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ABSTRACT

This dissertation is a contribution towards combining logical and probabilistic reason-

ing. The work is based on the language P-log which combines a recently developed

non-monotonic logic language, Answer Set Prolog, with the philosophy of causal

Bayesian networks. The goal of this dissertation was to design and implement an in-

ference engine for P-log and to develop a methodology of its use. As the result of this

research work, we had built two P-log inference engines. Through the experiments on

various examples, we have shown the advantages of using plog2.0, a system based on

partial grounding algorithm and a concept of partial possible worlds. We introduced

a new action description language NB which allows specifying non-deterministic ac-

tions as well as probabilities associated with these actions. We developed an encod-

ing which maps systems written in NB to P-log programs. We presented systematic

methods of representing probabilistic diagnosis and planning problems and algorithms

of finding the solutions with P-log systems. Finally, we investigated the performance

on these two applications and compared with other similar systems.
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Chapter 1

INTRODUCTION

This dissertation is a contribution towards combining logical and probabilistic reason-

ing. In logical reasoning, problems are represented by some formal logical languages

and queries to the problems are solved by using inference engines. In probabilistic rea-

soning, problems are represented by random variables and probability distributions

over those variables. Many methods use networks for the purpose of understanding

the dependency relationships among variables. Inference engines are developed based

on their graphical representation of these networks. For the last several decades,

there have been significant progress on both types of reasoning. While logical rea-

soning and probabilistic reasoning are very different at their representation methods

and algorithms behind their inference engines, recent research shows that in order to

build an efficient intelligent agent, it would be beneficial to combine both types of

reasoning to achieve a better system.

The language, P-log [1], is one of such attempts. P-log combines a recently developed

non-monotonic logic language, Answer Set Prolog, with the philosophy of causal

Bayesian networks to achieve strong expressive power as well as neat representation for

problems where logical rules and probabilistic distributions are both involved.

1.1 Answer Set Programming

It is well known that human beings can make adequate decisions through reasoning

when facing incomplete information of the situation. Furthermore, when new pieces

of information come in, one may adjust his/her previous conclusions based on these

new information, even though in some cases these new conclusions are contradictory
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to what he/she has derived before. Such non-monotonic reasoning mechanism is very

common in our daily life. However, many classical logic languages are not adequate for

modeling such situations as they are known as monotonic. Since late 70’s, researchers

are looking for theories of non-monotonic logic languages. On the path of finding these

languages, Answer Set Programming (ASP) was introduced by Michael Gelfond and

Vladimir Lifschitz in 1988 [2]. With negation as failure and answer set semantics,

ASP is able to represent knowledge that involves defaults, exceptions, intention and

various forms of incomplete information.

There are several inference engines developed for ASP. The list includes, but not

limited to, Smodels [3], DLV [4], Cmodels [5], ASSAT [6] and Clasp [7]. With

these inference engines available, ASP has been used in many applications such as

building supporting systems for space shuttle control [8] including finding plans and

reasoning about faulty components; understanding natural languages and answering

questions [9]; and checking medical invoices for health insurance companies [10].

1.2 Bayesian Network

Bayesian networks, also commonly known as belief networks, probabilistic networks

and knowledge maps, are natural ways to represent conditional independence relations

among events. A Bayesian network consists of a directed acyclic graph (DAG) and a

set of conditional probability tables for each node in the graph. Judea Pearl [11] em-

phasizes the importance of causality when modeling probabilistic reasoning problems

with Bayesian networks. In [11], the author has shown the advantages of building a

Bayesian network around causality rather than associational information.

Many inference algorithms for Bayesian networks have been proposed since 80’s. All

algorithms can be divided into two groups: exact inference algorithms and approx-

imate algorithms. Exact inference algorithms includes: message propagation algo-

rithm for singly connected network [12], joint-tree algorithm [13], recursive condi-

2
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tioning algorithm[14], variable elimination algorithm[15] and algorithms that compile

Bayesian networks to arithmetic circuit [16], to weighted model counting problems

[17, 18]. Approximate algorithms such as logic sampling method [19] are also studied

for dealing with large Bayesian networks.

1.3 Goals of this Research

The goals of this research are to develop efficient inference engines for language P-

log and to investigate how to use P-log to solve different reasoning tasks. Our goals

include:

• Developing algorithms for P-log inference engine: We develop two algo-

rithms for P-log inference engine. The first algorithm encodes a P-log program

to an ASP program Π then uses Smodels to find all the answer sets of Π. By

decoding probability information and looking up atoms in the answer sets, the

algorithm is able to compute the probability of formulas with respect to the

P-log program. The second algorithm only builds a ground P-log program that

is related to the query. Rules which are not relevant to the current query are

dropped from further computation. Furthermore, instead of using other answer

set solver, there is an algorithm designed for evaluating possible worlds and the

probability of formulas at same time. By taking advantages of properties of

input P-log program, it enhances the performance of computing probabilities of

formulas.

• Developing methodology for representing probabilistic diagnosis and

planning problems: We extend an action description language to allow rep-

resenting actions with uncertain effects and incomplete initial situations. We

develop systematic methods to model a probabilistic diagnosis problems and

probabilistic planning problems.

3
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• Investigate the impact of different programs on the performance of

P-log engines: We conduct several tests with P-log systems to understand

how different types of P-log program affect the performance of the system. We

study the advantage and disadvantage of each systems and list out other options

which may help improving the performance of the system.

This dissertation is organized as follows: Chapter 2 will review the syntax and se-

mantics of P-log language. It will also discuss a special type of P-log program, called

strongly causally ordered unitary (scou) P-log program. We will show how common

probabilistic reasoning problems can be modeled as scou P-log programs. In Chapter

3, We will give two algorithms for implementing P-log inference engines. The first

one, based on translation from P-log program to ASP, follows the idea presented in

[1]. The second one, designed for improving performance of P-log system, will be

presented after that. In Chapter 4, we focus on some details of implementation of the

system. We give experimental results of running both systems that we have devel-

oped. We will discuss the advantage and disadvantage of both systems with respect

to different types of P-log program. Then, Chapter 5 talks about extending an ac-

tion description language to describing non-deterministic results of actions as well as

incomplete initial situations. We specifically pay attention to two applications: prob-

abilistic diagnosis and probabilistic planning. We briefly discuss the performance of

P-log on these two applications. Chapter 7 presents all the proofs of the theorems

in previous chapters. Chapter 8 briefly describes related work on combining logical

and probabilistic reasoning as well as probabilistic diagnosis and planning. Finally,

Chapter 9 gives our conclusions and future work.

4
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Chapter 2

THE LANGUAGE P-LOG

In this chapter, we review the syntax and semantics of language P-log which was first

introduced in [1]. We extend the work of [1] by defining the syntax and semantics of

queries of P-log program. The conditions for consistent P-log program are discussed

in details in [1] and we narrow down our attention to a special type of P-log program,

scou P-log program, and to illustrate, by showing some examples, how problems can

be modeled as scou P-log programs.

2.1 Syntax of P-log

A probabilistic logic program (P-log program) Π consists of (i) a sorted signature, (ii)

a declaration, (iii) a regular part, (iv) a set of random selection rules, (v) probabilistic

information part and (vi) a set of observations and actions.

1. Sorted Signature: The sorted signature Σ of Π contains a set O of objects

and a set F of function symbols. The set F is a disjoint union of two sets: Fr, a

set of term building functions and Fa, a set of attributes used in defining atomic

statements. Terms are formed using Fr and O. Expression of the form a(t̄) will

be referred to as attribute terms where a is an attribute, t̄ is a vector of terms

of the sorts required by a.

Technically, every P-log atom is of the form a(t̄) = y, where a(t̄) is an attribute

term and y is a term. A literal is an atomic statement a(t̄) = y or its negation,

a(t̄) 6= y. The set of terms that an attribute a can take as values is denoted

by range(a). If range(a) = {true, false}, then we say that a is a Boolean

attribute. For Boolean attribute, we may simply use a(t̄) as a short hand of

5
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a(t̄) = true and ¬a(t̄) as short hand of a(t̄) = false. An extended literal l is a

literal or a not l, where not is the default negation of Answer Set Prolog.

A P-log statement containing variables is considered as a shorthand for the

set of its ground instances, where a ground instance is obtained by replacing

unbound occurrences of variables with properly sorted ground terms.

2. Declaration: The declaration of a P-log program is a collection of definitions

of sorts, attributes and variables.

• A sort c can be defined by explicitly listing its elements,

c = {x1, . . . , xn} (2.1)

If c is a set of continuous integer numbers from m to n. It can be defined

as,

c = {m..n} (2.2)

• Attributes can be declared as by a statement of the form:

a : c1 × · · · × cn → c0 (2.3)

• Variables V1, . . . , Vn that can be replaced by elements of a sort c is declared

as:

#domain c(V1; . . . ;Vn) (2.4)

3. Regular Part: The regular part of a P-log program consists of a collection of

rules r of Answer Set Prolog (without disjunction) formed using literals of Σ,

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (2.5)

4. Random Selection Rules: A random selection rule is a rule of the form

[r] random(a(t̄) : {X : p(X)})← B (2.6)

6
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where r is a term used to name the rule and B is a collection of extended literals

of Σ. Statement 2.6 says that if B holds, the value of a(t̄) is selected at random

from {X : p(X)} ∩ range(a), unless this value is fixed by a deliberate action.

If B is empty, we have

[r] random(a(t̄) : {X : p(X)}) (2.7)

If the value of a(t̄) can be any value of range of a(t̄), we simply write

[r] random(a(t̄))← B (2.8)

5. Probabilistic Information: Information about probabilities of random at-

tributes taking a particular value is specified by the pr-atoms :

prr(a(t̄) = y|cB) = v (2.9)

where r is the term used to name the pr-atoms, B is a collections of extended

literals, pr is a special symbol not belonging to Σ and v is a term built from

arithmetic functions whose resulting value is a rational number between 0 and

1.

Sometime, we consider statement 2.9 as a rule where B is the body of the rule

and a(t̄) = y is the head of the rule. We may refer to such rules as pr rules.

If B is empty, we simply write

prr(a(t̄) = y) = v (2.10)

6. Observations and Actions: Observations and actions are statements of the

respective forms: obs(l) and do(a(t̄) = y), where l is a literal of Σ and a(t̄) = y

is an atom of Σ.

7
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2.2 Semantics of P-log

The semantics of a ground P-log program Π is defined in two aspects: a collection of

possible sets of beliefs of a rational agent associated with Π and their probabilities.

We refer to these sets as possible worlds. The set of possible worlds is defined through

a counterpart of Π, an Answer Set Prolog program τ(Π). The probability of possi-

ble world is defined through random selection rules and probabilistic information in

Π.

Instead of referring to original Answer Set Prolog syntax, we give our translation

based on the syntax that is accepted by a well known answer set solver, Smodels.

Smodels has introduced several new statements which also have been widely used in

other answer set solvers. According to [1], the Answer Set Prolog program τ(Π) is

defined as follows:

1. Sort declarations: For every sort declaration 2.1 of Π, τ(Π) contains c(x1), . . . , c(xn);

for statement 2.2, τ(Π) contains c = {m..n}.

2. Regular part: for each rule r in the regular part of Π, τ(Π) contains the rule

obtained by replacing each occurrence of an atom a(t̄) = y in r by a(t̄, y) and

replacing each occurrence of an atom a(t̄) 6= y in r by ¬a(t̄, y). Also we add

following rules to make sure that an attribute cannot have more than on value.

For each attribute term a(t̄), τ(Π) contains the rule:

¬a(t̄, Y1)← a(t̄, Y2), Y1 6= Y2 (2.11)

where Y1 and Y2 are variables and rule 2.11 will be considered as shorthand for

a collection of its ground instances with respect to the appropriate typing.

3. Random selection rules:

(a) For an attribute a, we have the rule:

intervene(a(t̄))← do(a(t̄, Y )) (2.12)

8



Texas Tech University, Weijun Zhu, May 2012

(b) Each random selection rule of the form 2.6 is translated to the following

rules:

1{a(t̄, X) : c0(X) : p(X)}1← B, not intervene(a(t̄)) (2.13)

where c0 is the range of a.

4. For each observation obs(l), τ(Π) contains the rule:

← not l (2.14)

5. For each action do(a(t̄, y)), τ(Π) contains the rule:

a(t̄, y). (2.15)

Definition 1 [Possible world]

An answer set of τ(Π) is called a possible world of Π.

To define the probability measure over all the possible worlds, we start with some

definitions.

Definition 2 [Possible atoms]

Let W be a consistent set of literals of Σ, Π be a P-log program, a be an attribute,

and y belong to the range of a. We say that the atom a(t̄) = y is possible in W with

respect to Π if Π contains a random selection rule r for a(t̄), where if r is of the form

2.6 then p(y) ∈ W and W satisfies B, and if r is of the form 2.8 the W satisfies B.

We say that y is a possible outcome of a(t̄) in W with respect to Π via rule r, and

that r is a generating rule for the atom a(t̄) = y.

Let Ω(Π) be the set of all possible worlds of a P-log program Π. We define the

corresponding probability P (W, a(t̄) = y) as follows:

Definition 3 [P (W, a(t̄) = y)]

9
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1. Assigned probability:

If Π contains prr(a(t̄) = y|cB) = v where r is the generating rule of a(t̄) = y,

B ⊆ W , and W does not contain intervene(a(t̄)), then

PA(W,a(t̄) = y) = v (2.16)

2. Default probability:

Let |S| denote the cardinality of set S. Let Aa(t̄)(W ) = {y|PA(W,a(t̄) =

y) is defined}. Then let

αa(t̄)(W ) =
∑

y∈Aa(t̄)(W )

PA(W,a(t̄) = y)

βa(t̄)(W ) = |{y : a(t̄) = y is possible in W and y 6∈ Aa(t̄)(W )}|

The default probability of an atom a(t̄) = y with respect to W is defined as:

PD(W,a(t̄) = y) =
1− αa(t̄)(W )

βa(t̄)(W )

3. Finally,

P (W,a(t̄) = y) =

 PA(W,a(t̄) = y) : y ∈ Aa(t̄)(W )

PD(W,a(t̄) = y) : otherwise

Now we define the measure of each possible world.

Definition 4 [Measure]

1. The unnormalized probability, µ̂Π(W ), of a possible world W induced by Π is

µ̂Π(W ) =
∏

a(t̄,y)∈W

P (W,a(t̄) = y)

where the product is taken over atoms for which P (W,a(t̄) = y) is defined.

10
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2. the measure, µΠ(W ) , of a possible world W induced by Π is the unnormalized

probability of W divided by the sum of unnormalized probabilities of all possible

worlds of Π, i.e.,

µΠ(W ) =
µ̂Π(W )∑

Wi∈Ω

µ̂Π(Wi)

This concludes our review of syntax and semantics of language P-log.

2.3 Query

The query of P-log is not formally defined in [1]. In this research, we extend the

idea of query discussed in paper [1]. We start with some definitions of formula and

probability of formula with respect to program Π.

Definition 5 [Formula]

We define formula as follows:

1. An atom of Σ of program Π is a formula.

2. If f is a formula, then not f is a formula.

3. If f1 and f2 are formulas, then f1 ∧ f2 and f1 ∨ f2 are formulas.

Definition 6 [Possible world satisfy formula]

We say that a possible world W satisfies a formula f , denoted by W ` f , if following

conditions are satisfied:

1. If f is an atom l, then W ` f if and only if f ∈ W .

2. If f has form of not l, then W ` f if and only if f 6∈ W .

3. If f = f1 ∧ f2 where f1 and f2 are formulas, then W ` f if and only if W ` f1

and W ` f2.
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4. If f = f1 ∨ f2 where f1 and f2 are formulas, then W ` f if and only if W ` f1

or W ` f2.

Definition 7 [Probability of formula]

The probability of a formula f with respect to a P-log program Π is the sum of

the measures of the possible worlds of Π in which f is satisfied:

PΠ(f) =
∑
W`f

µΠ(W )

Definition 8 [Query]

A query Q to a P-log program Π of signature Σ has the form:

{f1, . . . , fk}|obs(l1), . . . , obs(lm), do(a1(t̄1) = y1), . . . , do(an(t̄n) = yn) (2.17)

where f1, . . . , fk are formulas of Σ, l1, . . . , lm are literals and a1(t̄1) = y1, . . . , an(t̄n) =

yn are atoms. By formula(Q), we mean the set {f1, . . . , fk} and by ΠQ, we mean a

P-log program consisting of do and obs statements in the query Q.

The answer to a query Q w.r.t. a P-log program Π of signature Σ is a set of formulas

F such that

F = arg max
f∈formula(Q)

PΠ∪ΠQ(f) (2.18)

i.e., F is a subset of formula(Q) such that for every element f of F , the probability

PΠ∪ΠQ(f) has the largest value, or say f is one of the formulas in formula(Q) that

is most likely being true w.r.t. the program Π ∪ ΠQ.

2.4 SCOU P-log Program

The notion of causally ordered P-log program is introduced in [1] in order to under-

stand theorems of consistency of P-log programs. We extend the above notion and

define a new class of P-log programs, called strongly causally ordered unitary P-log

programs (scou P-log program). We are specially interested in this class as programs

within this class have following properties:

12
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1. The scou P-log programs are coherent. It naturally matches our understanding

of causal relationship among events as well as probability axioms.

2. Every problems modeled by Bayesian network can be translated into scou P-log

programs and the translation is straight forward.

3. Many ideas used for designing efficient inference engine of Bayesian network

can be reused for designing of algorithms for P-log systems which take scou

programs as input.

In this section, we will first review the definitions of causally ordered unitary P-log

program, then we will give the definition of scou P-log program.

Definition 9 [Dependency relations]

Let l1 and l2 be literals of Σ. We say that

• A literal l1 is immediately dependent on l2, written as l1 >i l2, if there is a rule

r of Π such that l1 occurs in the head of r and l2 occurs in the r’s body;

• A literal l1 depends on l2, written as l1 > l2, if 〈l1, l2〉 belongs to the reflexive

transitive closure of relation l1 >i l2;

• An attribute term a1(t̄1) depends on an attribute term a2(t̄2) if there are literals

l1 and l2 formed by a1(t̄1) and a2(t̄2) respectively such that l1 depends on l2.

Definition 10 [leveling function]

A leveling function, ||, of Π maps attribute terms of Σ onto a set [0, n] of natural

numbers. It is extended to other expressions over Σ as follows:

|a(t̄) = y| = |a(t̄) 6= y| = |not a(t̄) = y| = |not a(t̄) 6= y| = |a(t̄)|

If B is set of expressions then |B| = max({|e| : e ∈ B}).

Definition 11 [Reasonable leveling]

A leveling function || of Π is called reasonable if
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1. no two random attribute terms of Σ have the same level under ||;

2. for every random selection rule [r] random(a(t̄) : {y : p(y)})← B of Π we have

|a(t̄) = y| > |{p(y) : y ∈ range(a)} ∪B|;

3. for every probability atom prr(a(t̄) = y|cB) of Π we have |a(t̄)| > |B|;

4. a1(t̄1) is a random attribute term, a2(t̄2) is a non-random attribute term, and

a2(t̄2) depends on a1(t̄1) then |a2(t̄2)| ≥ |a1(t̄1)|.

Definition 12 [‖-induced structure]

Let Π be a causally ordered program with signature Σ and leveling ‖, and let a1(t̄), . . . , an(t̄n)

be an ordering of its random attribute terms induced by ‖. By Li we denote the set

of literals of Σ which do not depend on literals formed by aj(t̄j) where i ≤ j. Πi for

1 ≤ i ≤ n + 1 consists of all declarations of Π, along with the regular rules, random

selection rules, actions and observations of Π such that every literal occurring in the

heads or bodies of these rules belong to Li. We’ll refer to Π1, . . . ,Πn+1 a ‖-induced

structure of Π.

We use the following example to further explain definition 12

Example 1 [‖-induced structure of Π]

%All attributes are Boolean.

1. random(a)

2. random(b)

3. c← not d, b

4. d← not c, b

5. e← a, c,not e

6. e← ¬a, c,not e

Let F be a leveling function defined as following:
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|a| = 1 and |b| = |c| = |d| = |e| = 2.

In Example 1, we can see that F is a reasonable leveling according to the definition.

Based on this leveling function, we have the following ‖-induced structure of Π:

Π1 = ∅

Π2 consists of one rule:

Π2 = {random(a)}

Π3 consists of all the rules in Π:

Π3 = Π

Definition 13 [causally ordered P-log program]

We say that a P-log program is causally ordered if it has a reasonable leveling

function || such that

1. Π1 has exactly on possible world;

2. if W is a possible world of Πi and atom ai(t̄i) = y0 is possible in W with respect

to Πi+1 then the program W ∪ Πi+1 ∪ obs(ai(t̄i) = y0) has exactly one possible

world; and

3. if W is a possible world of Πi and ai(t̄i) is not active in W with respect to Πi+1

then the program W ∪ Πi+1 has exactly one possible world.

Continuing with Example 1, we now show that the program in Example 1 is a causally

ordered P-log program w.r.t. to the leveling we mentioned in Example 1. For Π1 and

Π2, it is easy to show that they satisfy all the conditions in definition 13. For Π3, Let

{a} be a possible world of Π2, then there has exactly one possible world of program

{a}∪Π3 ∪{obs(b)}, i.e., the set {a, b, d}. For program {a}∪Π3 ∪{obs(¬b)}, the set

{a,¬b} is the only possible world of it. Similarly for the other possible world {¬a}

of Π2, we can see that all the conditions of definition 13 are satisfied by programs

{¬a}∪Π3∪{obs(b)} and {¬a}∪Π3∪{obs(¬b)}. Therefore the program Π in Example
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1 w.r.t. the leveling function where |a| = 1 and |b| = |c| = |d| = |e| = 2 is a causally

ordered P-log program.

Now let us take a look at another reasonable leveling function where |b| = |c| = |d| = 1

and |a| = |e| = 2. The induced structure of program Π with respect to this leveling

function is shown below:

Π1 = ∅

Π2 consists of three rules (rule (2), (3) and (4)) of Π:

Π2 = {random(b). c← not d, b. d← not c, b.}

Π3 = Π

We can see that the program Π does not satisfy all the conditions in definition 13

if the ‖-induced structure of Π is created based on the new leveling function. The

set ∅ is a possible world of Π1 and b = true is possible in ∅ w.r.t. Π1. However, the

program ∅ ∪ Π2 ∪ obs(b) consists of the following rules

1. random(b)

2. c← not d, b

3. d← not c, b

4. obs(b)

which has two possible worlds {b, c} and {b, d}.

The above example shows that there are causally ordered P-log programs such that

when given another reasonable leveling function, it fails to satisfy all the conditions

of definition 13. The algorithm we designed for improving the performance of P-log

inference engine relies on the assumption that the input P-log program satisfies all the

conditions in definition 13 given an arbitrary reasonable leveling function. Therefore,

we introduce a new definition called strongly causally ordered P-log program.
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Definition 14 [strongly causally ordered P-log program]

A P-log program Π is called strongly causally ordered P-log program if for every

reasonable leveling function, Π satisfies all the conditions in definition 13.

Given a leveling function, to check whether it is a reasonable leveling function is not

difficult. As all the conditions listed in definition 11 can be checked by only looking at

rules in the program. But it will need some extra computation to determine whether

the program is a strongly causally ordered P-log program.

There are types of rules which are commonly used for ASP may not be suitable in

P-log program as they will result in a P-log program which is not strongly causally

ordered P-log program. We list some of these rules as follows:

• Constraint rules should not be used for representing P-log program. In ASP,

constraint rules are logical rules with an empty head:

← l1, . . . , lk, not lk+1, . . . , not ln

Since constraint rules are used for eliminating unwanted answer sets in ASP, it

violates the second condition of causally ordered P-log program if its body is

satisfied.

Notice that a rule

p← a,¬p

is also served as a constraint for atom a, i.e., a cannot be true in any answer

sets of an Answer Set Prolog program which containing this rule. Therefore, in

general, rules with this form are not useful for building a scou P-log program.

• Even number of negative loops are not suitable for P-log program. An example

of such rules are:

a← not b
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b← not a

These types of rules will create two answer sets: {a} and {b}. Obviously, this

rules alone will violate the conditions of definition of causally ordered P-log

program.

Now we define a unitary P-log program. Let Π be a ground P-log program containing

the random selection rule

[r] random(a(t̄) : {X : p(X)})← B

We refer to a ground pr-atom

prr(a(t̄) = y|cB) = v

as a pr-atom indexing r. We will refer to B as the body of the pr-atom.

Let W1 and W2 be possible worlds of Π satisfying B. We say that W1 and W2 are

probabilistically equivalent with respect to r if

1. for all y, p(y) ∈ W1 if and only if p(y) ∈ W2, and

2. for every pr-atom q indexing r, W1 satisfies the body of q if and only if W2

satisfies the body of q.

A scenario for r is an equivalence class of possible worlds of Π satisfying B, under

probabilistic equivalence with respect to r.

By range(a(t̄), r, s), we denote the set of possible values of a(t̄) in the possible worlds

belonging to scenario s of rule r. Let s be a scenario of rule r. A pr-atom q indexing

r is said to be active in s if every possible world of s satisfies the body of q.

For a random selection rule r and scenario s of r, let atr(s) denote the set of probability

atoms which are active in s.

