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Abstract. The paper explores the possibility of performing temporal
projection in the “Digital Aristotle” reasoning system. In particular, it
investigates the relationship between two methods for computing tra-
jectories of dynamic systems: a first method using action languages and
the answer set semantics, and a second method using the object-oriented
declarative language Flora-2. The former method is sound and com-
plete with respect to the specification. We show that the latter method
is also sound, and we identify a sufficient condition for completeness.
Based on these results, we present advantages and limitations of the two
methods.

1 Introduction

The paper explores the possibility of performing temporal projection in Digital
Aristotle, “a reasoning system capable of answering novel questions and solving
advanced problems in a broad range of scientific disciplines and related human
affairs” [1]. The pilot of the Digital Aristotle uses the object-oriented declarative
language Flora-2 [2], which relies on the well-founded semantics [3]. Flora-
2 is a dialect of F-logic [4] with various extensions, including argumentation
theory. The inference engine with an identical name, Flora-2, is based on XSB
and uses tabling.

Current research goals of the Digital Aristotle focus on performing temporal pro-
jection in discrete dynamic systems. Such systems can be modeled by transition
diagrams whose nodes are possible physical states of the domain and whose arcs
are labeled by actions. As the actions of the domain may be non-deterministic,
computing trajectories (i.e., paths in the transition diagram) is not a straightfor-
ward task. There is a known method [5] of performing temporal projection using
action languages and the answer set semantics [6], [7]. Action languages specify
discrete dynamic systems in a concise and mathematically accurate manner. We
developed a first method of computing trajectories as a refinement of this known
method. We specified transition diagrams in a modular action language, ALM
[8], extending action language AL [9], [10] by means for expressing hierarchies
of abstractions that are often necessary for the design of larger knowledge bases.
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AL incorporates in its semantics the inertia axiom [11] that says that “Nor-
mally, things stay the same.” System descriptions written in AL are translated
into logic programs under the answer set semantics; these logic programs are
then used in solving various reasoning tasks (trajectory computation, planning,
diagnosis, etc.) [5], [12]. We call this first method the “ASP method”.

However, the ASP method cannot be used by the Digital Aristotle, as the Dig-
ital Aristotle relies on a different formalism, Flora-2. Therefore, we created
a method of computing trajectories in discrete dynamic systems using the lan-
guage Flora-2, and then answered questions using the inference engine with
the same name. We compared the Flora-2 method with our first method based
on action languages and answer set semantics. This comparative mathematical
analysis revealed advantages and limitations for the two methods. For the class
of Flora-2 programs used in computing trajectories, this comparison also pro-
vided a specification—in terms of transition diagrams and thus independent from
the computational technique.

The paper is structured as follows: we start by introducing the syntax and se-
mantics of AL with defined fluents. The specification of dynamic systems will be
given in this language.1 In the following section we present our two methods for
computing trajectories: we start with the ASP method and continue with the
Flora-2 method. Rather than making use of all the extensions incorporated in
Flora-2, we limit ourselves to the well-founded semantics with classical nega-
tion and ignore, for example, the argumentation theory. In the next section we
give a mathematical analysis of the two methods. We indicate that the ASP
method is sound and complete with respect to the specification. We show that
the Flora-2 method is also sound, and we formulate a sufficient condition
for its completeness. Finally, we present advantages and limitations of the two
methods.

2 Action Language AL

In this section we quickly present the syntax and semantics of AL with defined
fluents. For more details, see [8].

2.1 Syntax of AL

A system description of AL consists of a sorted signature and a collection of
axioms. The signature contains names for primitive sorts, a sorted universe (non-
empty sets of object constants assigned to primitive sorts), and names for actions
and fluents. The fluents are partitioned into static, inertial, and defined fluents.
The truth values of static fluents cannot be changed by actions. Inertial fluents
can be changed by actions and are subject to the law of inertia. Defined fluents
1 In the actual work, dynamic systems were specified in the modular action language
ALM. As system descriptions of ALM are mapped into equivalent system descrip-
tions of AL, we abstracted away from ALM for the purpose of this paper.
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are non-static fluents that are defined in terms of other fluents; they can be
changed by actions but only indirectly.

