
Towards an Architecture for Knowledge Representation
and Reasoning in Robotics

Shiqi Zhang1, Mohan Sridharan2, Michael Gelfond3, and Jeremy Wyatt4

1 Department of Computer Science, The University of Texas at Austin, USA
2 Department of Electrical and Computer Engineering, The University of Auckland, NZ

3 Department of Computer Science, Texas Tech University, USA
4 School of Computer Science, University of Birmingham, UK
szhang@cs.utexas.edu; m.sridharan@auckland.ac.nz;

michael.gelfond@ttu.edu; jlw@cs.bham.ac.uk

Abstract. This paper describes an architecture that combines the complemen-
tary strengths of probabilistic graphical models and declarative programming to
enable robots to represent and reason with qualitative and quantitative descrip-
tions of uncertainty and domain knowledge. An action language is used for the
architecture’s low-level (LL) and high-level (HL) system descriptions, and the HL
definition of recorded history is expanded to allow prioritized defaults. For any
given objective, tentative plans created in the HL using commonsense reasoning
are implemented in the LL using probabilistic algorithms, and the correspond-
ing observations are added to the HL history. Tight coupling between the levels
helps automate the selection of relevant variables and the generation of policies
in the LL for each HL action, and supports reasoning with violation of defaults,
noisy observations and unreliable actions in complex domains. The architecture
is evaluated in simulation and on robots moving objects in indoor domains.

1 Introduction
Robots deployed to collaborate with humans in homes, offices, and other domains,
have to represent knowledge and reason at both the sensorimotor level and the cog-
nitive/social level. This objective maps to the fundamental challenge of representing,
revising, and reasoning with qualitative and quantitative descriptions of uncertainty and
incomplete domain knowledge obtained from different sources. As a significant step
towards addressing this challenge, our architecture combines the knowledge represen-
tation and commonsense reasoning capabilities of declarative programming with the
uncertainty modeling capabilities of probabilistic graphical models. The architecture
has two tightly coupled levels with the following key features:

1. An action language is used for the system descriptions and the definition of
recorded history is expanded in the high-level (HL) to allow prioritized defaults.
2. For any given objective, tentative plans are created in the HL using common-
sense reasoning, and implemented in the low-level (LL) using probabilistic algo-
rithms, with the corresponding observations adding statements to the HL history.
3. Tight coupling between the system descriptions enables automatic selection of
relevant variables and the creation of action policies in the LL for any HL action.

In this paper, the HL and LL domain representations are translated into an Answer Set
Prolog (ASP) program and a partially observable Markov decision process (POMDP)
respectively. The novel contributions, e.g., histories with defaults and the tight coupling
between the levels, support reasoning with violation of defaults, noisy observations and
unreliable actions in large, complex domains. The architecture is evaluated in simula-
tion and on robots moving objects to specific places in an indoor domain.

2 Related Work
Probabilistic graphical models such as POMDPs have been used to plan sensing, nav-
igation and interaction for robots [13]. However, these formulations (by themselves)
make it difficult to perform commonsense reasoning. Research in classical planning
has provided many algorithms for knowledge representation and logical reasoning, but
these algorithms require prior knowledge about the domain, tasks and the set of ac-
tions. Many such algorithms also do not support merging of new, unreliable informa-
tion with the current beliefs in a knowledge base. ASP, a non-monotonic logic pro-
gramming paradigm, is well-suited for representing and reasoning with commonsense
knowledge [2]. It has been used to enable applications such as simulated robot house-
keepers and natural language human-robot interaction [4, 5]. However, ASP does not
support probabilistic analysis, whereas a lot of information available to robots is repre-
sented probabilistically to quantitatively model the uncertainty in sensing and acting.

