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Abstract

The paper gives Answer Set Prolog axiomatization of knowledge needed to answer questions about
the content of simple travel stories. We assume that the background knowledge needed to understand
travel stories contains a hierarchy of classes relevant to it and concentrate on answering questions
about locations of movers and cardinalities of different groups of movers. The axiomatizations allow
to properly answer such questions for stories with various forms of incompleteness.

1 Introduction

This paper belongs to the line of work, which investigates the applicability of Answer Set Programming
(ASP) [9, 15, 17] to question answering from natural language ([2]). We are interested in reasoning
about simple travel stories, with the emphasis on the locations of participants and the cardinality of
groups, located in different areas at different stages of the travel. The previous work [3, 4] on answering
questions about travel in ASP was able to answer rather sophisticated questions about locations of
participants, given complete information about the travel domain. No attempt, however, was made to
deal with cardinality and with stories containing only partial information. In this work, we remove these
restrictions. In addition, we assume that the background knowledge, needed to understand travel stories,
contains a hierarchy of classes1 of movable objects described by the stories. Movement of one such object
into some area changes not only its position, but also the cardinality of the sets of objects from different
classes located in this (and other) areas. Thus, this addition adds an extra level of complexity, which was
not present in the previous work. To better understand the problem we present several examples, which
will be used throughout the paper for illustrative purposes.

Example 1 [Basic Travel Story]
Professor D and two of his students, A and B, entered the empty room. They were immediately followed
by professor C. Is A in the room? How many people are in the room? How many students? How many
professors?

The hierarchy needed to understand this story and the relevant questions consists of the classes person,
professor, and student with natural subclass relations between them. The story describes a trajectory
of a discrete dynamic system2. Initially, the system is in the state in which the room is empty. After
the first action, the state changes. Now the room contains A, B, and D. After the second action, they
are joined by C. The questions, which refer to the last state of the trajectory, are answered by yes, 4,
2 and 2, respectively. Since the story gives complete information about locations of people and their
positions in the inheritance hierarchy, the cardinality questions are answered by a single number each.
A small modification of existing axioms was sufficient to find the desired trajectory and to answer the

1Here, by hierarchy we mean a collection of class names connected by arrows, which indicate the subclass relation
between the classes; instance of a hierarchy is a set of objects called the universe of the hierarchy, and a mapping of class
names into subsets of the universe, which respects the hierarchy’s subclass relation.

2We assume that all the possible trajectories of such system are described by a transition diagram, whose nodes represent
possible states of the system, and whose directed arcs are labeled by actions.
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corresponding questions. The next example shows that the situation changes when we do not have a
complete knowledge about our domain.

Example 2 [Uncertain group affiliation]
Professor D and two of his students, A and B, entered the empty room. They were immediately followed
by professor C. How many freshmen are in the room?

The hierarchy of classes, pertinent to the story from Example 2, includes classes freshman, sophomore,
junior, and senior which are subclasses of the class student. In contrast to the previous example, we
do not have a complete knowledge about classes to which the entities discussed in the text belong to (in
particular, we do not know if A and B are freshmen). This implies that there is a number of trajectories
compatible with the story. Analysis of these trajectories allows us to produce an expected answer: at
most two. The next example illustrates another type of incompleteness. This time, we do not even know
the exact number and names of people, initially located in the room.

Example 3 [Uncertainty in the initial sizes of groups]
There were less than two people in the room. How many people are in the room, after it has been entered
by a student named John?

Again the story is compatible with multiple trajectories. Their analysis allows us to produce the correct
answer: between 1 and 3. Finally, the following example:

Example 4 [Uncertainty in the number of movers]
There were two professors and four students in the room. They were joined by at least two more students.
How many professors, students, freshman, and people are in the room?

The story only specifies the lower bound of people of a given class involved in the movement. There
are multiple models of this story, containing multiple moving objects and multiple trajectories, but the
questions can be uniquely answered by 2, between 6 and max size, between 0 and max size, and between
8 and max size.

