5. Rules r1 and r2 of Π can be evaluated or merged into

a new rule r3 of the form : h :− 3{ a, b, c, not a, not b, not c }. It is easy to see that

body of r3 is satisfied in all models of the program containing S and hence h can be

derived.

The efficiency of EER depends on the efficient implementation of merge and

the efficient checking of condition of clause (2) above. The construction of merge will

be discussed in Chapter III. We will also show that, to efficiently perform the second

step of EER, it is sufficient to do the following:

a. Compute the number of complementary pairs 1, cp, in the body of merge(R);

b. If the lower bound of merge(R) is less than or equal to cp then the body of the

rule is satisfied by any stable model containing S.

1We call the pair {a, not a}, a complementary pair.
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As we can see, this rule allow us to easily make this conclusion for literal h from r3.

The contribution of this thesis is the development of a new algorithm called

new smodels algorithm incorporating the Extended Evaluation Rule, and implemen-

tation of a system based on the new smodels algorithm. This thesis work includes:

1. Implementation of the system Surya, for computing stable models of a program

based on new smodels algorithm.

2. Experimental investigation of the efficiency of the EER inference rule.

3. Proof that the new inference rule maintains the sound and complete nature of

the inference rules.

4. Proof of correctness of the new smodels algorithm.

This thesis is organized in the following manner. Chapter II presents the

syntax and semantics of the language SL, a subset of the input language of lparse.

Chapter III presents both the smodels and new smodels algorithms. It discusses their

similarities, and differences, and introduces the new inference rule, EER, added to

new smodels algorithm. Chapter IV presents the experimental results of the Surya

system compared to the Surya− system, where Surya− is obtained from dropping

the implementation of EER from Surya. Chapter V gives the conclusions and future

work.

10



CHAPTER II

SYNTAX AND SEMANTICS

SMODELS is a system for answer set programming developed by Ilkka

Niemela et al. [14]. It consists of smodels, an efficient implementation of the stable

model semantics for normal logic programs, and lparse, a front-end that transforms

user programs with variables into a form that smodels understands. The input lan-

guage of lparse, extends A-Prolog with new rules, such as cardinality rules and choice

rules [13]. Let us now define the syntax of SL, a subset of the input language of

lparse.

2.1 Syntax

The syntax of SL is determined by a signature Σ = < C, V, P, F > where

C, V , P and F are collections of object constants, variables, predicate symbols and

function symbols respectively. A term of Σ is either a variable, a constant, or an

expression f(t1, . . . , tn), where t1, . . . , tn are terms, and f is a function symbol of arity

n. An atom is of the form p(t1, . . . , tn) where p is an n-ary predicate symbol, and

t1, . . . , tn are terms. A simple literal is either an atom a, or its negation not a. Simple

literals of the form not a, are called not-atoms, or negative literals. The symbol not,

denotes a logical connective known as default negation, or negation as failure. The
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expression not a is read as “there is no reason to believe in a.” Ground expressions

are expressions which do not contain variables. Ground terms are represented by

lower case letters, and variables by upper case letters.

A simple rule of SL, is a statement of the form:

h :− l1, . . . , ln. (2.1)

where h is an atom, and l1, . . . , ln are simple literals. Atom h is called the head of

the rule, and l1, . . . , ln constitute the body of the rule. Both the head and the body

of the rule may be empty. If the body is empty, i.e., n = 0, the rule is called a fact,

and we write it as h.

Simple rules of SL correspond to the rules of A-Prolog. To introduce the

extended rules of SL, we need the following definitions:

A conditional literal of SL is an expression of the form:

l0 : l1 : . . . : ln (2.2)

where l0 is a simple literal called the literal part of (2.2) and l1, . . . , ln are atoms called

the conditional part of (2.2). There are some restrictions on the use of conditional

literals. They will be dealt with at the end of this section.

A constraint literal of SL is an expression of the form:

lower{l1, . . . , ln}upper (2.3)
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where lower and upper are arithmetic expressions called the lower bound and upper

bound of the literal, and l1, . . . , ln are either simple or conditional literals. The lower

and upper bounds need not be specified (if the lower bound is omitted, it is understood

as zero and if the upper bound is omitted it is understood as infinity). If C is a

constraint literal of the form (2.3), by lit(C) we mean {l1, . . . , ln}.

A cardinality constraint rule of SL, is a statement of the form:

l0 :− l1, . . . , ln. (2.4)

where l0 can either be empty, an atom, or a constraint literal, such that lit(l0) contains

no negated literals. The literals in the body of (2.4), may be simple, conditional, or

constraint literals. Obviously, simple rules of SL are just a special case of cardinality

constraint rules.

A logic program is a pair {Σ, Π}, where Σ is a signature and Π is a collection

of cardinality constraint rules over Σ.

The standard implementation of smodels, places some restrictions on logic

programs it can reason with. To describe these restrictions we need the following

definitions.

The collection of rules of a logic program Π whose heads are formed by a

predicate p, is called the definition of p in Π. A predicate p is called a domain

predicate w.r.t. a logic program Π, if:

a. the definition of p in Π has no negative recursion and

13



b. there exists no rule r ∈ Π, such that the head of r is a constraint literal C, and

a simple literal l formed by p either:

(i) belongs to lit(C), or

(ii) is the literal part of a conditional literal in lit(C).

When using conditional literals, we need to distinguish between the local, and

global variables in a rule. Given a rule r, which contains conditional literals, a variable

is local to the occurence of a conditional literal in r, if the variable does not appear

in any simple literal in r. All other variables are global.

Example 2.1 Given a rule r,

a :− 1{p(X,Y ) : q(Y )}, r(X).

variable X is global and variable Y is local. Similarly, for

2{p(X,Y ) : q(X) : r(Y )} :− s(Y ).

Y is global and X is local.

The following are the restrictions in the implementation of smodels :

1. The conditional part of any conditional literal must consist of only atoms formed

from domain predicates.

14



2. Every local variable in the literal part of a conditional literal must appear at

least once in its conditional part.

3. The programs are domain restricted in the sense that every variable in a rule

r, must appear in an atom formed by a domain predicate in the body of r.

From now on, by a program we mean a program of SL satisfying the above

conditions.

Having defined the syntax of SL, we are ready to define its semantics.

2.2 Semantics

This definition is done in two steps. First, we introduce a series of operations

to transform an arbitrary program Π into a ground program ground(Π). Second, we

define the semantics of ground(Π). The semantics of the ground(Π), will be viewed

as the semantics of program Π.

Let Π be an arbitrary program over a signature Σ. Let Πg be the result of

replacing all of the global variables of Π by ground terms of Σ. If Πg is simple, i.e. a

program consisting of simple literals, then ground(Π) = Πg.

Example 2.2 Consider Π0 consisting of the following simple rules :

d(a).
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d(b).

p(X) :− q(X).

r(X) :− p(X).

the program ground(Π0) is given below:

d(a).

d(b).

p(a) :− q(a).

p(b) :− q(b).

r(a) :− p(a).

r(b) :− p(b).

To give the semantics for a simple program, we need to introduce some termi-

nology. If S is a set of atoms, we say that S satisfies an atom a, S |= a, if a ∈ S and

S satisfies not a, S |= not a, if a 6∈ S.

A set of atoms, S, satisfies a simple rule r, if the head of r belongs to S

whenever the body of r is satisfied by S. If the head of a rule is empty, then S

satisfies the rule when at least one of the literals in the body is not satisfied by S. S

satisfies a simple program Π, if it satisfies all of the rules of ground(Π).
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Given a set of atoms S and a simple rule r of the form :

h :− a1, . . . , an, not b1, . . . , not bm. (2.5)

we define the reduct of r with respect to S, rS, as follows:

rS =



















∅ if b1, . . . , bm ∩ S 6= ∅,

h :− a1, . . . , an. otherwise.

we define the reduct of a program Π with respect to a set of atoms S, ΠS, as:

ΠS = {rS | r ∈ Π}. (2.6)

Definition 2.1 The deductive closure of Π is the minimal set of atoms that satisfies

Π.

Definition 2.2 A set of ground atoms S is a stable model of a program Π iff S

satisfies all of the rules of Π and S is the deductive closure of ΠS.

Example 2.3 The program Π0 be:

p(a).

q(X) :− p(X).

has a unique stable model S = {p(a), q(a)}.

The program Π1,

p(a) :− p(a).

has one stable model S = { }.
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It can be shown that a program without default negation has exactly one

stable model. The following are some examples of programs with default negation.

Example 2.4 The program Π2,

p :− not q.

has one stable model S = {p} since

ΠS = {p :− }

and S is the deductive closure of ΠS.

The program Π3,

p :− not q.

q :− not p.

has two stable models, {p} and {q}. The programs

Π4 = {p :− not p} and Π5 = {p. :− p.}

have no stable models.

We will now present the grounding of arbitrary rules. Let Πg be the result of

grounding all the global variables from Π. If the program is not simple then we remain

with local variables in constraint literals of the rules. Let us define the grounding of

these local variables.
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The program Π can be divided into two parts. Πd consists of all rules which

are definitions of the domain predicates. This is the domain part of Π. Πr consists of

the rest of the rules of Π. From the definition of domain predicates, Πd has no rules

with negative recursion. Therefore, Πd is a stratified program and has exactly one

stable model.

Let A be the stable model of the domain part of Πg. An extension of a domain

predicate p in Π is defined as the set of all ground atoms formed by p which belongs

to A. From condition (2) of restrictions in smodels system, we know that for any

conditional literal l : d, every local variable in l appears also in d. An instantiation

of a conditional literal l : d, is l′ : d′, where d′ ∈ A and l′ is formed by replacing all

variables in l by its corresponding terms in d′. The grounding of conditional literal

l : d is the set of l′s such that for some d′, l′ : d′ is an instantiation of l : d. That is,

given a conditional literal L,

p(X) : q(X)

if the extension of q is {q(a1), . . . , q(an)} then ground of L is p(a1), . . . , p(an).

Let the result of grounding all local variables from Πg be Π′.
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Example 2.5 To illustrate the construction of Π′, let us consider a program Π :

q(1).

q(2).

r(a).

r(b).

s :− 1{p(X,Y ) : q(X)}, r(Y ).

Πg is obtained from grounding the global variable Y .

q(1).

q(2).

r(a).

r(b).

s :− 1{p(X, a) : q(X)}, r(a).

s :− 1{p(X, b) : q(X)}, r(b).

Πd consists of the facts and the extension of q is { q(1), q(2) }. Then the local variable
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X is grounded to give Π′

q(1).

q(2).

r(a).

r(b).

s :− 1{p(1, a), p(2, a)}, r(a).

s :− 1{p(1, b), p(2, b)}, r(b).

Even though, the resulting program Π′ is ground, the grounding process does not

stop here. We will continue the simplification of Π′ to a program consisting of simple

rules or rules of two special types defined as follows.

A choice rule is a statement of the form:

{h1, . . . , hk} :− l1, . . . , ln. (2.7)

where h’s are atoms and l1, . . . , ln are simple literals.

A cardinality rule is a statement of the form:

h :− k{l1, . . . , ln}. (2.8)

where h is an atom, l1, . . . , ln are simple literals and k is the lower bound of the only

constraint literal in the body. Choice rules and cardinality rules are special types of

cardinality constraint rules.
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By construction, rules of Π′ contains only simple and constraint literals. We

simplify the rules which have constraint literals either in the head or the body. A

constraint literal in the head of the rule is simplified differently from a constraint literal

in the body of the rule. A constraint literal in the head of a cardinality constraint

rule,

lower{h1, . . . , hn}upper :− body.

is replaced by a choice rule and two cardinality constraint rules with empty head as

follows :

{h1, . . . , hn} :− body.

:− upper + 1{h1, . . . , hn}, body.

:− n − lower + 1{not h1, . . . , not hn}, body.

Example 2.6 Consider a program Π′ :

1{ p(a), p(b), p(c) }2 :− r(d).

It is simplified to give,

{ p(a), p(b), p(c) } :− r(d).

:− 3{ p(a), p(b), p(c) }, r(d).

:− 3{ not p(a), not p(b), not p(c) }, r(d).
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A constraint literal in the body of a rule,

h :− lower{d1, . . . , dn}upper.

is replaced by two simple literals, and two cardinality rules are added to the program

as follows :

h :− int1, not int2.

int1 :− lower{d1, . . . , dn}.

int2 :− upper + 1{d1, . . . , dn}.