Researchers have designed architectures and developed algorithms that combine
deterministic and probabilistic algorithms for task and motion planning on robots [8,
9]. Examples of principled algorithms that combine logical and probabilistic reason-
ing include probabilistic first-order logic [7], Markov logic network [12], Bayesian
logic [10], and a probabilistic extension to ASP [3]. However, algorithms based on
first-order logic for probabilistically modeling uncertainty do not provide the desired
expressiveness for commonsense reasoning, e.g., it is not always possible to express
uncertainty and degrees of belief quantitatively. Other algorithms based on logic pro-
gramming that support probabilistic reasoning do not support one or more of the desired
capabilities such as: reasoning as in causal Bayesian networks; incremental addition
of (probabilistic) information; and reasoning with large probabilistic components [3].
As a step towards these capabilities, our novel architecture exploits the complemen-
tary strengths of declarative programming and probabilistic graphical models, enabling
robots to plan actions in larger domains than was possible before.

3 KRR Architecture
The syntax, semantics and representation of the transition diagrams of our architecture’s
HL and LL domain representations are described in an action language AL [6]. AL has
a sorted signature containing three sorts: statics, f luents and actions. Statics are do-
main properties whose truth values cannot be changed by actions, fluents are properties
whose values are changed by actions, and actions are elementary actions that can be
executed in parallel. AL allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is an inertial fluent literal, and p0, . . . , pm are
domain literals (any domain property or its negation). A collection of statements of AL
forms a system description. As an illustrative example used throughout this paper, we
consider a robot that moves objects of the sorts: textbook, printer and kitchenware, in
a domain with four places: o f f ice, main library, aux library, and kitchen.

3.1 HL domain representation
The HL domain representation consists of a system description DH and histories with
defaults H . DH consists of a sorted signature (ΣH) and axioms used to describe the
HL transition diagram τH . ΣH defines the names of objects, functions, and predicates
available for use in the HL. The sorts in our example are: place, thing, robot, and
ob ject; ob ject and robot are subsorts of thing. The sort ob ject has subsorts: textbook,
printer and kitchenware. The fluents of the domain are defined in terms of their ar-
guments: loc(thing, place) and in hand(robot,ob ject). The first predicate describes a
thing’s location, and the second states that a robot is holding an object. These pred-
icates are inertial fluents subject to the laws of inertia. The domain has three actions:
move(robot, place), grasp(robot,ob ject), and putdown(robot,ob ject). The domain dy-
namics are defined using axioms that consist of causal laws such as:

move(Robot,Pl) causes loc(Robot,Pl) (1)
grasp(Robot,Ob) causes in hand(Robot,Ob)

state constraints:
loc(Ob,Pl) if loc(Robot,Pl), in hand(Robot,Ob) (2)
¬loc(T h,Pl1) if loc(T h,Pl2), Pl1 6= Pl2

and executability conditions such as:

impossible move(Robot,Pl) if loc(Robot,Pl) (3)
impossible grasp(Robot,Ob) if loc(Robot,Pl1), loc(Ob,Pl2),Pl1 6= Pl2

Histories with defaults A dynamic domain’s recorded history is usually a collection of
records of the form obs(f luent,boolean,step), i.e., a specific fluent observed to be true
or false at a given step, and hpd(action,step), i.e., a specific action happened at a given
step; we abbreviate obs(f , true,0) and obs(f , f alse,0) as init(f , true) and init(f , f alse)
respectively. We expand on this view by allowing histories to contain (prioritized) de-
faults describing the values of fluents in their initial states. We provide some illustrative
examples below; see [6] for formal semantics of defaults.

Example 1 [Example of defaults]
Consider the following statements about the locations of textbooks in the initial state in
our illustrative example. Textbooks are typically in the main library. If a textbook is not
there, it is in the auxiliary library. If a textbook is checked out, it can be found in the
office. These defaults can be represented as:

de f ault(d1(X)) de f ault(d2(X))
head(d1(X), loc(X ,main library)) head(d2(X), loc(X ,aux library))
body(d1(X), textbook(X)) body(d2(X), textbook(X))

body(d2(X),¬loc(X ,main library))

(4)

de f ault(d3(X))
head(d3(X), loc(X ,o f f ice))
body(d3(X), textbook(X))
body(d3(X),¬loc(X ,main library)), body(d3(X),¬loc(X ,aux library))