The above stories have several characteristic features. All of them describe trajectories of some dynamic
system and are concerned with questions about positions of objects and about cardinality (number of
objects from a class of some inheritance hierarchy located in a given area). The last three stories also
deal with various types of incompleteness of knowledge. Traditionally, these features cause difficulties for
the reasoning parts of existing question answering systems. The method discussed in this paper is able
to overcome these difficulties in the context of simple travel stories. We hope that this method will be
applicable to more general domains.

The paper is organized as follows. In the next section, we introduce a formal representation of a text
and a question (often referred to as a text-question pair), which would serve as an input to our reasoning
system. This is followed by a section discussing question answering in the situation when the story
contains all the relevant information. After that, we present three sections dealing with travel stories
with different types of incompleteness.

2 Travel Logic Form

In this paper we follow a logic based approach to question answering, in which a text-question pair 〈T,Q〉
is translated into a suitable logical representation, called logic form of 〈T,Q〉. The logical representation
(sometimes together with the background knowledge) is then used to find answer to the question. A
specific feature of our approach is the use of a particular logic form, suitable for reasoning about travel
stories. We refer to it as travel logic form (TLF ).

Definition 1 [TLF]
A TLF consists of:
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1. Description of the relevant hierarchy:

(a) A tree of classes:
root(C) class(C) c link(C1, C2)

The last statement says that in the class hierarchy of the story, class C1 is a child of class C2;

(b) An instance of the hierarchy:

object(O) m link(O,C)

The last statement places an object O into a class C of the hierarchy;

(c) Cardinality of the universe:
card = k

2. Collection of areas:
area(A)

We refer to the part of logic form consisting of statements described above as static.

3. History of the travelers’ domain described by the story, which is represented by collection of state-
ments of the form:

hpd(a, i) obs(f, v, i)

where v is a boolean value; the first statement means that action a happened at step i of the system’s
trajectory; the second one states that at step i fluent3 f was observed to have truth value v. (For
simplicity we restrict ourselves to simple histories, which only contain observations of fluents made
at time 0).

The actions of a simple travel domain are of the form

enter(O,A)

read as object O enters area A, and
enter(X,N,C,A)

where X is min, max, or equal, meaning that minimum, maximum, or exactly N members of class
C entered area A4. Similarly for actions leave. The fluent

in(O,A)

read as object O is located in area A describes a property of an individual object. Other fluents
describe properties of populations — groups of object of class C located in area A. We will need:

lower bound(P,N)

upper bound(P,N)

read as N is the lower (upper) bound of the size of population P . Action enter(O,A) and fluent
in(O,A) will be called basic. Other actions and fluents will be called extended.

4. Collection of queries of the form:

query(in(O,A)) −− Is object O in the area A?

query(where(O)) −− Where is O?

query(who(A)) −− Who is located in area A?

query(how many(C,A)) −− How many members of class C are in A?

The questions are referring to the values of the fluents at the end of the trajectory.
3Fluent is a property of the domain, whose truth value can be changed by actions. Other properties are called statics.
4Note that in our logic program below, we will use 0 for min, 1 for equal, and 2 for max.
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A TLF can be viewed as a theory defining a collection of models. To define this notion, let us consider
a travel logic form LF . By H(LF ) we denote the hierarchy described by statements (1a) of LF . An
instance, I(LF ), of this hierarchy consists of the universe U of cardinality k containing all the objects
defined in LF , and a mapping from classes of H(LF ) to subsets of U . The mapping is such that, for
every statement c link(c1, c2) of LF , class c1 is mapped into a subset of c2 and the root is mapped into
U . By encoding of I with the universe U , we mean the set

e(I) = {object(o) : o ∈ U}.

A model of LF consists of an instance I of the LF ’s hierarchy, a transition diagram T (describing effects
of actions enter(O,A) and leave(O,A) on locations of movers from I), and a collection P of paths of T ,
compatible with the TLF ’s history. The T and P will be defined by an instance I and an ASP program,
Mn, where n is the maximum number of steps in the story’s history. The program contains general
knowledge about travel and about inheritance hierarchies.

Definition of Mn: The program consists of the following rules.