An atom is a string of the form p(x̄) where p is a fluent and x̄ is a tuple of
primitive objects. A (static, inertial or defined) literal is an atom or its negation.
Direct causal effects of actions are described in AL by dynamic causal laws –
statements of the form:

a causes l if p (1)

where l is an inertial literal, a is an action name, and p is a collection of arbitrary
literals. (1) says that if action a were executed in a state satisfying p then l would
be true in a state resulting from this execution. Dependencies between fluents
are described by state constraints — statements of the form:

l if p (2)

where l is a literal and p is a set of literals. (2) says that every state satisfying
p must satisfy l. Executability conditions of AL are statements of the form:

impossible a1, . . . , ak if p (3)

Statement (3) says that actions a1 . . . ak cannot be executed simultaneously in a
state that satisfies p. An AL axiom with variables is understood as a shorthand
for the set of all its ground instantiations.

2.2 Semantics of AL

We define the semantics of AL by defining the transition diagram T (D) for every
system description D of AL. Some preliminary definitions: a set σ of literals is
called complete if for any fluent f either f or ¬f is in σ; σ is called consistent
if there is no f such that f ∈ σ and ¬f ∈ σ. Our definition of the transition
relationship 〈σ0, a, σ1〉 of T (D) will be based on the notion of an answer set
of a logic program [7]. We will construct a program ΠS(D) consisting of logic
programming encodings of statements from D. The answer sets of the union of
ΠS(D) with the encodings of a state σ0 and an action a will determine the states
into which the system can move after the execution of a in σ0.

Let D be a system description of AL. The signature of ΠS(D) consists of: (a)
names from the signature of D; (b) a new sort: step with constants 0 and 1;
and (c) the relations: holds(fluent, step) (holds(f, i) says that fluent f is true
at step i); occurs(action, step) (occurs(a, i) says that action a occurred at step
i); and fluent(fluent type, fluent) (fluent(t, f) says that f is a fluent of type
t). If l is a literal formed by a non-static fluent, h(l, i) will denote holds(f, i)
if l = f or ¬holds(f, i) if l = ¬f . Otherwise h(l, i) is simply l. If e is a set of
actions, occurs(e, i) = {occurs(a, i) : a ∈ e}. If p is a set of literals, h(p, i) =
{h(l, i) : l ∈ p}.

The logic program ΠS(D) is constructed as follows:
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1. For every static causal law “l if p” from D, ΠS(D) contains:

h(l, I)← h(p, I). (4)

2. For every dynamic causal law “a causes l if p” from D, ΠS(D) contains:

h(l, I + 1)← h(p, I),
occurs(a, I). (5)

3. For every executability condition “impossible a1, . . . , ak if p” from D,
ΠS(D) contains:

¬occurs(a1, I) ∨ . . . ∨ ¬occurs(ak, I)← h(p, I). (6)

4. ΠS(D) contains the Inertia Axioms:

holds(F, I + 1) ← fluent(inertial, F ),
holds(F, I),
not ¬holds(F, I + 1).

¬holds(F, I + 1)← fluent(inertial, F ),
¬holds(F, I),
not holds(F, I + 1).

(7)

5. ΠS(D) contains the CWA for defined fluents:

¬holds(F, I)← fluent(defined, F ),
not holds(F, I). (8)

6. ΠS(D) contains the constraint:

← fluent(inertial, F ),
not holds(F, I),
not ¬holds(F, I).

(9)

7. For every static fluent f , ΠS(D) contains the constraint:

← fluent(static, f),
not f,
not ¬f.

(10)

Let ΠSc(D) be a program constructed by rules (4), (8), (9), and (10) above.
For any set σ of literals, σnd denotes the collection of all literals of σ formed
by inertial and static fluents. ΠSc(D, σ) is obtained from ΠSc(D)∪ h(σnd, 0) by
replacing I by 0.

Definition 1 (State). A set σ of literals is a state of T (D) if ΠSc(D, σ) has a
unique answer set, A, and σ = {l : h(l, 0) ∈ A}.

Now let σ0 be a state and e a collection of actions.

ΠS(D, σ0, e) =def ΠS(D) ∪ h(σ0, 0) ∪ occurs(e, 0) .
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Definition 2 (Transition). A transition 〈σ0, e, σ1〉 is in T (D) iff ΠS(D, σ0, e)
has an answer set A such that σ1 = {l : h(l, 1) ∈ A}.

As an illustration of this definition we consider:

Example 1. [Lin’s Briefcase]([13])
The system description defining this domain consists of: (a) a signature contain-
ing the sort name latch, the sorted universe {l1, l2}, the action toggle(latch),
the inertial fluent up(latch) and the defined fluent open, and (b) the following
axioms:

toggle(L) causes up(L) if ¬up(L)
toggle(L) causes ¬up(L) if up(L)
open if up(l1), up(l2) .