Here int1 and int2 are new predicates not in the signature of Π. Therefore, we get a

simple rule and two cardinality rules. In example (2.6), the constraint literals in the

body are simplifed to give :

{ p(a), p(b), p(c) } :− r(d).

:− int1, r(d).

int1 :− 3{ p(a), p(b), p(c) }.

:− int2, r(d).

int2 :− 3{ not p(a), not p(b), not p(c) }.
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Example 2.7 Consider a program Π,

q(a).

q(b).

p(c).

p(d).

2{h(X,Y ) : q(X)}3 :− 1{r(Z) : q(Z)}1, p(Y ).

The extension of q and p are {q(a), q(b)} and {p(c), p(d)}, respectively. The variables

X and Z are local and Y is global. We ground the global variables to get :

q(a).

q(b).

p(c).

p(d).

2{h(X, c) : q(X)}3 :− 1{r(Z) : q(Z)}1, p(c).

2{h(X, d) : q(X)}3 :− 1{r(Z) : q(Z)}1, p(d).
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Now the local variables of conditional literals are grounded as :

q(a).

q(b).

p(c).

p(d).

2{h(a, c), h(b, c)}3 :− 1{r(a), r(b)}1, p(c).

2{h(a, d), h(b, d)}3 :− 1{r(a), r(b)}1, p(d).

The transformation of the constraint literal in the body is done as :

q(a).

q(b).

p(c).

p(d).

2{h(a, c), h(b, c)}3 :− int1, not int2, p(c).

2{h(a, d), h(b, d)}3 :− int1, not int2, p(d).

int1 :− 1{r(a), r(b)}.

int2 :− 2{r(a), r(b)}.
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The transformation of the constraint literal in the head is done as :

q(a).

q(b).

p(c).

p(d).

{h(a, c), h(b, c)} :− int1, not int2, p(c).

:− 4{h(a, c), h(b, c)}, int1, not int2, p(c).

:− 1{not h(a, c), not h(b, c)}, int1, not int2, p(c).

{h(a, d), h(b, d)} :− int1, not int2, p(d).

:− 4{h(a, d), h(b, d)}, int1, not int2, p(d).

:− 1{not h(a, d), not h(b, d)}, int1, not int2, p(d).

int1 :− 1{r(a), r(b)}.

int2 :− 2{r(a), r(b)}.
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Finally, all rules are transformed to simple, choice or cardinality rules.

{h(a, c), h(b, c)} :− int1, not int2, p(c).

:− int3, int1, not int2, p(c).

int3 :− 4{h(a, c), h(b, c)}.

:− int4, int1, not int2, p(c).

int4 :− 1{not h(a, c), not h(b, c)}.

{h(a, d), h(b, d)} :− int1, not int2, p(d).

:− int5, int1, not int2, p(d).

int5 :− 4{h(a, d), h(b, d)}.

:− int6, int1, not int2, p(d).

int6 :− 1{not h(a, d), not h(b, d)}.

int1 :− 1{r(a), r(b)}.

int2 :− 2{r(a), r(b)}.

We see that, for any program Π, ground(Π) consists of only simple, choice

and cardinality rules. There are no conditional literals in ground(Π). We now give

semantics for ground(Π).

Definition 2.3 A set of atoms S satisfies a cardinality constraint C of the form (2.3)

(denoted as S |= C) iff lower ≤ W (C, S) ≤ upper where

W (C, S) = |{l ∈ lit(C) : S |= l}|

is the number of literals in C satisfied by S.
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The notion of S satisfies a rule r and S satisfies a program Π is the same as

the one for simple programs.

The reduct of a cardinality rule r :

h :− k{a1, . . . , an, not b1, . . . , not bm}. (2.9)

w.r.t. a set of atoms S is defined as follows. Let C be the constraint literal in the

body of r.

rS =

{

h :− k′{a1, . . . , an}. where k′ = k − |{b1, . . . , bm} \ S|

The reduct of a choice rule r :

{h1, . . . , hk} :− a1, . . . , an, not b1, . . . , bm. (2.10)

is as follows. If C is the constraint literal in the head of r then,

rS =



















∅ if b1, . . . , bm ∩ S 6= ∅

hi :− a1, . . . , an. ∀hi ∈ lit(C) ∩ S, otherwise.

The notion of reduct of Π(2.6), deductive closure of Π(2.1), and definition of

a stable model (2.2) of a program are the same as before.

Example 2.8 Consider a program Π0,

{ a1, a2, a3, a4 }

and S = { a1 }, the reduct ΠS
0 is

a1
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and S is a stable model of Π0.

For the program Π1,

3{ a1, a2, a3, a4 }4

the stable models are {a1, a2, a3}, {a1, a2, a4}, {a1, a3, a4}, {a2, a3, a4}, {a1, a2, a3, a4}.
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CHAPTER III

ALGORITHM

In this chapter, we present new smodels, the algorithm for computing the

stable models of a ground program of SL. The algorithm is a modification of the

smodels algorithm from [13] described below:

3.1 The smodels Algorithm

We will start with introducing some terminology and notation. Let Π be a

program of SL with signature Σ and B be a set of simple literals of Σ.

• An atom a and its negation, not a, are called a complementary pair. We will

identify an expression not (not a) with a.

• B+ = {a ∈ Atoms(Σ) | a ∈ B},

B− = {a ∈ Atoms(Σ) | not a ∈ B},

Atoms(B) = B+ ∪ B−.

• A set, S, of atoms is compatible with B if for every atom a∈Atoms(Σ),

(1) if a ∈ B+ then a ∈ S,

(2) if a ∈ B− then a 6∈ S.
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• B covers a set of atoms S, covers(B,S), if

S ⊆ Atoms(B).

We consider the following rules throughout the chapter.

A simple rule:

h :− l1, . . . , ln. (3.1)

A choice rule:

{h1, . . . , hm} :− l1, . . . , ln. (3.2)

A cardinality rule:

h :− L{l1, . . . , ln}. (3.3)

where l’s are literals and h’s are atoms of a signature Σ and L is the lower bound of

the cardinality rule. Given a rule r, head(r) denotes the set of atoms in the head and

body(r) denotes the set of literals in its body.

Definition 3.4 (a) Rules (3.1), (3.2) are falsified by a set of simple literals B, if there

exists a literal li ∈ body(r) such that not li ∈ B;

(b) Rule (3.3) is falsified by B, if n − |{not li : li ∈ {l1, . . . , ln}} ∩ B| < L i.e., the

number of literals in {l1, . . . , ln} which are not falsified by B is smaller than L.

Definition 3.5 The reduced form, rB, of r with respect to a set of simple literals

B is :
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1. If r is a simple rule then

rB =



















∅ if r is falsified by B

h :− body(r) \ B. otherwise.

2. If r is a choice rule then

rB =



















∅ if r is falsified by B

{h1, . . . , hm} :− body(r) \ B. otherwise.

3. If r is a cardinality rule and C is the constraint literal in the body then

rB =



















∅ if r is falsified by B

h :− L′{ lit(C) \ Atoms(B) }. where L′ = L − |lit(C) ∩ B|. Otherwise.

Given a program Π and a set of literals B, the reduced form of Π with

respect to B, r(Π, B) is defined as

{ rB | r ∈ Π }.

r(Π, B) is the set of all active rules in Π w.r.t. B.

3.1.1 The Main Computation Cycle

The function smodels forms the main loop of the computation process as

shown in Figure 3.1. The inputs for the function are a ground program Π, a set of

literals B, a boolean found. If found is true then the function returns a stable model
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of Π compatible with B. Otherwise, there is no such stable model. It uses function

expand which computes the set of conclusions derivable from a set S of literals using

the rules of Π, function pick selecting a literal undecided by S, and a self-explanatory

funcion backtrack. The accurate description of these functions will be given in the

following sections.

The algorithm performs the following steps:

1. Initializes S to empty, found to true and Y to the lower closure of Π with

respect to ∅. The computation of lower closure is discussed in section 3.1.2.

2. Procedure expand computes the set C of consequences of Π and B ∪ Y . If C

is consistent then it stores C in S. Otherwise, conflict is set to true and S is

unchanged. The computation of these consequences is defined by the closure

rules described in section 3.1.2. The set of literals stored in S after this call to

expand has the following properties :

• B ⊆ S

• every stable model that is compatible with B is compatible with S.

3. If conflict is true then there is no stable model of Π compatible with B and

found is set to false.

4. If found is true then the loop containing the steps (a)-(d) below is executed.

The loop terminates if there is no stable model of Π compatible with B (in this
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function smodels(Π : program,B : set of lits,varfound : bool) : set of atoms

% postcondition : if there is no stable model of Π compatible with B then

% found is set to false. Otherwise found is set to true and smodels returns a

% stable model of Π that is compatible with B.

VAR S : stack of literals; VAR Y : set of literals; VAR conflict : bool;

initialize(S); Y := lc(Π, ∅); found := true;

expand(Π, S, B ∪ Y , conflict);

if conflict then found := false;

while not covers(S,Atoms(Π)) and found do

pick(l, S);

expand(Π, S, {l}, conflict);

if conflict then expand(Π, S, {not l}, conflict);

while conflict and found do

x := back track(Π, S, found);

if found then expand(Π, S, {x}, conflict);

return S ∩ Atoms(Π);

Figure 3.1: smodels algorithm - computation of stable models
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case found is set to false), or if for each atom a∈Atoms(Π), a is defined in S,

i.e., either a∈S or not a∈S.

a. the function pick will choose a literal l undefined in S.

b. expand computes the set X of consequences of Π and S ∪ { l }. If X is

consistent, then it is stored in S and the corresponding occurrence of l, is

marked as a picked literal. Otherwise, S is unchanged and conflict is set

to true.

c. If there is no conflict in S then control goes to step (4). Otherwise, expand

computes the consequences of Π and S∪{ not l } and stores it in S, if they

are consistent. If the set of consequences is not consistent then expand sets

conflict true, and leaves S unchanged.

d. If conflict is true then the steps (i), (ii) of the inner loop are executed.

(i) The function backtrack pops literals from S until it finds a picked

literal x, pops it from S, and returns not x. If the function doesn’t

find a picked literal in S then found is set to false.

(ii) if found is false then there is no stable model of Π compatible with B.

Otherwise expand finds the consequences of Π and S∪{ not x }, and

stores them in S, if they are consistent, else conflict is set to true and

S is unchanged.
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5. smodels returns atoms in S.

If found is true when the outer loop exits, then S∩Atoms(Π) is a stable model

of Π that is compatible with B. Otherwise, there are no stable models of Π that are

compatible with B.

3.1.2 The expand Cycle

Before we describe the expand procedure, we need to introduce some termi-

nology. A set of simple literals U , is called the lower closure of a program Π with

respect to a set of simple literals B, if it is a minimal set containing B and closed

under the following six inference rules.

1. If r is a simple rule (3.1), and body(r) ⊆ U , then h ∈ U .

2. If r is a cardinality rule (3.3), and |{l1 . . . , ln} ∩ U | ≥ L, then h ∈ U .

3. If an atom a is not in the head of any rule in Π, then not a ∈ U .

4. If r is the only rule of Π such that h ∈ head(r), h ∈ U and r is of the type (3.1)

or (3.2), then body(r) ⊆ U .

5. If h is in the head of a simple rule or a choice rule r, in Π, not h ∈ U , and all

literals in the body of r except li belong to U , then not li ∈ U .
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6. If h is the head of a cardinality rule r (3.3) in Π, and not h ∈ U , and |{l1, . . . , ln}∩

U | = L − 1 then, if li 6∈ U then not li ∈ U .

This closure will be denoted by lc(Π, B). For the sake of easier representation, we

have split the four inference rules into the six rules which we have just discussed.

Proposition 3.6 Let Π be a program, and B be a set of simple literals. By [14], we

have the following:

1. If S is a stable model of Π, then B is compatible with S iff lc(Π, B) is compatible

with S.

2. lc(Π, B) is unique.

The expand routine calls a procedure atleast, which computes the lower closure of a

program and a set of literals.

3.1.2.1 The atleast procedure

The procedure atleast (Figure 3.2) takes the program Π, the stack of literals

S, and a set of literals X as inputs, and computes the lower closure of Π with respect

to S ∪ X. The function lc computes the lower closure of Π with respect to a single

literal l.

For each execution of the loop in the procedure, a literal l is selected from X

and pushed to the stack S. If S is inconsistent, then variable conflict is set to true
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procedure atleast(var Π: Program, var S: stack of lits,

X: set of lits, var conflict : bool)

% precondition : • conflict = false, Π = r(Π, S)

% postcondition : • If conflict = true then 6 ∃ stable model compatible with S.