Fluents and steps:
step(0...n).
f luent(inertial, in(O,A)). (1)

(Here and below, we use possibly indexed variables O, A, and I for objects, areas, and steps of the
system’s trajectory, respectively; n is the length of the story’s history);

Dynamic causal law:
holds(in(O,A), I + 1)← occurs(enter(O,A), I). (2)

which says that in(O,A) is a direct effect of action enter(O,A);

State constraint:
¬holds(in(O,A2), I) ← holds(in(O,A1), I),

A1 6= A2.
(3)

which says that an object can not be located in two disjoint areas;

Executability condition:
← occurs(enter(O,A), I),

holds(in(O,A), I). (4)

which says that it is impossible for O to enter area A, if it is already there;

Inertia axioms:
holds(F, I + 1)← fluent(inertial, F ),

holds(F, I),
not ¬holds(F, I + 1)

¬holds(F, I + 1)← fluent(inertial, F ),
¬holds(F, I),
not holds(F, I + 1)

(5)

which say that inertial fluents tend to stay unchanged;

Membership of the class hierarchy:

member(O,C) ← m link(O,C).
member(O,C2) ← c link(C1, C2),

member(O,C1).
(6)

which defines member as the transitive closure of relation m link;
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Disjointness axiom:
¬member(O,C2) ← member(O,C1),

c link(C1, C),
c link(C2, C),
C1 6= C2

(7)

stating that the children of a class are disjoint;

Completeness of the hierarchy axioms:

¬leaf(C2) ← c link(C1, C2).
leaf(C) ← not leaf(C).
is defined(O) ← leaf(C),

member(O,C).
← not is defined(O).

(8)

stating that every object of the domain belongs to a leaf of the hierarchy; and

Axioms for observations in the initial situation:

holds(F, 0) ← obs(F, true, 0).
¬holds(F, 0) ← obs(F, false, 0). (9)

This completes the definition of Mn.

Now we define the transition diagram T , given by an instance I of a travel logic form LF . The signature
of T consists of the objects of the universe of U , inertial fluent in(O,A), statics object(O), area(A),
root(C), class(C), m link(O,C), c link(C1, C2), and member(O,C), as well as actions enter(O,A) and
leave(O,A).

A state of T consists of the encoding e(I), the collection, stat, of static statements of LF , and a complete
and consistent collection of literals formed by relation in(O,A), which satisfies rule 3 of M1.

A triple 〈σ0, a, σ1〉 is a transition of T iff there exists an answer set S of the program:

M1 ∪ e(I) ∪ {holds(f, 0) : f ∈ σ0} ∪ {¬holds(f, 0) : ¬f ∈ σ0} ∪ {occurs(e, 0) : e ∈ a},

such that
σ1 = stat ∪ {f : holds(f, 1) ∈ S} ∪ {¬f : holds(f, 1) ∈ S}.

Finally, we define the set P of all possible trajectories of T , which are compatible with the recorded
history Hn of LF (we refer to such trajectories as models of Hn). We say that a trajectory M =
〈σ0, a0, σ1, . . . , an−1, σn〉 of T is a model of history Hn (with respect to T ), if:

• if obs(f, true, i) ∈ Hn then f ∈ σi.

• if obs(f, false, i) ∈ Hn then ¬f ∈ σi.

• hpd(e, i) ∈ Hn iff e ∈ ai.

A history is consistent, if it has a model. This completes our definition of a model 〈I, T, P 〉 of a travel
logic form LF .

We also say that a travel story is consistent, if its logic form is consistent, i.e., has a model. A statement
Q is entailed by a travel story with travel logic form LF , if Q is true in all models of LF .

3 Complete Travel Stories

In this section we assume that the logic form, constructed from a text-question pair of a travel story is
complete. This will be defined as follows:
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Definition 2 [Complete TLF ]
A travel logic form LF is called complete, if it has the following properties:

1. card = k ∈ LF iff k = |{o : object(o) ∈ LF}|.

2. Every movable object O of LF is linked by m link relation with the leaf of the story’s class hierarchy.

3. For every movable object O and area A, such that O is initially located in A, the logic form contains
obs(in(O,A), true, 0).

4. The only fluents and actions mentioned in the logic form are basic.

A travel story is called complete, if it has a complete TLF .

It is not difficult to show that:

Proposition 1 [Uniqueness of model for complete TLF ]
A complete and consistent TLF has a unique model.