Definition 15 [Unitary rule]
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A random selection rule r is unitary in Π, or simply unitary, if for every scenario s

of r, one of the following conditions holds:

1. For every y in range(a(t̄), r, s), atr(s) contains a pr-atom of the form prr(a(t̄) =

y|cB) = v, and moreover the sum of the values of the probabilities assigned by

members of atr(s) is 1; or

2. There is a t in range(a(t̄), r, s) such that atr(s) contains no pr-atom of the form

prr(a(t̄) = y|cB) = v, and the sum of the probabilities assigned by the members

of atr(s) is less than or equal to 1.

Definition 16 [Unitary Program]

A P-log program is unitary if each of its random selection rules is unitary.

A P-log program is called strongly causally ordered unitary P-log program if it is

both strongly causally ordered and unitary.

2.5 Representation with P-log

We use this section to show how probabilistic reasoning problems are represented by

the language P-log. In [1], it has shown several examples of using P-log to represent

various interesting problems, we here focus on representing the reasoning problems

as a scou P-log program.

We discuss how to represent probability problems that are involved with combination

and permutation. For permutation problem, the order of which object is selected

matters while for combination problem the order does not matter.

Suppose we have a set O of M objects and we want to select N objects from these

M objects. We model this type of problems as every time we select one object from

M and we perform such selection for N times (steps). We can use random attribute

term select : steps→ object to represent such random selections. Because, in P-log,

random attribute term select can only pick one object as its value. Therefore, we
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need parameter steps to distinguish N steps of selections. The following code is an

example of such permutations where repetition is allowed.

object={1..m}.

steps={1..n}.

select: steps -> object.

#domain steps(S).

[r(S)] random(select(S)).

When repetition is not allowed, we can use auxiliary attribute term can select(N,O)

to define the dynamic ranges. can select(N,O) is true if object O can be selected in

Nth steps. The resulting program is shown as follows:

object={1..m}.

steps={1..n}.

select: steps -> object.

#domain object(O).

#domain steps(S;S1;S2).

-can_select(S1,O) :- select(S2)=O, S1<S2.

can_select(S,O):- not -can_select(S,O).

[r(S)] random(select(S):{Y:can_select(S,Y)}).

However, this approach increases the number of ground rules and introduces too

many auxiliary attribute terms in the program. Consider a problem with 10 objects

and 5 steps of selections. we will have 50 attribute terms for can select and have to

include hundreds of grounded rules in the program. This will significantly increase

the size of ground program. Instead of using dynamic range, another approach is to

use constraints:

object={1..m}.

$steps={1..n}.

select: steps -> object.
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#domain steps(S).

[r(S)] random(select(S)).

:- select(S1)=O,

select(S2)=O,

S1<>S2.

The last rule says that we can not select same object O in two different selection

steps. While using lparse and smodels for computing possible worlds, this approach

will give correct number of possible worlds and the unnormalized probability of each

possible world will be correct too. However, by our definition, this program is not a

scou P-log program. Because the condition that every outcome of random selection

rules will result in a possible world is not satisfied here. To solve this problem, we

may use the following trick:

object={1..m}.

steps={1..n}.

select: steps -> object.

#domain steps(S;S1;S2).

#domain object(O).

[r(S)] random(select(S)).

invalid :- select(S1)=O

select(S2)=O

S1<>S2.

-invalid :- not invalid.

Instead of using constraints, we introduce boolean attribute atom invalid as the head

of previous constraint rules. Then for each query, we add obs(invalid = false) into

the condition part of the query. Since obs are acted as constraints according to the

semantics of P-log, this will give the same effects as we directly use constraints in

the P-log program. The advantage of using this trick is that the program without

query is a strongly causally unitary P-log program, therefore, we can apply advanced
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inference algorithms to solve the problem.

When ordering does not matter, the selection problem is considered as combina-

tion problem. Many combination problems can be solved by using above techniques

without any changes. The disadvantage of using the above program is that this rep-

resentation generates too much more possible worlds than necessary. For example,

this approach treats selections (3,2,1) and (1,2,3) as different possible worlds, while

in combination problem, there is no difference between these two. We can achieve

this by change one of the statement of previous program as:

invalid :- select(S1)=O1,

select(S2)=O2,

S1<S2, O1<=O2.

The above rule says that for every two selections, if the result of an earlier selection

is less or equal than the result of later selection, then such selections are invalid. To

use such rule, we need a total liner ordering among elements of the sort object where

≤ relations are well defined.

Now we will show a complete example, called poker problem, which uses above tech-

niques to represent combination problems.

Example 2 [Poker]

In this problem, we have a desk of 12 cards. With four different suites and 3 different

kinds. We randomly pick 5 cards and want to know what is the probability of having

a pair in these 5 cards, i.e., having exactly one pair of cards in the same kinds.

The complete program is shown as below. It contains three sorts.

#domain card(C;C1;C2).

#domain kind(K;K1;K2).

#domain step(S;S1;S2).

step={1..5}.
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kind={1..3}.

card={1..12}.

The only random attribute term draw takes steps as its parameter and maps to

card

draw: steps -> card.

For each card C, relation kc(C) = K means the card C is kind K. We list all these

information as facts in the our program for every cards.

kc(1)=1. kc(2)=2. kc(3)=3.

kc(4)=1. kc(5)=2. kc(6)=3.

kc(7)=1. kc(8)=2. kc(9)=3.

kc(10)=1. kc(11)=2. kc(12)=3.

The following rules are using the same methods we described before to generate all

possible combinations of drawing cards.

[dr(S)] random(draw(S)).

invalid :- draw(S1)=C1,

draw(S2)=C2,

S1<S2,C1<=C2.

-invalid :- not invalid.

We say that the picked cards have at least two cards for kind K, if in two steps S1

and S2, the cards we have picked, C1 and C2 are same kind. we use the earlier step

S1 in relation pair(K,S1) for further determine whether we have exactly two cards

in kind K.

pair(K,S1) :- kc(C1)=K, kc(C2)=K,

draw(S2)=C2, draw(S1)=C1,

S1<S2.

Notice that if we have N (N > 1) cards in a kind K, then the above rule will make
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N −1 atoms pair(K,S) to be true. Therefore, we can use the following rule to decide

if the cards have more than two cards in the kind K

more_than_two(K) :- pair(K,S1),

pair(K,S2),

S1<S2.

Therefore, we say that we have exactly two cards in a kind K if for some step S,

pair(K,S) is true but we do not have more than two cards in K.

pair(K) :- pair(K,S),

not more_than_two(K).

We also need to consider that we may have more than two pairs in our hand. This

relation double pair can be defined as follow.

double_pair :- pair(K1), pair(K2),

K1<>K2.

Now we can say if the hand contains exactly one pair of same kinds if for some kind

K, pair(K) is true and there is no other pairs, i.e., double pair is not true.

pair :- pair(K),

not double_pair.

Now we can propose our query as follows:

{pair}|obs(-invalid).

This completes our representation of poker example and it is easy to see that the

resulting program is a scou program.
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Chapter 3

ALGORITHM

In this chapter, we presents two algorithms for implementing P-log systems. The first

algorithm is called translation algorithm. This algorithm translates a P-log program

to ASP program and uses existed Answer Set solver to find all possible worlds of P-

log program. Since the translation method has been discussed in semantics of P-log,

here we only focus on rules which are translated differently from previous chapter

and discuss how to encode and decode probabilistic information such that probability

of formulas can be computed directly from output of Answer Set solver. The second

algorithm consists of two major parts: (1) a ground algorithm that produces a ground

P-log program such that the resulting ground program only consists of rules that are

related to the query. (2) a solver algorithm that it utilizes the idea of evaluating

patial possible worlds to compute probability of formulas.

In section 3.1, we will illustrate the details of translation algorithm; In section 3.2,

we will discuss the ground algorithm and in section 3.3, we will discuss the solver

algorithm.

3.1 Translation Algorithm

In section 2.2, we have shown how to translate a P-log program into an Answer Set

Prolog program such that each possible world of the P-log program is one to one

correspondence to the answer set of its counterpart. In this section, we will focus

on how to encode probabilistic information of a P-log program into some rules of

Answer Set Prolog program and how to extract this information out of answer sets of

the Answer Set Prolog program to compute the measure of each possible world.
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The idea of encoding probability information of a P-log program is to define atoms

pd/2 and pa/3. such that the resulting Answer Set Prolog program Π has the following

properties:

1. For each answer set W of Π, if a(t̄) = y is possible with respect to W via some

random selection rule r, then there exists an atom pd(r, a(t̄, y)) ∈ W .

2. For each answer set W of Π and each pr-rule, if B ⊆ W and W does not contain

intervene(a(t̄)), then pa(r, a(t̄, y), v) ∈ W .

To define pd/2 and pa/3, we have following rules:

1. For each random selection rule of the form 2.6, we add the following rule to the

Answer Set Prolog program:

pd(r, a(t̄, yi))← p(yi), B, not intervene(a(t̄)). (3.1)

where yi ∈ range(a).

2. For each random selection rule of the form 2.8, we add the following rule to the

Answer Set Prolog program:

pd(r, a(t̄, yi))← B, not intervene(a(t̄)). (3.2)

where yi ∈ range(a).

3. For each pr rules of the form 2.9, we add the following rule to the Answer Set

Prolog program:

pa(r, a(t̄, y), d(v1, v2))← B. (3.3)

where v = v1/v2, and v1, v2 are integers. The reason we use v1 and v2 instead of v

is because most existed Answer Set solvers can only take integers but not float point

numbers such as 0.5.

After all answer sets are computed by Answer Set Prolog solver, we can extract all

the necessary probabilistic information from answer sets to computer unnormalized

measures and normalized measures of each possible world.
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Algorithm 1: UnormalizedProbability

Input: W: a possible world of a translated P-log program

Output: p: the unnormalized measure of W

A1, A2: assignments that assign each pd atoms with a value v ∈ [0, 1];1

begin2

A1 := AssignedProbability(W );3

A2 := DefaultProbability(W,A1);4

p := GeneralProbability(W,A2);5

return p;6

end7

Algorithm 1 shows how unnormalized measure is computed for a possible world W .

The algorithm contains three steps:

1. AssignedProbability(W ): In this function, we assign pd(r, a(t̄) = y) to v1/v2 if

there exists an atom pa(r, a(t̄) = y, d(v1, v2)) ∈ W , otherwise, assign pd(r, a(t̄) =

y) to -1.

2. DefaultProbability(W ): This function computes the default probability of ev-

ery possible outcomes if the probability of such possible outcome is assigned

with −1 in AssignedProbability.

3. GeneralProbability: In this function, we return the unnormalized probability

µ̂(W ) of W . µ̂(W ) is computed as follows:∏
pd(r,a(t̄)=y)∈W∧a(t̄)=y∈W

P (pd(r, a(t̄) = y))

where P (pd(r, a(t̄) = y)) is the value assigned to atom pd(r, a(t̄) = y) in step 1

or step 2.

With unnormalized measure available for each possible world, the computation of

normalized measure of each possible world comes directly from the definition and so

is the probability of formulas being true.
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3.2 The Ground Algorithm

The description of our algorithm will use the following definitions and notations.

Definition 17 [Term(S)]

Let S be a set of ground literals of a signature Σ. By Term(S), we denote the set of

ground attribute terms occurring in the literals from S.

For example, if S = {open(1) = true, open(1) = false, select(1) 6= true}, then

Term(S) = {open(1), select(1)}.

Definition 18 [Dependent Set]

Let Π be a ground P-log program with signature Σ and l be a ground literal of Σ. We

define the dependent set of l, written as DepΠ(l), as the minimal set of ground

attribute terms from Σ satisfying the following conditions:

• Term({l}) ⊆ DepΠ(l);

• DepΠ(l) is closed under regular rules of Π, i.e., for every regular rule l0 : −B

of Π if Term({l0}) ⊆ DepΠ(l), then Term(B) ⊆ DepΠ(l));

• For a random selection rule of the form: [r] random (a(t̄)) : −B,

if a(t̄) ∈ DepΠ(l), then Term(B) ⊆ DepΠ(l);

• For a random selection rule of the form: [r] random (a(t̄)) : {y : p(y)}) : −B,

if a(t̄) ∈ DepΠ(l), then Term(B ∪ p(y)) ⊆ DepΠ(l);

• For a pr rule [r] pr(a(t̄) = y|B) = v,

if a(t̄) ∈ DepΠ(l), then Term(B) ⊆ DepΠ(l).

Theorem 1 Let Π be scou P-log program with no do and obs statements and Σ be

its signature. Let l be a literal of Σ and Πl = {r|Term(Head(r)) ∈ DepΠ(l), r ∈ Π},

then PΠl(l) = PΠ(l).
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The above theorem shows that to evaluate the probability of a literal l, we may only

need to look at rules whose head belongs to the dependent set of literal l. Hence, Πl

is a subset of Π. Notice that, this result can be easily expanded to formulas because

it is easy to add a literal l and regular logical rules into the program Π to make a new

program Π′ such that each possible world W ′ of program Π′ is a super set of some

possible world W of Π with same measure and W ` f if and only if l ∈ W ′.

The Ground(Π, l) algorithm presented in this section will generate a ground P-log

program ΠG such that W is a possible world of ΠG if and only if W is a possible

world of Πl.

Algorithm 2: Ground

Input: a strongly causally ordered P-log program Π with signature Σ and a ground

literal l of Σ.

Output: a ground P-log program Π′ with signature Σ, such that PΠ(l) = PΠ′(l)

Sterm := Term({l});1

Sfinished := ∅;2

PreProcess(Π);3

Π′ := declarations in Π;4

〈S+, S−〉 := 〈∅, ∅〉;5

while Sterm is not empty do // Π′ is constructed inside the loop6

Let a(t̄) be an element of Sterm;7

Π′ := Π′ ∪GroundRule(Π, a(t̄), 〈S+, S−〉);8

Sfinished := Sfinished ∪ {a(t̄)};9

Evaluate(Π′, Sfinished, 〈S+, S−〉);10

Sterm := DepΠ′(l)\Sfinished;11

end12

RemoveDanglingRules(l,Π′);13

return Π′14
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The algorithm Ground is presented in Algorithm 2. We explain each steps of the

algorithm Ground as follows:

1. A variable Sterm will be used to contain a collection of unprocessed ground

attribute terms relevant to l. Initially it is set to Term({l}).

2. A variable Sfinished will store all the ground attribute terms which are already

processed by the program. This set is initialized to the empty set.

3. Procedure PreProcess eliminates all arithmetic expressions occurring in the

heads of the rules of program Π. Each such expression, e, is replaced by a

new variable Xe and an atom Xe == e is added to the body of the rule. For

example, a rule

next(N + 1, N)← number(N).

will be transformed into the rule

next(N ′, N)← number(N), N ′ == N + 1.

4. Π′ will contain the ground program relevant to l. It is initialized by the decla-

rations of Π.

5. The algorithm maintains two sets of ground literals: S+ and S−. The set S+

stores literals which are known to always be true in all the possible worlds of

the program Π, while S− stores ground literals that are known never to be true

in any possible worlds of the program Π. We say that the body of a ground rule

r is falsified by sets 〈S+, S−〉 if one of the following conditions are satisfied:

• Pos(r) ∩ S− 6= ∅;

• Neg(r) ∩ S+ 6= ∅;

• The body of r contains false arithmetic atom (e.g. 3 > 4 + 1).

We use these two sets to decide whether a ground rule of Π′ is falsified or not.

They are both initialized to empty sets.
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6. The while loop starts. Inside the loop, the output program Π′ is constructed.

7. The algorithm first selects a ground attribute term a(t̄) from Sterm.

8. Function GroundRule takes a(t̄), together with Π and 〈S+, S−〉 as input. For

every rule r of Π it checks if the attribute term occurring in the head of r unifies

with a(t̄). If it does, i.e. the m.g.u. u is found, the function computes all ground

instances of u(r) whose bodies are not falsified by 〈S+, S−〉. Union of such rules

is returned and added to Π′.

9. Sfinished is updated by adding the, now processed, ground attribute term a(t̄).

10. The details of procedure Evaluate can be found in later section. In short, the

procedure computes consequences of Π′ ∪ S+ ∪ ¬S− (where ¬S− =def {not p :

p ∈ S−}); expands the sets S+ and S− accordingly; removes all the rules such

that their bodies are falsified by the newly updated sets S+ and S−.

11. In the end of each iteration, the set Sterm is updated. Sterm will contain all

the ground attribute terms occurring in the program that are relevant to l but

not yet been processed. Since the size of Π′ may increase or decrease because

of functions GroundRule and Evaluate, the size of Sterm may fluctuate during

each iteration of the while loop. However, the set Sfinished increases every time

and, since the number of ground terms is finite, Sterm will decrease eventually

to the empty set and the loop will terminate.

12. The while loop terminates when the set Sterm is empty.

13. We first gives the definition of dangling rule:

Definition 19 [Dangling Rule]

Let Π be a ground P-log program with signature Σ and l be a ground literal of

Σ. A rule r of Π is called a dangling rule with respect to the literal l and

the program Π if the attribute term a(t̄) defined by the rule r does not belong to

DepΠ(l).
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The procedure RemoveDanglingRules(l,Π) removes from Π all the rules dan-

gling with respect to literal l and program Π.

14. The ground program Π′ will be returned.

Next, we will give the details of functions GroundRule and Evaluate.

3.2.1 Function GroundRule

Algorithm 3: GroundRule

Input: a strongly causally ordered P-log program Π with signature Σ and a ground

attribute term t and two sets of ground literals, 〈S+, S−〉, from signature Σ.

Output: Set R such that r′ ∈ R iff r′ is a ground instance of some rule of Π,

{t} = Term({Head(r′)}) and the body of r′ is not falsified by 〈S+, S−〉.

R := ∅;1

foreach rule r in Π do2

if IsMatch(r, t) then3

R := R ∪GetGroundRule(r, t, 〈S+, S−〉);4

end5

end6

return R7

Function GroundRule is presented in Algorithm 3. Steps of function GroundRule is

described as follows:

1. The set R of ground rules will be initialized to the empty set.

2. The loop will check each rule r (including regular rules, random selection rules

and pr rules) of Π to see whether any ground instance of r should be generated

and added to R. This is done as follows:

3. Function IsMatch(r, t) checks if there is an m.g.u u which unifies the attribute

term d defined by a rule r with ground attribute term t.
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If such unification exists and terms assigned by it to variables of d belong to the

domains of these variables then function IsMatch(r, t) return true, otherwise

it returns false.

4. Function GetGroundRule(r, t, 〈S+, S−〉) returns the set of all ground instances

r′ of rule r such that the head of r′ is a literal that formed by the ground

attribute term t and the body of r′ is not falsified by 〈S+, S−〉.

7. The set R is returned at the end.

3.2.2 Procedure Evaluation

We start with some definitions.

Definition 20 [supported literals]

We say that a ground literal l is supported by a ground program Π if there exists a

rule r in Π such that,

• if r is a regular rule, then l is the head of r, and

• if r is a random selection rule, then Term(l) is defined by r.

The procedure Evaluate uses procedures One step and Modify which we will de-

scribe first.

The procedure One step(Π, Sf , 〈S+, S−〉) takes a ground p-log program Π, a set, Sf ,

of ground terms and two sets of ground literals 〈S+, S−〉 as input and it extends

〈S+, S−〉 as follows:

• If there exists a ground regular rule r of Π such that l is the head of r and

Pos(r) ⊆ S+ and Neg(r) ⊆ S−, then the literal l is added to S+.

• If an atome a(t̄) = y ∈ S+, then every atom of the form a(t̄) 6= y′ where y′ 6= y

is added to S+ and a(t̄) = y′ is added to S−.

• If l ∈ S+ then ¬l is added to S−.
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• Every atom a(t̄) = y such that a(t̄) ∈ Sf and a(t̄) = y is not supported by the

program Π is added to S−.

The procedure Modify(Π, 〈S+, S−〉) simplifies the program Π as follows:

1. All rules whose bodies are falsified by 〈S+, S−〉 are removed from Π.

2. If a literal l ∈ S+, then all the regular rules in Π whose heads are l and all the

random selection rules in Π which define Term(l) are removed from Π.

3. From the remaining rules, extended literals in the body that are valuated to

true with respect to 〈S+, S−〉 are removed.

Now, we describe the procedure Evaluate.

Algorithm 4: Evaluate

Input: a ground P-log program Π with signature Σ, a set, Sf , of ground terms and

two sets of ground literals 〈S+, S−〉.

repeat1

〈N+, N−〉 = 〈S+, S−〉;2

〈S+, S−〉 = One step(Π, Sf , 〈S+, S−〉);3

Π = Modify(Π, 〈S+, S−〉);4

until 〈N+, N−〉 = 〈S+, S−〉 ;5

Algorithm 4 shows the procedure Evaluate(Π, Sf , 〈S+, S−〉). Variables N+ and N−,

storing sets of ground literals, are used for checking whether a fixed point is reached.

The procedure extends sets 〈S+, S−〉 and simplifies program Π by calling procedure

One step and Modify iteratively until the least fixed point is reached.

Let S−i be the values of variables S+ and S− at the end of ith iteration, we have

S+
j ⊆ S+

j+1 and S−j ⊆ S−j+1. Therefore, the operation on 〈S+, S−〉 is monotonic. Since

the number of attribute atoms in the ground program is finite, the loop will reach

the least fixed point and terminate.
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The following example is used to illustrate the grounding process. We will concentrate

on the most interesting procedures: Evaluate and RemoveDanglingRule.

Example 3 Consider the following program Π:

a, b, c, d, l : boolean.

1. l :- a.

2. l :- b.

3. [a] random(a).

4. b :- c, d.

5. [c] random(c).

6. -d.

Let 〈S+, S−〉 = 〈∅, ∅〉 and Sfinished = {l, a, b, c, d}, we computeEvaluate(Π, Sfinished, 〈S+, S−〉)

as follows:

Firstly, the sets 〈S+
0 , S

−
0 〉 = 〈∅, ∅〉 and Π0 = Π. In the first iteration, the procedure

One step(Π0, Sfinished, 〈S+
0 , S

−
0 〉) will add the literal ¬d to S+

0 since rule (6) has an

empty body. Therefore, 〈S+
1 , S

−
1 〉 = 〈{¬d}, ∅〉. The procedure Modify(Π0, 〈S+

1 , S
−
1 〉)

removes rule (6) from the program since the value of its head is known. In the second

iteration, the procedure One step(Π1, Sfinished, 〈S+
1 , S

−
1 〉) adds the literal d to S−1 .

The procedure Modify(Π0, 〈S+
2 , S

−
2 〉) removes rule (4) since its body is falsified. In

the third iteration, the procedure One step(Π1, Sfinished, 〈S+
2 , S

−
2 〉) adds the literal b

to S−2 since b is not supported by program Π1 after rule (4) is removed. Therefore,

〈S+
3 , S

−
3 〉 = 〈{¬d}, {d, b}〉. The procedure Modify(Π1, 〈S+

3 , S
−
3 〉) removes rule (2)

from Π1 and results in program Π2 as follows:

l, a, b, c, d : boolean.

1. l :- a.

2. [a] random(a).
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3. [c] random(c).

Since no further attribute atoms will be added to 〈S+
3 , S

−
3 〉 in the forth iteration, a

least fixed point is reached and the procedure Evaluate terminates.

Now we compute RemoveDanglingRules(l,Π2).

Because the attribute term c 6∈ DepΠ(l), rule (3) is a dangling rule with respect to

the ground literal l and Π2. We remove rule (3) from Π2 and the resulting program,

containing only two rules, is shown below:

l, a, b, c, d : boolean.

1. l :- a.

2. [a] random(a).

3.3 The Solver Algorithm

The naive P-log inference engine translates the ground P-log program to an Answer

Set Prolog program and uses Answer Set Solver, such as Smodels, to compute all the

possible worlds and then extracts probability information from each possible worlds.

However, we can improve the efficiency of such computation by avoiding computing all

the possible worlds. We use the following example to show that sometimes computing

all possible worlds may not be necessary.

Example 4 [A scou P-log program Π]

%Beginning of the Program

a, b, f : boolean.

[a] random (a).

[b] random (b).

f :- a.

f :- b.
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Figure 3.1: Possible worlds of Example 4

-f :- not f.

%End of the Program

To evaluate the probability of f being true, the previous P-log inference engine will

call Smodels[3] for computing all possible worlds, which will generate 4 possible

worlds, shown in Figure 3.1(a).

Notice that to compute probability of f we don’t need to fire random selection

rule b for the node {a, f}. Since the program is strongly causally ordered and

unitary, the tree shown in Figure 3.1(a) is a unitary tree that represents Π. By

lemma 5 in [1], the literal f is always true in both possible worlds ({a, f, b} and

{a, f,¬b}) extended from {a, f}, and furthermore, by lemma 1 in [1], PΠ({a, f}) =

PΠ({a, f, b}) + PΠ({a, f,¬b}). Therefore, we can compute the probability of f being

true by summing up PΠ({a, f}) and PΠ({¬a, b, f}), as shown in Figure 3.1(b).

The algorithm we will describe next takes advantage of the scou property of the

input program. This is done by extending standard three valued interpretation to a

special 5 valued interpretation and by building a special tree that helps to reduce the

unnecessary computation.
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3.3.1 Algorithm Closure

Definition 21 [f-interpretation]

An f-interpretation is a 5 valued interpretation that maps literals of some signature

Σ into the set V = {T,MT,U,MF, F} of truth values.