% Otherwise Π = r(Π, S), S = lc(Π, S).

VAR X0 : set of literals;

while not empty(X) and not conflict do

select l∈X;

X := X \ { l };

push(l, S);

conflict := conflict(S)

if not conflict then

X0 := lc(Π, {l});

X := (X ∪ X0) \ S;

Π := r(Π, {l});

end if

end procedure

Figure 3.2: atleast procedure
38



and the loop terminates, else lc(Π, {l}) finds the lower closure of Π with respect to l

and stores it in X. The reduced form of Π with respect to {l}, r(Π, {l}), is computed

and is assigned to Π.

If conflict is true then there is no stable model of Π which is compatible to

S∪X. If conflict is false then by Proposition 3.6, every stable model of Π compatible

with S ∪ X is compatible with lc(Π, S ∪ X), (computed by atleast and stored in S).

expand uses a function to compute the atoms that can possibly be true in a

stable model of Π compatible with S. This function is called atmost and is explained

below.

3.1.2.2 The atmost function

Let us introduce some terminology. A program is called a definite program, if

all rules of the program are simple and does not contain not-atoms. Let S be a set of

literals and Π be a program. By α(Π, S) we denote a definite program obtained from

Π by

1. Removing all rules in Π which are falsified by S.

2. Removing from the result of step one,

a. all not-atoms from the bodies of the simple and choice rules.

39



b. all not-atoms from the bodies of the cardinality rules and decreasing the

lower bound L by the number of not-atoms removed.

3. Replacing each choice rule r(3.2), by simple rules hi :− l1, . . . , ln, for each hi ∈

head(r) such that not hi 6∈ S.

The upper closure of a program Π with respect to S, denoted as up(Π, S), is defined

as the deductive closure (2.1) of α(Π, S).

up(Π, S) corresponds to the set of atoms that may belong to any stable model

of Π compatible with S. All stable models of Π compatible with S must consist of

atoms belonging to up(Π, S).

Proposition 3.7 Let Π be a program and S be a set of literals. From [14], we have

the following:

1. If Y is a stable model of Π compatible with S then Y ⊆ up(Π, S).

2. up(Π, S) is unique.

The function atmost, computes up(Π, S), where Π is the original program and S

is a set of literals. Function atmost is not shown here as it is the same in both the

smodels and new smodels algorithms [14]
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3.1.2.3 The expand procedure

The expand procedure (Figure 3.3) computes the closure of a program Π with

respect to S ∪X. The inputs of the procedure are a program Π, a stack of literals S,

a set of literals X and a boolean variable conflict. The procedure has the following

main steps :

a. Expand stores the initial value of X, S and Π to X0, S0 and Π0, respectively.

b. Atleast computes the lower closure of Π with respect to S ∪ X0 and stores it

in S. It computes the reduced form of Π with respect to S.

c. Atmost returns up(Πg, S), where Πg is the original program input to smodels.

Since atoms which do not belong to up(Πg, S) cannot be consequences of Π and

S, expand stores the negation of atoms not present in up(Πg, S) in X0.

d. The steps (b) and (c) are executed either until no new atoms are added to S or

S becomes inconsistent.

e. If conflict is true then S is assigned to S0 and Π to Π0.

Proposition 3.8 Let S0 and S1 be the input and output value of S in expand respec-

tively and X be the input set of literals to expand. If conflict is false then a stable

model Y of Π is compatible with S0 ∪X iff Y is compatible with S1. Otherwise, there

is no stable model of Π compatible with S0 ∪ X.
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procedure expand(var Π: Program, var S: stack of lits,

X: set of lits, var conflict: bool)

% Let s0 and π0 be the initial value of S and Π, respectively.

% precondition : • Π = r(Π, S)

% postcondition : • Π = r(Π, S) and if conflict = true then S = s0 and

% Π = π0. Otherwise, s0 ∪ X ⊆ S and any stable model of Π compatible

% with S0 ∪ X is compatible with S.

VAR X0, S
′, S0 : set of literals;

X0 := X; S0 := S; Π0 := Π; conflict := false;

repeat

S ′ := S;

atleast(Π, S,X0, conflict);

X0 := { not x| x∈Atoms(Π) and x 6∈atmost(Π, S) };

until S = S ′ or conflict;

if conflict then

S := S0; Π := Π0;

end procedure

Figure 3.3: expand procedure
42



3.1.3 The backtrack function

The function takes a program Π, a stack S and a boolean variable found as

inputs. The function pops literals from S until it pops a literal which is a picked

literal. The negation of the literal is returned. If such a literal is not found in S,

then it sets found to false. The function then finds the reduced form of Πg and the

new S. Πg is the original program input to smodels function and is global to all

functions. The computed r(Πg, S) is stored as Π. The function is shown in Figure

3.4.

The backtrack function is called when conflict is true. This implies that

expand found a conflict when computing the closure of Π with respect to S ∪ X

where X contains the last picked literal. According to the proposition (3.8), there

exists no stable model compatible with S ∪ X and therefore all literals which are

consequences of the last picked literal are removed from S, and the negation of the

picked literal is returned and smodels tries to find a stable model which is compatible

with the returned literal. If such a picked literal is not found in S then there exists no

stable model of the program compatible with B, and therefore found is set to false.

Proposition 3.9 If backtrack returns with found as false then there is no stable

model of Π compatible with B, where B is the input set of literals to smodels.
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function back track(var Π: Prog, var S: stack, var found : bool) : lit

% precondition : • Π0 = r(Π0, S0)

% postcondition : • If S0 = S1 x S2, where x is a picked literal, and S2

% contains no picked literals, then S = S1 and Π = r(Π, S)

% Otherwise such a literal does not exist and found is false.

VAR x : lit

x := pop(S);

while S 6= ∅ and x 6= picked literal do

x := pop(S);

end while

Π := r(Πg, S); % Πg is the original program and is global.

if S = ∅ and x 6= picked literal then

found := false;

return not x;

end function

Figure 3.4: backtrack function
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3.1.4 The pick Function

Function pick takes as input the set of atoms, Y = Atoms(Π) \ Atoms(S).

It returns a literal formed from atoms of Y . These picked literals are called choice

points. The choice points determine the search space in computing stable models of

a program. Efficiency of an implementation depends on the literals picked, i.e., the

choice points. The implementation of the function is more complex and involves a

heuristic function to find the most desirable literal from Y , to achieve efficiency in

computing the stable models. Both smodels and Surya have almost similar imple-

mentations of the heuristic function, which is not discussed in this thesis. To know

more about the heuristic function used in smodels refer to [14].

3.1.5 The lookAhead Function

There is a function called lookahead in both smodels and new smodels al-

gorithms, with similar implementations in smodels and Surya. Given a program Π

and a stack of literals S, the main use of this function is to find any literal x which

returns conflict true for the call expand(Π, S, {x}, conflict). The negation not x is

added to S as there exists no stable model of Π compatible with S∪{x}. This prunes

the search space for finding a model and returns a model faster. The efficiency in-

crease caused by lookahead is considerable. More information about lookahead can

be found in [14]. This function is not discussed further in this thesis.
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3.2 The new smodels Algorithm

Given a program Π with variables, lparse returns its grounded form Πg. The

function new smodels takes as input the ground program Πg, a set of literals B,

and a set of constraint sets of the program Π (which will be discussed shortly) and

returns a stable model of Π compatible with B, if one exists else it reports failure.

Before we discuss the algorithm, we need to know more about grounding of

choice rules and cardinality rules by lparse and also about constraint sets.

3.2.1 Lparse Grounding

lparse starts its work with grounding of the domain part, Πd, of Π (see section

2.2) and uses the result to compute extensions of Π’s domain predicates w.r.t. the

stable model of Πd. (Recall that by extension of predicate p in stable model S we

mean the collection of atoms of S formed by p.) These extensions are used to ground

the remaining rules of Π. Below we will describe the groundings of two types of rules

which play especially important role in new smodels algorithm.

a. Grounding of simple choice rules.

A choice rule r of Π is called a simple choice rule if the body of r consists of

only literals formed by domain predicates from Σ.

A simple choice rule r is grounded by lparse into a collection of three types

of rules, called ground instances of r. We will illustrate this notion by the following
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example.

Example 3.1 Let us consider the following simple choice rule with a single domain

predicate in its body.

L { p(X,Y ) : q(X) } U :− r(Y ). (3.4)

Let the extensions of q and r be {q(1), q(2), q(3)} and {r(a), r(b), r(c)}, respectively.

Then, the grounding of (3.4) produces the following rules:

{ p(1, a), p(2, a), p(3, a) }.

{ p(1, b), p(2, b), p(3, b) }.

{ p(1, c), p(2, c), p(3, c) }. (3.5)

:− U+1 { p(1, a), p(2, a), p(3, a) }.

:− U+1 { p(1, b), p(2, b), p(3, b) }.

:− U+1 { p(1, c), p(2, c), p(3, c) }. (3.6)

:− n−L+1 { not p(1, a), not p(2, a), not p(3, a) }.

:− n−L+1 { not p(1, b), not p(2, b), not p(3, b) }.

:− n−L+1 { not p(1, c), not p(2, c), not p(3, c) }. (3.7)

where n = 3 is the number of simple literals in the body of the constraint from (3.7).
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(Notice that all such constraints have the same number of simple literals in them.)

The collection of rules of the type (3.6) and (3.7) of a simple choice rule r are referred

as Cp(r) and Cn(r), respectively.

b. Grounding of simple cardinality rules.

A cardinality constraint rule (2.4) of the form:

:− L{l1, . . . , ln}, Γ. (3.8)

where Γ consists of simple literals formed from domain predicates, is called a simple

cardinality rule. We show the ground instances of a simple cardinality rule by an

example.

Example 3.2 Let us consider the following rule cr with a single domain predicate in

its body.

:− L { p(X,Y ) : q(X) }, r(Y ). (3.9)

Let the extensions of q and r be {q(1), q(2), q(3)} and {r(a), r(b), r(c)}, respectively.

Then, lparse grounds (3.9) as follows,

:− L { p(1, a), p(2, a), p(3, a) }.

:− L { p(1, b), p(2, b), p(3, b) }.

:− L { p(1, c), p(2, c), p(3, c) }.

The collection of these rules is referred as Cp(cr). Often it will be convenient to

identify the Cn for a cardinality rule with the empty set.
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3.2.2 Some Definitions

Consider a cardinality rule r of the form,

:− Lcr { l1, . . . , ln }. (3.10)

Recall that lit(r) = { l1, . . . , ln }. If C is a collection of cardinality rules {r1, . . . , rn},

then lit(C) = lit(r1) ∪ . . . ∪ lit(rn).

Definition 3.10 Let C be a collection of cardinality rules. The reduced form of C

with respect to a set of simple literals S is

r(C, S) = { rS | r∈C}.

where rS is the reduced form of cardinality rule r with respect to S introduced in

definition 3.5. Let C = {C1, . . . , Cn}, where Ci’s are sets of cardinality rules. The

reduced form of C with respect to S is :

r(C, S) = { r(Ci, S) | Ci∈C}.

Example 3.3 Given C = {C1, C2}, where

C1 = { :− 2{a, b, c}, :− 1{d, e}, :− 3{f, g, h} },

C2 = { :− 1{not a, not b, not c}, :− 3{not d, not e}, :− 1{not f, not g, not h} }

and S = { a, not d, not e, f}, we get r(C, S) = {C ′

1, C
′

2}, where,

C ′

1 = r(C1, S) = { :− 1{b, c}, :− 2{g, h} },

C ′

2 = r(C2, S) = { :− 1{not b, not c}, :− 1{not g, not h} }.

49



A set of literals S satisfies a set of cardinality rules C, if S satisfies all rules that

belong to C.

Proposition 3.11 Let S be a set of literals and C be a set of cardinality rules. S

satisfies C iff S satisfies r(C, S).

Definition 3.12 Let C be a collection of cardinality rules r1, . . . , rk with lower bounds

L1, . . . , Lk and empty heads. By merge of C we denote the cardinality rule,

merge(C) = :− L1 + . . . + Lk − k + 1{ lit(C) }. (3.11)

If C = {C1, . . . , Cn} is a collection of sets of cardinality rules then

merge(C) = merge({merge(C1), . . . ,merge(Cn)}).