As usually in ASP, computing this model and answering our queries will be reduced to finding answer
set of a logic program. To describe this process, we need the following definitions:

1. We say that a relation p is defined by a set of ground literals S, if:

• ā ∈ p iff p((ā)) ∈ S

• ā 6∈ p iff ¬p((ā)) ∈ S

2. A trajectory 〈σ0, a0, σ1, . . . , an−1, σn〉 of a dynamic system is defined by S, if:

• σi = {f | holds(f, i) ∈ S} ∪ {¬f | ¬holds(f, i) ∈ S}, for any 1 ≤ i ≤ n; and

• ai = {a | occurs(a, i) ∈ S}, for any 1 ≤ i < n.

Now let us expand our program Mn (where n is the length of story’s history), by the rules defining
answers to our queries. Here are some examples:

answer(O, is in,A) ← query(where(O), n),
holds(in(O,A), n).

answer(O, is not in,A) ← query(where(O), n),
¬holds(in(O,A), n).

answer(there are,N,members of class, C, in,A)←
query(how many(C,A), n),
N = #count{holds(in(X,A), n) : member(X,C)}.

(Here we use an extension of the original ASP by aggregates (such as #count). (See, for instance, [16].)
Other queries can be added in a similar way. We denote the resulting program by Pn

1 ; by Pn
1 (LF ),

we denote the union of Pn
1 and the travel logic form LF of a travel story.

Proposition 2 [Correctness of reasoning with complete stories]
The model of a complete and consistent travel story LF is defined by the unique answer set of program
Pn

1 (LF ). Moreover, the answer literal, contained in this answer set, gives the correct answer to the
story’s query.

This proposition can be used to answer queries from the first example of the introduction.
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Example 5 [Example 1, revisited]
The logic form of the example story will contain description of movable objects a, b, c, and d, area room,
together with statements:

card = 4
root(person).
c link(prof, person).
c link(student, person).
m link(a, student).
m link(b, student).
m link(c, prof).
m link(d, prof).

describing the instance of the hierarchy; the initial situation:

obs(in(O, room), false, 0).

and actions:

hpd(enter(d, room), 0).
hpd(enter(a, room), 0).
hpd(enter(b, room), 0).
hpd(enter(c, room), 1).

Consider a text-question pair with the question: How many students are in the room? The corresponding
logic form will contain:

query(how many(student, room), 2).

Combination of this logic form and M2 constitutes program
P2

1 (LF ). As expected, the answer set of this program contains:

answer(there are, 2,members of class, student, in, room).

An answer set solver (in our case clingo [7]), returns the answers instantaneously. The other questions
from Example 1 can be answered in a similar way.

4 Uncertain Group Affiliation

In this section, we discuss answering questions about travel stories, similar to those considered in Example
2. The story in this example contains complete knowledge of the class hierarchy, the locations of objects
in the initial state, and the actions up to the moment n. However, it has only partial knowledge about the
class membership of objects. In other words, the class C in a statement m link(O,C) is not necessarily
a leaf and hence, the story’s hierarchy may have multiple instances. More precisely,

Definition 3 [TLF with incomplete class membership]
A logic form is incomplete with respect to class membership of the hierarchy if:

1. card = k ∈ LF iff k = |{o : object(o) ∈ LF}|.

2. For every object O from the logic form, there is a unique class C of the hierarchy, such that
m link(O,C) belongs to the logic form.

3. For every movable object O and area A, such that O is initially located in A, the logic form contains
obs(in(O,A), true, 0).

4. The only fluents and actions mentioned in the logic form are basic.

This only differs from Definition 2 by clause (2) – objects of the domain do not have to be linked to the
leaves of the hierarchy. To illustrate the definition, consider the logic form for Example 2. It includes
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statements from the logic form for Example 1, together with the new classes freshman, sophomore,
junior, and senior, included in the hierarchy by the statements:

c link(freshman, student).
c link(sophomore, student).
c link(junior, student).
c link(senior, student).

The corresponding question has the form:

query(how many(freshman, room), 2).