One can use our definitions to check that the system contains transitions
〈{¬up(l1), up(l2),¬open}, toggle(l1), {up(l1), up(l2), open}〉,
〈{up(l1), up(l2), open}, toggle(l1), {¬up(l1), up(l2),¬open}〉, etc.

Note that a set {¬up(l1), up(l2), open} is not a state of our system.

The semantics of system descriptions that do not contain defined fluents is equiv-
alent to the semantics described in [14] and [15]. As far as we know, [14] is the
first work which uses ASP to describe the semantics of action languages.

3 Computing Trajectories

A system description D of AL specifies the entire transition diagram T (D)
representing a dynamic domain. In order to reason about a specific trajectory
of an agent in this domain, we need to add a recorded history, i.e., a collection
of observations made by the agent together with a record of its own actions.
Trajectories can then be computed by combining together:

1. the recorded history
2. a logic program encoding the system description and
3. a logic program connecting the recorded history to the transition diagram.

This general method can be adapted to different non-monotonic formalisms by
ensuring that the logic programs in points 2 and 3 obey specific syntactic re-
quirements. Our ASP and Flora-2 methods follow this pattern. As they rely
on different formalisms, the only part the two methods have in common is the
recorded history. Let us now define it formally.

Definition 3 (History). By the history Γn of a system description D up to
time step n we mean a collection of observations, i.e., facts of the form:
1. observed(f, true/false, i) - fluent f was observed to be true/false at step i,
where 0 ≤ i ≤ n.
2. happened(a, i) - action a was observed to happen at step i, where 0 ≤ i < n.
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Example 2. [History] For our Example 1, a possible history may be:
Γ1 = { observed(up(l1), false, 0),

observed(up(l2), true, 0),
happened(toggle(l1), 0) }

This says that latch l1 was initially down, latch l2 was initially up and that the
agent toggled l1 at time step 0.

If l is a literal, by obs(l, i) we will denote observed(f, true, i) if l = f and
observed(f, false, i) if l = ¬f . If p is a set of literals, obs(p, i) = {obs(l, i) :
l ∈ p}. If for every fluent f in the signature either observed(f, true, 0) ∈ Γn

or observed(f, false, 0) ∈ Γn, then we say that the initial situation of Γn is
complete. The semantics of a history Γn is given by the following definition:

Definition 4 (Model of a History). (adapted from [16]) Let Γn be a history
of a system description D up to time step n.

(a) A trajectory 〈σ0, a0, σ1, . . . , an−1, σn〉 of T (D) is a model of Γn if:
1. ai = {a : happened(a, i) ∈ Γn}, ∀ 0 ≤ i < n
2. if obs(l, i) then l ∈ σi, ∀ 0 ≤ i ≤ n

(b) Γn is consistent if it has a model.
(c) A literal l holds in a model M of Γn at time i ≤ n if l ∈ σi; Γn entails h(l, i)

if, for every model M of Γn, M |= h(l, i).
(We use M |= h(l, i) to denote that l holds in model M , and Γn |= h(l, i) to
denote that Γn entails h(l, i).)

Example 3. [Model of a History] The history Γ1 in Example 2 is consistent. Its
model is the trajectory:

M = 〈{¬up(l1), up(l2),¬open}, toggle(l1), {up(l1), up(l2), open}〉.
As well, Γ1 |= ¬holds(open, 0), Γ1 |= holds(open, 1), etc.

Note that a consistent history may have more than one model if non-deterministic
actions are involved.

Now that we have presented the common part for the two methods, we continue
presenting each one of them in detail.

3.1 Computing Trajectories Using ASP

The ASP method requires, besides the recorded history, two logic programs
under the answer set semantics: one for encoding the system description of AL
and another one to express the connection between the recorded history and
the system description. We use the logic program ΠS described in section 2.2 to
encode system descriptions ofAL. We now introduce a program, ΩS , to represent
the connection between observations in the history and the hypothetical relations
occurs and holds in ΠS .

Definition 5. (from [16]) If Γn is a history of system description D up to time
step n, then by ΩS we denote the program constructed as follows:
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1. For every action a such that happened(a, i) ∈ Γn, ΩS contains:
occurs(a, i)← happened(a, i).

2. For every literal l such that obs(l, 0) ∈ Γn, ΩS contains:
h(l, 0)← obs(l, 0).

3. For every literal l such that obs(l, i) ∈ Γn, ΩS contains the reality check
axiom:
← obs(l, i),

not h(l, i).