Symbols T , MT , U , MF and F stand for true, must be true, unknown, must be false,

and false respectively. The set V has a natural truth-based ordering relation <t:

F <t MF <t U <t MT <t T

Two truth-values v1 and v2 are called incompatible if U <t v1 and v2 <t U .

The f-interpretation A can be expanded to sets of literals as follows:

A({l1, . . . , ln}) = min1≤i≤n{A(li)}.

To expand A to sets of extended literals we define default negation of truth values:

not T = F , not MT = MF , not U = U , not MF = MT and not F = T , and

define

A({l1, . . . ln,not ln+1, . . . ,not lm}) = min{A(l1), . . . , A(ln),notA(ln+1), . . . ,notA(lm)}

Definition 22 [Extension]

An f-interpretation A′ is called an extension of an f-interpretation A (written as

A ≤i A′) if for every literal l ∈ Σ, the following two conditions are satisfied:

• A(l) ≥t MT =⇒ A′(l) ≥t A(l),

• A(l) ≤t MF =⇒ A′(l) ≤t A(l),

Intuitively, A′ is an extension of A if A′ gives at least as much knowledge about literals

of Σ as A does.
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Let A be an f-interpretation. By true(A) we denote the set of literals true in A,

i.e.,

true(A) = {a(t̄, y) : A(a(t̄) = y) = T} ∪ {¬a(t̄, y) : A(a(t̄) 6= y) = T}

Definition 23 [Consistent Interpretation]

An f-interpretation A is called consistent with respect to a ground P-log program Π

if there exists an extension A′ of A, such that true(A′) is a possible world of Π.

Since no possible world contains l and l̄ at same time. An f-interpretation A such

that A(l) > U and A(l̄) > U is inconsistent. We use symbol Ac to denote inconsistent

f-interpretations.

Next, we will introduce the function Closure(Π, A). It returns Ac if the given f-

interpretation A with respect to a ground P-log program Π is not consistent, or it

returns an f-interpretation, A′, of A such that

• A′ is an extension of A.

• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;

Before we describe function Closure(Π, A), we first describe function AtLeast(Π, A)

and function AtMost(Π, A).

We start with some definitions and terminology.

Definition 24 [Weakly Falsified Rule]

A rule r of P-log program is said to be a weakly falsified rule with respect to to an

f-interpretation A, if A(body(r)) = MF .

Definition 25 [Falsified Rule]

A rule r of P-log program is said to be a falsified rule with respect to to an f-

interpretation A, if A(body(r)) = F .
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Definition 26 [Weakly Supporting Rule]

A rule r is said to be a weakly supporting rule of a literal l with respect to an

f-interpretation A, if it satisfies the following condition:

• A(body(r)) ≥ U ;

• if r is a regular rule, then l is the head of r,

• if r is a random selection rule, then r defines Term(l).

Definition 27 [LC(Π, A)]

Let Π be a P-log program and A be an f-interpretation. Let LC(Π, A) denote the

f-interpretation, A′, which is defined as follow:

For each literal l ∈ Σ(Π),

1. We assign the truth value T to A′(l), if one of the following conditions holds:

(a) There exists a regular rule r ∈ Π such that l = head(r) and A(body(r)) =

T ;

(b) The literal l has the form a(t̄) 6= y and there exists a literal a(t̄) = y′ such

that y′ 6= y and A(a(t̄) = y′) = T ;

(c) A(l) = T .

2. We assign the truth value MT to A′(l), if none of the conditions listed in (1)

is satisfied, and one of the following conditions holds:

(a) There exists a regular rule r ∈ Π such that l = head(r) and A(body(r)) =

MT ;

(b) The literal l has the form a(t̄) 6= y and there exists a literal a(t̄) = y′ such

that y′ 6= y and A(a(t̄) = y′) = MT ;

(c) There exists a regular rule r such that A(head(r)) ≤MF , such that not l ∈

body(r), A(not l) = U and A(body(r)\{not l}) > U ;
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(d) There exists a regular rule r such that it is the only rule which weakly

supports the literal head(r), and A(head(r)) = MT and l ∈ pos(r);

(e) A(l) = MT .

3. We assign the truth value F to A′(l) if one of following conditions holds:

(a) All rules which support l are falsified by A.

(b) A(l) = F

4. We assign the truth value MF to A′(l), if condition (3) is not satisfied, and one

of the following conditions holds:

(a) All rules which support l are weakly falsified rules with respect to A;

(b) There exists a regular rule r such that A(head(r)) ≤ MF , such that l ∈

body(r), A(l) = U and A(body(r)\{l}) > U ;

(c) There exists a regular rule r such that it is the only rule which weakly

supports the literal head(r) , and A(head(r)) = MT and l ∈ neg(r);

(d) A(l̄) ≥MT ;

(e) A(l) = MF .

5. We assign the truth value U to A′(l) if none of the conditions listed in (1)-(4)

is satisfied.

If for any literal l, the truth value of A′(l) defined as above is not unique, then A′

is not well defined. It indicates there is an inconsistency in A since we attempted to

assign incompatible values to a literal l. In this case, we let LC(Π, A) = Ac.

Proposition 1 Let Π be a ground P-log program and A be an f-interpretation. Let

A′ = LC(Π, A) where A′ 6= Ac.

• A′ is an extension of A.
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• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;

Since LC(Π, A) is monotonic with respect to its second argument under the extension

ordering ≤i, by Knaster-Tarski theorem it has the least fixpoint which can be com-

puted by an iteration method. This is shown in Algorithm 5. Function AtLeast(Π, A)

computes the least fixpoint of LC(Π, A), in each iteration, if LC(Π, A) = Ac, the func-

tion returns the inconsistent f-interpretation Ac, otherwise it continues until a fixpoint

is reached.

Algorithm 5: AtLeast(Π, A)

Input: A ground P-log program Π and an f-interpretation A.

Output: the least fixpoint of LC(Π, A) if it exists, or Ac otherwise

repeat1

A′ := A;2

if A′ = Ac then return Ac;3

A := LC(Π, A′);4

until A = A′ ;5

return A′;6

We use following example to illustrate the computation of LC(Π, A).

Example 5 Consider the following program in which all attribute atoms are Boolean.

a :- not b.

b :- not c.

[c] random(c).

Let A be an f-interpretation that maps literal a to MT and maps all other literals to

U . Then LC(Π, A) defines an f-interpretation A1 in which,

• A1(b) = MF : Because of 4(c) of the definition of LC(Π, A);

• For other literals l, A1(l) = A(l).
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Similarly, LC(Π, A1) defines an f-interpretation A2 in which,

• A2(c) = MT : Because of 2(c) of the definition of LC(Π, A);

• For other literals l, A2(l) = A1(l).

Since A3 = LC(Π, A2) = A2, the function AtLeast(Π, A) returns A2.

To describe the function AtMost(Π, A), we first define the operator GΠ
L+,L−(X), where

L+ and L− are disjoint sets of extended literals and X is a set of literals:

GΠ
L+,L−(X) = {a ∈ Lit(Π)|there is a regular rule r such that a = head(r), pos(r) ⊆

X and neg(r) ∩ L+ = ∅}\L−

Since the operator GΠ
L+,L−(X) is monotonic with respect to set inclusion relation, we

can compute the least fixed point ofGΠ
L+,L−(∅) by the standard iteration method.

The function AtMost(Π, A) takes a ground P-log program Π and an f-interpretation

A as input and returns an f-interpretation. The steps of function AtMost(Π, A) are

listed as following:

Function AtMost(Π, A):

1. If A = Ac then return Ac.

2. Construct

L = {l | A(l) = T} ∪ {not l | A(l) = F}

L+ = {l | A(l) = T, l ∈ L}

L− = {l | A(l) = F, l ∈ L}.

3. Compute the least fixed point, X, of GΠ
L+,L−(∅)

4. Define a new mapping A′ as follow: If there is no literal l ∈ Lit(Π)\X such that

A(l) > U then

A′(l) =

 F : l ∈ Lit(Π)\X

A(l) : otherwise
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otherwise, A′ = Ac.

5. Return A′.

We use an example below to illustrate the computation of AtMost(Π, A):

Example 6 Consider the following program Π:

(1) p :- p.

(2) q :- not p.

(3) r :- p.

Let A be an f-interpretation that maps all the literals to truth value U . Hence, we

have L+ = ∅ and L− = ∅. We compute the least fixed point of GΠ
∅,∅(∅) as follows:

GΠ
∅,∅(∅) = {q}.

Because q is the head of rule q ← not p and {p} ∩ L+ = ∅, the literal q is added to

GΠ
∅,∅(∅). Literals p and r are not included since for rule (1) and (3), the body {p} 6⊆ ∅.

Notice that GΠ
∅,∅({q}) = {q}, therefore the least fixed point of GΠ

∅,∅(∅) is {q}.

By step 4 of algorithm AtMost(Π, A), the f-interpretation A′ maps literals p and r to

truth value F , and leave the truth value of the literal q as U . The function returns

A′ which is an extension of A.

Proposition 2 Let Π be a P-log program and A be an f-interpretation. Let A′ =

AtMost(Π, A) and A′ 6= Ac. Then,

• A′ is an extension of A.

• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;

Let Cn(Π, A) be an operator defined as AtMost(Π, AtLeast(Π, A)). Since both func-

tions AtLeast(Π, A) and AtMost(Π, A) are monotonic with respect to their second

argument A under the extension ordering ≤i, the operator Cn(Π, A) is monotonic

with respect to its second argument A under the extension ordering ≤i and therefore
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there exist a least fixed point of Cn(Π, A).

Algorithm 6: Closure(Π, A)

Input: A ground P-log program Π and an f-interpretation A.

Output: An f-interpretation A′ such that A′ is the fixed point of Cn(Π, A), or it

returns Ac if no such A′ exists.

repeat1

A′ := A;2

if A′ = Ac then return Ac;3

A = AtLeast(Π, A′);4

A := AtMost(Π, A);5

until A = A′ ;6

return A′;7

The function Closure(Π, A) is shown in Algorithm 6. It calls functions AtLeast and

AtMost iteratively until a fixed point is reached, then the result, an f-interpretation

will be returned.

Proposition 3 Let Π be a P-log program and A be an f-interpretation. Let A′ =

Closure(Π, A) and A′ 6= Ac. Then,

• A′ is an extension of A.

• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;

3.3.2 Computing the Probability of a Formula

To describe the computation of probability of a formula f with respect to a P-log

program Π we will need the following definitions:

Definition 28 [Satisfiability]

An f-interpretation A of literals from Σ satisfies a formula f (denoted by A |= f), if:

45



Texas Tech University, Weijun Zhu, May 2012

• for any literal l, A |= l if A(l) = T ;

• for two formulas f1 and f2, A |= f1 ∧ f2 if A |= f1 and A |= f2;

• for two formulas f1 and f2, A |= f1 ∨ f2 if A |= f1 or A |= f2;

Sometimes A |= f is read as f is true in A.

Definition 29 [Weighted f-interpretation ]

A weighted f-interpretation, I, is a pair (A,w), where A is an f-interpretation of

literals of Σ and w is referred to as the weight of I which is a real number between

[0,1].

Let A(I) be the first element, the f-interpretation, of I and w(I) be the weight of

I. Let Ω be the collection of weighted f-interpretations I such that true(A(I)) is a

possible world of a program Π. The normalized weight, µ(I) is defined as follows

µ(I) =
w(I)∑

I′∈Ω

w(I ′)

Definition 30 [Extension of f-interpretation]

Let I and I ′ be two f-interpretations. We say that I ′ extends I if A(I ′) is an extension

of A(I).

The weighted f-interpretations will be used to define a program tree — the basic data

structure used by our query answering algorithm.

Definition 31 [Program Tree]

A program tree of Π is a tree which satisfies the following properties:

• Each node, N is labeled by a unique weighted f-interpretation, IN .

• If N ′ is a child of N then IN ′ is an extension of IN .
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• The set true(A(I)) of literals is a possible world of program Π if and only if

weighted f-interpretation I is consistent and labels some leaf node N of the tree.

We use function Initialize to create the weighted f-interpretation labeling the root

of the tree and function Branch to build weighted f-interpretations of the children

of a given node. The function Initialize(Π, Q) returns a weighted f-interpretation I,

such that for every weighted f-interpretation I ′ if true(A(I ′)) is a possible world of

Π∪ΠQ, then I ′ is an extension of I. Function Initialize(Π, Q) returns false if Π∪ΠQ

is inconsistent.

Function Initialize(Π, Q)

1. Create a w-interpretation I = (A, 1) where A is initialized by following steps:

(a) For every sort declaration c = {x1, . . . , xn} of Π, the value of A(c(xi)),

where 1 ≤ i ≤ n, is T ;

(b) For every statement obs(l) occurring in the query Q, the value of A(l) is

MT ;

(c) For every statement do(a(t̄) = y) occurring in the query Q, the value of

A(a(t̄) = y) is T , and

(d) The value of remaining literals is U .

2. Let A′ be the output of function Closure(Π, A). If A′ = Ac, then return false.

Otherwise, return I ′ = (A′, 1).

Notice that in step 1(b) of function Initialize(Π, Q), we assigned the truth value MT

to all observed literals l. This is because that in the semantics of P-log described by

[1], observations are translated as:

← obs(l),not l. (3.4)

Therefore all possible worlds of program Π∪ΠQ must falsifies the body of the above

rule, i.e., the truth value of l must be true(MT ). Similar to do statement in the query,
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since we have rules

a(t̄) = y ← do(a(t̄) = y). (3.5)

for each do statement, atom a(t̄) = y is supported by rules in ΠQ and hence their

truth values are true in the initialization.

To describe function Branch, we need the following definitions. Notice that these

definitions are similar to those in [1]. The difference is that here they are defined

with respect to weighted f-interpretations instead of possible worlds.

Definition 32 [Extended Literal Known by f-interpretation]

We say that an extended literal l is known with respect to weighted f-interpretation

I = (A,w), if A maps l to {T, F}.

A set, B, of extended literals is known by I if I knows every element of B.

Definition 33 [Ready to Fire]

We say a random selection rule r is ready to fire with respect to program Π and a

weighted f-interpretation I = (A,w), if it satisfies the following conditions:

• If r has the form of

[r] random(a(t̄))← B. (3.6)

then

1. there is no y ∈ range(a(t̄)), such that A(a(t̄) = y) = T .

2. A(B) = T .

3. For every pr rule of the form

prr(a(t̄) = y|cB′) = v

B′ is known with respect to to I.
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• If r has the form of

[r] random(a(t̄) : {Y : c(Y )})← B. (3.7)

then, in addition to conditions (1), (2) and (3), c(y) should be known with

respect to I for every y ∈ range(a(t̄)).

Definition 34 [Possible outcome]

We say that y is a possible outcome of a(t̄) in a weighted f-interpretation I with

respect to program Π via a random selection rule r if the following conditions hold:

• if r has the form (3.6), then y ∈ range(a(t̄)) and r is ready to fire with respect

to Π and I;

• if r has the form (3.7), then y ∈ range(a(t̄)), r is ready to fire with respect to

Π and I, and A(c(y)) = T .

Definition 35 [P (I, a(t̄) = y)]

Let y be a possible outcome of a(t̄) in a weighted f-interpretation I with respect to

program Π via a random selection rule r. we define P (I, a(t̄) = y) as follows,

1. Assigned probability: If Π contains prr(a(t̄) = y|cB) = v and I satisfies B, then

PA(I, a(t̄) = y) = v, otherwise,

2. Default probability: Let |S| denote the cardinality of set S. Let Aa(t̄)(I) =

{y|PA(I, a(t̄) = y) is defined }, and Ba(t̄)(I) = {y|y is possible in I and y 6∈

Aa(t̄)(I)}. The default probability

PD(I, a(t̄) = y) =

1−
∑

y∈Aa(t̄)(I)

PA(I, a(t̄) = y)

|Ba(t̄)(I)|

3. Finally,

P (I, a(t̄) = y) =

 PA(I, a(t̄) = y) : y ∈ Aa(t̄)(I)

PD(I, a(t̄) = y) : otherwise
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Algorithm 7: Branch(Π, I)

Input: A ground scou P-log program Π and a weighted f-interpretation I = (A,w).

Output: A non-empty set, Ib, of weighted f-interpretations extended from

consistent I by firing a random selection rule, or an empty set if no

random selection rule is ready to fire, or FALSE if I is inconsistent.

Ib := ∅;1

Find a random selection rule r such that r is ready to fire with respect to Π and I;2

if exists such rule r then3

foreach possible outcome y of a(t̄) with respect to Π and I via r do4

Create a new weighted f-interpretation5

I ′ = (A′, w′) = (A,w × P (I, a(t̄) = y));

if A′(a(t̄) = y) ≥ U then6

A′(a(t̄) = y) := T ;7

A′ := Closure(Π, A′);8

if A′ 6= Ac then add I ′ = (A′, w′) to Ib;9

end10

end11

if Ib = ∅ then return false;12

end13

return Ib;14

The function Branch is shown in Algorithm 7. It takes a ground scou P-log program

Π and a consistent weighted f-interpretation I as input and returns a set of consistent

weighted f-interpretations, generated by firing a random selection rule r. Steps that

are not self-evident are explained as follows:

1. Initialize the set Ib to the empty set.

2. In case there are multiple random selection rules which are ready to fire with

respect to I and Π, we pick one randomly.
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5. A new weighted f-interpretation I ′ = (A′, w′) is generated for each possible

outcome y, where A′ = A and w′ = w × P (I, a(t̄) = y).

6. If for a possible outcome y, the value of a(t̄) = y is already mapped to MF or

F , then attempting to map this literal to value T will cause a contradiction.

Therefore, the function discards these weighted f-interpretations.

7. The value of a(t̄) = y is changed from U or MT to T .

8. The changed mapping A′ is extended by calling function Closure(Π, A′),

9. If A′ is consistent, then A′ will be added to the set Ib.

12. If Ib is an empty set then it means all the possible outcomes of firing the random

selection rule r will lead to an inconsistent weighted f-interpretation. In this

case, we return false to indicate that the input I itself is inconsistent.

Definition 36 [Unitary Program Tree]

Let Π be a ground scou P-log program, Q be a query to Π and Π ∪ ΠQ be consistent

(i.e., there exists at least one possible world of Π ∪ ΠQ). A program tree T with

respect to Π and Q is called unitary program tree if

• The root of T is labeled by the output of function Initialize(Π, Q);

• For every two nodes N and N ′ of T , N ′ is a child of N if and only if IN ′ ∈

Branch(Π, IN).

We use the following example to show a unitary program tree of a given program Π

and its query Q.

Example 7 Consider the following program Π and a query Q

%All atoms are Boolean.

[a] random(a).

[b] random(b).

c :- a.
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Figure 3.2: Program Tree

c :- b.

d :- a, b.

e :- not b.

[a] pr(a)=1/4.

[b] pr(b)=1/4.

%The query Q:

{d, e}|obs(c).

Figure 3.2 is a unitary program tree with respect to the program Π and the query

Q shown in Example 7. Rectangles are the nodes of the tree and inside a node,

F : {a, d, e} means that literals a, d and e are mapped to the truth value F by

its corresponding weighted interpretation. The label for the arcs indicate the ran-

dom selection rule we fired in function Branch(Π, Q) and as well as the possible

outcome we picked to create the children of a given nodes. The calling of function

Initialize(Π, Q) will return a weighted f-interpretation I0 = (A0, 1) where A0 maps

the literal c to truth value MT (since c is observed to be true in the query) and
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all other literals to truth value U . This weighted f-interpretation is the root of the

programming tree. To compute the children of the root, function Branch(Π, I0) is

called. Since both random selection rules are ready to fire, we assume the function

Branch picks the random selection rule a to fire. There are two possible outcomes

of firing random selection rule a. Let us consider one of the possible outcome where

a = true. Since P (I, a = true) = 1/4, the new created weighted f-interpretation I1

will be (A, 0.25). Next, we assign the truth value T to the literal a = true as shown in

step 7 in Algorithm 7, this results in a new f-interpretation A′ where A′(a = true) = T

and A′(l) = A(l) for all other literals. In the function Closure(Π, A′), the truth value

of c is changed from MT to T since the present of rule c ← a. The result of func-

tion Closure(Π, A′) is a consistent f-interpretation, therefore I1 is added to the set Ib

which will be returned by function Branch(Π, I0).

Definition 37 [complete leaf node]

Let T be unitary program tree with respect to a ground scou program Π and a query

Q. A leaf node of N of T is said to be a complete leaf node of T if IN knows all

literals in Σ.

Definition 38 [Consistent Leaf Node]

Let T be unitary program tree with respect to a ground scou program Π and a query

Q. A leaf node of N of T is said to be a consistent leaf node of T if Branch(Π, IN)

returns an empty set.

Theorem 2 Let Π be a ground scou P-log program and Q be a query to Π. Let T be

a unitary program tree with respect to Π and Q . Then I is a weighted f-interpretation

labeling a complete and consistent leaf node of T if and only if true(A(I)) is a possible

world of program Π ∪ ΠQ.

Theorem 2 shows that the probability of a formula f with respect to Π ∪ ΠQ can be

computed by building the program tree T with respect to Π and Q, then summing

up the normalized weight of weighted f-interpretations labeling consistent leaf nodes
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of T accordingly. However, it is not always necessary to compute all the leaf nodes

of T in order to compute the probability of a formula f . We may utilize the unitary

property of our input P-log program to reduce the computation. We describe such

method after some definitions.

Definition 39 [Partial Possible World]

A weighted f-interpretation I = (A,w) that labels some node of the program tree with

respect to a ground scou P-log program Π and a query Q = F |C is called a partial

possible world of program Π ∪ ΠQ, if for all the observations, obs(l), occurring in

C, A(l) = T .

Proposition 4 Let N be a node of a unitary program tree T with respect to Π and

Q such that IN is a partial possible world of program Π ∪ ΠQ, then for any node N ′

descendant from N , IN ′ is also a partial possible world of program Π ∪ ΠQ.

Definition 40 [The Smallest Partial Possible World]

Let N be a node of a unitary program tree T with respect to Π and a query Q such

that IN is a partial possible world of program Π ∪ ΠQ and let N ′ be the parent of N .

IN is called a smallest partial possible world of Π ∪ ΠQ if IN ′ is not a partial

possible world of Π ∪ ΠQ.

In Example 7, we can see that the weighted f-interpretation I1 is a smallest partial

possible world of the tree since A1(c) = T and its parent, the root, is not a partial

possible world with respect to the program Π and the query Q.

Next we introduce the function FindPartialWorld(Π, Q) in which it finds the set,

Ω, of smallest partial possible worlds of a unitary program tree T with respect to Π

and Q.

Function FindPartialWorld(Π, Q) is shown in Algorithm 8. It builds a unitary

program tree till all the leaf nodes are labeled by partial possible worlds of program

Π ∪ ΠQ or by inconsistent weighted f-interpretation. The weighted f-interpretations
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Algorithm 8: FindPartialWorld(Π, Q)

Input: A ground scou P-log program Π and a query to the program Q = F |C

Output: A collection, Φ, of all the smallest partial possible worlds with respect to

Π and Q

I := Initialize(Π, Q);1

if I is not false then SI := {I};2

Φ := ∅;3

while SI is not empty do4

Let I be an element of SI ;5

if I knows Cobs then6

Φ := Φ ∪ {I};7

else8

SI := SI ∪Branch(Π, I);9

end10

Remove I from SI ;11

end12

return Φ13
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that are partial possible worlds are collected and returned by the function. Details of

steps are explained as follow:

1. The weighted f-interpretation I is the root of the program tree T .

2. If I is consistent, then I is added to the set SI of weighted f-interpretations. If

not, then the while loop will not be executed and the function will return the

empty set.

3. The set Φ stores all the partial possible world found in the function and it is

initialized with the empty set.

6. By Cobs we denote the set of literals occurring in the observations of C, i.e.,

Cobs = {l|obs(l) ∈ C}

7. Since all the literals in Cobs are initialized with MT in the function Initialize,

and all weighted f-interpretations in SI are consistent, see explanation in step

9. Therefore, when I knows Cobs, I must satisfy Cobs. We add I to Φ as I is a

partial possible world of Π and Q.

9. Notice that the function Branch returns a set of weighted f-interpretations

that are consistent. This guarantees the set SI only contains all the consistent

weighted f-interpretations.

Proposition 5 Let Φ = FindPartialWorld(Π, Q), then there exists a unitary pro-

gram tree T such that for every node N of T , the weighted f-interpretation IN is a

smallest partial possible world of T if and only if IN ∈ Φ.

Definition 41 [Formula Known by weighted f-interpretation]

A formula f is known by a weighted f-interpretation I if all the literals occurring in

f have values other than U .

A set, F , of formulas are known by a weighted f-interpretation I if all the elements

of F are known by I.
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Definition 42 [The Smallest Partial Possible World that Knows Formulas]

Let F be a set of formulas. Let N and N ′ be two nodes of a unitary program tree T

with respect to Π and Q where N is the parent of N ′. We say that IN ′ is a smallest

partial possible world of T with respect to Π and Q that knows F , if IN ′ is a smallest

partial possible world and F is known by IN ′, and either F is not known by IN , or IN

is not a partial possible world of T with respect to Π and Q.

In Example 7, we can see that I1 does not know either formula d nor e, therefore

it is not the smallest partial possible world that knows formulas d and e. Instead,

weighted f-interpretation I3, I4 and I5 are the smallest partial possible world that

knows formulas d and e.

The following theorem shows that the probability of a formula f with respect to

a ground scou P-log program Π and a query Q can be computed by summing up

the normalized weight of all weighted f-interpretations which are the smallest partial

possible worlds that know and satisfies f .