(5)

where the literal in the “head” is true if all literals in the “body” are true. A history H1
with the above statements entails: holds(loc(T b1,main library),0) for textbook T b1.
History H2 that adds observation: init(loc(T b1,main library), f alse) to H1 renders
default d1 inapplicable; it entails: holds(loc(T b1,aux library),0) based on d2. A his-
tory H3 that adds observation: init(loc(T b1,aux library), f alse) to H2 should entail:
holds(loc(T b1,o f f ice),0). History H4 that adds: obs(loc(T b1,main library), f alse,1)
to H1 defeats default d1 because if this default’s conclusion is true in the initial state,
it is also true at step 1 (by inertia), which contradicts our observation. Default d2 will
conclude that this book is initially in the aux library; the inertia axiom will propagate
this information to entail: holds(loc(T b1,aux library),1).

The following terminology is used to formally define the entailment relation with
respect to a fixed DH . A set S of literals is closed under a default d if S contains the head
of d whenever it contains all literals from the body of d and does not contain the literal
contrary to d’s head. S is closed under a constraint of DH if S contains the constraint’s
head whenever it contains all literals from the constraint’s body. A set U of literals is
the closure of S if S ⊆U , U is closed under constraints of DH and defaults of H , and
no proper subset of U satisfies these properties.
Definition 1. [Compatible initial states]
A state σ of τH is compatible with description I of the initial state of history H if:

1. σ satisfies all observations of I ,
2. σ contains the closure of the union of statics of DH and the set { f : init(f , true)∈

I }∪{¬ f : init(f , f alse) ∈I }.
Let Ik describe the initial state of history Hk. In Example 1 above, states compatible
with I1, I2, I3 must contain {loc(T b1,main library)}, {loc(T b1,aux library)}, and
{loc(T b1,o f f ice)} respectively. Since I1 =I4, they have the same compatible states.

Definition 2. [Models]
A path P of τH is a model of history H with description I of its initial state if there is
a collection E of init statements such that:
1. If init(f , true)∈ E then ¬ f is the head of a default of I . Similarly, for init(f , f alse).
2. The initial state of P is compatible with the description: IE = I ∪E.
3. Path P satisfies all observations in H .
4. There is no collection E0 of init statements which has less elements than E and

satisfies the conditions above.
We refer to E as an explanation of H . Models of H1, H2, and H3 are paths consisting
of initial states compatible with I1, I2, and I3; the corresponding explanations are
empty. For H4, the predicted and observed locations of T b1 are different. Adding E =
{init(loc(T b1,main library), f alse)} to I4 resolves this problem.

Definition 3. [Entailment and consistency]
• Let H n be a history of length n, f be a fluent, and i ∈ (0,n) be a step of H n. H n

entails a statement Q = holds(f , i) (¬holds(f , i)) if for every model P of H n, fluent
literal f (¬ f) belongs to the ith state of P. The entailment is denoted by H n |= Q.

• A history which has a model is said to be consistent.
It can be shown that histories from Example 1 are consistent and that our definition of
entailment captures the corresponding intuition.

Reasoning with HL domain representation The HL domain representation is trans-
lated into a program Π(DH ,H) in CR-Prolog that incorporates consistency restor-
ing rules in ASP [1, 6]. ASP is based on stable model semantics and non-monotonic
logics; it can represent recursive definitions, defaults, causal relations, and language
constructs that are difficult to express in classical logic formalisms [2]. The ground lit-
erals in an answer set obtained by solving Π represent beliefs of an agent associated
with Π ; statements that hold in all such answer sets are program consequences. Algo-
rithms for computing the entailment relation of AL, and for planning and diagnostics,
reduce these tasks to computing answer sets of CR-Prolog programs. Π consists of
causal laws of DH , inertia axioms, closed world assumption for defined fluents, reality
checks, records of observations, actions and defaults from H , and special axioms for
init: holds(F,0)← init(F, true) and ¬holds(F,0)← init(F, f alse). Every default of I
is turned into an ASP rule and a consistency-restoring (CR) rule:

holds(p(X),0)← c(X),holds(b(X),0), not ¬holds(p(X),0) % ASP rule (6)

¬holds(p(X),0) +← c(X),holds(b(X),0) % CR rule

The CR rule states that to restore the program’s consistency, one may assume that the
default’s conclusion is false. See [6] for more details about CR-rules and CR-Prolog.