Example 3.4 Consider C ′ = {C ′

1, C
′

2} from example 3.3, then merge(C ′) is

:− 2{b, c, g, h, not b, not c, not g, not h}.

where,

CM
1 = merge(C ′

1) = :− 2{b, c, g, h},

CM
2 = merge(C ′

2) = :− 1{not b, not c, not g, not h}.

Proposition 3.13 Let S be a set of literals and C be a set of cardinality rules. S

satisfies C iff S satisfies C ∪ merge(C).

50



Two sets of cardinality rules C1 and C2 are said to be related, denoted as

related(C1, C2), if lit(C1) = {not l | l∈ lit(C2)}. Recall that the above equality is the

equality of bags and that two bags X and Y of literals are equal if, for every literal l

the number of occurrences of l in X is equal to the number of occurrences of l in Y .

Example 3.5 Consider the set of cardinality rules,

C1 = { :− 2{a, a, c}, :− 1{e, f, g} },

C2 = { :− 2{not a, not g, not c}, :− 1{not a, not e, not f} },

C3 = { :− 2{not a, not g, not c}, :− 1{not e, not f} }.

it is easy to see that C1 and C2 are related but C1 and C3 are not.

Definition 3.14 Let R be the set of all simple cardinality and simple choice rules in

Π. The sets Cp(r) and Cn(r) for rules of R will be referred to as constraint sets of

Π. The collection of constraint sets of Π is :

CS = {Cp(r) | r∈R} ∪ {Cn(r) | r∈R}.

CS will serve as an input to new smodels.

3.2.3 The Main Computation Cycle

The new smodels algorithm presented in Figure 3.5, is similar to the smod-

els algorithm. Given a program Π, a set of literals B and the collection of constraint
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function new smodels(Π : program, B : set of lits, CS : set of C Sets,

var found : bool ) : set of atoms

VAR S : stack of literals; VAR Y : set of literals; VAR conflict : boolean;

VAR cp, lb : array [C∈CS, C ′∈CS] of integer;

VAR nc : array [a∈Atoms(Π), C∈CS] of integer;

initialize(S, cp, nc, lb); Y := lc(Π, ∅); found := true;

new expand(Π, S, B ∪ Y , cp, nc, lb, conflict);

if conflict then found := false;

while not covers(S,Atoms(Π)) and found do

pick(l, S);

new expand(Π, S, {l}, cp, nc, lb, conflict);

if conflict then new expand(Π, S, {not l}, cp, nc, lb, conflict);

while conflict and found do

x := new backtrack(Π, S, cp, nc, lb, found);

if found then new expand(Π, S, {x}, cp, nc, lb, conflict);

return S ∩ atoms(Π);

Figure 3.5: new smodels algorithm - computation of stable models
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sets CS of Π, new smodels returns the stable model of Π compatible with B, if one

exists. Otherwise, it returns failure.

new smodels uses routines new expand and new backtrack similar to routines

expand and back track. Both, expand and new expand return conflict when they

discover that S cannot be expanded to the desired model of Π. The difference is

that new expand merges constraint sets in CS, and as a result, finds conflict sub-

stantially faster than smodels in some cases. All the other routines used in the main

computation cycle are the same as in smodels.

To compute the merge of the constraint sets in CS efficiently, new smodels

uses three arrays called cp, nc and lb. We need to know more about the arrays before

we describe the main algorithm.

3.2.3.1 The book keeping tables

Let S, a set of literals from ΣΠ, be a candidate model of Π. Let CS be the set

of constraint sets of the program Π. Unless otherwise specified, we only talk about

constraint sets that belong to CS.

From now onwards, we denote merge(r(C1, S), r(C2, S)) as mr(C1, C2, S). cp

and lb are tables indexed by constraint sets of CS. nc is a table indexed by atoms

occuring in CS, and constraint sets of CS. Let C1 and C2 be constraint sets in CS.

1. If related(C1, C2), then cp[C1, C2] contains the number of complementary pairs
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in mr(C1, C2, S) else cp[C1, C2] = −1.

2. If related(C1, C2), then lb[C1, C2] contains the lower bound of mr(C1, C2, S) else

lb[C1, C2] = −1.

3. If a 6∈ C1 then nc[a, C1] = −1. Otherwise, if atom a is undefined in S then

nc[a, C1] contains the number of occurrences of a in r(C1, S). If a is defined

in S, then the value of nc[a, C1] holds the value of nc[a, C1] when a was last

undefined.

In what follows, we will denote conditions (1), (2) and (3) above by υ(cp, S), υ(lb, S),

and υ(nc, S), respectively. From examples 3.3 and 3.4, cp[C1, C2] = 4, lb[C1, C2] =

2 and for x ∈ {b, c, g, h}, nc[x,C1] = 1, and nc[x,C2] = 1. Note that in C =

:− 1{a, a, not c}, the number of occurrences of atom a is two and the number of

occurrences of atom c is one.

Now, let us go to the algorithm in Figure 3.5. The precondition for the algo-

rithm is that CS is the set of constraint sets of the program Π and the postcondition

is that if there is no stable model of Π compatible with B then found is set to false

and the return value is undefined. Otherwise, found is set to true and new smodels

returns a stable model of Π that is compatible with B. The algorithm performs the

following steps :

1. The procedure initialize(S,cp, nc, lb), initializes the stack S to ∅. For every
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related C1 and C2, cp[C1, C2] is initialized to |lit(C1)| and lb[C1, C2] is initialized

to
∑

r∈C1
Lr +

∑

r∈C2
Lr−|C1|−|C2|+1 and if a∈Atoms(lit(C1)) then nc[a, C1] is

the number of occurrences of a in lit(C1). It is easy to check that this assignment

satisfies the conditions υ(cp, S), υ(nc, S) and υ(lb, S). The lower closure of Π

with respect to S is computed and stored in Y .

2. The function new expand computes the set Q of consequences of Π and B∪Y .

If Q is consistent then it stores Q in S. Otherwise, conflict is set to true and

S is left unchanged.

In its computation new expand uses the closure rules defined in section 3.1.2

together with operation merge on constraint sets of CS. The latter allows to

derive falsity if S does not satisfy merge(C), where C ∈ CS. If S is changed

during the computation, then the function updates the values of the three arrays

to maintain conditions υ(cp, S), υ(nc, S) and υ(lb, S). The arrays are updated

using procedures update1 and update2, which will be discussed in section 3.2.4.

The set of literals stored in S after the execution of new expand has the follow-

ing properties :

• B ⊆ S

• every stable model that is compatible with B is compatible with S.

3. If conflict is true then found is set to false and there is no stable model of Π
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compatible with B.

4. If S does not cover all atoms in Π and found is true then the loop containing

steps (a)-(d) below is executed.

a. function pick selects a literal l undefined in S.

b. new expand finds the consequences of Π and S∪{l}. If the consequences

are consistent then they are stored in S and the arrays cp, lb, nc are

updated to maintain the conditions, υ(cp, S), υ(nc, S) and υ(lb, S). The

literal l is marked as a picked literal. Otherwise, S and the arrays are

unchanged and conflict is set to true.

c. If conflict is false then control goes to step (5). Otherwise, new expand

finds the consequences of Π and S ∪ {not l}. If the consequences are

consistent with S then they are stored in S else conflict is set to true.

The arrays are updated accordingly.

d. If there is conflict then steps (i) and (ii) below are performed repeatedly

until there is no conflict or until found is false, that is, there is no stable

model of Π compatible with B.

(i) function new backtrack removes literals from S until it finds a picked

literal x. The negation of the literal, not x is returned. The ar-

rays are updated with respect to the new S by two functions called

56



back update1 and back update2. They will be discussed in section

3.2.5. If the function doesn’t find a picked literal then found is set to

false.

(ii) If found is true then new expand finds the consequences of Π and

S∪{not x} and if consistent stores them in S and updates the arrays.

Otherwise S and the arrays are unchanged.

6. new smodels returns the atoms in S.

If found is true then the set of atoms returned by new smodels is a stable model of

Π compatible with B. Otherwise, there is no such stable model.

3.2.4 The new expand cycle

The inputs of new expand are a program Π, a stack of literals S, a set of

literals X, a boolean variable conflict and three arrays cp, nc and lb. Intuitively, the

new expand procedure computes the closure of Π and S ∪X the same way as expand

does. We begin by explaining all the routines in new expand which are different from

routines in expand.

The book keeping tables need to be updated every time new expand adds

new literals to S. In doing so, new expand must maintain the conditions υ(cp, S),

υ(nc, S), υ(lb, S). Suppose a literal l is added to S, the following are the cases when
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the arrays change. Let a = Atoms(l),

1. for any C,C ′ ∈ CS and related(C,C ′), if a occurs in C, C ′ then cp[C,C ′] and

lb[C,C ′] change. Since a is now defined in S, the value of nc[a, C] for any

C ∈ CS is left unchanged. ( This value will be used later by the backtracking

procedure.)

2. if there is a rule r ∈ C, such that r is falsified by S because of adding l then

for every undefined atom x occuring in r, nc[x,C] changes and hence cp[C,C ′]

and lb[C,C ′] change.

The following example will help to clarify the above cases when the tables need to be

updated.

Example 3.6 Let us consider the following six rules of a program :

r1 :− 4{a, b, c, d, e, f}.

r2 :− 4{g, h, i, j, k, l}.

r3 :− 4{m,n, o, p, q, r}.

r4 :− 3{not a, not b, not g, not h, not m, not n}.

r5 :− 3{not c, not d, not i, not j, not o, not p}.

r6 :− 3{not e, not f, not k, not l, not q, not r}.

Let C = {r1, r2, r3} and C ′ = {r4, r5, r6}. C and C’ are related. Let the initial value

of S be S0 = {c, e,m, not g, not l}. By definition, we have r(C, S0) = {r1S0
, r2S0

, r3S0
}
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and r(C ′, S0) = {r4S0
, r5S0

, r6S0
}, where the reduced form of the rules with respect to

S0 are:

r1S0
:− 2{a, b, d, f}.

r2S0
:− 4{h, i, j, k}.

r3S0
:− 3{n, o, p, q, r}.

r4S0
:− 2{not a, not b, not h, not n}.

r5S0
:− 3{not d, not i, not j, not o, not p}.

r6S0
:− 2{not f, not k, not q, not r}.

The cardinality rule M = merge(r(C, S0), r(C
′, S0)) is:

:− 11 { a, b, d, f, h, i, j, k, n, o, p, q, r, not a, not b, not h, not n,

not d, not i, not j, not o, not p, not f, not k, not q, not r }.

By definition of the tables, cp[C,C ′] = 13 and lb[C,C ′] = 11. The value of nc[x,C]

is one if x ∈ {a, b, d, f, h, i, j, k, n, o, p, q, r}. (Note that, the atoms in this example

occur only once in C or C ′. In general, an atom ”a” can occur more than once in

any C ∈ CS, and nc[a, C] will be equal to the number of such occurrences.)

Now suppose a new literal ′′not i′′, is added to S, i.e., S1 = S0 ∪ {not i}. The
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rule r2 is falsified by S1 and the new reduced forms of the rules are :

r1S1
= r1S0

,

r2S1
= ∅,

r3S1
= r3S0

,

r4S1
= r4S0

,

r5S1
= :− 2{not d, not j, not o, not p},

r6S1
= r6S0

,

r(C, S1) = {r1S1
, r3S1

}, r(C ′, S1) = {r4S1
, r5S1

, r6S1
},

and M1 = merge(r(C, S1), r(C
′, S1)) is :

:− 7 { a, b, d, f, n, o, p, q, r, not a, not b, not h, not n,

not d, not j, not o, not p, not f, not k, not q, not r }.

To maintain υ(cp, S1), υ(nc, S1), υ(lb, S1), we have to update the values in the arrays

as cp[C,C ′] = 9 and lb[C,C ′] = 7.

One way to update the bookkeeping tables is to find r(C, S) for all C ∈ CS, and

reevaluate the values for the arrays after merge. But it will be more efficient to do

the update using the previous values of the tables and the knowledge of the literals

added to S. This is done by two procedures update1 and update2. Let us now see

how the values in the arrays are updated by these procedures.
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procedure update1(var cp, nc : tables, var lb : table, S : stack of lits)

% precondition : • Let Y be S \ {top(S)}. υ(cp, Y ), υ(nc, Y ), υ(lb, Y ).