Theorem 3 Let Π be a ground scou P-log program and a query Q = F |C be a query

to Π. Let ΦF be the collection of all the smallest partial possible worlds of T that know

the set F of formulas. Then the probability of each formula f ∈ F with respect to a

ground scou P-log program Π and a query Q can be computed by following equation:

PΠ∪ΠQ(f) =
∑

I=(A,w)∈ΦF and A`f

µ(I) (3.8)

Theorem 3 shows that we can construct the set ΦF first, then compute the probability

of a formulas by using equation 3.8. To find ΦF , we use following three steps: (1)

we find the set Φ of smallest partial possible worlds of T with respect to Π and Q

by calling function FindPartialWorld(Π, Q), then (2) we compute the normalized

weight of each weighted f-interpretation in the set Φ; finally (3) we further build the

set ΦF from the set Φ of weighted f-interpretations.
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Now, we are ready to describe the main function which answers the query to a ground

scou P-log program.

Algorithm 9: Probability(Π, Q)

Input: A ground scou P-log program Π and a query Q = F |C to Π

Output: The set F ′ of formulas such that for each f ∈ F ′ and f ′ ∈ F ,

PΠ∪ΠQ(f) ≤ PΠ∪ΠQ(f ′)

Φ := FindPartialWorld(Π, Q);1

Normalize weights of weighted f-interpretations of Φ;2

F ′ := F ;3

foreach weighted f-interpretation I ∈ Φ do4

Is := {I};5

while Is 6= ∅ do6

Select a weighted f-interpretation I ′ from Is;7

if I ′ knows F ′ then8

CheckFormula(I ′, F ′);9

else10

Is := Is ∪Branch(Π, I ′);11

end12

Remove I ′ from Is;13

end14

end15

return F ′16

The function Probability(Π, Q) is shown in Algorithm 9. Steps of function Probability(Π, Q)

are explained as follows:

1. If Φ is an empty set, then the program is inconsistent, in such case, we simply

return all the formulas in F with undefined probabilities.

2. We use following equation to normalize all the weights of weighted f-interpretations
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I = (A,w) in Φ:

µ(I) =
w∑

I=(A′,w′)∈Φ

w′

Then, we replace the weight of each weighted f-interpretation I by its normalized

weight µ(I).

3. The set F ′ of formulas is initialized with the set F , we obtain the answer of

the query by removing formulas f from F ′ if we know there is another formula

f ′ ∈ F such that the probability of f ′ being true is larger than the probability

of f being true.

4. The foreach loop checks each weighted f-interpretation I of Φ to see whether

it knows the set F . If not, then the inner loop, the while loop will extend I till

every extension of I knows F .

5. Variable Is stores a set of weighted f-interpretations to be further extended.

8. If I ′ knows F then I ′ is a smallest partial possible world that knows F .

9. Procedure CheckFormula(I ′, F ′) updates the set, F ′, of formulas as well as the

probabilities of formulas in F ′. To optimize the computation of answering the

query, for each formula f we use two variables fmax and fmin to indicate the

range of its probability, PΠ∪ΠQ(f), of f with respect to the program Π and the

query Q. The probability of f satisfies:

fmin ≤ PΠ∪ΠQ(f) ≤ fmax

At the beginning, fmin is initialized to 0 and fmax is initialized to 1 for each

formula f . Procedure CheckFormula(I ′, F ′) is described as follows:

For each f ∈ F ′, we do

• If I ′ = (A,w) satisfies f , then fmin = fmin + w;

• Otherwise fmax = fmax − w;
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Then, the procedure removes all the formulas f of F ′ if there exists a formula

f ′ such that f ′min > fmax.

11. If I ′ does not know F , then we call function Branch to extend I ′ and add the

result of function Branch(Π, I ′) to Is.

16. After all the partial possible world are examined, for each formula f in F ′, its

probability is known since we will have that fmin = PΠ∪ΠQ(f) = fmax. Formulas

with smaller probabilities will be all removed from F ′ and the remaining are

the answer to the query Q.
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Chapter 4

EXPERIMENTAL RESULT

We conducted our experiments on a machine built with a dual-core 1.60GHz proces-

sor and 2GB memory. The operating system is Ubuntu system with version 10.10.

We name the P-log inference engine based on the algorithm of partial grounding and

computing partial possible worlds as plog2.0 and call the one based on translating

a P-log program to an A-Prolog problem, as plog1.0. We compared performance of

plog2.0 against plog1.0 to see how problems from different domains affect the effi-

ciency of those two P-log inference engines. We also compared the performance of

system plog2.0 with system ACE [20], an exact inference engine for Bayesian net-

works to see advantages of using P-log as a language to solve probabilistic reasoning

problems.

To test these systems, we have run many well known domains selected from other

related literatures. Among all the domains we have tested, we select some of them to

present here as they are the most representative examples that illustrate the advantage

and disadvantage of both systems. We give brief introduction on each problems first,

then the running results as well as our analysis of performance of the systems will be

presented after.

4.1 Domain

In this section, we describe all the domains we will use for the purpose of analyzing

the performance of both systems.
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Figure 4.1: A grid map

4.1.1 Block Map Problem

The block map problem was introduced in [16]. The domain describes the random

placement of blocks (obstacles) on the location of a map. The problem contains a

particular grid map and a set of blocks. The grid map is described by objects location

and relations left(loc1, loc2) and below(loc1, loc2), where loc1 and loc2 are locations.

The relation left(loc1, loc2) says that loc1 and loc2 are connected and loc1 is at left

of loc2. Similarly, the relation below(loc1, loc2) says that loc1 and loc2 are connected

and loc1 is at below of loc2.

Figure 4.1 shows a simple grid map with 5 locations. Each block can be randomly

placed on an unoccupied location and it will block all the paths that go through

that location. The typical query of this domain is what is the probability of two

locations are still connected after blocks are randomly placed on the map. In our

experiment, problem instances blockmap m n indicates there are m locations and n

blocks in the domain. The query used in our test is asking the probability of formula

connected(1,m), that is the probability of the first location (labeled by 1) and the

last location (labeled by m) being connected.
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GenoType AA AB AO BB BO OO

Blood Type A AB A B B O

Figure 4.2: ABO blood group system

4.1.2 Professor and Student Problem

This problem is first introduce in [21]. There are m professors and n students. Pro-

fessors have two probabilistic attributes: fame(yes/no) and funding level(high/low).

The funding level of a professor probabilistically depends on whether he/she is famous

or not. Students have one probabilistic attribute: success(yes/no). The probability

of success of a student is defined conditionally on the funding level of his advisor,

a professor. According to the problem, students choose advisor i with higher prob-

ability if the professor i is well funded and with lower probability if the professor i

is not. Let hi and lo (hi > lo) be two positive real numbers. A student chooses a

professor with high funding level with probability hi/(Nh× hi+Nl× lo) and chose a

professor with low funding level with probability lo/(Nh×hi+Nl× lo), where Nh(Nl)

are the total number of professors with high (low) funding levels. The query of this

problem is the probability of a professor’s funding level, given the success of one of

his students.

4.1.3 Blood Type Problem

The blood type domain is a genetic model of the inheritance of a single gene that

determines a person’s blood type. Each person has two copies of the chromosome

containing this gene, one inherited from his/her mother and one inherited from his/

her father. In our model, we are using ABO blood group system in which we have

4 different blood types: A, B, AB and O. The blood types are controlled by its

genotype and it is shown in Figure 4.2.

Our domain contains information of a family tree, see Figure 4.3. If Mary has geno-
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Figure 4.3: Family tree

type AO and John has genotype BO, then Kim can get an A or O with equal proba-

bility from his mother and get a B or O with equal probability from his father to make

up his own genotype. Therefore, Kim can have one of 4 possible genotypes (AB, AO,

OB, OO) with 25% for each possible outcome. If one’s parent is not known in our

knowledge base, we assume that the genes inherited from his parents agreed with a

prior probability distribution. The queries to this domain are what is the probability

that the blood type of Kim is O given Mary’s blood type is A and John’s blood type

is B. Problem instances bt m n indicates that there are totally m individuals in the

domain and n grandparents are known in the family shown in Figure 4.3. For exam-

ple, an instance bt 7 1 means besides knowing that Kim’s parents are Mary and John,

we also know that Jane is the mother of Mary and we have no family information

about the other three individuals at all.

4.1.4 The Grid Example

There is a grid of m × n nodes. Each node (i, j), where 1 ≤ i ≤ m and 1 ≤ j ≤ n,

passes information to (i+1, j) and node (i, j+1) if node (i, j) is not faulty. We assume

each nodes in the grid can be faulty with probability of 0.1 and the query is what is
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the probability of that node (m,n) can receive information from node (1, 1).

4.1.5 Poker Problem

This example is used to demonstrate the performance of another P-log inference

engine which is reported in [22]. The original problem is that from a deck of standard

card, we randomly pick up 5 cards and ask what is the probability of having a single

pair in this five cards. We use smaller domains in our instances. The problem

poker m n indicate that from 4×m cards we pick up n cards.

4.2 Running Results

We recorded the running time of Smodels in plog1.0 and reported them under the

column Smodels in our tables. The time used for retrieving probability information

from output of Smodels and computing the probability of formulas are recorded under

the column Retrieval. For the new system plog2.0, grounding time are presented

under the column Ground and the time used for computing partial possible worlds

and probability of formulas are shown under the column Solv. The total running

time, shown under the column Total is measured by the time command in Linux

system. In our tables, all running times are in seconds. We set our time out limit as

5 minutes. For instances that runs more than 5 minutes, we simply recorded them as

time out (T.O.). Since the number of possible worlds are one of the most dominant

aspects of performance of both systems. We also show the number of possible worlds,

under the column NoA, in tables where it makes big difference.

In Table 4.1, we present our experimental results of running plog2.0 and plog1.0 on

professor and students domain and blood type domain. We can see from the table

that plog2.0 performs much better than plog1.0 does on all the instances we have

tested. For instances where the number of possible worlds computed by both systems

are different, plog2.0 is more than 10 times faster than the old one. For instances
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Table 4.1: Professor and student domain and blood type domain

plog1.0 plog3.0

Instances NoA Smodel Retrieval Total NoA Ground Solv Total

p3s2 384 0.020 0.13 0.195 64 0.02 0.01 0.038

p3s4 13824 0.412 7.72 8.549 64 0.02 0.01 0.038

p3s6 n/a - - T.O. 64 0.02 0.01 0.038

p4s1 256 0.024 0.09 0.142 256 0.03 0.02 0.065

p4s2 2084 0.096 0.91 1.086 256 0.03 0.02 0.064

p5s1 16384 0.516 9.37 10.313 256 0.02 0.03 0.064

p6s1 1024 0.076 0.40 0.543 1024 0.04 0.12 0.174

p6s1 4096 0.376 1.92 2.461 4096 0.06 0.55 0.617

p6s1 16384 1.688 8.89 11.002 16384 0.08 2.47 2.567

bt7 1 220 3.732 53.58 59.712 75 0.02 0.01 0.100

bt7 2 560 2.008 29.03 33.900 375 0.02 0.05 0.092

bt7 3 1140 1.132 15.73 17.593 1875 0.03 0.37 0.407

bt7 4 9375 0.570 8.58 9.638 9375 0.03 1.97 2.027

bt8 4 84375 6.530 94.76 105.194 84375 0.04 14.91 15.093

with same number of possible worlds, such as p4s1 and p5s1, etc., the solving time

in plog2.0 normally is larger than the computation time reported by the Smodels,

but overall the performance of plog2.0 is still better on these instances. The table

also shows that the procedure of retrieval probabilistic information from answer sets

takes about 90% of the total running time of old P-log inference engine. In plog2.0,

the grounding time normally is small and insignificant comparing to the solving time

when the number of possible worlds is large.

The result is not surprising to us. In professor and students example, the query only

relates to one student and adding new students into this domain will not change the

66



Texas Tech University, Weijun Zhu, May 2012

size of the ground program produced by the new grounding algorithm. Hence, adding

new students into this domain has no effect on how many possible worlds will be com-

puted by plog2.0. On the other hand, adding new students will increase the number

of possible worlds in an exponential rate for old system plog1.0. Notice that on ex-

amples with the patten pXs1, the system plog2.0 produces the same ground program

as the plog1.0 does and so is the number of possible worlds. For these instances, the

performance of plog2.0 is still better than plog1.0. This is because that with large

number of possible worlds, the procedure of extracting probability information from

answer sets involves heavy string match operations which is much slower than the new

approaches where the probability is computed along with the generation of possible

worlds. The similar results are seen in blood type instances.

Table 4.2: The grid domain

plog1.0 plog2.0

Instances Smodel Retrieval Total Ground Solv. Total

grid 3 4 0.088 1.09 1.339 0.01 0.04 0.065

grid 2 7 0.380 5.35 6.126 0.01 0.06 0.082

grid 3 5 0.704 11.03 12.484 0.02 0.26 0.300

grid 4 4 1.540 23.4 26.499 0.02 0.56 0.590

grid 3 6 6.476 106.06 120.064 0.03 1.69 1.793

grid 4 5 - - T.O. 0.03 8.08 8.118

In Table 4.2, we show the experimental results on instances of the grid domain. The

table shows that the plog2.0 performs significantly better than plog1.0. The total

running time grows exponentially with respect to the number of total nodes in the

domain for both engines but plog2.0 is about 50 times faster in average and appears

that the bigger the domain is, the faster the plog2.0 is, comparing to plog1.0.

Since each node has one corresponding random selection rule in the ground program

and each random selection rule has two possible outcome: the node is faulty or not,
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the number of possible worlds of an instance grid m n is 2m×n. However, the set of

all the least partial possible worlds that knows the formula (here, the formula is the

literal flow(m,n)) is much smaller. For example, if the node (1, 1) is faulty then

we can derive that the literal flow(m,n) is not true in any possible worlds which

contains the literal faulty(1, 1) regardless the status of other nodes. We found that

the idea of finding the least partial possible worlds that knows formula is specially

useful when dealing with diagnosis problems where often a single faulty component

may explain the unexpected observations.

Table 4.3: Running results of block map domain

plog1.0 plog2.0

Instances Smodels Retrieval Total Ground Solv. Total

Bm 10 2 0.052 0.02 0.167 0.24 0.03 0.273

Bm 10 3 0.108 0.07 0.274 0.24 0.09 0.336

Bm 15 1 0.092 0.01 0.359 1.10 0.04 1.145

Bm 15 2 0.344 0.09 0.712 1.09 0.25 1.36

Bm 15 3 1.110 0.45 1.876 1.13 1.041 2.19

Bm 20 1 0.42 0.03 1.010 3.94 0.14 4.109

Bm 20 2 1.988 0.28 2.895 4.01 1.25 5.292

Bm 20 3 6.624 0.53 7.856 4.04 7.32 11.395

We present the results of running instances of the block map domain with plog2.0

and plog1.0 in Table 4.3. We can see that the new inference engine takes more to-

tal running time than those reported by plog1.0. Unlike previous examples, where

grounding time does not play important role on the overall performance, the ground-

ing time for the block map domain significantly affects the overall performance. As

shown in Table 4.3, in the worst case, the grounding time could take over 90% of

overall running time. The solving time is comparable to the running time of Smodels.

Except the last instance, the solving time is slightly smaller than the running time

reported by Smodels.
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We believe that the large size of ground program is the main reason that causes

grounding procedure slow. Both engine need to compute same number of possible

worlds and no smaller partial possible worlds are available. Therefore, there is no

advantage can be taken by our new grounding algorithm. This explains the reason

that the solving time of our system is similar to those reported by Smodels.

Table 4.4: Running results of poker domain

plog1.0 plog2.0

Instances Smodels Retrieval Total Ground Solv. Total

Poker 3 3 0.020 0.07 0.254 0.05 0.02 0.084

Poker 3 4 0.052 0.21 0.367 0.09 0.07 0.173

Poker 3 5 0.112 0.54 0.791 0.14 0.15 0.304

Poker 5 3 0.068 0.39 0.583 0.12 0.15 0.288

Poker 5 4 0.408 2.78 3.540 0.22 1.00 1.239

Poker 5 5 1.672 12.60 14.904 0.33 4.14 4.514

The results of running instances of poker domain are shown in Table 4.4. Again, the

new system plog2.0 performs better than the old system plog1.0. In average, the new

system take about 1/3 of the running time as the old system does.

Similar to the block map domain, both engines essentially compute the same size of

possible worlds for instances in this domain. Comparing to the block map example,

the differences are:

1. the number of possible worlds is bigger, for example, the instance poker 5 5 has

15504 possible worlds.

2. each possible worlds is easier to compute than those in block map domain.

The large number of possible worlds makes the retrieval procedure become a bottle

neck of the performance. It takes more than 80% of the total computing time in several

instances. The easiness of computing each possible world make the difference between
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the solving time of plog2.0 and Smodels running time of plog1.0 ignorable.

Table 4.5: Results for system ACE and plog2.0 on Block Map problem

- ACE plog2.0

Instances Total Inf Comp. Ground Solv. Total

Bm 5 1 1.260 2.417 0.04 0.00 0.062

Bm 5 2 1.484 2.875 0.04 0.00 0.064

Bm 5 3 1.672 3.801 0.04 0.00 0.071

Bm 10 1 3.633 15.964 0.23 0.02 0.248

Bm 10 2 4.451 22.192 0.24 0.03 0.273

Bm 10 3 4.851 32.482 0.24 0.09 0.336

Bm 15 1 8.010 39.954 1.10 0.04 1.145

Bm 15 2 9.785 64.036 1.09 0.25 1.360

Bm 15 3 14.919 132.448 1.13 1.04 2.190

Bm 20 1 14.463 105.894 3.94 0.14 4.109

Bm 20 2 19.194 188.761 4.01 1.25 5.292

Bm 20 3 48.361 740.686 4.04 7.32 11.395

In Table 4.5, we compared our inference engine with ACE on block map domain.

Notice that ACE improves on-line inference efficiency by pre-compiling the Bayesian

network. The compiling procedure normally is much slower than the on-line inference

stage. This property allows their system perform better in the situation that many

queries will be proposed after a Bayesian network is fixed. However, comparing with

the inference time, plog2.0 inference engine still does better than ACE on problems

of this domain. From the experiment, we believe that one of the advantages of using

P-log is that we can define recursive relations easily, while in Bayesian network, it

requires a lot of extra nodes to deal with the recursive definition. This results in a

large Bayesian network, for instances, problem ”blockmap 15 1” leads to a Bayesian

network with more than 15,000 random variables while in P-log representation, the
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ground problem contains a several hundred atoms and logic rules.

4.3 Summary

Overall, we believe that plog2.0 performs much better than system plog1.0 does.

Different types of problems may have significant impacts on the performance of both

system. When the query can be answered by looking at a portion of input P-log

program, plog2.0 can perform much faster than plog1.0 does. Sometimes, it can

reduce the computation time from minutes to less than a second. Also, many diagnosis

domain benefits from the idea of computing partial possible world in plog2.0 instead

of computing all complete possible worlds as plog1.0 does.

There are domains that the system plog1.0 could perform better than plog2.0. Pro-

grams of these domains may have the following properties:

• All rules have to be considered in order to answer the query. The most im-

provement in plog2.0 comes from the idea of reducing the size of ground P-log

program. When this method is not helpful, the performance of plog2.0 will be

affected.

• The improvement from computing partial possible world is ignorable. This

forces the system plog2.0 to compute complete possible worlds. Because of

using 5 value interpretation, comparing to the algorithm behind Smodels which

is based on 3 value interpretation, there is some overhead when deriving truth

value of literals in plog2.0. Therefore, when computing the same number of

possible worlds, plog2.0 could take slightly longer than Smodles does.

• The size of grounded program is large. Because we are using head-to-body

approach to ground the input program. Large program increases the overhead

of this procedure.
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Chapter 5

APPLICATIONS

The goal of this chapter is to describe how to represent probabilistic dynamic domains

and how to use P-log to solve probabilistic reasoning problems in these domains. In

this chapter, we introduce the probabilistic transition diagram that serves as a model

of the probabilistic dynamic domain. We extend the classical system description

language B [23] to system description language NB which can be viewed as a for-

mal model of parts of natural language that are used for describing the behavior of

probabilistic dynamic domains. We present an encoding that translates from system

description language NB, history of the domain and probability distribution over

possible initial states to a P-log program where many reasoning tasks with respect

to the probabilistic dynamic domains can be reduced to answering queries to P-log

programs. In particular, we will give details of how to solve probabilistic diagnosis

problems and probabilistic planning problems.

5.1 Probabilistic Dynamic Domain

The environment of an intelligent agent normally keeps changing. In order to react

properly to its changing environment, we need to arm the agent with tools that can

reason about changes. Reasoning about dynamic domains has been well studied for

last several decades. In [31], a dynamic domain with no probabilistic information

is modeled by the transition diagram whose nodes correspond to physically possible

states of the domain and whose arcs are labeled by actions. A transition 〈σ, α, σ′〉 of

the diagram says that if action α is performed in state σ then the system may move

to state σ′.
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A probabilistic dynamic domain is a domain containing non-deterministic actions

as well as probabilistic information associated with these actions. We model the

probabilistic dynamic domain by an extended transition diagram, called probabilistic

transition diagram, in which each arc is labeled by a tuple 〈e, w〉, where e is an action

and w is a real number (0 ≤ w ≤ 1). A transition 〈σ, 〈e, w〉, σ′〉 says that if action

e is performed in state σ then the system may move to state σ′ with probability

w. The w is called the weight of the arc. We may still use notation 〈σ, α, σ′〉 to

indicate a transition in probabilistic transition diagram when w is not important in

our discussion.

5.2 Specifying Transition Diagram

Because the size of the domain could be very large, we need a concise and math-

ematically accurate description for the purpose of representing such domains and

performing reasoning tasks upon it. System description languages are introduced as

a tool to describe the behavior of the dynamic domains in a concise way. As our re-

search is largely inherited from previous work of system description B, in this section,

we first have a review of system description language B and then extend to a new

system description language NB.

5.2.1 System Description Language B

The signature Σ of system description language consists of two disjoint, non-empty

sets of symbols: the set F of fluents and the set A of elementary actions.

A fluent literal is a fluent f ∈ F or its negation ¬f . A set S of fluent literals is called

complete if for any fluent f ∈ Σ either f or ¬f is in S.

System description language B, an extension of system description language A [23],

consists of following two propositions laws:
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• Dynamic causal laws:

e cause l if p (5.1)

• Static causal laws:

l if p (5.2)

where l is a fluent literal, p is a set of fluent literals and e is an elementary action.

The dynamic causal laws say that if the elementary action e is performed at the

situation where p holds, then in the resulting situation, l holds. The static causal

laws say that for any situations if p holds then l must be true too.

Let A be a system description of a physical system written in B. A set S of fluent

literals is closed under a set Z (Z ⊆ A) of static causal laws if for every static casual

law in Z, the state S includes the head l of every static causal law, l if p, such that

p ⊆ S. The set CnZ(S) of consequences of S under Z is the smallest set of fluent

literals that contains S and it is closed under Z. Let EA(e, σ) stand for the set of all

fluent literals l for which there is a dynamic causal law: e cause l if p, in A such that

p ⊆ σ.

According to [26], a transition system T = (S,R) described by a system description

A is defined as follows:

1. The set S of states of T is the collection of all complete and consistent sets of

fluent literals of Σ closed under static causal laws of A.

2. The set R of transition is the collection of all triples 〈σ, a, σ′〉 such that σ′ =

CnZ(E(a, σ) ∪ (σ ∩ σ′)), where Z is the set of all static causal laws of A.

5.2.2 System Description Language NB

Actions in language B are considered as deterministic actions. Non-deterministic

actions, such as tossing a coin, may have several random results. To model such

74



Texas Tech University, Weijun Zhu, May 2012

actions and the probability distribution associated with these actions, we extend

language B to NB.

Before we introduce system description language NB, we first introduce the definition

of mutually exclusive fluents

Definition 43 [Mutually Exclusive Fluents]

Let T be a transition diagram, two fluents literals l1 and l2 are said to be mutually

exclusive if for any state σ of T , {l1, l2} 6⊆ σ.

We extend language B to language NB by adding non-deterministic dynamic

causal law and probability of possible outcome:

1. The dynamic causal law in NB is a natural extension of 5.1:

(r) e cause l1| . . . |ln if p (5.3)

where r is a term which serves as the name of this law, l1, . . . , ln are fluent

literals which are pairwise mutually exclusive, p is a set of fluent literals and e

is an elementary action. If n = 1, the law 5.3 is called deterministic dynamic

causal law. Otherwise, it is called non-deterministic dynamic causal law.

The above law says that if an action e is performed in a situation where p holds,

then there are n possible outcomes. For each possible outcome, it will lead to

a state σ′ where a fluent literal l ∈ {l1, . . . , ln} must be true in σ′.

2. Statements expressing the probability of possible outcome of causal law 5.3 has

the following form:

(r) l : v if q (5.4)

where r is the name of law 5.3, l ∈ {l1, . . . , ln}, v is a real number between 0

and 1, and q is a set of fluent literals which may differ from p in law 5.3.

Since it is allowed to have multiple dynamic causal laws for an action in NB as

long as their preconditions (literals p in law 5.1) are mutually exclusive, we need
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to name the dynamic causal laws and statements that express the probability

of possible outcome so that each statements of 5.4 can be associated with a

unique dynamic causal law.