Since m link does not connect students a and b with leaves of the hierarchy, the previous question answer-
ing algorithm, justified by Proposition 4, is not applicable. Indeed, the attempt to run the corresponding
program, will return the answer set with 0 freshmen located in the room. The answer of course can
be true if, say, both a and b were juniors, but it can also be false. The problem is that even though
the history of Example 2 is the same as that of Example 1 (and hence is represented by the encoding
described in Example 5), it does not have a unique model. Instead, it has 16 models, corresponding to
16 possible instances of the hierarchy compatible with our knowledge. All models have the same universe
{a, b, c, d}, but the objects can be placed into different classes. For instance, in the first instance, both a
and b can be juniors, in the second, a can be a freshman and b a sophomore, etc.

Let us notice that models of travel logic form LF , incomplete with respect to class membership of the
hierarchy, coincide on atoms of the form holds(in(O,A), n), but differ on atoms of the formmember(O,C).
So the definition of answers to queries containing “where” and “who” are not going to change. But the
answer to a query containing “how many” should be redefined. This time the answer should be given by
an interval, defining lower and upper bound for the cardinality of the corresponding set. More precisely,

Definition 4 [Answer to a query how many for stories with multiple models]
Let LF be a travel logic form with multiple models. We say that an interval [l, u] is the LF ’s answer to
a query of the type how many(C,A) for a class C and area A if:

1. For every model of LF the number K of elements of the class C located in area A at step n in this
model belongs to the interval [l, u].

2. There is a model of LF , such that the number of elements of the class C, located in area A at step
n in this model is l.

3. There is a model of LF , such that the number of elements of the class C, located in area A at step
n in this model is u.

Our next step is to present a logic program Pn
2 , which would be able to properly answer our questions.

Definition of Pn
2 : The program will consists of:

Rules of Mn.

Definition of the notion of population (The population of elements of class C, located in A, will be denoted
by a term r(C,A)).

population(r(C,A)).
population class(r(C,A), C).
population area(r(C,A), A).

(10)

Definition of new fluents – lower and upper bounds:

fluent(defined, lower bound(P,N)).
f luent(defined, upper bound(P,N)). (11)
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Here N is the value of the lower and the upper bound, respectively. In rules 17 and 18, these fluents
will be defined in terms of other relations – hence, the term defined. Such fluents are not subject to the
inertia axiom. Instead, they require

The Closed World Assumption for defined fluents:

¬holds(F, T ) ← fluent(defined, F ),
not holds(F, T ). (12)

The uniqueness of value rule

¬holds(lower bound(P,N2), I) ← holds(lower bound(P,N1), I),
N1 ! = N2.

¬holds(upper bound(P,N2), I) ← holds(upper bound(P,N1), I),
N1 ! = N2.

(13)

which states that the lower bound is a function, i.e., it has a unique value N . Similarly for the upper
bound.

Another collection of rules deals with the incompleteness of our stories.

Class membership uncertainty is captured by relation maybe(O,C), which holds if there is an instance of
the hierarchy, compatible with the membership relation, defined by the logic form of our story,

maybe(O,C) ← member(O,C).
maybe(O,C1) ← subclass(C1, C2),

m link(O,C2).
(14)

and relation maybe member(O, r(C,A)), I), which holds if at step I, object O might be a member of
class C and is located in area A:

maybe member(O, r(C,A), 0) ← maybe(O,C),
holds(in(O,A), 0). (15)

and

Relation subclass:
subclass(C1, C2) ← c link(C1, C2).
subclass(C1, C2) ← c link(C1, C3),

subclass(C3, C2).
subclass(C,C).

(16)

The next collection of rules defines the upper bound of the set of members of C, initially located in A.

holds(upper bound(P,N), T ) ← N = #count{maybe member(Y, P, T ) : object(Y )}. (17)

The lower bound is given by the rule:

holds(lower bound(P,N), T ) ← population class(P,U),
population area(P, V ),
N = #count{holds(in(Y, V ), T ) : member(Y, U)}.

(18)

Finally, we need an auxiliary rule:

occurs(X,T ) ← hpd(X,T ). (19)
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and the definition of answer for our new domain. This consists of the old definitions for queries not
containing “how many” and the rule:

answer(between,N1, and,N2, C, in,A) ←
query(how many(C,A), n),
holds(lower bound(r(C,A), N1), n),
holds(upper bound(r(C,A), N2), n).