% postcondition : Let a = Atoms(top(S)), then

% • ∀C,C ′∈CS, if related(C,C’) and a∈ lit(C) then cp[C,C’]= # comp pairs

% in mr(C,C ′, Y ) − # of comp pairs containing ′′a′′ in mr(C,C ′, Y ); and

% • lb[C,C’] = lower bound of mr(C,C ′, Y ) - α(top(S), C, C ′, Y ).

VAR a : atom;

a := Atoms(top(S));

for each C∈CS such that nc[a, C] ≥ 0 do

for each C ′∈CS such that related(C,C ′) do

cp[C,C ′] := cp[C,C ′] − min(nc[a, C], nc[a, C ′])

if a = top(S) then % lit(C) consists of atoms.

lb[C,C ′] := lb[C,C ′] − nc[a, C]

else

lb[C,C ′] := lb[C,C ′] − nc[a, C ′]

end procedure

Figure 3.6: update1 procedure
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3.2.4.1 The update1 procedure

The procedure update1, illustrated in Figure 3.6, is one of the two procedures

used to update the arrays cp, nc and lb. The precondition for the procedure is that

the three arrays satisfy the conditions υ(cp, Y ), υ(nc, Y ) and υ(lb, Y ), where Y is

S \ top(S) and top(S) is the top element of S. To introduce the post conditions, we

need some notations. Let us assume that lit(C) consists of atoms and lit(C ′) consists

of not-atoms for C,C ′ ∈ CS. We define α(top(S), C, C ′, Y ), as:

a. The number of occurrences of l = top(S), in r(C, Y ), if l is an atom;

b. The number of occurrences of l in r(C ′, Y ), is l is a not-atom.

The postconditions of the procedure are, for all C, C ′ in CS and a = Atoms(top(S)),

1. cp[C,C ′] gives the number of complementary pairs in mr(C,C ′, Y ) minus the

number of occurrences of complementary pair {a, not a} in mr(C,C ′, Y ), where

mr(C,C ′, Y ) = merge(r(C, Y ), r(C ′, Y )).

2. lb[C,C ′] contains the lower bound of mr(C,C ′, Y ) minus α(top(S), C, C ′, Y ).

To see that update1 satisfies the corresponding postconditions, let us recall that by

υ(cp, Y ), we mean that for any C,C ′ ∈ CS, if related(C,C ′) then cp[C,C ′] gives the

number of complementary pairs in the rule M = mr(C,C ′, Y ). M may contain the oc-

currences of complementary pair {a, not a}. Suppose r(C, S) contains m occurrences

of a and r(C ′, S) contains n occurrences of not a, then the number of occurrences
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of {a, not a} complementary pair in M is the minimum of m and n. Recall that,

υ(nc, Y ) says that for any atom a ∈ C where C ∈ CS, nc[a, C] gives the number of

occurrences of a in r(C, Y ).

For every related pair C,C ′ ∈ CS, procedure update1 subtracts the number of

complementary pairs formed by atom a in M . This satisfies the first postcondition.

For what concerns the second postcondition, it can be seen from the algorithm that,

if top(S) is an atom then update1 subtracts from lb[C,C ′] the number of occurrences

of a in C, else it subtracts the number of occurrences of not a in C ′. Thus, the post

conditions are satisfied.

Example 3.7 Let us consider the rules from example 3.6, and let the value of S be

S0. Conditions υ(cp, S0), υ(nc, S0) and υ(lb, S0) hold, therefore cp[C,C ′] = 13 and

lb[C,C ′] = 11. Now, let the new value of S be S1 = S0 ∪ {not i}. We know that

nc[i, C] = 1, nc[i, C ′] = 1, cp[C,C ′] = 13 and lb[C,C ′] = 11. The values of cp[C,C ′]

and lb[C,C ′] are updated as follows: Procedure update1 decreases the value of cp[C,C ′]

to 12. lb[C,C ′] is decreased to 10, as ′′not i′′ is added to S and nc[i, C ′] = 1.

3.2.4.2 The update2 procedure

The update2 procedure is the second procedure that is used to update the

three arrays. The procedure takes as inputs the arrays, a set of rules R and the stack

S. The preconditions of the procedure are the postconditions of update1, and R is the
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procedure update2(var cp, nc, lb: tables, R : set of rules, S : stack of lits)

% precondition : • Let Y be S \ {top(S)} and a = Atoms(top(S)), υ(nc, Y )

% • ∀C,C ′∈CS. if related(C,C’) and a∈ lit(C) then cp[C,C’]= # comp pairs

% in mr(C,C ′, Y ) − # of comp pairs containing ′a′ in mr(C,C ′, Y ), and

% • lb[C,C’] = lower bound of mr(C,C ′, Y ) - α(top(S), C, C ′, Y ).

% • R is the set of rules inactive w.r.t. S and active w.r.t. Y .

% postcondition : • υ(cp, S), υ(nc, S), υ(lb, S)

for each r∈R do

if r∈C for some C∈CS then

for every atom x undecided w.r.t. S s.t. x occurs in r do

for every occurrence of x in r do

nc[x,C] := nc[x,C] − 1

for each C ′∈CS such that related(C,C ′) do

if nc[x,C] < nc[x,C ′] then cp[C,C ′] := cp[C,C ′] − 1;

for each C ′∈CS and related(C,C ′) do

lb[C,C ′] := lb[C,C ′] − Lr + 1

end procedure

Figure 3.7: update2 procedure
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set of cardinality rules which are active (not falsified) with respect to Y = S \ top(S)

but are falsified by S. The postconditions of the procedure are υ(cp, S), υ(nc, S) and

υ(lb, S). Let us see how the postconditions are achieved by the procedure.

Since υ(nc, Y ) is a precondition, nc[a, C] contains the number of occurrences

of a in r(C, Y ) if a ∈ C. Suppose a rule r ∈ R belongs to the constraint set C ∈ CS

(note that by definition of constraint sets r can belong to only one C ∈ CS), by

definition of reduced form, rS = ∅ and rY 6= ∅. The body of the rule rY contains all

literals of r undefined in Y and by definition of r(C, Y ), rY ∈ r(C, Y ). Since the rule

rY is not present in r(C, S), the number of occurrences of the literals of r in r(C, S),

undecided in S, changes. We need to update these changes. For each occurrence of a

literal l in rY , undecided in S, nc[a, C] decreases by one, where a is the corresponding

atom of literal l. This is done in the procedure. Further more, when the number of

occurrences of a literal l in r(C, S) is different from that of r(C, Y ), the number of

complementary pairs in mr(C,C ′, S) can also change. The number of occurrences of

{a, not a} complementary pairs in mr(C,C ′, S) is equal to the minimum of nc[a, C]

and nc[a, C ′]. The procedure checks and updates this information. From definition of

merge and the fact that Y = S \ top(S), we get that the lower bound of mr(C,C ′, S)

is equal to the lower bound of mr(C,C ′, Y ) minus the lower bound of rY plus one.

For every rule r ∈ R, the array lb is updated accordingly. Thus, the postcondition is

satisfied.

65



Example 3.8 Let us continue with example 3.7. Recall that we have cp[C,C ′] = 12,

lb[C,C ′] = 10 and S1 = {c, e,m, not g, not l, not i}. We have R = {r2}, and r2S0
is

:− 4{h, i, j, k} where r2 ∈ C. The atoms undecided in r2S0
with respect to S1 are

{h, j, k}. Each of these atoms occur only once in r2S0
, hence nc[h,C] = 1, nc[j, C] =

1, nc[k, C] = 1. They are decreased in update2 by one and become nc[h,C] = 0,

nc[j, C] = 0 and nc[k, C] = 0. Since, nc[h,C ′] = 1, nc[j, C ′] = 1 and nc[k, C ′] = 1,

we get, cp[C,C ′] is eventually decreased by 3 and cp[C,C ′] becomes 9. The lower

bound lb[C,C ′] gets updated to 10 − 4 + 1 that is 7, where 4 is the lower bound of r2.

We see that the values of cp[C,C ′] and lb[C,C ′] are updated to the values calculated

in example 3.6.

3.2.4.3 Function check constraints

Before we describe the function, let us give the intuition behind EER. The

EER consists of two steps:

1. Expand program Π, by adding a new rule merge(R), where R is a set of cardi-

nality rules of Π with same head h. The construction guarantees that, “A set

of literals S satisfies R iff S satisfies R ∪ merge(R).”

2. Check if the body of merge(R) is satisfied by all stable models of Π containing

S. If so then expand S by h.
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function check constraints(Π : program, S : stack, cp, nc, lb : tables) : boolean

% precondition : • υ(cp, S), υ(nc, S), υ(lb, S)

% postcondition : • if check constraints returns true then 6 ∃ a stable model

% of Π compatible with S. Otherwise, no decision can be made about the

% existence of a stable model compatible with S.

for each C,C ′ ∈ CS s.t. related(C,C ′) do

if lb[C,C ′] ≤ cp[C,C ′] then

return true

return false

end function

Figure 3.8: check constraints function

Given two related constraint sets C1 and C2 from CS, EER is applied to R =

r(C1, S) ∪ r(C2, S). According to the first part of EER, Π is expanded with a new

rule merge(R). In reality, this is not done in the implementation. To apply the infer-

ence rule, it suffices to know the number of complementary pairs and lower bound of

the cardinality rule merge(R). This is maintained by the two bookkeeping arrays cp

and lb. Recall that, for any two related constraint sets C1, C2, cp[C1, C2] contains the
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number of complementary pairs in merge(r(C1, S), r(C2, S)) and lb[C1, C2] contains

the lower bound of the rule merge(r(C1, S), r(C2, S)). ( Since r(C1, S) and r(C2, S)

are sets of cardinality rules, we can prove that, merge(r(C1, S), r(C2, S)) is equal to

merge(r(C1, S) ∪ r(C2, S)). That is, merge(R) = merge(r(C1, S), r(C2, S)). )

To perform the second part of EER, it suffices to compare the number of

complementary pairs and lower bound of the merge rule. For any related(C1, C2),

if lb[C1, C2] ≤ cp[C1, C2] then the body of the rule is satisfied for any completion of

S. Therefore, we infer the head of merge(R), which is false. Since false ∈ S, there

exists no stable model of Π containing S.

Function check constraints, shown in Figure 3.8, takes as input a program Π,

a stack of literals S and the three arrays: cp, nc, lb. The preconditions of the function

are υ(cp, S), υ(nc, S) and υ(lb, S). The function applies EER to all the related

constraint sets in CS. For every C,C ′ ∈ CS and related(C,C ′),the function checks if

lb[C,C ′] ≤ cp[C,C ′]. If there exists C,C ′ ∈ CS such that lb[C,C ′] ≤ cp[C,C ′] then

the function returns true else it returns false.

Proposition 3.15 If function check constraints returns true then there exists no sta-

ble model of Π compatible with S.

Example 3.9 Let the inputs of check constraints be S1 from example 3.8, and Π,

containing rules r1 to r6, of example 3.6 and C, C ′ in CS of Π. The conditions on the

arrays hold and therefore we have cp[C,C ′] = 9 and lb[C,C ′] = 7, check constraints
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returns true. By proposition 3.15, there exists no stable model for program Π, which

is compatible with S1. Furthermore, if S = ∅ then cp[C,C ′] = 18 and lb[C,C ′] = 16

and check constraints would return true.

3.2.4.4 The new atleast procedure

The new atleast procedure is similar to atleast procedure of smodels. It

takes as input a program Π, a stack of literals S, a set of literals X, a boolean

conflict and the arrays cp, nc and lb. The preconditions of the procedure are υ(cp, S0),

υ(nc, S0) and υ(lb, S0), where S0 is the input value of S. While X is not empty and

conflict is not true, the algorithm loops through the following steps:

1. A literal l is selected from X and pushed on S. Literal l is removed from X.

2. If there is a conflict in S then conflict is set to true.

3. If conflict is false then the steps (a) to (d) below are executed.

a. Since S is changed by adding a literal l, the values of the tables are up-

dated using update1. The preconditions of update1 are satisfied as fol-

lows. For the first iteration, the precondition of update1 follows from the

precondition of procedure new atleast and for subsequent iterations, the

postcondition of procedure update2 acts as precondition of update1. The

values of the arrays are updated according to the postcondition of update1.
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procedure new atleast(var Π: Program, var S: stack of lits, X: set of lits,

var cp, nc, lb: tables, var conflict : bool)

% precondition : • υ(cp, S), υ(nc, S), υ(lb, S), conflict = false

% postcondition : • If conflict = false then Π = r(Π, S), υ(cp, S), υ(nc, S),

% υ(lb, S) and a stable model of Π compatible with S0 ∪ X is compatible with S.