The statement 5.4 says that if e is performed in a state σ where q is true, then

the probability of the system moving to a state containing l is v.

The semantics of language NB consists of two parts: the transitions defined by NB

and the probability distribution over transitions.

We assume that for any given state σ there exists at most one non-deterministic

dynamic causal law 5.3 for action e such that p ⊆ σ. This is a natural and not very

limiting assumption.

To define the first part, we need the following definitions.

Definition 44 [Possible Direct Effect]

Let e be an action. A collection E(e, σ) of fluent literals is called a possible direct

effect of e in σ, if for each fluent literal l′, l′ ∈ E(e, σ) if and only if there exists a

dynamic causal law 5.3 where l′ ∈ {l1, . . . , ln}, p ⊆ σ and no other fluent literal in

{l1, . . . , ln} belongs to E(e, σ).

We have the following assumptions on the transition system through the rest of this

chapter:

1. In each step, only one elementary action is performed. Concurrent actions

are not allowed. We believe our approach can be extended to systems with

concurrent actions. However, in our dissertation, we use this assumption to

simplify our definitions and proofs.

2. For each E(e, σ), there exists exactly one state σ′ such that σ′ = CnZ(E(e, σ)∪

(σ ∩ σ′)). We require such assumptions as to make sure that non-determinism

only comes from non-deterministic dynamic causal laws. It is well known

that the transition diagram may be non-deterministic even if there is no non-
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deterministic dynamic causal laws. In [34], the authors have shown some nec-

essary conditions for this assumption being true in a system.

3. For each pair of action e and state σ, the direct effects of deterministic laws and

the direct effects of non-deterministic laws are mutually exclusive.

Now we are going to define the probability distribution associated with non-deterministic

actions. Notice that if any of the previous assumptions does not hold, the following

definition may define a probability distribution which is not intended from the intu-

itive meaning of laws 5.3 and 5.4.

Definition 45 Let σ be a state of a transition diagram T and e be a non-deterministic

action described by 5.3 where p ⊆ σ and l be a fluent literal in {l1, . . . , ln} in 5.3. We

define the probability Pe(l, σ) (we omit the parameter T as we consider that T is fixed

in the context) of fluent literal l being true after e is performed in σ as follows:

1. If there is a statement of form 5.4 for action e and l such that q ⊆ σ, then

Pe(l, σ) = v

2. Otherwise, let k be the sum of Pe(l, σ) such that Pe(l, σ) is defined in (1), and

let m be the number of fluent literals in {l1, . . . , ln} whose probabilities are not

defined by 5.4. We define

Pe(l, σ) =
1− k
m

Definition 46 [Probability of a Transition]

Let 〈σ, e, σ′〉 be a transition in T . We define the probability of an agent being in state

σ′ after performing action e in state σ, P (σ′|e, σ), as follows:

1. If e is deterministic with respect to σ, i.e., there is no non-deterministic dynamic

law for e such that its precondition p ⊆ σ, then

P (σ′|e, σ)def = 1
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2. otherwise, let l ∈ {l1, . . . , ln} ∩ σ′, we have

P (σ′|e, σ)def = Pe(l, σ)

Definition 47 [Semantics of NB]

We say that a system description SD written in NB represents a probabilistic tran-

sition diagram T = (S,R), if,

• The set S of states of T is the collection of all complete and consistent sets of

fluent literals of Σ closed under static causal laws of SD.

• A transition 〈σ, 〈e, w〉, σ′〉 belongs to R of T , if and only if there is a set E(e, σ),

such that σ′ = CnSD(E(e, σ) ∪ (σ ∩ σ′)) and P (σ′|e, σ) = w

A path 〈σ0, e0, σ1, . . . , en−1, σn〉 describes how the system transforms from σ0 to σn as a

result of executing a sequences of action: e0, . . . , en−1. We assume that our transition

diagram has Markovian properties. This means that the likelihood of being in a next

state only depends on the current state and the action executed in current state. It

does not depend on how the system has reached to its current state. Based on this

assumption, we define the probability of a path as follows:

Definition 48 [Probability of Path]

Let p = 〈σ0, e0, σ1, . . . , en−1, σn〉 be a path of length n of T . We define the probability

of the path as

P (p) =
n−1∏
i=0

P (σi+1|ei, σi)

Definition 49 [Probabilistically Consistent Transition Diagram]

Let Ωσ,n be the collection of all paths of length n starting from an initial state σ. We

say that the transition diagram is probabilistically consistent if for every n and σ:∑
p∈Ωσ,n

P (p) = 1
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Figure 5.1: An extended transition diagram with a non-deterministic action

Given a transition diagram, to check whether it is probabilistically consistent or not

is not difficult. For every state σ and action e, if the sum of weights of arcs which are

labeled by e and leaving from σ is 1, then the transition diagram is consistent.

Example 8 [Simple System Description]

Consider a system description SD1 consisting of the following statements:

(r) e cause ¬h|h

f ifh

g if¬h

g iff

(r) h : 0.3

The Figure 5.1 shows the extended transition diagram of Example 8. In Example 8,

if action e is performed in state {g,¬f,¬h}, then the agent may move to the state

{f, g, h} as the result of h being true after action e being executed, or it will stay at

{g,¬f,¬h} as the result of ¬h being true after action e being executed. Because of

the mutually exclusive requirements on the direct effects of non-deterministic actions,

we can see that different possible outcomes always lead to different states.
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5.2.3 History of the System

To perform reasoning tasks such as diagnosis, the agent not only needs the knowl-

edge of the transition system, but also needs the knowledge of which state it was in

and what actions it has executed as well as observations after those actions. Those

knowledge is called the history of the system.

The history of the system (up to step n) is described by two types of statements [23].

By statements of the form

e happened at i (5.5)

The history records actions that happened at step i where 0 ≤ i < n. A fluent literal

l we observed at step j where 0 ≤ j ≤ n is recorded as:

observe l at j (5.6)

Definition 50 [models of history]

A path, 〈σ0, e0, σ1, . . . , en−1, σn〉, of transition diagram is a model of a history H if

• For every statement: e happened at i in H, e = ei;

• For every statement: observe l at j in H, l ∈ σj;

5.2.4 Beliefs about Initial States

To reason about the transition diagram, the agent may need knowledge of the initial

state. When the agent does not observe all the truth values of fluents at step 0, its

knowledge about its initial state may be incomplete.

Definition 51 [Partial State]

A set s of fluent literals is called a partial state of transition diagram T if there is a

state σ of T such that s ⊆ σ.
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Let H be a history and let s = {l : observe l at 0 ∈ H} be a partial state. We

say that the partial state s is then initial partial state defined by H. By compl(s),

we denote the set S of completed states which are compatible with s, i.e., σ ∈ S if

and only if s ⊆ σ. By Ps we denote the probability distribution over all the subsets

of compl(s). The representation of Ps may have many forms. It can be represented

by a table which lists the probability of each state σ of compl(s), or in case fluent

literals which do not belong to s are independent, as we will show in section 5.5, we

can use random selection rules and pr atoms to define Ps.

Definition 52 Let Ps be a probability distribution over all the subsets of compl(s).

The probability Ps(p) of a path p starting at a state σ0 compatible with s is

Ps(p) = Ps(σ0)× P (p) (5.7)

5.2.5 Domain Description

As we have pointed out, many reasoning tasks require system descriptions, history of

the system and probability distribution over initial states. We group these knowledge

together as we refer to domain description.

Definition 53 [Domain Description]

A domain description K is a triple 〈SD,H, Ps〉, where SD is a system description

written in language NB, H is the history of SD and Ps is the probability distribution

over possible initial states.

Just as in Bayesian network, the probability of some random variables may change

given some new information of the domain. The probability of paths of a transition

diagram may change given extra information from history and probability distribu-

tion of initial state. We give the definition of conditional probability of paths as

follows:

Definition 54 [Conditional Probability of a Path]
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Let K be a domain description and s be the initial partial state defined by H of K. Let

PATH be the set of models of H. The probability of a path conditioned on history H

is defined as follows:

PK(p|H) =
Ps(p)∑

p∈PATH

(Ps(p))
(5.8)

Given a domain description K, an intelligent agent can perform many interesting

and important reasoning tasks based on it. Many studies (such as [31] and [32]) has

shown that we can encode system description languages to certain logic programs.

The reasoning task then can be reduced to computation of logic programs. We adopt

the same method as we encode the domain description K to P-log program Π(K).

With proper queries, the answer of these queries to Π(K) will contain the solution of

reasoning tasks.

5.3 Encoding K with P-log

In this section, we give an algorithm which maps a domain description K to rules of

P-log program Π(K) such that there is one-to-one correspondence of a model, p, of

H of K to a possible world, W , of Π(K), and µ(W ) = PK(p|H).

Our translation starts with some declarations. For a system with a history up to step

n, we have the following declaration:

time = {0..n}

#domain time(T )

We have declaration in Π(K):

fluent = {f1, . . . , fm}

where {f1, . . . , fm} is the set of all fluents in the language.
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We introduce a new boolean predicate h:

h : fluent, time→ boolean

As each possible world of program Π(K) represents a path p = 〈σ0, e0, σ1, . . . , en−1, σn〉,

a literal h(f, t) belonging to a possible world W means that fluent f is true in state

σt of p. We use ¬h(f, t) to represent that ¬f is true in state σt. We use h(l, t) stands

for h(f, t) if l is a fluent f or stands for ¬h(f, t) if l is ¬f . If p = {l1, . . . , ln} is a set

of fluent literals, h(p, t) is a short hand of h(l0, t), . . . , h(ln, t).

Inertia Axiom: For each fluent, their truth values stay unchanged if no laws make

them change. For each inertial fluent, we have the following rules:

h(f, T + 1)← h(f, T ),not ¬h(f, T + 1)

¬h(f, T + 1)← ¬h(f, T ),not h(f, T + 1)

The translation of dynamic causal laws and static causal laws to rules in ASP program

can be found in [31]. The dynamic causal laws are translated to

h(l, T + 1)← occurs(e, T ), h(p, T )

The static causal laws are translated to

h(l, T )← h(p, T )

The non-deterministic dynamic causal laws, (r) e cause l1| . . . |ln if p, are translated

to the following statements:

• We declare a sort outcomer consisting of n (n > 1) symbols where each symbol

represents a possible outcome of action e.

outcomer = {l1, . . . , ln}
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• We introduce a new random attribute:

resultr : time→ outcomer

This random attribute is defined by a random selection rule to enumerate all

possible outcomes of a non-deterministic dynamic causal law (r).

• We use a random selection rule to say that if e is performed in a state which

satisfies p. Then there are n possible outcomes.

[r] random(resultr(T + 1))← occurs(e, T ), h(p, T )

• for the i’th possible outcome li, we have the following rules:

h(li, T )← resultr(T ) = li

The statements for probabilities of possible outcome, (r) l : v if q, is translated to pr

rules:

prr(resulte(T + 1) = l|ch(q, T )) = v

The history of actions e performed at t is translated to:

occurs(e, t).

The history of observations l at step t where t > 0 is translated to:

obs(h(l, t)).

For observations of l at step 0, we add

h(l, 0).

into the P-log program.

In case, the agent’s knowledge of initial state is incomplete, we add the following

program to represent the probability distribution over initial states with P-log. Let
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s be the partial state defined by a history H and let n = |compl(s)|. We introduce a

sort ini state as follows:

ini state = {c1, . . . , cn}

where each symbol ci is the name of a complete state in compl(s).

We declare a random attribute at initial state as follows:

at initial state : ini state

Then we have a random selection rule:

[ini] random(at initial state)

Let σi ∈ compl(s). For each fluent literal l ∈ σi, we add the following rules to P-log

program:

h(l, 0)← at initial state = ci

Suppose Ps({σi}) = v where 0 ≤ v ≤ 1. We can have the following pr atoms

to describe the probability distribution:

[ini] pr(at initial state = ci) = v

This concludes our translation from domain description to a P-log program. The

next theorem shows that the obtained P-log program can be used for computing the

probability of paths conditioned on histories.

Theorem 4 Let Π(K) be the P-log program obtained from a domain description K.

Let H be a history of K which records all the actions executed up to step n−1. A path

p = 〈σ0, e0, σ1, . . . , en−1, σn〉 is a model of H if and only if there is a possible world

W of Π(K) such that for any 0 ≤ t ≤ n,

1. et = {e : occurs(e, t) ∈ W}

85



Texas Tech University, Weijun Zhu, May 2012

2. h(l, t) ∈ W iff l ∈ σt

and µ(W ) = PK(p|H).

Next, we will demonstrate how to use this encoding to evaluate the probability of some

fluent being true given the history of the system. Evaluating the probability, PK(l, j),

of some fluents l being true at some step j is common and important reasoning tasks,

such as computing the probability of success of a given plan.

5.4 Evaluating PK(l, j)

In this section, we discuss which query can be used for computing the probability,

PK(l, j), of a given fluent literal l being true in a certain step j of H with respect to

the encoded program Π(K). We first give a formal definition of this probability:

Definition 55 [PK(l, j)]

Let K be a domain description and l be a fluent literal and j be an integer between 0

and n where n is the last step of H. Let H ′ = H ∪ { observe l at j}, the probability

PK(l, j) of fluent literal l being true at a given step j is defined as follows:

PK(l, j) =
∑

p is a model of H′

PK(p|H ′) (5.9)

Proposition 6 Let Π(K) be the P-log program obtained from a domain description

K. Let l be fluent literal of K and let j (0 ≤ j ≤ n) be an integer.

PΠ(K)(h(l, j)) = PK(l, j)

Because the query {h(l, j)}|∅ to P-log program Π(K) returns PΠ(K)(h(l, j)), our sys-

tem is capable of computing the probability PK(l, j).

In the next two sections, we will illustrate how to use similar method to solve an-

other two important tasks (the diagnosis problem and the planning problem) with

P-log.
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5.5 Probabilistic Diagnosis Problem

In this section, we will discuss how to solve probabilistic diagnosis problem with

P-log. Our work on probabilistic diagnosis has roots in [24] in which the author

defines diagnosis problems in terms of first order logic. In our approach, we introduce

probabilistic information into the domain. With probability information considered,

the quality of diagnostic results could be enhanced.

Definition 56 [probabilistic diagnosis problem]

Let T be a physical system which is modeled by system description language NB. A

probabilistic diagnosis problem D is a tuple 〈K, C〉, where K is a domain description

of T and C is a set of components that may be faulty in T .

The states of the transition diagram defined by SD of K consisting of fluents faulty(c)

for each c ∈ C as well as other fluents used for describing the behavior of the sys-

tem. We assume actions in SD are deterministic. While the method described here

can be easily extended to non-deterministic domains, for the purpose of simplicity,

we represent our methods based on this assumption. We further assume that no

action can damage a component nor fix a broken one. This is different from [33] in

which exogenous actions are the cause of broken components. Last, we assume that

the probability of a component being faulty is independent from the status of other

components.

We divide the recorded history H of K to three disjoint parts:

• On−1: A collection of statement of form: observe l at j, where 0 ≤ j ≤ n− 1.

In diagnosis problem, we assume that all the fluents are known in the initial

state except fluents of form faulty(c). By s0, we denote the set of fluent literals

which are known being true in the initial state.

• Oe: A collection of statement of form: e happened at i. We assume that all

the actions are recorded and the history is up to step n.
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• On: A collection of statement of form: observe l at n.

Because the agent has incomplete knowledge of its initial state, we need to specify

the probability distribution over all possible initial sates.

Let D ⊆ C be the set of faulty components. We define a set WD of fluent literals as

follows:

WD = {faulty(c) : c ∈ D} ∪ {¬faulty(c) : c ∈ CT\D} (5.10)

Notice that for each D there is at most one state σ such that WD ⊆ σ and σ satisfies

s0. If such state exists, we denote it by sD. The state sD is the initial state that

the agent believes it might be in given the assumption that all components in D are

faulty and the rest are not faulty. Let P (c) denote the probability of a component c

being faulty. Let s0 be the initial partial state defined by H. Because we assumed

that components are independent of each other, for each possible initial state sD, the

probability, Ps({sD}), can be defined as follows:

Ps({sD}) =
∏
c∈D

P (c)×
∏
c 6∈D

(1− P (c))

In general, the probability P (c) can be obtained from many resources. A typical one

will be some statistical results obtained by the producer. For example, if for over

one thousand bulbs produced by a company A, about 3 bulbs are faulty, then the

probability of this type of bulb being faulty can be modeled as 0.003.

Our definitions of symptoms and candidate diagnosis are very similar to those in

[33]. The main difference between this work with [33] is that, in [33], the candidate

diagnosis is a set of unrecorded actions (called exogenous actions) which happened

and caused unexpected behaviors, while in our work, it is a set of components that

the agent believes to be faulty at the beginning.

Definition 57 [Configuration][33]

Let Γn−1 = On−1 ∪Oe. A pair (Γn−1, On) is called a configuration.
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Definition 58 [Symptom]

Let D∅ = ∅. A symptom is a configuration (Γn−1, On) such that there exists a model

p of Γn−1 which starts from the initial state s∅ but has no model of Γn−1 ∪ On which

starts from s∅.

Now we give our definition of candidate diagnosis.

Definition 59 [Candidate diagnosis]

We say that a non-empty set D of components is a candidate diagnosis of symptom

S = (Γn−1, On) w.r.t. a transition diagram T if there is a model of Γn−1 ∪ On in T

which starts from the initial state sD.

If D is a candidate diagnosis of symptom S = (Γn−1, On), the set, WD, of fluent

literals, defined as 5.10, is called a possible world that is compatible with the symptom

S.

Let PS be a probability distribution defined as follows:

PS({WD}) = PK(p|H)

where path p starts at the initial state sD.

By PS(D), where D is a candidate diagnosis of S, we denote

PS({WD : ∀c ∈ D, faulty(c) ∈ WD,WD ∈ Ω})

Definition 60 [Best Diagnosis]

A candidate diagnosis D is a best diagnosis w.r.t. a probability distribution PS, if

for every candidate diagnosis D′, we have PS(D′) ≤ PS(D).

Given a diagnosis problem D, the task of solving D is to find the set of best diagnosis

of D. To solve such problem, we use the translation method illustrated in previous

section to obtain P-log program Π(K). We introduce a new type of query and show

that the answer of this query to Π(K) is the solution to the probabilistic diagnosis
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Figure 5.2: A digit circuit.

problem. We use the following example to show how to represent a physical domain

of diagnosis problem with language NB and to explain how the definition of best

diagnosis can be used for checking and repairing components efficiently.

Example 9 [Digital Circuit]

Consider a system T consisting of a digital circuitDC from Figure 5.2. Components a,

b, c and d are digital devices. Those components output signal 1 if they are activated

and work normally. Otherwise, they output 0. All components will be activated by an

action open. The node ”AND” of the diagram performs AND operation on outputs

of components a and b. The output of this node and the output of component c are

the inputs for node ”XOR” for XOR operation. Similarly for node ”OR” which takes

the output of c and d as its input and outputs signal based on logical OR operation.

Initially, no component is activated. After performing action open which activates all

the components, the agent expects to see an output of 0 from node ”XOR”. Suppose

however that the received signal is 1.

The system description, SD, of T given below defines the dynamic system of the

above example. Variable C ranges over components, a, b, c and d of the system.

The only action open in our example will cause the system to be activated:
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open causes activated

A component C will output signal 1 if the system is activated and C works properly,

otherwise, it will output 0:

output(C, 1) if activated,¬faulty(C)

output(C, 0) if ¬activated

output(C, 0) if faulty(C)

P-log, as an extension of Answer Set Prolog, is good at representing knowledge in

a general form. For the purpose of saving space, instead of using general axioms

for digital gate operations, we represent the functionality of these gates with domain

related input and output.

The following three static laws describe how an AND node works:

output(and node, 1) if output(a, 1), output(b, 1)

output(and node, 0) if output(a, 0)

output(and node, 0) if output(b, 0)

The following two static laws describe how an XOR node works. The inputs of the

XOR node are the output of the AND node and the output of the component c.

output(xor node, 1) if output(and node, S1), output(c, S2), S1 <> S2

output(xor node, 0) if output(xor node, S), output(c, S)

The following three static laws describe how an OR node works. The inputs of the

OR node are the output of components c and d:

output(or node, 1) if output(c, 1)

output(or node, 1) if output(d, 1)

output(or node, 0) if output(c, 0), output(d, 0)
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The history of initial states is described as follows:

observe ¬activated at 0

observe output(C, 0) at 0

observe output(and node, 0) at 0

observe output(xor node, 0) at 0

observe output(or node, 0) at 0

The rest of the history of the system is described by the following two statements:

1. the action is performed at step 0:

open happened at 0

2. the observation O1 consists of the statement:

observe output(xor node, 1) at 1

The probability of each components being faulty is written as follows:

P (a) = P (b) = 0.4

P (c) = P (d) = 0.5

This completes the description of domain description K. Since there is no path

that starts from the initial state sO0∪D∅ and satisfies Γ0 and O1 the configuration

S1 = (Γ0, O1) is a symptom of the system T .

There are 8 candidate diagnosis of symptom S1 and the probability distribution PS1

is described as follows:

1. D1 = {a}, PS1(WD1) = 0.12.

2. D2 = {b}, PS1(WD2) = 0.12.

3. D3 = {a, b}, PS1(WD3) = 0.08.
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4. D4 = {c}, PS1(WD4) = 0.18.

5. D5 = {a, d}, PS1(WD5) = 0.12.

6. D6 = {b, d}, PS1(WD6) = 0.12.

7. D7 = {a, b, d}, PS1(WD7) = 0.08.

8. D8 = {c, d}, PS1(WD8) = 0.18.

For each candidate diagnosis D of S, we compute PS1(D) as follows:

1. PS1(D1) = PS1(WD1) + PS1(WD3) + PS1(WD5) + PS1(WD7) = 0.4.

2. PS1(D2) = PS1(WD2) + PS1(WD3) + PS1(WD6) + PS1(WD7) = 0.4.

3. PS1(D3) = PS1(WD3) + PS1(WD7) = 0.16.

4. PS1(D4) = PS1(WD4) + PS1(WD8) = 0.36.

5. PS1(D5) = PS1(WD5) + PS1(WD7) = 0.20.

6. PS1(D6) = PS1(WD6) + PS1(WD7) = 0.20.

7. PS1(D7) = PS1(WD7) = 0.08.

8. PS1(D8) = PS1(WD8) = 0.18.

From computation, we can see that D1 and D2 are the best diagnosis of symptom

S1 according to our definition. This means components a and b are the ones that

are most likely to be faulty given the symptom in this example. This information

helps agent check and repair components a or b first, instead of checking c or d

first. Furthermore, component d is unrelated to the symptom S1 at all and the best

diagnosis in our definition will guarantee containing no unrelated components.

5.5.1 Solving Diagnostic Problem

To obtain the P-log program Π(K), we need to translate SD, H and Ps to rules of

P-log program. The translation of SD and H is same as those described in section
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1.2. The translation of Ps is different because of the assumption of in-dependency

among components, which gives us a concise representation of Ps:

We declare a boolean random attribute faulty as follows:

faulty : component→ boolean

For each component c ∈ C we have

[c] random(faulty(c))

h(faulty(c), 0)← faulty(c)

¬h(faulty(c), 0)← ¬faulty(c)

and

[c] pr(faulty(c)) = v

where v = P (c).

The complete P-log program Πd of Example 9 can be found in [47].

Proposition 7 [Soundness]

Let D = 〈K, C〉 be a probabilistic diagnosis problem. Let W be a possible world of

Π(K) and let

C(W ) = {c : faulty(c) = true ∈ W}

be a collection of components that are faulty in W . Then C(W ) is a candidate diag-

nosis of symptom S with respect to D.

Proposition 8 [Completeness]

For each candidate diagnosis D of symptom S of a probabilistic diagnosis problem

D = 〈K, C〉 there exists a possible world W of Π(K) such that D = C(W ).

By Conj(L) where L = {l1, . . . , ln} is a set of literals, we denote the propositional

formula: l1 ∧ · · · ∧ ln.
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Proposition 9 [Probability Equivalence]

Let L = {l1, . . . , ln} be a set of literals. For each possible world W of Π(K), we have

PS(C(W )) = PΠ(K)(Conj({faulty(c1) = true, . . . , faulty(cn) = true} ∩W ))

Let Ω(Π(K)) be the collection of all possible worlds of Π(K). We can define a set of

formulas F as follows:

F = {Conj({faulty(c1) = true, . . . , faulty(cn) = true} ∩W ) : W ∈ Ω(Π(K))}

Then for each formula f in the answer F ′ to query Q = F |∅ w.r.t. the P-log program

Π(K), the set of components that forms the formula f is the best diagnosis of symptom

S.

Notice that F is not available until all the possible worlds are computed. Therefore,

we need first translate Π(K) to an ASP program τ(Π(K)) (exclude all pr atoms) and

use answer set solver (e.g. smodels) to compute all the answer sets of τ(Π(K)). Then

we can construct the set F of formulas. Let Π be a P-log program obtained from

Π(K) by excluding all the obs and do statements in Π(K). Let C be the collection of

obs and do statements in Π(K). By proposing the query Q = F |C to program Π, we

can solve the finding best diagnosis problem.

5.5.2 Extending P-log system

In this section, we will first extend the syntax of the query we introduced in definition

8 and then give a new algorithm designed to improve the performance of finding best

diagnosis with P-log.