(20)

This completes the construction of program Pn
2 . As before, by Pn

2 (LF ) we denote the union of Pn
2 and

the logic form LF .

Proposition 3 [Correctness of reasoning with incomplete information about class membership]
If a consistent travel story with the logic form LF is incomplete with respect to class membership of the
story’s hierarchy, then program Pn

2 (LF ) has exactly one answer set, S, and:

1. For every class c and area a, interval [l, u] is the answer to a question how many(c, a) iff
answer(between, l, and, u, c, in, a) ∈ S iff
holds(lower bound(r(c, a), l), n) ∈ S and holds(upper bound(r(c, a), u), n) ∈ S;

2. For every object o, area a is the answer to a query where(o, a) iff answer(o, is in, a) ∈ S. Similarly
for the other queries.

Example 6 [Example 2, revisited]
It is not difficult to check that the answers to queries:

query(how many(person, room), 2).
query(how many(professor, room), 2).
query(how many(freshman, room), 2).
query(how many(student, room), 2).

are
answer(there are between, 4, and, 4, person, in the, room).
answer(there are between, 2, and, 2, professor, in the, room).
answer(there are between, 0, and, 2, freshman, in the, room).
answer(there are between, 2, and, 2, student, in the, room).

5 Uncertain Identity of Objects in the Initial Situation

In this section, we consider stories similar to that of Example 3. In addition to uncertainty about the class
membership of John (he can be a freshman, a sophomore, etc.), this story does not have information
about identity of other movers and the initial size of the domain’s populations. This means that the
closed domain assumption is not any longer applicable, the corresponding hierarchy will have instances
with multiple universes, and hence, multiple, universe dependent models. The initial situation of such
stories can be represented using extended fluents lower bound and upper bound. But, in contrast to the
previous section lower bound and upper bound will not be defined in terms of fluent in. Instead, they
will be described in the story’s history and changed by actions. Therefore they will be defined as inertial.
The TFL for such stories will be defined as follows:

Definition 5 [TLF with incomplete identity of object in initial situation]
A travel logic form is incomplete with respect to identity of movers if:

1. If card = k ∈ LF , then k is sufficiently big to be compatible with the story (i.e., it is bigger than
the number of objects explicitly or implicitly mentioned in the story).

2. For every object O from the logic form, there is a unique class C of the hierarchy, such that
m link(O,C) belongs to the logic form.

10



3. The initial situation is given by observations of fluents in(O,A), lower bound(P,N), and
upper bound(P,N).

4. The only actions mentioned in the logic form are basic.

5. There are no concurrent actions.

(This last requirement is inessential. It is added to simplify the presentation).

To illustrate this case let us consider again Example 3.

Example 7 [Example 3, revisited]
The logic form for this example consists of statements:

card = 2.
object(john).
m link(john, student).
obs(lower bound(r(person, room), 0), true, 0).
obs(upper bound(r(person, room), 1), true, 0).
hpd(enter(john, room), 0).

together with representation of the area and the hierarchy (as in Example 2). (Note that the cardinality
can be any number larger than 2. This will not change answers to our queries in which this number will
be replaced by symbolic constant max size.)

The answers to queries for travel stories incomplete with respect to identity of movers will be computed
using a logic program Pn

3 (LF ) defined as follows:

Definition of Pn
3 : The program consists of rules of Pn

3 with rules 11 and 12 replaced by

fluent(inertial, lower bound(P,N)).
f luent(inertial, upper bound(P,N)). (21)

together with the following rules.

occurs(leave(O,A2), I) ← occurs(enter(O,A1), I),
holds(in(O,A2), I). (22)

holds(upper bound(r(C,A), N2), I + 1) ← occurs(enter(O,A), I),
maybe(O,C),
holds(upper bound(r(C,A), N1), I),
N2 = N1 + 1.

(23)

holds(lower bound(r(C,A), N2), I + 1) ← occurs(enter(O,A), I),
member(O,C),
holds(lower bound(r(C,A), N1), I),
N2 = N1 + 1.

(24)

holds(upper bound(r(C,A), N2), I + 1) ← occurs(leave(O,A), I),
member(O,C),
holds(upper bound(r(C,A), N1), I),
N1 > 0,
N2 = N1− 1.