% • Otherwise, 6 ∃ stable model of Π compatible with S.

VAR R : set of rules;

while not empty(X) and not conflict do

select l∈X; X := X \ { l }; push(l, S);

conflict := conflict(S);

if not conflict then

update1(cp, nc, lb, S);

X0 := lc(Π, l); X := (X ∪ X0) \ S; Π := r(Π, {l}, R);

update2(cp, nc, lb, R, S);

if check constraints(Π, S, cp, nc, lb) then conflict := true;

end while

end procedure

Figure 3.9: new atleast procedure
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b. The lower closure of Π with respect to l is found the same way as in

atleast (3.1.2) and is added to X. Any literals which are already in S

are removed from X, as the lower closure has already been found for these

literals. The reduct of the program Π with respect to {l} is found and

stored in Π. The procedure r(Π, {l}, R) is different from the one used in

atleast, here the procedure stores in R all rules of Π falsified by l.

c. update2 updates the arrays cp, nc and lb. The preconditions of update2

are the postconditions of update1. update2’s postconditions are υ(cp, S),

υ(nc, S) and υ(lb, S). It uses the set R of rules which are falsified by l.

The actual implementation calls update2 whenever a rule r that belongs

to a constraint set, is falsified. This way R is not actually stored and is

used here mainly to simplify the description of algorithm.

d. The function check constraints checks if, for any related(C,C ′), the

lower bound of mr(C,C ′, S) is less than or equal to the number of com-

plementary pairs in mr(C,C ′, S). If so then the function returns true

and therefore sets conflict to true. The preconditions of the function are

υ(cp, S), υ(nc, S) and υ(lb, S). These are the postconditions of update2.

Let S0 and S1 be the input and output values of S to new atleast respectively.

From procedure new atleast and the Propositions 3.6 and 3.15, it follows that :
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Proposition 3.16 a. Procedure new atleast terminates.

b. If conflict is true then there exists no stable model of Π compatible with S0, else

every stable model of Π compatible with S0, is compatible with S1.

3.2.4.5 The function atmost

The procedure atmost is the same in both the algorithms new smodels and

smodels. It computes and returns the upper closure of Π with respect to S. The

upper closure of a program Π with respect to a set of literals S is defined in section

3.1.2.2. The function atmost is not shown as they are the same in both the algorithms

and can be referred in [14].

3.2.4.6 The new expand procedure

The new expand procedure is similar to expand in smodels. The procedure

takes as input a program Π, a stack of literals S, a set of literals X, a boolean variable

conflict and the three arrays cp, nc and lb. The procedure is illustrated in Figure

3.10. The preconditions are Π0 = r(Π0, S0), υ(cp, S0), υ(nc, S0) and υ(lb, S0), where

S0 and Π0 are the input values of Π and S, respectively. Procedure new expand

computes the consequences of Π and S∪X and stores them in S. The following steps

are executed in the procedure until, either all the consequences are found, or conflict
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procedure new expand(var Π: Program, var S: stack of lits, X: set of lits,

var cp, nc, lb : tables, var conflict : bool)

% precondition : • Π0 = r(Π0, S0), υ(cp, S0), υ(nc, S0), υ(lb, S0)

% postcondition : • Π = r(Π, S), υ(cp, S), υ(nc, S), υ(lb, S)

% • If conflict is true then S = S0 and Π = Π0. Otherwise S0 ∪ X ⊆ S and

% any stable model of Π compatible with S0 ∪ X is compatible with S.

VAR St, S
′, Xt : set of lits; VAR Πt : prog; VAR cpt, nct, lbt : tables;

Πt := Π; St := S; Xt := X; conflict := false;

cpt := cp; lbt := lb; nct := nc;

repeat

S ′ := S;

new atleast(Π, S,Xt, cp, nc, lb, conflict);

Xt := { not x| x∈Atoms(Π) and x 6∈atmost(Π, S) };

until S = S ′ or conflict;

if conflict then

S := St; Π := Πt; cp := cpt; lb := lbt; nc := nct;

end procedure

Figure 3.10: new expand procedure
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is true.

1. The value of S is stored in S ′.

2. Procedure new atleast finds the lower closure A of Π with respect to S ∪ X.

If A is consistent and satisfies the constraints sets of CS then conflict is set to

false and A is stored in S. Otherwise conflict is set to true.

3. Function atmost finds the upper closure of Π with respect to S, and adds to

X the negation of all atoms not in up(Π, S).

4. Steps (1) - (3) above are repeated until S = S ′ or conflict is true.

5. If conflict is true then the values of Π, S and arrays are intialized back to

their corresponding input values in new expand. The initial values of Π, S or

the arrays are not actually stored but are recomputed by backtracking in the

actual implementation. They are shown as being stored here to simplify the

presentation of the algorithm.

Proposition 3.17 (a) Procedure new expand terminates.

(b) Let S0 and S1 be the input and output value of S in new expand, respectively. Let

X be the input set of literals to new expand. If conflict is false then a stable model

Y of Π is compatible with S0 ∪ X iff Y is compatible with S1. Otherwise, there is no

stable model of Π compatible with S0 ∪ X.
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3.2.5 The new backtrack Function

The function new backtrack, illustrated in Figure 3.13, pops literals from

S until it finds a picked literal x and returns the negation of x. The reduced form

of the program Π, with respect to the new set S is computed and stored in Π. If

such a literal is not found then found is set to false. This part is the same as in

the backtrack function of smodels. In addition, new backtrack updates the values

in the tables cp, nc, lb according to the new S. The procedures back update1 and

back update2 are used to update these values.

3.2.5.1 The back update1 procedure

The back update1 procedure, illustrated in Figure 3.11, performs exactly the

reverse of what update1 procedure performs. The inputs of the procedure are the

book keeping tables, a literal x and the stack S. The preconditions of the procedure

are υ(cp, Y ), υ(nc, Y ) and υ(lb, Y ), where Y = S ∪ {x}. The literal x was removed

from S and therefore the values of the arrays have to be updated accordingly.

To understand the computation inside the loop of the procedure, let us suppose

the literal x ∈ Atoms(lit(C)) and x ∈ Atoms(lit(C ′)), where C and C ′ are related

constraint sets. By definition of reduced form, x does not occur in lit(r(C, Y )), as

x ∈ Y . Since, x is undefined in S, x occurs in lit(r(C, S)). Therefore, the number

of complementary pairs in mr(C,C ′, S) = merge(r(C, S), r(C ′, S)), is equal to the
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procedure back update1(var cp, nc : tables, var lb : tables, x : lit, S : stack of lits)

% precondition : • υ(cp, Y ), υ(nc, Y ), υ(lb, Y ), where Y = S ∪ {x}

% postcondition : ∀C,C ′∈CS, if related(C,C’) and x∈Atoms(lit(C)) then

% • cp[C,C’] = # comp pairs in mr(C,C ′, Y ) + # comp pairs of x in mr(C,C ′, S).

% • lb[C,C’] = lower bound of mr(C,C ′, Y ) + α(x,C,C ′, S).

VAR a : atom;

a := Atoms(x);

for each C∈CS such that nc[a, C] ≥ 0 do

for each C ′∈CS such that related(C,C ′) do

cp[C,C ′] := cp[C,C ′] + min(nc[a, C], nc[a, C ′])

if a = x then % lit(C) are atoms.

lb[C,C ′] := lb[C,C ′] + nc[a, C]

else

lb[C,C ′] := lb[C,C ′] + nc[a, C ′]

end procedure

Figure 3.11: back update1 function
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number of complementary pairs in mr(C,C ′, Y ) plus the number of occurrences of

complementary pair {x, not x} in mr(C,C ′, S). If literal x occurs m times in con-

straint set r(C, S) and occurs n times in constraint set r(C ′, S), then the number of

occurrences of complementary pair {x, not x} in mr(C,C ′, S) would be equal to the

minimum of m and n. Since υ(nc, Y ) is a precondition of back update1, if atom a

is undefined in Y and a ∈ lit(C), then nc[a, C] is the number of occurrences of a in

r(C, Y ). We saw that, the value stored in array nc for an atom p after p is defined is

not changed. Therefore nc[p, C] contains the number of occurrences of p in C at the

time it was defined, i.e., if the stack S = S0 p S1, where S0 and S1 are stack of literals,

then nc[p, C] contains the number of occurrences of p in r(C, S0). Therefore for the

literal x, if a = Atoms(x) then the value of nc[a, C] is the number of occurrences of

a in r(C, S), and the value of nc[a, C ′] is the number of occurrences of a in r(C ′, S).

Therefore back update1 increases cp[C,C ′] by the minimum of nc[a, C] and nc[a, C ′].

The value cp[C,C ′], thus computed, will be equal to the number of complementary

pairs in mr(C,C ′, S) if there exists no rule r in C or C ′, such that, r is not falsified

by S, but falsified by Y . If such a rule exists, then cp[C,C ′] contains an intermediate

value which will be further updated in procedure back update2.

The values of array lb also change for each C ∈ CS and x ∈ Atoms(lit(C)).

Since x is undefined in S, if x is an atom then lb[C,C ′] increases by the number of oc-

currences of x in r(C, S). Otherwise, lb[C,C ′] increases by the number of occurrences
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of x in r(C ′, S). The procedure back update1 increases the lower bound accordingly.

The value of lb[C,C ′] will be an intermediate value if there exists a rule r ∈ C or

r ∈ C ′, such that, r is falsified by Y but not by S. This is taken care of in procedure

back update2.

Example 3.10 In example 3.8, we saw that the value of cp[C,C ′] = 9 and lb[C,C ′] =

7 for mr(C,C ′, S1). Let us suppose that top(S1) = not i is removed from stack and

we need to back update the values in the arrays using back update1. Since the value

of nc[i, C] = 1 and value of nc[i, C ′] = 1, cp[C,C ′] is increased by one and is equal to

10. lb[C,C ′] = 8 as ′′not i′′ was removed and nc[i, C ′] = 1.

3.2.5.2 The back update2 procedure

The back update2 procedure, illustrated in Figure 3.12, takes as input the

tables cp, nc, lb, a set of rules R, a literal x and the stack S. R contains all rules that

are falsified in S ∪ {x} but are active in S. The preconditions of back update2 are

the post conditions of back update1. This procedure performs the reverse operations

of update2.

To see that back update2 satisfies the corresponding postconditions, note that,

all literals undecided in a rule r with respect to Y = S ∪ {x} are also undefined in

S. If r ∈ R and r ∈ C, then rY = ∅ and rS 6= ∅; therefore, the literals undecided in r

does not belong to lit(r(C, Y )) but belong to lit(r(C, S)). These literals increase the
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procedure back update2(var : cp, nc, lb : tables, R : set of rules,

x : lit, S : stack of lits )

% precondition : • Let Y = S ∪ {x}, υ(nc, Y ).

% ∀C,C ′∈CS, if related(C,C ′), M = mr(C,C ′, Y ) and x∈Atoms(lit(C)) then

% • cp[C,C’] = # comp pairs in M + # comp pairs of x in mr(C,C ′, S).

% • lb[C,C’] = lower bound of M + α(x,C,C ′, S).

% • R is the set of rules inactive w.r.t. Y and active w.r.t. S.

% postcondition : • υ(cp, S), υ(nc, S), υ(lb, S)

for each r∈R do

if r∈C for some C∈CS then

for every atom a undecided w.r.t. Y s.t. a occurs in r do

for every occurrence of a in r do

nc[a, C] := nc[a, C] + 1

for each C ′∈CS such that related(C,C ′) do

if nc[a, C] ≤ nc[a, C ′] then cp[C,C ′] := cp[C,C ′] + 1

for each C ′∈CS such that related(C,C ′) do

lb[C,C ′] := lb[C,C ′] + Lr − 1

Figure 3.12: back update2 function
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value of cp[C,C ′] for any C ′, such that related(C,C ′). Since rS ∈ r(C, S), the lower

bound also increases by Lr − 1, where Lr is the lower bound of rS. Arrays cp and

lbare updated for each occurrence of a literal undecided in r.