The procedure described in the last paragraph of section 5.5.1 has two major problems

and both are related to the efficiency of solving diagnosis problems. First, we use two

similar inference engines (answer set solver and plog inference engine) for completing

the tasks. If we are able to merge these two computations to one, then surely the
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performance can be improved. Second, the number of possible worlds can be very

large and so is the size of the set F which consists of all possible faults. As we will

point out later in this section that it is not necessary to compute the whole set F , a

small subset of F can be sufficient to use in order to find best diagnosis.

In plog2.0, the statement [l1, . . . , ln] defines a set of formulas w.r.t. a P-log program

Π and a query Q as follows:

[l1, . . . , ln] = {Conj({l1, . . . , ln} ∩W ) : W ∈ Ω(Π ∪ ΠQ)}

Let Π1 be the P-log program obtained from the system description K of Example 9

without do and obs statements. Let ΠQ = Π(K)\Π1, i.e., the collection of do and obs

statements occurring in Π(K). The notation [faulty(a), faulty(b), faulty(c), faulty(d)]

with respect to the program Π1 and ΠQ defines the following set of formulas:

{faulty(a), faulty(b), faulty(c), faulty(a) ∧ faulty(b), faulty(a) ∧ faulty(d),

faulty(b)∧faulty(d), faulty(c)∧faulty(d), faulty(a)∧faulty(b)∧faulty(d)}.

The answer to the following query

[faulty(a), faulty(b), faulty(c), faulty(d)]|do(occurs(open, 0)), obs(h(output(xor node, 1), 1))

w.r.t. the program Π1 returns the best diagnoses we are looking for.

Let Π be a ground scou P-log program and the query Q = [l1, . . . , ln]|C. The plog2.0

system solves above query in two steps:

1. Find a set of formulas F (F ⊆ [l1, . . . , ln]) such that if a formula f belongs to

the answer of Q, then f ∈ F . Notice that the size of the set [l1, . . . , ln] can

be very large when n is large. However, for two sets of literal L1 and L2, if

L1 ⊆ L2, then PΠ∪ΠQ(Conj(L1)) ≥ PΠ∪ΠQ(Conj(L2)). This property makes

efficient computation of finding F possible.

2. Find the most likely formulas from F w.r.t. the query Q and the program Π.
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Let f = l1∧· · ·∧ ln be a formula. By [f ], we denote the collection of literals occurring

in f . We say that two formulas, f1 = Conj({l1, . . . , ln}) and f2 = Conj({k1, . . . , km}),

are incompatible if [f1] 6⊆ [f2] and [f2] 6⊆ [f1].

The algorithm shown in Algorithm 10 returns the set of formulas F such that for

each f1 ∈ F and f2 ∈ F , f1 and f2 are incompatible and query Q′ = F |C and Q are

equivalent. We explain steps of the algorithm as follows:

Algorithm 10: ReduceFormula(Π, Q)

Input: A ground scou P-log program Π and a query Q = [l1, . . . , ln]|C to Π

Output: The set F ⊆ [l1, . . . , ln] of formulas such that for each f1 ∈ F and f2 ∈ F ,

f1 and f2 are incompatible, and the query F |C and Q are equivalent w.r.t.

Π.

Φ := FindPartialWorld(Π, Q);1

F := ∅;2

while Φ 6= ∅ do3

Let I ∈ Φ such that rank(I) is the smallest;4

if I knows {l1, . . . , ln} then5

Let L = {l : I(l) = T and l ∈ {l1, . . . , ln}} and f = Conj(L);6

if for all formulas f ′ ∈ F , f and f ′ are incompatible then7

Add f to F ;8

Φ = Prune(Φ, f)9

end10

else11

Φ := Φ ∪Branch(Π, I);12

end13

Remove I from Φ;14

end15

return F16
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1. The function FindPartialWorld is described in Algorithm 8. It returns a set,

Φ, of smallest partial possible world of Π ∪ ΠQ. If Φ is an empty set, then the

program is inconsistent. In such case, we simply return an empty set.

2. The variable F stores all the formulas we are interested in. Initially, this set is

an empty set.

3. The stop condition for the while loop is that when Φ becomes an empty set.

Since the total number of weighted f-interpretation is finite and each weighted

f-interpretation will only be checked at most once and then removed from the

set Φ, therefore the set Φ will become an empty set eventually. Hence the loop

will stop.

4. In our implementation, each weighted f-interpretation I = (A,w) has a rank

rank(I) defined as follows:

rank(I) = |{l : A(l) = T where l ∈ {l1, . . . , ln}}|

where || is the cardinality of the set. The algorithm always selects a possible

worlds with the lowest rank to further investigate.

5. If I knows all the literals in {l1, . . . , ln}, i.e., A(l) ∈ {T, F} for each literal

l ∈ {l1, . . . , ln}, then the algorithm may find a formula we are interested in.

6. Let the variable f be the formula induced from the weighted f-interpretation I.

7. We check whether this formula f is incompatible with formulas in F , if there

exists a formula f ′ which is compatible with f , then [f ′] ⊆ [f ]. This is because

we always choose the weighted f-interpretation with smallest rank to check first.

If there exists a formula f ′ such that [f ′] ⊆ [f ] then PΠ∪ΠQ(f ′) > PΠ∪ΠQ(f),

hence we can discard the formula f .

8. If no such f ′ exists, we then add f to the set F .

9. Each time a new formula f is added to the set F , we may use the new formula to

prune the set Φ. Let f ′ be the formula induced from a weighted f-interpretation
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I ′ ∈ Φ such that [f ] ⊂ [f ′]. If there exists a non zero weighted possible world

W of Π such that W 6|= f ′ but W |= f , then the partial possible world labeled

by I ′ can be removed from Φ. This because that any formula induced from the

children of I ′ or I ′ itself is strict superset of f and whose probability must be

less than f w.r.t. Π because of the existence of W . The function Prune(Φ, f)

removes all such partial possible words from Φ and returns the remaining set of

Φ.

12. If I does not know all the literals occurring in {l1, . . . , ln}, we need to further ex-

pand the weighted f-interpretation until all the literals are known. The function

Branch(Π, I), described in Algorithm 7, generates children of I.

14. Removing the checked weighted f-interpretation makes sure that every weighted

f-interpretation I will only be checked once.

We use the following example to trace this algorithm and to show how function

Prune(Φ, f) may help to improve the efficiency.

Example 10 Consider the following ground scou P-log program Π10:

a, b, c, f : boolean.

[a] random(a).

[b] random(b).

[c] random(c).

f:-a.

%end

The query Q to this program is [a, b, c]|obs(f).

If we compute all the possible worlds of Π10 ∪ΠQ, we will have 4 possible worlds and

therefore, we will have 4 formulas: a, a ∧ b, a ∧ c and a ∧ b ∧ c. It is easy to see that

the formula a is the one with the highest probability with respect to Π10 ∪ΠQ. Now

let us see what is returned from the function ReduceFormula(Π10, Q). First, by call-
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ing function FindPartialWorld, we assume that it returns a set of partial possible

worlds with only one element: {a, f} (here, we denote the corresponding weighted f-

interpretation by only listing the literals which have been assigned to value T ). There-

fore, initially, Φ0 = {{a, f}}. Because {a, f} does not know literals b and c, we need to

expand this partial possible world. Assume we fired random selection rule [b] and we

get Φ1 = {{a, b, f}, {a,¬b, f}}. Because rank({a,¬b, f}) = 1 < rank({a, b, f}) = 2,

we select I1 = {a,¬b, f} in step 4 in the second the iteration. Since I1 does not know c,

we further expand this node and result in Φ2 = {{a, b, f}, {a,¬b, c, f}, {a,¬b,¬c, f}}.

In the third iteration, {a,¬b,¬c, f} will be picked and it knows {a, b, c}. The atomic

formula a will be added to F and the function Prune(Φ, a) will be called. Now we can

see that {a, b, f} can be removed from Φ2 as the formula a ∧ b is a superset of a and

there exists a non-zero weighted partial possible world (for example, {a,¬b,¬c, f})

which does not entail formula a∧ b. With the same reason, the partial possible world

{a,¬b, c, f} will also be removed from Φ2. Therefore, at the end of third iteration,

Φ3 = ∅ and the function returns F = {a}. The whole process created 4 partial possi-

ble worlds while computing all possible worlds will create 6 partial possible worlds in

total, and furthermore, the set returned from function ReduceFormula(Π, Q) give us

a much smaller set than the set of formulas built from computing all possible worlds.

When dealing with large domain, this function is critical to the performance of our

system.

5.5.3 Diagnosis on Space Shuttle System

Reaction Control System (RCS) is a subsystem of Space Shuttle which has primary

responsibility for maneuvering the space shuttle. In [8], the RCS has been represented

by A-Prolog for performing plan checking and generating plans. The system consists

of three subsystems positioned at left, right and front. Each subsystem is a plumbing

system where tanks, switches and valves are used for delivering fuels and oxidizer to

the jets to fire. The astronauts on board have pre-scripted plans which can be used
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for normal operations. However, if some components are faulty, a new plan must be

generated in order to finish the mission and ensure the safety of crews. Whether a

new plan works or not largely depends on the knowledge of which components are

faulty. Since there are many of those components, astronauts need to determine which

components to check first and which one to check later. In this context, the methods

of finding best diagnosis may help astronauts make such decisions.

The diagnosis problem can be solved by the translation based plog1.0 system given

some extras assumptions such as there are at most two components are faulty. With-

out assumptions like this, the number of possible worlds will be too large to handle

for the plog1.0 system.

The plog2.0 system can find the best diagnosis without such assumptions. While

subsystems are not completely separate from each other, many possible faulty symp-

toms are only related to one subsystems. When performing diagnostic task, it is

critical to eliminate unrelated components out of consideration. This is done by the

ground algorithm of plog2.0 system. Similar to the grid domain example, the al-

gorithm of computing partial possible worlds reduces the amount of computations

needed for evaluating probabilities of formulas. With plog2.0, most instances can be

solved within 1 minutes.

The complete P-log program for RCS diagnosis can be found in [47].

5.6 Probabilistic Planning Problem

In this section, we will show how to use P-log to find the best probabilistic plans.

Planning problems are one of those most important and widely studied problems in

knowledge representation. Planning problems can be characterized as classical plan-

ning problems if all actions are deterministic and the agent has complete knowledge of

initial state. When there are nondeterministic actions and probability distribution is

available, the planning problem can be called as probabilistic planning problems. For
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probabilistic planning problems, if the agent is able to perform observations during

the execution of its plan, then such problems are called conditional probabilistic plan-

ning problems in which plans are conditioned on its observation results. Otherwise,

the problems are called probabilistic planning problems. Based on the requirements

of the quality of the plan, one may look for a plan that always reaches the goal (con-

formant planning problem), or plans that achieve the goal with at least θ probability,

or plans that achieve the goal with the highest probability. In this chapter, we focus

on finding probabilistic plans that achieve the goal with the highest probability.

We start with a probabilistic planning example which is introduced in [27].

Example 11 The task of the robot is to grasp a box with its grips. However, the

action grasp is not deterministic. It may succeed with probability 0.7 if the grips are

dry, or it may succeed with the probability 0.5 if the grips are wet. The robot also can

perform another action dry which will make the grips dry. Different from original

example, we assume this action is deterministic which means it will always succeed.

We also assume if the robot already holds the block then performing action grasp will

keep the robot holding the block, but performing action dry drops the block. The robot

knows that the block is not held initially but has no idea whether the grips are wet or

not. Instead, it believes that the grips are wet with probability 0.1 initially.

Given planning length of 2, the robot can have the following two intuitive simple

probabilistic plans:

• the robot can first dry the grip then performs the action grasp, or

• the robot can perform action grasp twice this certainly increase its chance of

holding the block after that.

Now the question is which plan is better?

Definition 61 [Planning Problem]

A planning problem is a tuple 〈K, s0, sf〉 where s0 and sf are consistent partial
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states and K is a domain description which defines a transistion diagram T .

Definition 62 [Probabilistic Plan]

We say a chain of action α = 〈a0, . . . , an−1〉 is a probabilistic plan for a planning

problem 〈K, s0, sf〉 if there exists a path p = 〈σ0, a0, σ1, a1, . . . , an−1, σn〉 such that

σ0 ∈ compl(s0), σn ∈ compl(sf ) and PK(p|H) > 0.

Certainly, we are interested in a chain of actions that leads an agent starting from

initial partial state s0 to the final partial state sf with higher probabilities. Let α =

〈a0, . . . , an−1〉 and PT (α, s0, sf ) be the collection of all the paths 〈σ′0, a′0, σ′1, a′1, . . . , a′n−1, σ
′
n〉

of length n in T such that σ′0 ∈ compl(s0), σ′n ∈ compl(sf ) and ai = a′i (for

0 ≤ i ≤ n − 1). Let Ps0 be the probability distribution over all possible initial

states. We define the probability Ps0(sf |α, s0) of a probabilistic plan α for a planning

problem 〈K, s0, sf〉 as follows:

Ps0(sf |α, s0) =
∑

p∈PT (α,s0,sf )

Ps0(p)

Now we introduce the definition of best probabilistic plan as follows.

Definition 63 [Best Probabilistic Plan]

Let P = 〈K, s0, sf〉 be a planning problem and An be the collection of all action chains

with length n. Let

S = arg max
α∈An
{Ps0(sf |α, s0)}

An action chain α is said to be the best probabilistic plan if α ∈ S.

Figure 5.3 shows the transition diagram of our example. There are four states and

four possible action chains with length 2. However, only two of them are probabilistic

plans. For the other two action chains {dry, dry} and {grasp, dry}, both will lead to

the agent staying in the state {¬wet,¬hold}.
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Figure 5.3: Trasition diagram of Exmaple 2

For the other two action chains α1 = {dry, grasp} and α2 = {grasp, grasp}, we

compute PT ({hold}|〈dry, grasp〉, {¬hold}) and PT ({hold}|〈grasp, grasp〉, {¬hold})

as follows:

There are two possible initial states: σ1 = {¬hold, wet} and σ2 = {¬hold,¬wet}.

According to our example, the probability distribution of these two states are:

• P{¬hold}({¬hold, wet}) = 0.1

• P{¬hold}({¬hold,¬wet}) = 0.9

For plan α1, there are two paths in PT (α1, {¬hold}, {hold}) and their probabilities

are:

P{¬hold}(〈σ1, dry, σ2, grasp, σ4〉) = 0.1× 1× 0.7 = 0.07, and

P{¬hold}(〈σ2, dry, σ2, grasp, σ4〉) = 0.9× 1× 0.7 = 0.63.

Therefore, for plan α1, we have

P{¬hold}({hold}|α1, {¬hold}) = 0.07 + 0.63 = 0.7 .

For plan α2, there are two paths in PT (α2, {¬hold}, {hold}) starting at state σ1 and

their probabilities are:
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• P (〈σ1, grasp, σ1, grasp, σ3〉) = 0.1× 0.5× 0.5 = 0.025;

• P (〈σ1, grasp, σ3, grasp, σ3〉) = 0.1× 0.5× 1 = 0.05.

There are two paths in PT (α2, {¬hold}, {hold}) starting at state σ2 and their prob-

abilities are:

• P (〈σ2, grasp, σ2, grasp, σ4〉) = 0.9× 0.3× 0.7 = 0.189;

• P (〈σ2, grasp, σ4, grasp, σ4〉) = 0.9× 0.7× 1 = 0.63.

Overall, for plan α2, we have

P{¬hold}({hold}|α2, {¬hold}) = 0.025 + 0.05 + 0.189 + 0.63 = 0.894

Hence, instead of drying the grip first, the robot can simply try to grab the block

twice and it is more likely to be successful than the other plans.

5.6.1 Solving Probabilistic Planning Problem

The transition diagram of Example 11 can be represented by language NB. The

completed description of Example 11 can be found in [47]. Together with history and

probability distribution over initial states, the domain description K can be mapped

to the P-log program Π(K). In addition, we need some extra rules to describe the

goals and to generate plans. In Example 11, the goal is to hold the block at time step

2, we have a following rule:

goal← h(grasp, 2) (5.11)

To generate plans, we introduce a new random attributes:

o : time→ action (5.12)

and have random selection rules for each step T where 0 ≤ T < n :

[o(T )] random(o(T ))← time(T ), 0 ≤ T < n (5.13)
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The following rules say that if we select the action A at time T , the action A occurs

at time T .

occur(A, T )← o(T ) = A (5.14)

We denote the P-log program consisting of rules (5.11) - (5.14) by Πgoal.

Let Ω be all the possible action sequences from step 0 to step n− 1. By Conj(ωn−1)

we mean a conjunction formed formula o(0) = a0 ∧ · · · ∧ o(n− 1) = an−1. We define

< o(0), . . . , o(n− 1) >, a set of formulas, as:

< o(0), . . . , o(n− 1) >=def {Conj(ωn−1) : ω ∈ Ω}

The following query to program Π(K)∪Πgoal contains the best probabilistic plans.

< o(0), . . . , o(n− 1) > |obs(goal)

Theorem 5 Let Π(K) be a P-log program obtained from a domain description K of

a probabilistic planning problem 〈K, s0, sf〉. An action sequence o(0) = a0, . . . , o(n−

1) = an−1 is a best probabilistic plan if and only if the formula: o(0) = a0∧· · ·∧o(n−

1) = an−1 is in the answer of the query < o(0), . . . , o(n− 1) > |obs(goal) with respect

to the P-log program Π(K) ∪ Πgoal.

5.6.2 Performance

We use the Sand and Castle [28] example to test the performance of plog systems. The

tests are conducted under Ubuntu 10.10 environment with Intel dual-core processor

at 1.60GHz, 2GB memory.

The Figure 5.4 shows the time spent on finding the best probabilistic plans with

different lengths. We can see that the system, plog2.0, can only compute plans with

shorter length. Due to the number of possible worlds growing exponentially, the time

used for finding all the best probabilistic plans grows exponentially too. Comparing

106



Texas Tech University, Weijun Zhu, May 2012

Figure 5.4: Performance of plog2.0 on Sand and Castle problem

to other probabilistic planning system, such as MAXPlan [28] and CPPlan [29], the

ability of our system of finding probabilistic plans is limited.

When the length of the plan goes longer, so is the number of random selection rules.

This hurts the performance of our plog system in two ways: first, previous analysis

has shown that the performance of plog system is largely related to the number of

possible worlds, or say the

search space. In probabilistic planning problem, longer plans means more selections

on actions and therefore larger search space. Second, the deeper the program tree

goes, the smaller is the unnormalized weight of leaf nodes. When the system finds a

plan, it updates the global lower bound v, that is if a formula f is an answer of the

query, then the probability of f must be larger than or equal to v. Since such v is tend

to be very small in a large and deep programming tree, such bounding mechanism

becomes useless and can not prune any search space of the problem.
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Chapter 6

PROOFS

This chapter presents proofs of theories and lemmas shown in the Chapter 3 and

Chapter 5.

6.1 Proof of Theorem 1

Before we move to the proof of theorem 1, we first introduce the following lemma and

its proof which will be used for the proof of the theorem.

Lemma 1 Let Π be a ground scou P-log program with no obs and do statement, l be

a literal of signature of Σ and ‖ be a causal leveling function. Let L1, . . . , Ln+1 be the

sets of literals as defined in definition 12 and Π1, . . . ,Πn+1 be the ‖-induced structure

of Π. If l ∈ Lk, then PΠ(l) = PΠk(l).

PROOF: Let a1(t̄1), . . . , am(t̄m) be the ordering of random attribute terms induced

by ‖. We construct a sequence of trees T0, . . . , Tn as described in [1]: T0 is a tree with

one node n0 labeled by true and Tj (0 < j ≤ n) is obtained from Tj−1 by expanding

every leaf of Tj−1 which is ready to branch on aj(t̄j) via any rule relative to Πj by

this term. By proposition 1 of [1], we have Πn+1 = Π and Tn is a tableau of Π which

represents Π. Since Π is a unitary P-log program, Tn is a unitary tree.

Let Ωk be the collection of all possible worlds of Πk. Since Π is a causally ordered and

unitary program, by theorem 1 in [1], Π is coherent. Therefore, Π contains at least one

possible worlds with non-zero unnormalized probability. Since every possible world

of Π expands some possible world of Πk, Πk contains at least one possible world with

non-zero unnormalized probability. By definition of probability, we can compute the
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probability, PΠk(l), of literal l being true with respect to program Πk as follow:

PΠk(l) =
∑

V ∈Ωk,l∈V

µ(V ) (6.1)

where µ(V ) is the normalized probability of possible world V . µ(V ) can be computed

from unnormalized probability of possible worlds in Ωk as follow:

µ(V ) =
µ̂(V )∑

V ∈Ωk

µ̂(V )
(6.2)

From 6.1 and 6.2, we derive that

PΠk(l) =

∑
V ∈Ωk,l∈V

µ̂(V )∑
V ∈Ωk

µ̂(V )
(6.3)

By definition of µ̂(V ),

µ̂(V ) =
∏

a(t̄)=y∈V

P (V, a(t̄) = y) (6.4)

where the product range over all the random attribute atom a(t̄) = y ∈ V . Let pk

be a path from the root of Tk to some leaf node and pn be a path in Tn expanding

pk. Let V be the possible world represented by the leaf node of path pk and W be

the possible world represented by the leaf node of path pn. Let a(t̄) = y be a random

attribute atom such that a(t̄) = y ∈ V and r be the random selection rule of Πk that

generates a(t̄) = y.

1. If Π contains a pr atom

prr(a(t̄) = y|cB) = v
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such that B is satisfied by V , we have that PA(V, a(t̄) = y) = v. By proposition

3 in [1], we have V |= B ⇒ W |= B and this implies that PA(W,a(t̄) = y) = v.

Therefore, PA(V, a(t̄) = y) = PA(W,a(t̄) = y).

2. Similarly, if random attribute a(t̄) = y is assigned with default probability, then

PD(V, a(t̄) = y) = PD(W,a(t̄) = y).

From (a), (b) and definition 3, we have

P (V, a(t̄) = y) = P (W,a(t̄) = y) (6.5)

From equation 6.4 and 6.5, we have

µ̂(V ) =
∏

a(t̄)=y∈V

P (W,a(t̄) = y) (6.6)

for every possible world W of Πn+1 expands V .

Let V ′ be a possible world of program Πm, where 1 ≤ m ≤ n + 1. By sm(V ′), we

denote the leaf node of Tm−1 which represents V ′. From the construction of T0, . . . , Tn

and definition of path value, for every possible world V of program Πk we can compute

the path value, pvTn(sk(V )), of a node sk(V ) of Tn as follows:

pvTn(sk(V )) =
∏

a(t̄)=y∈pTn (sk(V ))

P (W,a(t̄) = y) (6.7)

where pTn(sk(V )) is the set of labels of nodes lying on the path from the root of Tn

to node sk(V ), i.e., the set of random attributes in V . From equation 6.6 and 6.7, we

have

µ̂(V ) = pvTn(sk(V )) (6.8)

From equation 6.3 and 6.8, we have

PΠk(l) =

∑
V ∈Ωk,l∈V

pvTn(sk(V ))∑
V ∈Ωk

pvTn(sk(V ))
(6.9)
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Notice that Tk−1 is a unitary tree. By definition of unitary tree, the sum of path value

of all the leaf nodes equals to 1. Therefore, 6.9 can be rewritten as

PΠk(l) =
∑

V ∈Ωk,l∈V

pvTn(sk(V )) (6.10)

Let Ωn+1 be the set of all answer sets of program Πn+1. We can similarly have the

following equation:

PΠn+1(l) =
∑

W∈Ωn+1,l∈W

pvTn(sn+1(W )) (6.11)

Let s be a node of Tn. By leafTn(s), we denote the set of all the leaf nodes of Tn

which are descendents of the node s. Since Tn is a unitary tree, from proposition 2

in [1], we have

pvTn(sk(V )) =
∑

W∈Ωn+1,sn+1(W )∈leafTn (sk(V ))

pvTn(sn+1(W )) (6.12)

From equation 6.10 and 6.12

PΠk(l) =
∑

l∈V,V ∈Ωk

(
∑

W∈Ωn,sn+1(W )∈leafTn (sk(V ))

pvTn(sn+1(W ))) (6.13)

For every possible world, V , of program Πk and possible world, W of program Πn+1

such that W expands V , we have V |= l ⇔ W |= l. Therefore, from equation (12),

we have

PΠk(l) =
∑

W∈Ωn+1,l∈W

pvTn(sn+1(W )) (6.14)

From equation 6.11 and 6.14,we can conclude that,

PΠn+1(l) = PΠk(l). (6.15)

Since Πn+1 = Π, we have that

PΠ(l) = PΠk(l). (6.16)
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This ends the proof of the lemma.

Theorem 1

Let Π be scou P-log program with no do and obs statements and Σ be its signature.

Let l be a literal of Σ and Πl = {r|Term(Head(r)) ∈ DepΠ(l), r ∈ Π}, then PΠl(l) =

PΠ(l).

PROOF:

To prove the theorem, we first construct a strict probabilistic leveling F2 of Π, such

that for any random attribute term a(t̄),

F2(a(t̄)) ≤ F2(αl) iff a(t̄) ∈ Dep(αl). (6.17)

where αl is the attribute term forming the literal l.