(25)
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holds(lower bound(r(C,A), N2), I + 1) ← occurs(leave(O,A), I),
maybe(O,C),
holds(lower bound(r(C,A), N1), I),
N1 > 0,
N2 = N1− 1.

(26)

In addition, the definition 20 of answer will be replaced by a new definition which accommodates the
unknown cardinality of the domain.

answer(between,N1, and,N2, C, in,A) ←
query(how many(C,A), n),
holds(lower bound(r(C,A), N1), n),
holds(upper bound(r(C,A), N2), n),
N2 6= k

answer(between,N1, and,max size, C, in,A) ←
query(how many(C,A), n),
holds(lower bound(r(C,A), N1), n),
holds(upper bound(r(C,A), N2), n),
N2 = k

(27)

where k is the cardinality of the domain.
This completes the definition of Pn

3 .

Proposition 4 [Correctness of reasoning with incomplete identity of movers]
If a consistent travel story with the logic form LF is incomplete with respect to class membership of the
story’s hierarchy, then program Pn

3 (LF ) has exactly one answer set, S, and:

1. For every class c and area a, interval [l, u] is the answer to a question how many(c, a) iff
answer(between, l, and, u, c, in, a) ∈ S iff
holds(lower bound(r(c, a), l), n) ∈ S and holds(upper bound(r(c, a), u), n) ∈ S;

2. For every object o, area a is the answer to a query where(o, a) iff answer(o, is in, a) ∈ S. Similarly
for the other queries.

It is not difficult to verify that the answers to queries:

query(how many(person, room), 1).
query(how many(professor, room), 1).
query(how many(freshman, room), 1).
query(how many(student, room), 1).

are
answer(there are between, 1, and,max size, person, in the, room).
answer(there are between, 0, and, 1, professor, in the, room).
answer(there are between, 0, and,max size, freshman, in the, room).
answer(there are between, 1, and,max size, student, in the, room).

6 Uncertainty in the Number of Movers

Finally, we consider stories similar to those given in Example 4. Such stories have neither information
about identities of movers in the domain nor their precise number. All we know is the limits for the sizes
of the corresponding populations in the initial situation and the number of people from such populations
involved in the moves. In other words we are interested in stories with the following logic form:
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Definition 6 [TLF with uncertainty in the number of movers.]
A travel logic form is incomplete with respect to number of movers if:

1. If card = k ∈ LF then k is sufficiently big to be compatible with the story.

2. The logic form contains no basic actions and fluents.

3. There are no concurrent actions.

We illustrate this by example Example 4.

Example 8 [Example 4 revisited]
The logic form will have representation of the areas and the hierarchy (as in Example 2) together with
statements:

card = 10
obs(lower bound(r(student, room), 4), true, 0)
obs(upper bound(r(student, room), 4), true, 0)
obs(lower bound(r(professor, room), 2), true, 0)
obs(upper bound(r(professor, room), 2), true, 0)
hpd(enter(0, 2, student, room), 0)

(Recall that enter(0, 2, student, room) reads as at least two students entered the room.) Note also that,
as in the previous example, the value of card is arbitrary. It can be any number greater than or equal to
8.

This is the first time when we consider a logic form of travel story containing extended actions. This
seems like a substantial change which may require us to change our previous framework. We do not even
have a notion of model defined for such logic forms — so far we only considered transition diagrams
describing effects of actions enter(O,A) and leave(O,A). To deal with the problem we translate a logic
form LF with uncertainty in the number of movers into a collection of complete logic forms, called
instances of LF whose models will be viewed as models of LF . First we need the following definition.

Definition 7 [Instance of a logic form with extended history]
Let LF be logic form with extended history. Let inst(LF ) be a logic form obtained from LF by

1. Expending the signature of LF by new constant symbols x1, x2, . . . , xm where m is the cardinality
of the domain.

2. Adding statements object(x1), . . . , object(xm) and a collection of statements of the form
m link(xi, c) such that for every 0 ≤ i ≤ m object xi is allocated into some leaf c of the domain
hierarchy,

3. Adding a collection of statement of the form obs(in(xi, area), true, 0) placing each xi into some
area in the initial situation.