Example 3.11 Consider again example 3.10, where the values of cp[C,C ′] = 10 and

lb[C,C ′] = 8. The rule falsified with respect to S1 is r2 from example 3.8. We have

r2 as :− 4{g, h, i, j, k, l} and r2 ∈ C. The atoms undecided in r2 with respect to S1

are {h, j, k}. Each of these atoms occur only once in r2. For each of these atoms,

we have nc[h,C] = 0, nc[j, C] = 0, nc[k, C] = 0 and they are increased by one and

become nc[h,C] = 1, nc[j, C] = 1 and nc[k, C] = 1. Since, nc[h,C ′] = 1, nc[j, C ′] = 1

and nc[k, C ′] = 1, we get, cp[C,C ′] eventually increased by 3 and cp[C,C ′] becomes

13. The lower bound lb[C,C ′] gets updated to 8+4−1 that is 11, where 4 is the lower

bound of r2. We see that the values of cp[C,C ′] and lb[C,C ′] are backupdated to the

values calculated in example 3.6. The conditions υ(cp, S0), υ(cp, S0) and υ(cp, S0) are

maintained.

3.2.5.3 The new backtrack function

The function new backtrack is illustrated in Figure 3.13. It takes as input

a program Π, a stack S, the tables cp, nc, lb, and a boolean variable found. The

following steps are executed until either S is empty or it finds a picked literal x in S.
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function new backtrack(var Π: Prog, var S: stack, var cp, nc, lb : tables,

var found : bool) : lit

% precondition : • Π0 = r(Π0, S0), υ(cp, S0), υ(nc, S0), υ(lb, S0)

% postcondition : • If S0 = S1 x S2, where x is a picked literal, and the top

% S2 contains no picked literals, then S = S1 and Π = r(Π, S), found is true

% and returns not x. Otherwise found is false.

% • The tables satisfy the conditions υ(cp, S), υ(nc, S), υ(lb, S).

VAR x : lit; R : set of rules;

repeat

x := pop(S);

Π := r(Πg, S, R); % Πg is the original program and is global.

back update1(cp, nc, lb, x, S);

back update2(cp, nc, lb, R, x, S);

until S = ∅ or x = picked literal

if S = ∅ and x 6= picked literal then found := false;

return not x;

end function

Figure 3.13: new backtrack function
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1. A literal x is popped from S.

2. The reduced form of Π with respect to S is found, and any rules which became

active because of the removal of x from S are stored in R.

3. back update1 updates the values of the arrays occurring due to change in S.

4. back update2 updates the values of the arrays occurring due to rules which

became active. The conditions υ(cp, S), υ(nc, S) and υ(lb, S) are restored.

If new backtrack finds a picked literal in S then it returns the negation of the literal.

Otherwise, found is set to false.

Proposition 3.18 If new backtrack sets found to false then there is no stable model

of Π compatible with B, where B is the input set of literals to new smodels.

3.2.6 Proof (sketch)

Proof of correctness of new smodels algorithm: First, we will show that post-

conditions of expand and backtrack of smodels are satisfied by new expand and

new backtrack of new smodels. The former follows from Propositions (3.7), (3.15),

(3.16), and (3.17). The latter follows from (3.18).

Since these are the only routines of new smodels different from the corre-

sponding routines of smodels, correctness of new smodels can now be established by
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the argument used by Niemela and Simons in their proof of correctness of smodels

[13].
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CHAPTER IV

EXPERIMENTAL RESULTS

To experimentally investigate the efficiency of the Extended Evaluation Rule,

we compared the performance of Surya, with a system called Surya−, obtained from

Surya by removing the implementation of the EE inference rule. The experiments

were run on a Sun Ultra 10, with 256 MB of memory.

Currently, there is no established set of problems, or “benchmarks,” for test-

ing logic programming systems. Therefore, for our experiments we decided to use

typical problems in the logic programming arena, including some which come as

part of the distribution of several systems, such as The Queens Problem. Since the

Extended Evaluation Rule was designed to be applied to programs containing cardi-

nality, and/or choice rules, the first set of 14 programs utilized in our experiments are

written using cardinality and choice rules (normally such programs are faster than

those which do not use such rules). The complete description of these problems and

their solutions is given in Appendix A. Table 4.1 shows the performance of Surya

and Surya− on computing the stable models for these programs.

Before discussing the results presented in Table 4.1, we need to recall the

intuition behind the “choice points” of the generic smodels algorithm, since this is

one of the parameters we use in our comparison. As explained in Section 3.1.4,

84



whenever the pick function selects, or picks a literal undefined on the stack S of

literals during the computation of a stable model, the number of choice points is

increased by one. The number of choice points may be used as a rough estimate

to help determine the size of the search space for the computation. The greater

the number of choice points, the greater the search space involved, and normally

the slower the computation. Choice points are not the only deterministic factor for

comparing the efficiency of these systems, but they are a significant factor. How to

effectively compare these systems is still an open question.

The first column of the table, gives the problem for which the systems are

evaluated. The next columns give the number of choice points, and total execution

time, in seconds, for the Surya and Surya− systems, respectively. The timing and

choice points are given for the first model computed if one exists. Otherwise, we

report the timing and choice points needed to establish the absence of the model.

The two pigeon programs, and the party program are the only ones with no stable

models.

The Surya system performed better on the first nine programs in Table 4.1.

Our analysis indicates that this behaviour is due to the addition of the Extended

Evaluation Rule. We see that on average, for the first nine problems Surya is 96%

faster than Surya−. The number of choice points used by Surya is significantly

smaller than the number of choice points used by Surya−, which implies a decrease
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in the search space for the computation of a stable model. Another interesting ob-

servation in these experiments, is that while there exists a huge discrepancy in the

number of choice points utilized by the systems, they compute the same stable model.

This means that Surya is able to infer more at each choice point, thereby removing

subtrees of the search space which do not derive a stable model. Since all the im-

plementations of Surya and Surya− are the same, except for the new inference rule,

we conclude that the search space decreases as a result of the Extended Evaluation

Rule. Therefore, EER is responsible for a substantial increase in the efficiency of the

computation of a stable model for these programs.

The remaining five problems on Table 4.1 exemplify the case when the Ex-

tended Evaluation Rule does not help to improve the efficiency of the computation.

First, we note that Surya and Surya− have the same number of choice points for these

five problems. Hence the search space is the same for both systems, indicating that

additional inferences could not be made by Surya with the EER. There are several

reasons why this is the case. One reason is that the four (original) inference rules were

enough to infer as much as possible in these cases, and no extra information could be

derived by considering several rules of the program simultaneously. Another reason

is that as of now, the EER has been implemented only for simple cardinality rules

and simple choice rules (as defined in sections 3.2.2), and although these programs

contain both choice and cardinality rules, these rules are not of this form. Hence the

86



EER is not applicable in these problems. Next, we see that for these five problems,

Surya is slightly slower than Surya−. This is caused by the overhead due to the

extra code for implementing the EER in Surya. We believe that this difference can

be substantially decreased with a better implementation. On average, for these five

problems, Surya is 2% slower than Surya−. Overall, when comparing the efficiency

gains against the losses, we conclude that the addition of the Extended Evaluation

Rule is strongly beneficial for the problems analyzed, and we believe that this is the

case for a large number of problems which can be represented using cardinality and

choice rules.

The next question which needs to be answered is whether or not a signif-

icant overhead is caused by the addition of the EER inference rule for programs

without cardinality or choice rules. To address this point, we ran another 14 prob-

lems on Surya and Surya− where the EER could not be applied. The descrip-

tion of these problems and their solutions can be found at the Smodels web site:

http://www.tcs.hut.fi/pub/smodels/tests/ by downloading files lp-csp-tests.tar.gz and

cp99.tar.gz. These programs consist only of simple rules from SL. Table 4.2 gives

the experimental results of Surya and Surya− for these programs.

On Table 4.2, one observes that Surya and Surya− utilized the exactly same

number of choice points for all programs when searching for a stable model. Hence, it

is clear that in these examples the EER does not negatively influence this parameter.
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The execution times shown in Table 4.2 are for the first model found. On average,

Surya is 3.6% slower than Surya− for these programs. This is due to the extra

code needed for the implementation of EER. As we mentioned before, we believe

that this overhead can be reduced further with a better implementation of the EER.

The experiments of Table 4.2 lead us to conclude that although there exists some

overhead caused by the introduction of the EER rule, its impact on the efficency of

the computation is insignificant and does not invalidate the positive effects that can

be achieved with such rule.

We are interested in showing one more point with our experiments. To make

sure that the improvement in efficiency we achieved with Surya, does not depend on

the details of our implementation, we ran the same examples from Table 4.1 on the

Smodels system. 1

For the problems given on Tables 4.1 and 4.3, Surya− is 56% slower than

Smodels. The reason is that Surya− does not contain all of the optimizations that

Smodels implements. For instance, the Smodels dependency graphs and source

pointers used for the computation of upper closure are not yet implemented in

Surya−. Another reason is that the heuristic functions used by the Pick functions of

Smodels and Surya− are not the same. Note that there is a difference in the number

of choice points between Surya− and Smodels for these programs, indicating the Pick

1The Smodels system is available for downloading at http://www.tcs.hut.fi/Software/smodels.
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functions select different literals. We also observe that for small instances of a pro-

gram Surya− performs as well as Smodels. However when the instances grow, there

is a large increase in the number of choice points and Surya− becomes significantly

slower when compared to Smodels. On the other hand, when comparing the Surya

and Smodels results present in Tables 4.1 and 4.3, we find that on average Surya is

84% faster than Smodels for these problems. These observations demonstrate that

the improvement seen in Surya, caused by EER, is not implementation specific. Fi-

nally, it is clear that by improving the implementation of Surya−, it is possible to

improve the Surya system further.
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Table 4.1: Experimental Results - Surya & Surya− Systems

Problems with Surya Surya−

card/choice rules Choice Pts Time sec Choice Pts Time sec

15-queens 72 2.80 5769 39.27

16-queens 532 17.07 89422 637.80

17-queens 236 10.59 71550 658.27

18-queens 1666 68.47 912129 8460.36

9-pigeons 0 0.00 120959 98.59

10-pigeons 0 0.02 1209599 1093.37

11-latin 88 16.46 1891 119.98

12-latin 278 74.40 2877 596.76

5/4-party 0 0.02 - >24hr

color2.lp & p100 31 2.08 31 1.96

color2.lp & p300 1020 869.41 1020 836.13

wire route n=10 11 2.97 11 3.03

Knights knaves 0 0.00 0 0.00

martian venetians 0 0.00 0 0.00
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Table 4.2: Experimental Results - Surya & Surya− Systems

Problems without Surya Surya−

card/choice rules Choice Pts Time sec Choice Pts Time sec

CAR.lp 6 0.01 6 0.01

carx2.lp 4 0.03 4 0.02

mixer.lp 4 0.00 4 0.01

monitor.lp 6 0.04 6 0.03

color.lp & p25 11 0.21 11 0.21

color.lp & p30 11 0.30 11 0.30

pigeon.lp p=7 h=6 715 1.75 715 1.68

pigeon.lp p=8 h=7 6785 20.00 6785 18.94

pigeon.lp p=9 h=8 72091 243.58 72091 233.65

13-queens 7 1.68 7 1.62

15-queens 22 5.63 22 5.48

18-queens 773 219.85 773 212.48

schur.lp n=35 b=5 28 6.15 28 5.94

schur.lp n=40 b=5 34 9.61 34 9.34
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Table 4.3: Experimental Results - Smodels System

Problems with Smodels

card/choice rules Choice Points Time seconds

15-queens 12947 18.07

16-queens 68831 102.93

17-queens 356277 578.31

18-queens 848300 1506.05

9-pigeons 101941 38.62

10-pigeons 987767 399.90

11-latin - >24hr

12-latin - >24hr

5/4-party 719681049 approx. 60hr

color2.lp & p100 38 0.54

color2.lp & p300 92 4.58

wire route n=10 15 0.33

Knights knaves 0 0.00

martian venetians 0 0.00
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CHAPTER V

CONCLUSIONS

While studying the New Year’s Party problem, we realized that the four

inference rules of the Smodels algorithm were not enough to ensure efficient com-

putation in cases where there existed implicit information distributed among several

rules of a program. The lack of an inference rule that would take into account such

information resulted in slower computation of models of the program. It became

clear that additional inference rule(s) were needed to tackle such cases. Therefore,

we planned to add a new inference rule to the smodels algorithm called the Extended

Evaluation Rule. To achieve this objective, we developed:

• a new algorithm, called new smodels algorithm, incorporating EER.