Proposition 1. [Models and Answer Sets]
A path P = 〈σ0,a0,σ1, . . . ,σn−1,an〉 of τH is a model of history H n iff there is an
answer set S of a program Π(DH ,H) such that:

1. A fluent f ∈ σi iff holds(f , i) ∈ S,
2. A fluent literal ¬ f ∈ σi iff ¬holds(f , i) ∈ S,
3. An action e ∈ ai iff occurs(e, i) ∈ S.

The proposition reduces: (a) computation of models of H to computing answer sets of
a CR-Prolog program; and (b) a planning task to computing answer sets of a program
obtained from Π(DH ,H) by adding the definition of a goal, a constraint stating that
the goal must be achieved, and a rule generating possible future actions.

3.2 LL domain representation
The LL system description DL has a sorted signature ΣL and axioms that describe a tran-
sition diagram τL. ΣL includes sorts from ΣH and sorts room and cell, which are sub-
sorts of place and whose elements satisfy static relation part o f (cell,room). A static
neighbor(cell,cell) describes the relation between cells. Fluents of ΣL include those of
ΣH , a new inertial fluent: searched(cell,ob ject)—a cell was searched for an object—
and two defined fluents: f ound(ob ject, place) and continue search(room,ob ject). Ac-
tions of ΣL are viewed as HL actions represented at a higher resolution. The causal law:

move(Robot,Y) causes {loc(Robot,Z) : neighbor(Z,Y)} (7)

where Y,Z are cells, may (for instance) be used to state that moving to a cell in the LL
can cause the robot to be in one of the neighboring cells. The LL includes a new action

search(cell,ob ject) that enables robots to search for objects in cells; the corresponding
causal laws and constraints are:

search(C,Ob) causes searched(C,Ob) (8)
f ound(Ob,C) if searched(C,Ob), loc(Ob,C)

f ound(Ob,R) if part o f (C,R), f ound(Ob,C)

continue search(R,Ob) if ¬ f ound(Ob,R), part o f (C,R), ¬searched(C,Ob)

The LL also has a defined fluent f ailure(ob ject,room) that holds iff the object under
consideration is not found in the room that the robot is searching:

f ailure(Ob,R) if loc(Robot,R),¬continue search(R,Ob),¬ f ound(Ob,R) (9)

In this action theory that describes τL, states are viewed as extensions of states of τH by
physically possible fluents and statics defined in the language of the LL. Moreover, for
every HL state transition 〈σ ,a,σ ′〉 and every LL state s compatible with σ , there is a
path in the LL from s to some state compatible with σ ′.

Unlike the HL, action effects and observations in the LL are only known with some
degree of probability. The function T : S×A× S′ → [0,1] defines the state transition
probabilities in the LL. Similarly, if Z is the subset of fluents that are observable in
the LL, the observation function O : S×Z→ [0,1] defines the probability of observing
specific elements of Z in specific states. Functions T and O are computed using prior
knowledge, or by analyzing the effects of specific actions in specific states (Section 4.1).

Since states are partially observable in the LL, reasoning uses belief states, prob-
ability distributions over the set of states. Functions T and O describe a probabilistic
transition diagram over belief states. The initial belief state B0 is revised iteratively
using Bayesian updates: Bt+1(st+1) ∝ O(st+1,ot+1)∑s T (s,at+1,st+1) ·Bt(s). The LL
system description also includes a reward specification R : S×A×S′→ℜ that encodes
the relative utility of specific actions in specific states. Planning in the LL involves com-
puting a policy that maximizes the cumulative reward over a planning horizon to map
belief states to actions: π : Bt 7→ at+1. We use a point-based approximate algorithm to
compute this policy [11]. Plan execution uses the policy to repeatedly choose an action
in the current belief state, and updates the belief state after executing that action and/or
receiving an observation. We call this algorithm “POMDP-1”.