4. Replacing every occurrence of a statement hpd(a, i) where a is and extended action
enter(rel, k, c, area) by a collection of basic actions
{occurs(enter(x1, area), i), . . . occurs(enter(xn, area), i)}
where x1, . . . , xn are elements of class c and n and k satisfy the relation rel.

5. Similarly for leave.

6. Removing all statements containing occurrences of lower bound and upper bound.

It is easy to see that inst(LF ) is a complete logic form. We say that inst(LF ) is an instance of LF if it
is consistent and satisfies all the observations of LF made in the initial situation.

By models of LF we mean models of its instances.
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The addition is sufficient. The definition of answer from 4 becomes applicable and we only need to worry
about computing these answers. This will be done with the help of logic program Pn

4 (LF ) defined as
follows:

Definition of Pn
4 :

The program consists of rules of Pn
3 together with the following rules.

Definition of extended actions:
action(enter(0, N,C,A)).
action(enter(1, N,C,A)).
action(enter(2, N,C,A)).

(28)

Similarly for leave.

Direct effect of occurs(enter(0, N1, C1, A) (At least N1 movers of class C entered A):

holds(lower bound(r(C2, A), N), I + 1) ← occurs(enter(0, N1, C1, A), I),
subclass(C1, C2),
holds(lower bound(r(C2, A), N2), I),
N = N1 +N2.

(29)

holds(upper bound(r(C2, A), k), I + 1) ← occurs(enter(0, N1, C1, A), I),
subclass(C1, C2). (30)

where k is the cardinality of the domain.

Direct effect of occurs(enter(1, N1, C1, A) (N1 movers of class C entered A):

holds(lower bound(r(C2, A), N), I + 1) ← occurs(enter(0, N1, C1, A), I),
holds(lower bound(r(C2, A), N2), I),
N = N1 +N2.

(31)

holds(upper bound(r(C2, A), N), I + 1) ← occurs(enter(0, N1, C1, A), I),
holds(upper bound(r(C2, A), N2), I),
N = N1 +N2.

(32)

Similarly for other actions.
The rules of Pn

3 about basic fluents and actions can be dropped from the program.

This completes the definition of Pn
4 .

Proposition 5 [Correctness of reasoning with unknown number of movers]
If a consistent travel story with the logic form LF is incomplete with respect to number of movers then pro-
gram Pn

4 (LF ) has exactly one answer set, S, and for every class c and area a, interval [l, u] is the answer to
a question how many(c, a) iff answer(between, l, and, u, c, in, a) ∈ S iff holds(lower bound(r(c, a), l), n) ∈
S and holds(upper bound(r(c, a), u), n) ∈ S;

Example 9 [Example 4 revisited]
It is not difficult to verify that the answers to queries:

query(how many(person, room), 1).
query(how many(professor, room), 1).
query(how many(freshman, room), 1).
query(how many(student, room), 1).

are
answer(there are between, 8, and,max size, person, in the, room).
answer(there are between, 2, and, 2, professor, in the, room).
answer(there are between, 0, and,max size, freshman, in the, room).
answer(there are between, 6, and,max size, student, in the, room).
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7 Discussion

The axiomatization of travel domains presented in this paper is based on extensive research on the
relationship between reasoning about actions and Answer Set Prolog. This work, which started in [10, 20],
led to the development of rich theory and multiple applications [6]. Reasoning about various types
of motion, including travel, was often used to test this theory. In the state of the art approach the
background knowledge about action is normally represented in action languages [11]. In fact, there is a
small collection of modules containing axioms for various actions built in modular action languages (see,
for instance, [13, 14, 1]) These theories are automatically translated into ASP which allows solutions
of various problems using efficient answer set solvers like smodels [18], dlv [5], clingo [8] and others. In
our extended work we also use a modular action language ALM [12] but this was omitted to save the
space. We believe that results presented in this paper will, eventually, be useful for the design of real
question-answering systems. Of course to make this happen we need to develop translations from natural
language which will be able to classify a text into a travel story and translate it into the ASP based logic
form. First steps towards this were made in [19] in which this was done for a simple controlled language.
However, much more research is needed to properly combine natural language processing and reasoning
parts of such future systems. Still we believe that our work helps to better understand different types of
incompleteness and their impact on question answering which contributes to this effort.
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