The algorithm does not merge rules or extend the program with these rules

as mentioned in the definition of EER. Instead, the algorithm efficiently uses

three bookkeeping tables (as described in section 3.2.3.1), and keeps track of

the information needed from rules of the program in these tables. As explained

before, only the number of complementary pairs and the lower bound of each

merged rule is maintained and EER is applied by comparing them. This greatly

increases the efficiency of the algorithm with very low overhead.

• System Surya was implemented based on the new smodels algorithm.
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The implementation is written in C. The program uses the lparse frontend of

Smodels system. It also uses another grounder which collects the constraint

sets of the program Π and also finds the related constraint sets.

• The efficiency of the system was evaluated by comparing it with a system called

Surya− which was obtained by removing the implementation of EER in Surya.

We found that for programs where EER helped, the increase in efficiency of

Surya was considerable (96%). For other programs, Surya had a low overhead

when compared to Surya− (3%). We also found that Surya− was 56% slower

than Smodels for the problems tackled in experiments.

• The sketch of the proof of correctness for the algorithm is presented in section

3.2.6.

Extra space needed for the implementation of EER is only to store the three

bookkeeping tables and CS, which consists of sets of sets of cardinality rules of the

program. For CS, it suffices to maintain only the information regarding which rule

belongs to which constraint set in CS and not the rule itself. The bookkeeping tables

cp & lb uses a space of size N ×N where N is the number of constraint sets in CS of

the program. The number of constraint sets in CS of the program is approximately

equal to twice the number of simple cardinality rules 3.8 and simple choice rules 3.4

of the program input to lparse. This number is very small, even for huge programs,

94



and depends on the problem and not its instance. The table nc uses A × N space,

where A is the number of atoms in CS and N is the number of constraint sets in CS.

A depends on the instance of a program.

Based on the experiments ran, we conclude that the Extended Evaluation Rule

in some cases is very helpful in decreasing the search space, thereby increasing the

efficiency in the computation of stable models for programs containing simple choice

and/or cardinality rules. On the other hand, it does not cause much overhead for

programs not containing simple choice or cardinality rules.

Smodels is currently the most efficient implementation for computing stable

models of logic programs. Although Surya’s implementation is still not comparable

to Smodels’ for a general class of programs, we believe that the efficiency of Smodels

would considerably increase for programs containing choice and/or cardinality rules,

if the EER inference rule would be incorporated to it.

5.1 Future Work

Presently, Surya does not have all the optimization techniques implemented in

the Smodels system and it also does not allow weight rules. Immediate improvements

I plan to work on for the Surya system include the implementation of the optimiza-

tions used by Smodels and the implementation of the weight rules available for the

Smodels Language. The Extended Evaluation Rule can be naturally generalized for
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use with weight rules. Therefore, the implementation of the EER inference rule on

weight rules is a natural step to be taken.

The work on this thesis shows that there exists extra information implicitly

distributed among rules of a logic program which is not always explicitly stated by

single rules. This realization led to the design and implementation of a new algorithm

and system for computation of stable models of logic programs using a original new

inference rule called Extended Evaluation Rule. We are interested in pursuing this

work further and investigate other programs to check for other types of hidden rela-

tionships among rules that could lead to new developments and increase of efficiency

of the computation of such programs.
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APPENDIX

We give all the programs used in Tables 4.1 and 4.3 in this appendix.

N-queens problem

N-Queens is a famous problem, where given N queens, the problem consists in finding

a placing for each queen in a N ×N chess board such that no two queens can attack

each other. A natural solution for such a problem in Smodels language is written as

follows:

% Number of columns/rows in a chess board is equal to n.

c(1..n).

% Choose n columns for the n queens (the rows are numbered same as queens).

n { at(Q,C) : c(Q) : c(C) } n.

% No two queens can be in the same row.

:− 2 { at(Q,C) : c(C) }, c(Q).

% No two queens can be in the same column.

:− 2 { at(Q,C) : c(Q) }, c(C).

% No two queens can be in the same diagonal.

:− at(Q1, C1), at(Q2, C2), c(Q1), c(C1), c(Q2), c(C2),

neq(Q1, Q2), abs(Q1 − Q2) == abs(C1 − C2).
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N-pigeons problem

N-pigeons is also a famous problem where n + 1 pigeons need to be alloted to n holes

such that no two pigeons can be placed in the same hole. It is easy to see that such

a problem does not have any solutions. The following program was used to run on

Surya, Surya− and Smodels systems. The program was written by Ilkka Niemela

and it is publicly available at www.tcs.hut.fi/ ini/esslli99/ lecture5.ps

% Number of pigeons is equal to n+1.

pigeon(1..n + 1).

% Number of holes is equal to N.

hole(1..n).

% Place one pigeon in one hole.

1 { in(P,H) : hole(H) } 1 :− pigeon(P ).

% No two pigeons can have the same hole.

:− 2 { in(P,H) : pigeon(P ) }, hole(H).

Latin Squares problem

Given n numbers, the problem consists in filling a n×n matrix with the numbers, such

that a number should not appear again on the same row or column. The following

program is written in Smodels language.

% There are n numbers.
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l(1..n).

% For each number X find n positions in the matrix

n { at(X,R,C) : l(R) : l(C) } n :− l(X).

% Two numbers cannot occupy the same row and column.

:− 2 { at(X,R,C) : l(X) }, l(R), l(C).

% A number cannot be in the same row twice.

:− 2 { at(X,R,C) : l(R) }, l(X), l(C).

% A number cannot be in the same column twice.

:− 2 { at(X,R,C) : l(C) }, l(X), l(R).

New Year’s Party problem

New Year’s Party problem was posed by Dr. Vladimir Lifschitz to the Texas Action

Group [19] members to solve. The problem is as follows:

You are organizing a New Year’s Eve party. There will be N tables in the room, with

M chairs around each table. You need to select a table for each of the guests, so that

two conditions are satisfied : (1) Some guests like each other and are to be seated in

the same table. (2) Some guests dislike each other and are to be seated in different

tables. The number of guests are M × N .

Here is a program representing the problem taken from TAG technical discus-

sions [22].
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% inputs used in Tables 4.1 and 4.3

const chairs = 4.

const tables = 5.

const guests = chairs * tables.

likes(1,2). dislikes(2,1).

% The number of tables and guests.

table(1..tables).

guest(1..guests).

% If X likes Y then Y likes X. Similarly for dislikes.

likes0(X,Y ) :− likes(X,Y ).

likes0(X,Y ) :− likes(Y,X).

dislikes0(X,Y ) :− dislikes(X,Y ).

dislikes0(X,Y ) :− dislikes(Y,X).

% guests who like each other must be at the same table

:− at(G1, T ), not at(G2, T ), likes0(G1, G2), table(T ).

% guests who dislike each other must not be at the same table

:− at(G1, T ), at(G2, T ), dislikes0(G1, G2), table(T ).

% each table must have exactly as many guests as chairs

chairs { at(G, T ) : guest(G) } chairs :− table(T ).
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% no guest can be at more than one table

:− 2 { at(G, T ) : table(T ) } , guest(G).

Coloring problem

The following coloring problem was taken from lparse manual [23]. Given a graph as

a set of vertices and arcs find a way to color the vertices with n colors such that two

adjacent vertex are not colored with the same color.

% number of colors

const n=4.

% There are n colors.

color(1..n).

% Each vertex should have exactly one color:

1 { v color(N,C) : color(C) } 1 :− vertex(N).

% Two adjacent vertices need to have different colors:

:− v color(X,C), v color(Y,C), arc(X,Y ), color(C).

The input graph for this problem is p100. It is available at http://tcs.hut.fi/pub/

smodels/tests/lp-csp-tests.tar.gz.

Wire Routing problem

The wire routing program involves in connecting wires to terminal points on a chip.
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The wires thus routed should not overlap with each other and with regions occupied

by other components placed on the chip. The following is the program found in [5].

% input corresponds to figure 4 in [5]

const n=10.

pt(1..n).

% blocked regions where other components are placed:

block(4,6). block(4,7). block(4,8). block(4,9).

block(5,6). block(5,7). block(5,8). block(5,9).

block(6,6). block(6,7). block(6,8). block(6,9).

block(8,7). block(8,8). block(8,9). block(9,7).

block(9,8). block(9,9). block(7,3). block(7,4).

block(8,3). block(8,4). block(9,3). block(9,4).

% Three wires need to be routed:

wire(w1). wire(w2). wire(w3).

% Terminal points which the wires need to connect:

terminal(3,2,w1). terminal(9,5,w1). terminal(8,6,w2).

terminal(2,5,w2). terminal(7,8,w3). terminal(2,8,w3).

% More than one wire cannot pass through a point.

:− 2 { path(I, J,W ) : wire(W ) }, pt(I; J).

% To prevent more than two adjacent points of any point in a path from being in-
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cluded.

1 { path(M,N,W ) : pt(M) : pt(N) : eq((abs(I − M) + abs(J − N)), 1) } 1 :−

endpoint(I, J,W ), wire(W ), pt(I; J).

% Exactly one adjacent point for each terminal point is included.

2 { path(M,N,W ) : pt(M) : pt(N) : eq((abs(I − M) + abs(J − N)), 1) } 2 :−

path(I, J,W ), not endpoint(I, J,W ), wire(W ), pt(I; J).

% Wires cannot go over blocked regions.

:− path(I, J,W ), block(I, J), pt(I; J), wire(W ).

% Terminal points are to be included in the path.

endpoint(I, J,W ) :− terminal(I, J,W ).

path(I, J,W ) :− terminal(I, J,W ).

% Prohibiting one block cycle.

:− path(I, J,W ), path(I + 1, J,W ), path(I, J + 1,W ),

path(I + 1, J + 1,W ), pt(I), pt(J), wire(W ).

Knights & Knaves

The description of the problem is as follows: The island of Knights and Knaves has

two types of inhabitants: knights, who always tell the truth, and knaves, who always

lie.

One day, three inhabitants (A, B and C) of the island met a foreign tourist
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and gave the following information about themselves: (1) A said that B and C are

both knights. (2) B said that A is a knave and C is a knight. what types are A, B

and C?

Here is the representation of the problem taken from [17].

% Each person is either a knight or a knave.

1 { knight(P ), knave(P ) } 1 :− person(P ).

% There are three persons in the puzzle:

person(a; b; c). % Rest of this program models the two hints.

% Hint 1:

% If A tells the truth, B and C are both Knights.

2 { knight(b), knight(c) } 2 :− knight(a).

% If A lies, both cannot be knights.

:− knave(a), knight(b), knight(c).

% Hint 2:

% If B tells the truth, A is a knave and B is a knight.

2 { knave(a), knight(c) } 2 :− knight(b).

% If B lies, one of the claims has to be false.

:− knave(b), knave(a), knight(c).

Martian - Venusian Club
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On Ganymede - a satellite of jupiter - there is a club known as the Martian - Venu-

sian Club. All members are either from Mars or from Venus, although visitors are

sometimes allowed. An earthling is unable to distinguish Martians from Venetians

by their appearance. Also earthlings cannot distinguish either Martian or Venusian

males from females, since they dress alike. Logicians, however, have an advantage,

since the Venusian women always tell the truth and the Venusian men always lie. The

martians are the opposite; the Martian men tell the truth and the Martian women

always lie. One day a visitor met two club members, Ork and Bog, who made the

following statements:

1. Ork: Bog is from Venus.

2. Bog: Ork is from Mars.

3. Ork: Bog is male.

4. Bog: Ork is female.

where are Ork and Bog from, and are they male or female?

The following is the program representing the problem from [17].

% All persons are from Mars or Venus

1 { martian(P ), venetian(P ) } 1 :− person(P ).

% All persons are male or female

1 { female(P ), male(P ) } 1 :− person(P ).

% all persons either lie or tell teh truth depending
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% on their origin and sex.

lies(P ) :− person(P ), martian(P ), female(P ).

lies(P ) :− person(P ), venetian(P ), male(P ).

truthful(P ) :− person(P ), martian(P ), male(P ).

truthful(P ) :− person(P ), venetian(P ), female(P ).

% a person may not tell the truth and lie at the same time.

:− person(P ), lies(P ), truthful(P ).

% persons:

person(ork; bog).

% Hints

% 1.

venetian(bog) :− truthful(ork).

:− lies(ork), venetian(bog).

% 2.

martian(ork) :− truthful(bog).

:− lies(bog), martian(ork).

% 3.

male(bog) :− truthful(ork).

:− lies(ork), male(bog).

% 4.
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female(ork) :− truthful(bog).

:− lies(bog), female(ork).
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