Unlike the HL, the LL history only stores observations and actions over one time
step. In this paper, the LL domain representation is translated automatically into POMDP
models, i.e., data structures for DL’s components such that existing solvers can be used
to obtain policies. One key consequence of the tight coupling between the LL and the
HL is that the relevant LL variables for any HL action are identified automatically,
significantly improving the efficiency of computing policies.

3.3 Control loop
Algorithm 1 describes the architecture’s control loop. First, the LL observations ob-
tained by the robot in the current location add statements to the HL history, and the HL
initial state is communicated to the LL (line 1). The assigned task determines the HL
goal state (line 2) and planning in the HL provides action sequence(s) with determin-
istic effects (line 3). If there are multiple HL plans, e.g., tentative plans generated for

Algorithm 1: Control loop of the architecture
Input: The HL and LL domain representations, and the specific task for robot to perform.

LL observations reported to HL history; HL initial state (sH
init) communicated to LL.1

Assign goal state sH
goal based on task.2

Generate HL plan(s).3
if multiple HL plans exist then4

Send plans to the LL, select plan with lowest (expected) action cost and communicate5
to the HL.

end6
if HL plan exists then7

for aH
i ∈ HL plan: i ∈ [1,n] do8

Pass aH
i and relevant fluents to LL.9

Determine initial belief state over the relevant LL variables.10
Generate LL action policy.11

while aH
i not completed and aH

i achievable do12
Execute an action based on LL action policy.13
Make an observation and update belief state.14

end15
LL observations and action outcomes add statements to HL history.16
if results unexpected then Perform diagnostics in HL.17
if HL plan invalid then Replan in the HL (line 3).18

end19

end20

the different possible locations of a desired object, these plans are communicated to the
LL; the plan with the least expected execution time is selected and communicated to the
HL (lines 4-6). If an HL plan exists, actions are communicated one at a time to the LL
along with the relevant fluents (line 9). For an HL action (aH

i), the relevant LL variables
are identified and the initial belief is set (line 10). An LL POMDP policy is computed
(line 11) and used to execute actions and update the belief state until aH

i is achieved or
inferred to be unachievable (lines 12-15). The outcome of executing the LL policy, and
the observations, add to the HL history (line 16). If the results are unexpected, diagno-
sis is performed in the HL (line 17); we assume that the robot can identify unexpected
outcomes. If the HL plan is invalid, a new plan is generated (line 18); else, the next
action in the HL plan is executed.

4 Experimental setup and results
This section describes the experimental setup and results of evaluating the architecture.

4.1 Experimental setup
The architecture was evaluated in simulation and on physical robots. The simulator
uses models that represent objects using probabilistic functions of features extracted
from images, and models that reflect the robot’s motion. The robot also acquired data
(e.g., computational time of different algorithms) in an initial training phase to define
the probabilistic components of the LL domain representation [14].

10
0

10
1

10
2

10
3

20

40

60

80

100

Number of cells

S
u
c
c
e
ss

 (
%

)

 PA

 POMDP−1

(a) Success rate.

10 20 30 40 50 60 70 80 90
0

50

100

150

Number of rooms

A
v
er

ag
e

n
o
.
o
f

ac
ti

o
n
s

 PA*

 PA

(b) Default knowledge.

Fig. 1. (a) With a limit on the time to compute policies, PA significantly increases accuracy in
comparison with POMDP-1 as the number of cells increases; (b) Principled representation of
defaults significantly reduces the number of actions (and thus time) for achieving assigned goal.