Since Π is a causally ordered P-log program, there exists a strict probabilistic leveling

function F . To define F2 we will need an auxiliary function, F1, defined as follow:

F1(a(t̄)) =

 F (a(t̄)) a(t̄) is a random attribute term

m(a(t̄)) otherwise
(6.18)

where m(a(t̄)) is the highest leveling of random attribute terms in the dependent set of

a(t̄). In case a(t̄) does not depend on any random attribute term, m(a(t̄)) = 0.

Let us consider the following program:

a, b, l, r : boolean

[a] random(a)

[b] random(b)

l← a
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r ← l

Let F be a strict probabilistic leveling function defined as follow:

F (b) = 1

F (a) = 2

F (l) = 3

F (r) = 4

By definition of F1, we have

F1(b) = 1

F1(a) = 2

F1(l) = 2

F1(r) = 2

The following shows that F1 is a strict probabilistic leveling over Σ:

Clearly, F1 is a leveling function as it maps every attribute term of Σ onto a set

[0,n] of integers. Since F is a strict probabilistic leveling and F1(a(t̄)) = F (a(t̄)) for

random attribute term a(t̄), condition 1 of definition 4 is satisfied by F1.

For a random selection rule: [r] random(a(t̄) : {Y : p(Y )}) : −B, because F is a

strict probabilistic leveling,

F (a(t̄)) > max{F (a1(t̄1)) : a1(t̄1) ∈ Term(B ∪ {p(Y )})}. (6.19)

From 6.19 we have that

F (a(t̄)) > F (a1(t̄1)), (6.20)

Now consider two cases:
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• Suppose a1(t̄1) is a random attribute term. Then, by definition of F1, we have

that

F1(a1(t̄1)) = F (a1(t̄1)). (6.21)

Therefore, from 6.20 and 6.21 we have that

F (a(t̄)) > F1(a1(t̄1)). (6.22)

• Suppose a1(t̄1) is a regular attribute term. From condition 4 of definition 11,

we know that for any random attribute term a2(t̄2) which a1(t̄1) depends on,

we have

F (a1(t̄1)) ≥ max{F (a2(t̄2)) : a1(t̄1) depends on a2(t̄2)}. (6.23)

From definition of F1, we reassign the level of a1(t̄1) to the highest level of those

random attribute terms that it depends on. This means

F1(a1(t̄1)) = max{F (a2(t̄2)) : a1(t̄1) depends on a2(t̄2)}. (6.24)

From 6.23 and 6.24, we have that

F (a1(t̄1)) ≥ F1(a1(t̄)). (6.25)

From 6.19 and 6.25, we have that F (a(t̄)) > F1(a1(t̄1)).

Hence, we can have the following formula

F (a(t̄)) > max{F1(a1(t̄1)) : a1(t̄1) ∈ Term(B ∪ {p(Y )})} (6.26)

Because a(t̄) is a random attribute term and by definition of F1, we have

F1(a(t̄)) = F (a(t̄)) (6.27)
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From 6.26 and 6.27, we have

F1(a(t̄)) > max{F1(a1(t̄1)) : a1(t̄1) ∈ Term(B ∪ {p(Y )})} (6.28)

Therefore, condition 2 of definition 11 is satisfied. Similarly, condition 3 of definition

11 is also satisfied.

Condition 4 follows directly from the definition of F1 for non-random attribute terms.

Hence F1 is a strict probabilistic leveling function.

Now we will use F1 to construct the strict probabilistic leveling F2 which satisfying

6.17.

Let k = F1(αl) + 1 we define F2 as follows:

F2(a(t̄)) =

 F1(a(t̄)) a(t̄) ∈ Dep(αl)

F1(a(t̄)) + k otherwise

Example:

F2(a) = 2

F2(l) = 2

F2(r) = 2

F2(b) = 3

First, we will show that F2 satisfies 6.17:

• F2(a(t̄)) ≤ F2(αl)⇒ a(t̄) ∈ Dep(αl) (if part).

To prove the if part of 6.17, we assume that a(t̄) 6∈ Dep(αl) and show that

F2(a(t̄)) > F2(αl).

Since for every a(t̄), if a(t̄) 6∈ Dep(αl), then by definition of F2,

F2(a(t̄)) = F1(a(t̄)) + k. (6.29)
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where k = F1(αl) + 1. Since F1(a(t̄)) ≥ 0, from 6.29 we have that

F2(a(t̄)) > F1(αl). (6.30)

Since αl ∈ Dep(αl), by definition of F2, we have that

F2(αl) = F1(αl) (6.31)

From 6.30 and 6.31, we have that

F2(a(t̄)) > F2(αl) (6.32)

Hence F2(a(t̄)) ≤ F2(αl)⇒ a(t̄) ∈ Dep(αl)

• F2(a(t̄)) ≤ F2(αl)⇐ a(t̄) ∈ Dep(αl) (only if part)

Suppose a(t̄) ∈ Dep(αl). By definition of F2, we have

F2(a(t̄)) = F1(a(t̄)) (6.33)

Now consider the following two cases:

– αl is a random attribute term. Since F1 is a strict probabilistic leveling,

it satisfies conditions 2,3 and 4 of definition 11. Because a(t̄) ∈ Dep(αl),

this implies that F1(αl) ≥ F1(a(t̄)).

– αl is a regular attribute term. By definition of F1 for regular attribute term,

we can see that for any random attribute term a(t̄) which αl depends on,

F1(αl) ≥ F1(a(t̄)).

Hence for every αl we have that

F1(αl) ≥ F1(a(t̄)) (6.34)

From 6.33 and 6.34, we have that

F1(αl) ≥ F2(a(t̄)) (6.35)
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Since αl ∈ Dep(αl), from definition of F2, we have

F2(αl) = F1(αl) (6.36)

From 6.35 and 6.36, we have that

F2(αl) ≥ F2(a(t̄)) (6.37)

Hence F2 satisfies 6.17.

To prove that F2 is a strict probabilistic leveling, we will show that F2 satisfies all

the conditions of definition 11.

1. To show that for every two random attribute terms a1(t̄1) and a2(t̄2) in Σ,

F2(a1(t̄1)) 6= F2(a2(t̄2)), we have to consider the following three cases:

(a) a1(t̄1) 6∈ Dep(αl) and a2(t̄2) 6∈ Dep(αl): Because F1 is a strict probabilistic

leveling, we have that

F1(a2(t̄2)) 6= F1(a1(t̄1)). (6.38)

By definition of F2, we have that

F2(a1(t̄− 1)) = F1(a1(t̄1)) + kF2(a1(t̄1)) = F1(a1(t̄1)) + k (6.39)

From 6.38 and 6.39 we have that F2(a1(t̄1)) 6= F2(a2(t̄2)). Hence condition

1 is satisfied.

(b) a1(t̄1) ∈ Dep(αl) and a2(t̄2) ∈ Dep(αl): Similar to case a.

(c) a1(t̄1) ∈ Dep(αl) and a2(t̄2) 6∈ Dep(αl): Form 6.17, we know that F2(a1(t̄1)) ≤

F2(αl) and F2(a2(t̄2)) > F2(αl). This implies F2(a1(t̄1)) 6= F2(a2(t̄2)).

2. To prove that for every random selection rule [r] random(a(t̄) : {Y : p(Y )}) :

−B of Π we have |a(t̄) = y| > |{p(Y ) : Y ∈ range(a) ∪B|, we need to consider

the following two cases:
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(a) If a(t̄) ∈ Dep(αl), then attribute terms that forms p(y) and literals in

B also belong to Dep(αl), By definition of F2 and given F1 is a strict

probabilistic leveling, F2 satisfies condition 2 of definition 11.

(b) If a(t̄) 6∈ Dep(αl), then F2(a(t̄)) = F1(a(t̄)) + k. For every attribute term

a1(t̄1) ∈ Term({p(y)} ∪ B), F2(a1(t̄1)) either equals to F1(a1(t̄1)) + k or

F1(a1(t̄1)). In both cases, clearly, F2(a(t̄)) > F2(a1(t̄1)).

3. Condition 3 is similar to condition 2.

4. To prove F2 satisfies condition 4 of definition 11, we need to consider the follow-

ing three cases. Given F1 being a strict probabilistic leveling and the definition

of F2 , condition 4 is hold for the following two cases:

(a) a1(t̄1) 6∈ Dep(αl) and a2(t̄2) 6∈ Dep(αl);

(b) a1(t̄1) ∈ Dep(αl) and a2(t̄2) ∈ Dep(αl).

For the third case: a1(t̄1) 6∈ Dep(αl), a2(t̄2) ∈ Dep(αl) and non random at-

tribute a1(t̄1) depends on random attribute term a2(t̄2), from (17) we have

F2(a1(t̄1)) > k ≥ F2(a2(t̄2)). Therefore, condition 4 is satisfied.

Since F2 is a strict probabilistic leveling we can have Π1, . . . ,Πn+1 as a F2-induced

structure of Π. Notice that l ∈ Lk with respect to F2. By lemma 1, PΠ(l) = PΠk(l).

Now we will show that Πk can be split to two programs Π′ and ΠR, where ΠR may

only contain regular rules and answer sets of program Π′ are one to one correspond

to the answer sets of Πk.

It is not difficult to see that the set, U , of literals that formed by the attribute term

from Dep(αl) is a splitting set of program Πk. As we define Π′ = {r|Term(Head(r)) ∈

Dep(αl), r ∈ Π}, it is also not difficult to see that Π′ = botU(Πk). Because random

attribute term a1(t̄1), . . . , ak(t̄k) belong to Dep(αl), all random selection rules in Πk

belong to botU(Πk). This indicates that topU(Πk) only consists of regular rules. As

Π is a strongly causally ordered P-log program, for every answer set X of botU(Πk),
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there exists exactly one answer set Y for evalU(topU(Πk), X) and X ∪Y is consistent.

From splitting theorem, we know that for every answer set V of program Πk, there

exists a solution 〈X, Y 〉 to Πk with respect to U such that V = X ∪ Y . Therefore,

we can rewrite equation 6.1 as

PΠk(l) =
∑

X∪Y |=l,X∪Y ∈Ωk

µ(X ∪ Y ) (6.40)

Because l ∈ U , we know that l 6∈ Y . Also, Y contains only regular attribute terms.

We rewrite above equation as

PΠk(l) =
∑

X|=l,X is an answer set of Π′

µ(X) (6.41)

From the definition of the probability of l being true with respect to program Π′, we

have the following equation:

PΠ′(l) =
∑

X|=l,X is an answer set of Π′

µ(X) (6.42)

From equation 6.41 and 6.42, we can establish that PΠ′(l) = PΠk(l). From Lemma 1,

PΠ(l) = PΠk(l), we conclude that PΠ′(l) = PΠ(l).

6.2 Proof of Propostion 1

Proposition 1

Let Π be a ground P-log program and A be an f-interpretation. Let A′ = LC(Π, A)

where A′ 6= Ac.

• A′ is an extension of A.

• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;
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PROOF:

First we prove that A′ is an extension of A. Let l be a literal in the signature Σ of

Π.

1. Suppose that A(l) = T , then by rule 1(c), A′(l) = T . Hence A′(l) ≥i A(l).

2. Suppose that A(l) = MT . Because A(l) 6= U ⇒ A′(l) 6= U , and A′ 6= Ac,

therefore, A′(l) ∈ {MT, T}. Hence A′(l) ≥i A(l).

3. Suppose that A(l) = MF . Similar to (2), we have that A′(l) ∈ {MF,F}. Hence

A′(l) ≥i A(l).

4. Suppose that A(l) = F . Then by rule 3(b), A′(l) = F . Hence A′(l) ≥i A(l).

5. Suppose that A(l) = U . Since U is minimal value w.r.t. the ordering >i, we

have A′(l) ≥i A(l).

Therefore, A′ is an extension of A.

Now we prove that if AW is an extension of A such that true(AW ) is a possible world

of program Π then AW is also an extension of A′.

Suppose there exists a literal l, such that A′(l) >i A(l) and there exists a possible

world AW such that AW (l) is incompatible with A′(l). Because for each literal l′,

AW (l′) ∈ {T, F} and AW is also an extension of A, we can conclude that A(l) = U .

Now we look at each rule of LC(Π, A) in definition 27 (page 44) where A(l) = U and

A′(l) 6= U .

• Suppose that A′(l) = T because of 1(a). Then, based on 1(a), A(body(r)) = T .

A(body(r)) = T ⇒ AW (body(r)) = T . Because AW is a possible world,

AW (body(r)) = T ⇒ AW (l) = T . AW (l) and A(l) are compatible. Contra-

dictory.

• Suppose that A′(l) = T because of 1(b). Since a(t̄) 6= y ← a(t̄) = y′ ∈ Π,

A(a(t̄) = y′) = T ⇒ AW (a(t̄) = y′) = T ⇒ AW (a(t̄) = y) = T . Hence, AW (l)
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and A(l) are compatible. Contradictory.

• Suppose that A′(l) = MT because of 2(a). Because AW is a possible world

and AW is an extension of A, A(body(r) ≥i MT ⇒ AW (body(r)) = T . Because

AW is a possible world, AW (body(r)) = T ⇒ AW (l) = T . AW (l) and A(l) are

compatible. Contradictory.

• Suppose that A′(l) = MT because of 2(b). The arguments are similar to what

we did for 1(b) and 2(a).

• Suppose that A′(l) = MT because of 2(c). Because A′(l) = MT and AW (l)

is incompatible with A′(l), AW (l) ∈ {F,MF}. Because true(AW ) is a possible

world, therefore AW (l) = F .

A(body(r)\{not l}) > U ⇒ AW (body(r)\{not l}) = T

AW (l) = F ⇒ AW (not l) = T . Together, we have that AW (body(r)) = T .

AW (body(r)) = T ⇒ AW (head(r)) = T . AW is not an extension of A. Contra-

dictory.

• Suppose that A′(l) = MT because of 2(d). From A(head(r)) = MT , true(AW )

is a possible world and AW is an extension of A, we have that AW (head(r)) = T .

As all other rules are falsified, the body of r must be true in true(AW ). For

l ∈ pos(r), AW (l) = T . AW (l) and A(l) are compatible. Contradictory.

• Suppose that A′(l) = F because of 3: If all rules that support l are falsified by

A, then l 6∈ true(AW ). Therefore, AW (l) = A′(l) = F . Contradictory.

• Suppose that A′(l) = MF because of 4(a). Because true(AW ) is a possible

world of Π and AW is an extension of A. All rules which support l are weakly

falsified by A means all rules which support l are falsified by AW . Therefore,

AW (l) = F . AW (l) and A′(l) are compatible. Contradictory.

• Suppose that A′(l) = MF because of 4(b): Similar to 2(c).
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• Suppose that A′(l) = MF because of 4(c): Similar to 2(d).

• Suppose that A′(l) = MF because of 4(d): A(l̄) = MF ⇒ AW (l̄) = T ⇒

AW (l) = F . AW (l) and A(l) are compatible. Contradictory.

In summary, If AW is an extension of A such that true(AW ) is a possible world of

program Π then AW is also an extension of A′.

6.3 Proof of Proposition 2

Proposition 2

Let Π be a ground P-log program andA be an f-interpretation. LetA′ = AtMost(Π, A)

where A′ 6= Ac.

• A′ is an extension of A.

• If AW is an extension of A such that true(AW ) is a possible world of program

Π then AW is also an extension of A′;

PROOF:

From step 4 of function AtMost(Π, A), we can see that for a literal l, if A(l) 6= A′(l)

then A(l) ≤ U and A′(l) = F . Hence, A′ is an extension of A.

The operator GΠ
L+,L−(X) is the same operator used for Atmost(Π,M) function in

Smodels which has the following property ([45]):

Let P be a ground answer set program and M be a set of extended literals. If S is

an answer set of P such that S agrees with M then S ⊆ Atmost(P,M).

Since true(AW ) is an answer set of Π such that true(AW ) agrees with true(A),

true(AW ) ⊆ Atmost(Π, true(A)). Hence for each literal l, if l 6∈ Atmost(Π, true(A)),

then l 6∈ true(AW ), i.e., AW (l) = F .

As the function Atmost(Π, true(A)) of Smodels computes the same least fixed point
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asGΠ
L+,L−(X) does, l 6∈ Atmost(Π, true(A)) means l 6∈ GΠ

L+,L−(∅). This means A′(l) =

F . Therefore AW is also an extension of A′.

6.4 Proof of Theorem 2

Theorem 2

Let Π be a ground scou P-log program and Q be a query to Π. Let T be a unitary

program tree with respect to Π and Q . Then I is a weighted f-interpretation labeling

a complete and consistent leaf node of T if and only if true(A(I)) is a possible world

of program Π ∪ ΠQ.

PROOF:

We prove this theorem based on the results of [46]. In [46], an answer set solver system

can be represented by a graph G where each node is labeled by a list of decorated

literals and each arch from a node N to N ′ in G means N ′ can be reached from

N by applying certain operations (similar to AtLeast and AtMost used in system

smodels). Each answer set computed by the system can be matched to a terminal

node (a complete and consistent node in which every literal l in the signature Σ is

assigned) which is not a FailState.

Our approach to this proof starts with some definitions and lemmas, then we will

give a proof of the theorem based on these lemmas. Finally, we prove each lemmas

to finish the proof.

We introduce a new notation M(N) where N is a node of T :

Definition 64 [M(N)]

Let I be the weighted f-interpretation labeling the node N . Let S be a set of atoms

such that for each atom a(t̄) = y ∈ S, a(t̄) = y is assigned to T in line 7 in Algorithm

7. Let M be an SMΠ graph (a graph represents the application of Smodels algorithm)

to program Π. We said that M(N) is a node of M relative to Σ such that
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1. l ∈M(N) if and only if A(IN)(l) = T and l 6∈ S;

2. ¬l ∈M(N) if and only if A(IN)(l) = F ;

3. ld ∈M(N) if and only if l ∈ S

Lemma 2 Let N be the root node of T , then M(N) is reachable from ∅ in a SMΠ

graph.

Lemma 3 If N and N ′ are consistent nodes of unitary program tree where N ′ is a

child of N , then there exists a SMΠ graph in which M(N ′) is reachable from M(N).

Thus for each leaf node N , M(N) is reachable from ∅ in a SMΠ graph.

Because for each consistent and complete leaf node N of T ,M(N) is a terminal state

ofM. By proposition 2 of [46], we can see that for each consistent and complete leaf

node N of T , M(N)+ is an answer set of program Π ∪ ΠQ where M(N)+ is a set of

literals which is assigned to true w.r.t. the node M(N).

By definition ofM(N) and true(A(IN)), we know thatM(N)+ = true(A(I)). There-

fore, the set true(A(IN)) is a possible world of program Π ∪ ΠQ.

Because in scou P-log program, each possible world is correspond to a unique assign-

ment of random attributes. As we can see that each possible assignment of random

attributes in T either leads to a consistent leaf nodes, which is a possible world or an

inconsistent partial assignment A. Therefore, for each possible world W of program

Π ∪ ΠQ there is a consistent leaf node N of T such that true(A(N)) = W .

Now, we focus on the proof of Lemma 2 and Lemma 3.

Lemma 2

The label for the root node of a unitary programming tree T is the output of function

Initialize(Π, Q). We list all the steps in which some literals are assigned to T or

F in this function and show that there is a corresponding transition rule in graph

SMΠ:
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1. step 1(a): Because sort declaration c = {x1, . . . , xn} is translated to a list

of facts in A-Prolog which are rules with empty body. By applying the Unit

Propagate LP [46], we have a path in SMΠ:

∅ ⇒ c(x1)⇒ c(x1), c(x2)⇒ · · · ⇒ c(x1), c(x2), . . . , c(xn)

2. step 1(c): Because we will have the following rules:

a(t̄) = y ← do(a(t̄) = y)

do(a(t̄) = y)

for each do statement in the query Q, it is clear that, based on Unit Propagate

LP, M ⇒M a(t̄) = y is a transition in SMΠ.

3. step 2: Now we need to prove that M(A) ⇒∗ M(Closure(Π, A)) is a path

in graph SMΠ. As we have proved the function AtMost in our dissertation is

equivalent to function Atmost in Smodels. We only need to show thatM(A)⇒

M(AtLeast(Π, A)).

In function LC(Π, A) (Called by function AtLeast(Π, A)), we have

(a) If A(l) = T , then LC(Π, A)(l) = T ;

(b) If A(l) 6= T and LC(Π, A)(l) = T , there exists a Unit Propagate LP

transition in SMΠ such that M(A) ⇒ M(LC(Π, A)). See rule 1(a) and

1(b) in function LC(Π, A);

(c) If A(l) = F , then LC(Π, A)(l) = F ;

(d) If If A(l) 6= F and LC(Π, A)(l) = F , there exists an All Rules Cancelled

transition in SMΠ such that M(A)⇒M(LC(Π, A)).

Therefore, M(A)⇒∗M(AtLeast(Π, A)).

Hence,M(A)⇒∗M(Closure(Π, A)) is a path in graph SMΠ. In summary,M(Initialize(Π, Q))

is reachable from the emptyset in graph SMΠ.
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Lemma 3

As we can see in algorithm 7, a new interpretation A′ is obtained by first assigning a

random atom a(t̄) = y to truth value T and then calling function Closure. In line 7

in function Branch, A new interpretation A′ is obtained from A with a random atom

a(t̄) = y (where A(a(t̄) = y) 6= F ) assigned to T , therefore M(A)⇒M(A) ∪ a(t̄) =

y based on transition Decide in SMΠ. We have already proved that M(A) ⇒∗

M(Closure(Π, A)). Overall, M(A)⇒∗M(A′) where A′ ∈ Branch(Π, A).

6.5 Proof of Theorem 3

Theorem 3

Let Π be a ground scou P-log program and a query Q = F |C be a query to Π. Let

ΦF be the collection of all the smallest partial possible worlds of T that know the

set F of formulas. Then the probability of each formula f ∈ F w.r.t. a ground scou

P-log program Π and a query Q can be computed by following equation:

PΠ∪ΠQ(f) =
∑

I=(A,w)∈ΦF and A`f

µ(I) (6.43)

PROOF:

We start with the proof with showing the following two statements:

1. Each possible world W of program Π∪ΠQ where W ` f is labeling a consistent

leaf node N which is a descendant of a node N ′ such that N ′ ∈ ΦF .

2. Let ΩN ′ be all the consistent leaf nodes descendant from node N ′ where N ′ is

a smallest partial possible world that knows f , then∑
W∈ΩN′

µ(W ) = µ(I) (6.44)

where I is the f-interpretation that labels N ′.
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Prove of Statement 1

Because each consistent leaf node N of program tree T w.r.t. program Π∪ΠQ where

the formula f is true in N is also a partial possible world of Π ∪ ΠQ that knows f .

From definition of smallest partial possible world that knows f , there exists a node in

T which is the smallest partial possible world of T that knows f and is an ascendant

of N .

Prove of Statement 2

Because each possible world which is the super set of N ′ must label a consistent leaf

node descended from the node N and the programming tree w.r.t. program Π is

unitary, therefore

µ(I) =
∑

W∈des(I)

µ(W ) (6.45)

where des(I) is the collection of all possible worlds that descendant from a node N ′

labeled by I. We claim that if I ` f , then I ′ ` f . This is because for each W ∈ des(I),

the f-interpretation I ′ that labels W is an extension of I. Hence, W ∈ des(I) if and

only if W ∈ ΩN ′ . From Equation (6.45), we have that

∑
W∈ΩN′

µ(W ) = µ(I) (6.46)

Given the above two statements, the proof of Theorem 3 is listed below.

From the definition PΠ∪ΠQ(f), we have that

PΠ∪ΠQ(f) =
∑
W`f

µ(W ) (6.47)

Because of statement 1 and 2, W ` f if and only if there is exists a node N ′ such

that W ∈ ΩN ′ and N ′ ∈ ΦF .

∑
W`f

µ(W ) =
∑
N ′∈ΦF

(
∑

W∈ΩN′

µ(W )) (6.48)
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From Equation (6.46)

∑
N ′∈ΦF

(
∑

W∈ΩN′

µ(W )) =
∑
N ′∈ΦF

µ(I) (6.49)

From definition of ΦF and Equation (6.49)

∑
N ′∈ΦF

(
∑

W∈ΩN′

µ(W )) =
∑

I=(A,w)∈ΦF and A`f

µ(I) (6.50)

Therefore, from Equation (6.47), (6.48) and (6.50), we have that

PΠ∪ΠQ(f) =
∑

I=(A,w)∈ΦF and A`f

µ(I) (6.51)

6.6 Proof of Theorem 4

Theorem 4

Let Π(K) be the P-log program obtained from a system knowledge K. A path p =

〈σ0, e0, σ1, . . . , en−1, σn〉 is a model of H if and only if there is a possible world W of

Π(K) such that for any 0 ≤ t ≤ n,

1. et = {e : occurs(e, t) ∈ W}

2. h(l, t) ∈ W iff l ∈ σt

and µ̂(W ) = P̂K(p|H).

PROOF:

Part 1:

We construct a set W of fluent literals from p as follows:

• for each fluent literal l and j, 0 ≤ j ≤ n, if l ∈ σj, then h(l, j) ∈ W ;
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• for each action ei, 0 ≤ i < n, occurs(e, i) ∈ W ;

• If the knowledge of initial state is incomplete, then let c be the symbol which

is mapped to σ0 in Π(K), we have that at initial state = c ∈ W ;

• If for some ei, there exists a non-deterministic dynamic causal law whose body

is satisfied by σi, then let l ∈ {l1, . . . , ln} ∩ σi+1, we add that resultr(i+ 1) = l

into W ;

We prove that W is a possible world of Π(K) which satisfies condition (1) and

(2).