In each trial, the goal was to move specific objects to specific places; the robot’s
location, target object, and locations of objects were chosen randomly. An action se-
quence extracted from an answer set of the ASP program provides an HL plan, e.g., the
plan to move textbook T b1 from the main library to the office could be: move(Robot,
main library), grasp(Robot,T b1), move(Robot,o f f ice), putdown(Robot,T b1). An ob-
ject’s location in the LL is known with certainty if the belief (in a cell) exceeds a
threshold (0.85). Our architecture (with the control loop in Algorithm 1), henceforth re-
ferred to as “PA”, was compared with: (1) POMDP-1; and (2) POMDP-2, which revises
POMDP-1 by assigning high probability values to defaults to bias the initial belief. We
evaluated two hypotheses: (H1) PA achieves goals more reliably and efficiently than
POMDP-1; (H2) our representation of defaults improves reliability and efficiency in
comparison with not using defaults or assigning high probability values to defaults.

4.2 Experimental Results
To evaluate H1, we first compared PA with POMDP-1 in trials in which the robot’s
initial position is known but the position of the object to be moved is unknown. The
solver used in POMDP-1 is given a fixed amount of time to compute action policies.
Figure 1(a) summarizes the ability to successfully achieve the assigned goal, as a func-
tion of the number of cells in the domain. Each data point in Figure 1(a) is the average
of 1000 trials, and each room is set to have four cells (for ease of interpretation). PA sig-
nificantly improves the robot’s ability to achieve the assigned goal in comparison with
POMDP-1. As the number of cells (i.e., domain size) increases, it becomes computa-
tionally difficult to generate good POMDP action policies which, in conjunction with
incorrect observations (e.g., false positives) significantly impacts the ability to complete
the trials. PA focuses the robot’s attention on relevant regions (e.g., specific rooms and
cells). As the domain size increases, the generation of a large number of plans of similar
cost may (with incorrect observations) affect the ability to achieve desired goals—the
impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a plan as the domain size
(i.e., number of rooms and objects) increases. We conducted three sets of experiments
in which the robot reasons with: (1) all available knowledge of objects and rooms; (2)
only knowledge relevant to the assigned goal—e.g., if the robot knows an object’s de-
fault location, it need not reason about other objects and rooms to locate the object; and
(3) relevant knowledge and knowledge of an additional 20% of randomly selected ob-
jects and rooms. Figure 2 shows that PA generates appropriate plans for domains with

0 50 100
0

2

4

6

8

10

P
la

n
n
in

g
 t

im
e

Rooms: 10

0 50 100
0

5

10

15

20

Number of objects

Rooms: 20

0 50 100
0

10

20

30

40

50

60
Rooms: 40

0 50 100
0

50

100

150

200

250

300
Rooms: 80

 All knowledge

 20% knowledge

 Relevant knowledge

Fig. 2. Planning time as a function of the number of rooms and the number of objects in the
domain—PA scales to larger number of rooms and objects.

a large number of rooms and objects. Using only the knowledge relevant to the goal
significantly reduces the planning time; this knowledge can be automatically selected
using the relations in the HL system description. Furthermore, it soon becomes compu-
tationally intractable to generate a plan with POMDP-1 for domains with many objects
and rooms; these results are not shown in Figure 2.

To evaluate H2, we first compared PA with PA∗, a version that does not include any
default knowledge. Figure 1(b) summarizes the average number of actions executed per
trial as a function of the number of rooms—each data point is the average of 10000
trials. We observe that the principled use of default knowledge significantly reduces the
number of actions (and thus time) required to achieve the assigned goal. Next PA was
compared with POMDP-2, which assigns high probability values to default information
and revises the initial belief. The results with POMDP-2 can vary depending on: (a) the
numerical value chosen; and (b) whether the ground truth matches the default infor-
mation. For instance, if a large probability is assigned to the default knowledge that
books are typically in the library, but the book the robot has to move is an exception,
POMDP-2 takes a large amount of time to recover from the initial belief. PA, on the
other hand, can revise initial defaults and encode exceptions to defaults.