Let W (i) where 0 ≤ i ≤ n be a subset of W such that W (i) = {h(l, j) : h(l, j) ∈

W and j ≤ i} ∪ {occurs(e, j) : occurs(e, j) ∈ W and j < i} ∪ {resultr(j) = l :

resultr(j) = l ∈ W and j ≤ i} ∪ {at initial state = c : at initial state = c ∈ W}.

By Π(K)W (i), 0 ≤ i ≤ n, we denote a P-log program such that if a rule r ∈ Π(K)W (i)

if and only if r ∈ Π(K) and all literals in r belong to W (i).

Now we use induction on i to prove that for each i, 0 ≤ i < n, W (i) is a possible

world of Π(K)W (i).

Base case i = 0:

If the knowledge of initial state is complete, then

Π(K)W (0) = {h(l, 0)←: l ∈ σ0} ∪ {occurs(e, 0)←}

By definition,

W (0) = {h(l, 0) : l ∈ σ0} ∪ {occurs(e, 0)}

It is clear that W (0) is a possible world of Π(K)W (0).

If the knowledge of initial state is incomplete, we have following rules in Π(K)W (0):

• For each observe l at 0 ∈ H, obs(h(l, 0))←∈ Π(K)W (0);

• [ini] random(at initial state) ∈ Π(K)W (0);
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• occurs(e, 0)←∈ Π(K)W (0);

• For each literal l ∈ σ0, h(l, 0) ← at initial state = c ∈ Π(K)W (0), where c is a

symbol which is mapped to σ0.

By definition,

W (0) = {h(l, 0) : l ∈ σ0} ∪ {occurs(e, 0)} ∪ {at initial state = c}

It is not difficult to see that W (0) is a possible world of Π(K)W (0).

Induction hypothesis: Suppose for some j, 0 ≤ j < n, W (j) is a possible world of

Π(K)W (j). we will manage to show that W (j + 1) is a possible world of Π(K)W (j+1).

To achieve that, firstly, we shall prove that for each rule in Π(K)W (j+1) it is satisfied

by W (j + 1).

• For each rule h(l, j + 1)← h(p, j + 1) ∈ Π(K)W (j+1) whose body is satisfied by

W (j + 1):

From the definition of Π(K)W (j+1), we have

h(l, j + 1)← h(p, j + 1) ∈ Π(K)W (j+1) ⇒ l if p ∈ K (6.52)

By the definition of W ,

h(p, j + 1) ⊆ W ⇒ p ⊆ σj+1 (6.53)

From (6.52), (6.53) and definition of state, we have that

l ∈ σj+1 (6.54)

From the definition of W (j + 1) and (6.54)

h(l, j + 1) ∈ W (j + 1) (6.55)

Hence, each rule h(l, j+ 1)← h(p, j+ 1) ∈ Π(K)W (j+1) is satisfied by W (j+ 1).
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• Similarly, it is easy to see that for each rule

h(l, j + 1)← occurs(e, j), h(p, j) ∈ Π(K)W (j+1)

it is satisfied by W (j + 1).

• For inertia axioms r: h(l, j + 1) ← h(l, j),not ¬h(l, j + 1): If the body of r

is satisfied by W (j + 1), then ¬h(l, j + 1) 6∈ W (j + 1). By the definition of

W (j + 1), we have that ¬l 6∈ σj+1. By the definition of state, we have that

l ∈ σj+1. Hence, h(l, j + 1) ∈ W (j + 1).

• For logical rule: h(l, j + 1) ← resultr(j + 1) = l. By definition of W (j + 1),

resultr(j + 1) = l ∈ W (j + 1) iff l ∈ σj+1. Hence h(l, j + 1) ∈ W (j + 1).

• If [r] random(resultr(j + 1))← occurs(e, t), h(p, t) ∈ Π(K)W (j+1), and its body

is satisfied by W (j+1). Recall that in this case, rule r is satisfied by W (j+1) if

there exists only one l ∈ range(resultr) such that resultr(j+1) = l ∈ W (j+1).

Because the body of r is satisfied by W (j + 1) iff the body of corresponding

non-deterministic dynamic causal law is satisfied by σj. By the definition of W ,

resultr(j + 1) = l ∈ W (j + 1).

• For a rule h(l, j+ 1)← resultr(j+ 1) = l, if resultr(j+ 1) = l ∈ W (j+ 1), then

l ∈ σi+1. therefore, h(l, j+1) ∈ W . Hence the rule h(l, j+1)← resultr(j+1) = l

is satisfied by W (j + 1).

In summary, we know that all the rules in Π(K)W (j+1) is satisfied by W (j + 1).

To prove that W (j+1) is the minimal set that satisfies Π(K)W (j+1), we use contradic-

tory. Suppose that there exists a set W ′ ⊂ W (j+1) such that W ′ also satisfies all the

rules in Π(K)W (j+1). We assume that for some fluent literal l, h(l, j + 1) ∈ W (j + 1)

and h(l, j+ 1) 6∈ W ′. Because h(l, j+ 1) ∈ W (j+ 1), ¬h(l, j+ 1) 6∈ W (j+ 1). There-

fore, neither h(l, j + 1) nor ¬h(l, j + 1) belongs to W ′. Because there must be either

h(l, j) or ¬h(l, j) belongs to W ′. We can see that the body of one of inertia axioms

must be satisfied. Since the head h(l, j + 1) 6∈ W therefore, W ′ is not a possible
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world.

It is trivial to see that if other literals, such as occurs(e, j + 1) and resultr(j + 1) = l

are missing in W ′ then W ′ is not a possible world of Π(K)W (j+1). Therefore, W (j+1)

is a possible world of Π(K)W (j+1).

Overall, for each i, 0 ≤ i < n, W (i) is a possible world of Π(K)W (i).

It is clear that W (n) = W and Π(K) = Π(K)W (n). Therefore W is a possible world

of Π(K).

From the definition of W , It is clear that both conditions (1) and (2) are satisfied by

W and the path p.

Part 2:

Let W be a possible world of Π(K). Let σ(W, i) be the collection of fluent literals l

such that h(l, i) ∈ W . Let a(W, i) be an action e such that occurs(e, i) ∈ W . We

prove that 〈σ(W, 0), a(W, 0), . . . , a(W,n − 1), σ(W,n)〉 is a path of SD which is a

model of H and condition (1) and (2) are satisfied.

The proof consists of four steps:

1. We prove that σ(W, j) is a state of the transition diagram.

2. We prove that for each j where 0 ≤ j < n, 〈σ(W, j), a(W, j), σ(W, j + 1) is a

transition of the system.

3. We prove that 〈σ(W, 0), a(W, 0), σ(W, 1), a(W, 1), . . . , a(W,n− 1), σ(W,n)〉 is a

path which is a model of H.

4. This path p and the possible world W satisfies condition (1) and (2).

Step 1

By definition of answer set, the possible world W cannot be a set of literals in which

both h(l, j) and ¬h(l, j) belong to W . Hence, we should only need to prove that at
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least one of h(l, j) and ¬h(l, j) belong to W for each l and j. We use induction on

the step of path to prove this claim:

For the base, where i = 0, there are two possible cases:

1. The knowledge of initial state is complete: in this case, for each fluent f ∈ σ0

there is an observation for f or ¬f . This statement is translated into the fact:

h(l, 0)←

where l is f or ¬f respectively. Therefore, at least one of h(l, 0) and ¬h(l, 0)

belong to W .

2. The knowledge of initial state is incomplete: According to our translation, W

must contains exactly one atom initial at = i. Therefore, for each fluent f ∈ Σ,

either

h(f, 0)← initial at = i ∈ Π(K)

or

¬h(f, 0)← initial at = i ∈ Π(K)

Because W is possible world of Π(K), for each rule r

h(l, 0)← h(p, 0)

r is satisfied by W . This means if p ⊆ σ(W, 0) then l ∈ σ(W, 0). Therefore σ(W, 0) is

consistent. Hence, for i = 0, σ(W, 0) is a state.

Induction hypothesis: Suppose that for some j, 0 ≤ j ≤ n− 1, σ(W, j) is a state

of transition diagram. We will show that σ(W, j + 1) is also a state.

Because σ(W, j) is a state of T , at least one of h(f, j) and ¬h(f, j) belong to W for

each f . Suppose that for some f that h(f, j + 1) 6∈ W and ¬h(f, j + 1) 6∈ W . If

h(f, j) ∈ W then the body of the inertia axiom

h(f, j + 1)← h(f, j),not ¬h(f, j + 1)
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is satisfied, therefore h(f, j + 1) ∈ W . Contridictory. Similar results can be derived

from the case where ¬h(l, j) ∈ W . Therefore, at least one of h(f, j+1) and ¬h(f, j+1)

belong to W for each f .

Conclusion: for each fluent f ∈ Σ and step j + 1 where 0 ≤ j < n, one and only one

of f and ¬f belongs to σ(W, j + 1)

By our translation, for each static causal laws in SD of K, there exist a rule h(l, T )←

h(p, T ) ∈ Π(K). By the definition of answer sets, the possible world W must satisfies

each of these rules. Hence σ(W, j+1) (0 ≤ j < n) is consistent w.r.t. the set of static

causal laws, which means σ(W, j + 1) is a state of T .

In summary, for each j, 0 ≤ j < n, σ(W, j) is a state of the transition diagram.

Step 2

By the definition of transition diagram, this is equivalent to prove that for each fluent

literal l, l ∈ Cn(E ′(ej, σ(W, j))∪(σ(W, j)∩σ(W, j+1)) iff l ∈ σ(W, j+1). We present

the prove with two steps.

1. Step 2a: If l ∈ Cn(E ′(ej, σ(W, j)∪ (σ(W, j)∩σ(W, j+ 1)), then l ∈ σ(W, j+ 1).

2. Step 2b: If l ∈ σ(W, j+1), then l ∈ Cn(E ′(ej, σ(W, j))∪ (σ(W, j)∩σ(W, j+1))

Step 2a:

• case 1: l ∈ E ′(ej, σ(W, j)). Let r be a dynamic causal law in which l is the

head of r and the body p of r is satisfied by σ(W, j). Since

h(l, T + 1)← occurs(e, T ), h(p, T ) ∈ Π(K)

and occurs(e, T ) ∈ W and according to the definition of σ(W, j), we have that

p ⊆ σ(W, j) ⇒ h(p, t) ⊆ W , replacing varialbe T by constant j, we have that

h(l, j + 1) ∈ W . That is l ∈ σ(W, j + 1).

If r is a non-deterministic causal law and l is a fluent literal in the head of r

such that l ∈ σ(W, j + 1) and the body p of r is satisfied by σ(W, j). It is not
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difficult to see that the body of the random selection rule is satisfied by W .

By the semantics of P-log, there exists one and only one fluent literal l′ such

that resultr(j + 1) = l′ ∈ W . Because l′ ∈ {l1, . . . , ln}, therefore l′ = l. Hence

h(l, j + 1) ∈ W ⇒ l ∈ σ(W, j + 1).

• case 2: l ∈ σ(W, j) ∩ σ(W, j + 1). Clearely, h(l, j + 1) ∈ W . Therefore

l ∈ σ(W, j + 1).

• case 3: l 6∈ (σ(W, j)∩σ(W, j+1))∪E ′(ej, σ(W, j)) and l ∈ Cn(E ′(e, σj)∪ (σj∩

σj+1)). Because for each literal l′ ∈ (σ(W, j)∩σ(W, j+ 1))∪E ′(ej, σ(W, j)), we

have proved that l ∈ σ(W, j + 1). It is easy to see that for every static causal

law r whose body is satisfied by σ(W, j+1), the body of its corresponding rules

in P-log program are satisfied by σ(W, j + 1). Therefore, l ∈ Cn(E ′(e, σj) ∪

(σj ∩ σj+1))⇒ l ∈ σ(W, j + 1).

In summary, if l ∈ Cn(E ′(σ(W, j), ej) ∪ (σ(W, j) ∩ σ(W, j + 1)), then l ∈ σ(W, j +

1).

Step 2b:

A fluent literal l can belong to σ(W, j + 1) because of one of the following four

rules:

1. h(l, j + 1)← occurs(e, j), h(p, j) ∈ Π(K) where h(p, j) ⊆ W and occurs(e, j) ∈

W : In this case, we can see that there exists a dynamic causal law

e cause l if p ∈ SD

Therefore, l ∈ E ′(e, σj)⇒ l ∈ σj+1.

2. h(l, j + 1) ← h(l, j),not ¬h(l, j + 1) ∈ Π(K) whose body is satisfied by W .

Clearly, that h(l, j + 1) and h(l, j) belong to W . Therefore, l ∈ σ(W, j) ∩

σ(W, j + 1), which means that l ∈ Cn(E ′(ej, σ(W, j))∪ (σ(W, j)∩ σ(W, j + 1)).

3. h(l, j + 1) ← h(p, j + 1) ∈ Π(K) where h(p, j + 1) ⊆ W . Form lemma 1, we

have that l ∈ Cn(E ′(ej, σ(W, j)) ∪ (σ(W, j) ∩ σ(W, j + 1)).
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4. h(l, j + 1) ← resultr(j + 1) = l where resultr(j + 1) = l ∈ W . Because

resultr(j + 1) = l ∈ W , there exists a non-deterministic dynamic causal law

in SD whose body is satisfied by σ(W, j). Since l is the head of such rule,

l ∈ E ′(e, σ(W, j)) and therefore l ∈ Cn(E ′(ej, σ(W, j))∪ (σ(W, j)∩σ(W, j+1)).

Step 3:

To prove that the path p is a model of H, we know that observe l at j ∈ H iff

obs(h(l, j)) ←∈ Π(K). According to the semantics of P-log obs(h(l, j)) ←∈ Π(K)

iff ← not h(l, j) ∈ τ(Π(K)) where τ is a translation from P-log program to Answer

Set Prolog defined in [1]. Clearly, for every possible world W of Π(K), h(l, j) ∈ W .

Hence, l ∈ σ(W, j). By definition of model of history, p is a model of H.

Step 4:

Condition (1) and (2) are obviously satisfied because of the way we define a(W, j)

and σ(W, j).

Part 3

The probability equivalence between path p and possible world W can be established

based on the following claims:

1. For each atom resultr(i) = l ∈ W , P (resultr(i) = l,W ) = Pa(W,i)(l, σ(W, i));

From the definition of P (resultr(i) = l,W ) and the definition of Pa(W,i)(l, σ(W, i)),

this claim is easy to see.

2. For each atom atinitialstate = c ∈ W where c is mapped to σ(W, 0), we have

P (at initial state = c,W ) = Ps(σ(W, 0)) where s is partial state defined by H.

3. resultr and at initial state are the only random attributes in Π(K).

From the definition of PT (p) and the unnormalized measure of possible world, we can

derive that µ(W ) = P̂K(p). From the definition of normalized measure of possible

world and the definition of P̂K(p|H), we have that µ̂(W ) = P̂K(p|H).
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6.7 Proof of Theorem 5

Theorem 5

Let Π(K) be a P-log program obtained from a domain description K of a probabilistic

planning problem 〈K, s0, sf〉. An action sequence o(0) = a0, . . . , o(n− 1) = an−1 is a

best probabilistic plan if and only if the formula: o(0) = a0 ∧ · · · ∧ o(n− 1) = an−1 is

in the answer of the query < o(0), . . . , o(n− 1) > |obs(goal) with respect to the P-log

program Π(K) ∪ Πgoal.

PROOF:

The probability of α = (o(0) = a0, . . . , o(n− 1) = an−1) with respect to the program

Π(K) ∪ Πgoal is calculated as follows:

PΠ(K)∪Πgoal∪{←obs(goal)}(α) =

∑
W`α,W∈Ω

µ(W )∑
W∈Ω

µ(W )

Notice that
∑
W∈Ω

µ(W ) is a constant. Let pW be the path in a possible world W . We

have ∑
W`α,W∈Ω

µ(W ) =
∑

W`α,W∈Ω

Ps0(p)×
∏

0≤i<n

P (W, o(i) = ai)

Since
∏

0≤i<n P (W, o(i) = ai) is a constant given fixed number of actions in the domain

and fixed length of the plan, we have∑
W`α,W∈Ω

µ(W ) = c
∑

W`α,W∈Ω

Ps0(p)

where c =
∏

0≤i<n P (W, o(i) = ai). Because we know that: W ` α if and only if

p ∈ PT (α, s0, sf ), therefore

c
∑

W`α,W∈Ω

Ps0(p) = c× Ps0(sf |α, s0)

Hence,

PΠ(K)∪Πgoal∪{←obs(goal)}(α) = c× Ps0(sf |α, s0)
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We conclude that, for any plan β, Ps0(sf |α, s0) ≥ Ps0(sf |β, s0), if and only if

PΠ(K)∪Πgoal∪{←obs(goal)}(α) ≥ PΠ(K)∪Πgoal∪{←obs(goal)}(β)

If a plan α is an answer of query < o(0), . . . , o(n − 1) > |obs(goal) with respect to

the P-log program Π(K) ∪ Πgoal, there’s no such plan β such that

PΠ(K)∪Πgoal∪{←obs(goal)}(α) < PΠ(K)∪Πgoal∪{←obs(goal)}(β)

Therefore, there is no such plan β such that

Ps0(sf |α, s0) < Ps0(sf |β, s0)

This means the plan α is a best probabilistic plan.
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Chapter 7

RELATED WORK

In this chapter, we describe the related work in fields of algorithms for combining

logic and probabilistic reasonings, action languages with non-deterministic dynamic

domains, probabilistic diagnostic reasonings and probabilistic planning.

7.1 Probabilistic Reasoning Algorithms

For the last several decades, many studies have been conducted on how to com-

bine probabilistic reasoning with logical based reasoning. In late 80’s, the Bayesian

network became one of the most popular methods for representing probabilistic rea-

soning problems. In the following decades, algorithms designed for fast computation

of Bayesian network are proposed in several literatures including [12, 13, 14].

Meanwhile, several research work has shown that some algorithms could improve the

performance of Bayesian networks inference engine, if the network contains certain

local structures or a lot of deterministic information, i.e., a lot of 0 and 1’s in the

conditional probability table. Those work includes 1) compiling a Bayesian network to

arithmetic circuits and 2) transforming Bayesian network to weighted model checking

problem.

The idea of compiling Bayesian network to arithmetic circuits was introduced in

[16]. By compiling the Bayesian network in an off-line stage, it can improve the

inference time in the on-line stage. The authors proposed a new encoding scheme that

facilitates the representation of local structure in the form of parameter equality, and

identified some of its properties that improve compile time. Comparing to classical

methods used for Bayesian networks, it has shown significant improvement over its
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performance.

In [18], they proposed an algorithm that encodes the Bayesian network to weighted

proposition formulas. By taking the advantage of state-of-art SAT solvers, they are

able to compute the models rather quickly and computes the probability of formulas

by model counting. The performance of this approach largely depends on the percent-

age of determinism in the Bayesian network. According to their experiments, if over

90% of the entries of conditional probability tables of a Bayesian network are 0’s and

1’s, then such encoding may improve the overall performance of the inference.

The closest work on P-log inference engine is another system developed in [22]. The

system is very similar to the translation based system we have discussed in this dis-

sertation. Besides introducing some new syntax for concise representation of certain

knowledge, the system uses XSB [35] with XASP[36] to allowing using Prolog rules.

Like the system ACE, the inference procedure is divided into two stages: an off-line

computation stage where each encoded possible worlds are computed and an on-line

stage where probability of formulas is computed. Because of the separation of com-

puting possible worlds and computing probability of formulas, the overall performance

of their system is better than plog1.0 when a number of queries are proposed w.r.t.

a fixed P-log program. However, their system may only be able to deal with P-log

programs with less possible worlds, they reported that when the number of possible

worlds is large, their system may not return the answer in given time due to large IO

operations and limitation of memory. Because plog2.0 reduce the size of the ground

P-log program w.r.t. the query, the number of possible worlds computed in plog2.0 on

the same problem may be much less than their system does. We can handle problems

with much larger domains.
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7.2 Probabilistic Action Language

In [37], the author has introduced a new action description language PAL as an ex-

tension of language AL. By introducing unknown variables, it allows dynamic causal

laws and static causal laws to represent non-deterministic actions. Comparing to our

language NB introduced in Chapter 5, in their work, the probability of unknown

variable cannot be conditioned on the truth values of fluents. Therefore, they need

more dynamic laws to represent the probability distributions. Furthermore, since the

truth values of unknown variables in the static causal laws are fixed, it is not possible

to represent unknown fluents whose truth values might be changed in the transition

diagram. In our extension, we are not limited to this restriction.

7.3 Probabilistic Diagnosis

Our method for solving diagnostic problems has roots in the earlier work by Reiter

[24]. In [24], the author defined a diagnosis as a minimal set of abnormality assump-

tions such that the observations are consistent with all others components acting

normally. ([39]). The work of [24] has been extended in [38] where probabilistic in-

formation are introduced on faulty components. Comparing to our work, the logical

languages used for describing the system are different. In [38], the underlying lan-

guage is first order logic and while in our work, we are using P-log which is based on

Answer Set Prolog. Furthermore, in [38], based on the method they use for comput-

ing the joint probabilities over faulty components, they assumed that the probability

of faulty components are independent of each other. In our work, we don’t have such

assumptions on faulty components.

Our work also has some similarity with [33]. In fact, much of our key definitions are

borrowed from [33]. However, the fundamental difference between these two works lie

on the view of how the components become faulty. In [33], the system become faulty

because there are exogenous actions that the agent is unaware of and those actions
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are causing certain components faulty. We ignored the cause of faulty components

and considered them unchanged during the history of the system.

7.4 Probabilistic Planning

The work presented in [28] solved the same planning problem as we do in this re-

search. But their approaches are very different from ours. Firstly, they represent

the planning domain with so called sequential-effects-tree (ST) representation [40],

which is a syntactic variant of two-time-slice Bayesian nets with conditional proba-

bility tables represented as trees [42]. Secondly, they solved the planning problem by

converting an ST representation into an E-MAJSAT formula with the property that,

given an assignment to the choice variables, the probability of a satisfying assignment

with respect to the chance variables is the probability of success for the plan spec-

ified by the choice variables. The E-MAJSAT problem is solved by an extension of

the Davis-Putnam-Logemann-Loveland (DPLL) procedure [41]. From their primitive

experimental results, they have shown that their techniques performed better than

other systems, namely BURIDAN [27] and POMDP [43], available at that time.

Our understanding of planning problems and methods of formalizing goals in the

planning problems are under the influence of results in [44]. In [44], the author

managed to show that how to use ASP to solve planning problems in a deterministic

environment. The emphasis on representing both planning problems and diagnosis

problems with same language and solving them with same inference engines helps to

build a more powerful intelligent multi-task agent.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This dissertation investigates algorithms for P-log inference engine. In particular, we

have discussed two algorithms and shown that their performance on various types

of problems. We also extended an action description language to allow representing

non-deterministic actions as well as statements for describing incomplete initial states.

We have shown that P-log can be used for finding best probabilistic diagnosis and

best probabilistic plans.

We list the major contribution of this dissertation as follows:

1. In the translation based algorithm, we have shown how probabilistic informa-

tion can be encoded into logical rules such that probability of formulas can be

computed from information extracted from output of existed Answer Set Prolog

solver.

2. In the second algorithm, we have discussed how to selectively grounds the input

program with respect to the specific query given by the user. When a smaller

ground P-log program is produced, often it will result in a much smaller set

of possible worlds and faster computation. We also designed the algorithms

which take advantage of unitary property of P-log program and improve the

performance of its inference engine.

3. We implemented and tested two P-log systems with various types of domains.

We have shown that the running results of some representative domains, and

discussed the advantage and disadvantage of both systems.
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4. We extended the deterministic action description language B to a new language

NB to allow representing non-deterministic actions. We also introduced new

statement for describing incomplete initial states of transition systems. We

developed methods that solves common reasoning tasks in a non-deterministic

dynamic environment with P-log.

5. We defined the notion of best probabilistic diagnosis and gave a systematic

method for representing such problems and shown how to use P-log to solve

such problems.

6. We used P-log to solve probabilistic planning problems. We have run the pre-

liminary tests and discussed the performance of P-log inference engine on this

task.

7. Finally, we proved some of propositions and theories shown in this dissertation.

8.2 Future Work

We list our future work as follows:

• It is very common that once a P-log program is fixed, user may propose many

different queries to the program. Our implementation so far has not taken

advantage of this usage patterns. With proper cache techniques introduced, we

should be able to avoid repeated computations for different queries. One of our

future work is to add this feature so that a sequence of queries can be answered

more quickly.

• If the ground program still contains a lot of random selection rules. Evaluat-

ing the probability of a formula may become infeasible. Many sophisticated

algorithms, such as recursive conditioning [14], allow to compute probabilities

with respect to a large scale of Bayesian networks. We are interested in how

to combine these techniques with our algorithms so we may be able to solve
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problems with large number of random selection rules in the program.

• The ground time of the new system is comparatively small in many domains

we have tested. However in some problems, when the ground program is large,

it becomes the bottle neck of the overall performance of P-log system. We

expect some overhead of our grounding algorithm comparing to other systems,

say lparse. However, we believe a better design of grounding algorithm may

help us to reduce the grounding time on large programs.

• Our performance on probabilistic planning tasks is not as good as other sys-

tems. We need to investigate better heuristic functions and more sophisticated

algorithms for faster performance.
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