Finally, PA was compared with POMDP-1 on a wheeled robot over 50 trials on
two floors. Since manipulation is not a focus of this work, the robot asks for the de-
sired object to be placed in its gripper once it is next to it. This domain includes ad-
ditional places; the map is learned and revised by the robot over time. On the third
floor, we considered 15 rooms, including offices, labs, common areas and a corridor.
To use POMDP-1 in such large domains, we used a hierarchical decomposition based
on our prior work [14]. The experiments included paired trials, e.g., over 15 trials
(each), POMDP-1 takes 1.64 as much time as PA to move specific objects to spe-
cific places; this 39% reduction in execution time is statistically significant; p-value
= 0.0023 at 95% level of significance. A video of a robot trial can be viewed online:
http://youtu.be/8zL4R8te6wg

5 Conclusions
This paper described a knowledge representation and reasoning architecture that com-
bines the complementary strengths of declarative programming and probabilistic graph-
ical models. The architecture’s high-level (HL) and low-level (LL) system descriptions

are provided using an action language, and the HL definition of recorded history is ex-
panded to allow prioritized defaults. Tentative plans created in the HL using common-
sense reasoning are implemented in the LL using probabilistic algorithms, generating
observations that add to the HL history. Experimental results indicate that the architec-
ture supports reasoning at the sensorimotor level and the cognitive level with violation
of defaults, noisy observations and unreliable actions, and scales well to large, complex
domains. The architecture thus provides fundamental capabilities for robots assisting
and collaborating with humans in complex real world application domains.

Acknowledgments
The authors thank Evgenii Balai for his help with the ASP software used in the experi-
mental trials. This work was supported in part by the U.S. ONR Science of Autonomy
Award N00014-13-1-0766 and the EC-funded Strands project FP7-IST-600623. Opin-
ions and conclusions in this paper are those of the authors.

References

1. Marcello Balduccini and Michael Gelfond. Logic Programs with Consistency-Restoring
Rules. In Logical Formalization of Commonsense Reasoning, AAAI SSS, pages 9–18, 2003.

2. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3. Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning with Answer
Sets. Theory and Practice of Logic Programming, 9(1):57–144, January 2009.

4. Xiaoping Chen, Jiongkun Xie, Jianmin Ji, and Zhiqiang Sui. Toward Open Knowledge En-
abling for Human-Robot Interaction. Human-Robot Interaction, 1(2):100–117, 2012.

5. Esra Erdem, Erdi Aker, and Volkan Patoglu. Answer Set Programming for Collabora-
tive Housekeeping Robotics: Representation, Reasoning, and Execution. Intelligent Service
Robotics, 5(4), 2012.

6. Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning and the Design of
Intelligent Agents. Cambridge University Press, 2014.

7. Joseph Halpern. Reasoning about Uncertainty. MIT Press, 2003.
8. Marc Hanheide, Charles Gretton, Richard Dearden, Nick Hawes, Jeremy Wyatt, Andrzej

Pronobis, Alper Aydemir, Moritz Gobelbecker, and Hendrik Zender. Exploiting Probabilistic
Knowledge under Uncertain Sensing for Efficient Robot Behaviour. In International Joint
Conference on Artificial Intelligence, 2011.

9. Leslie Kaelbling and Tomas Lozano-Perez. Integrated Task and Motion Planning in Belief
Space. International Journal of Robotics Research, 32(9-10), 2013.

10. Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic Models with Unknown Objects. In Statistical Relational
Learning. MIT Press, 2006.

11. Sylvie C. Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under Uncertainty
for Robotic Tasks with Mixed Observability. IJRR, 29(8):1053–1068, July 2010.

12. Matthew Richardson and Pedro Domingos. Markov Logic Networks. Machine learning,
62(1), 2006.

13. Stephanie Rosenthal and Manuela Veloso. Mobile Robot Planning to Seek Help with Spa-
tially Situated Tasks. In National Conference on Artificial Intelligence, July 2012.

14. Shiqi Zhang, Mohan Sridharan, and Christian Washington. Active Visual Planning for Mo-
bile Robot Teams using Hierarchical POMDPs. IEEE Transactions on Robotics, 29(4), 2013.