The ASP method of computing trajectories consists of finding the answer sets of
the program ΠS(D) ∪ Γn ∪ΩS . Each of these answer sets will define a possible
trajectory. Let us formally describe what “defining a sequence” means. (By lit(P )
we denote all the literals in the language of program P .)

Definition 6. Let Γn be a history of D and A be a set of literals over lit(ΠS(D)∪
Γn ∪ΩS). We say that A defines the sequence

〈σ0, a0, σ1, . . . , an−1, σn〉

if σi = {l | h(l, i) ∈ A} for any 0 ≤ i ≤ n, and ak = {a | occurs(a, k)} for any
0 ≤ k < n.

Example 4. [Trajectory Computation] For the system description in Example 1
and the history in Example 2, the answer set of ΠS(D) ∪ Γ1 ∪ ΩS defines the
trajectory

〈{¬up(l1), up(l2),¬open}, toggle(l1), {up(l1), up(l2), open}〉,

which, according to Example 3, is a model of Γ1.

3.2 Computing Trajectories in Flora-2

We now present a method of computing trajectories using Flora-2. As before,
we describe dynamic systems using AL. We translate the AL system descriptions
into Flora-2 logic programs. We cannot make use of the previous encoding,
ΠS , because it includes rules with empty and disjunctive heads. Such rules have
no well-founded semantics; as Flora-2 relies on the well-founded semantics,
ΠS is not a Flora-2 logic program. We introduce a new program, ΠW , for
the translation from AL into Flora-2 and use ΠW in the computation of
trajectories.

Let D be a system description of AL. The signature of ΠW (D) will consist of
the signature of ΠS(D) together with the relations:

– defeated(fluent, step) (defeated(f, i) says that the non-static fluent f is
defeated at time step i) and

– defeated(n(fluent), step) (defeated(n(f), i) says that ¬f is defeated at time
step i, where f is a non-static fluent).
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By l̄ we will denote n(f) if l = f or f if l = ¬f . The logic program ΠW (D) is
constructed as follows:2

1. For every static causal law “l if p” from D, ΠW (D) contains:

h(l, I)← h(p, I). (11)

If l is a non-static literal, then ΠW (D) also contains:

defeated(l̄, I)← h(p, I). (12)

2. For every dynamic causal law “a causes l if p” from D, ΠW (D) contains:

h(l, I + 1)← h(p, I),
occurs(a, I). (13)

defeated(l̄, I + 1)← h(p, I),
occurs(a, I). (14)

(Note that based on the definition of inertial, defined and static fluents, the
literal l appearing in the dynamic causal law above can only be an inertial
literal).

3. For every executability condition “impossible a1, . . . , ak if p” from D, and
for every i such that 0 ≤ i ≤ k, ΠW (D) contains:

¬occurs(ai, I)← not ¬occurs(a1, I),
. . .
not ¬occurs(ai−1, I),
not ¬occurs(ai+1, I),
. . .
not ¬occurs(ak, I),
h(p, I).

(15)

4. ΠW (D) contains the Inertia Axioms:

holds(F, I + 1) ← fluent(inertial, F ),
holds(F, I),
not defeated(F, I + 1).

¬holds(F, I + 1)← fluent(inertial, F ),
¬holds(F, I),
not defeated(n(F ), I + 1).

(16)

5. ΠW (D) contains the CWA for defined fluents:

¬holds(F, I)← fluent(defined, F ),
not defeated(n(F ), I). (17)

2 The symbol for classical negation in Flora-2 is “neg”. In this paper, we will use ¬
instead of “neg” for simplicity.
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Next, we need to introduce the program connecting the observations in the
history to the relations holds and occurs. We cannot use the program ΩS as it
contains a rule with empty head: the reality check, which is not allowed by the
syntax of Flora-2. Hence, we construct a new program, ΩW , by replacing the
reality check

← obs(l, i),not h(l, i).

by the rule
inconsistency ← obs(l, i),not h(l, i).

In our Flora-2 method, we compute trajectories by finding the well-founded
model of the program ΠW (D) ∪ Γn ∪ ΩW . In the case of consistent histories
with complete initial situations, the well-founded model will not contain the
inconsistency predicate; it will be a subset of the literals entailed by the history.

4 Mathematical Analysis of the ASP and Flora-2
Methods

In this section we discuss the soundness and completeness of the two methods
with respect to the specification. We will apply these results when comparing
the two methods in the next section. Let us assume that our dynamic domain
is specified via the system description D of AL and consider a history Γn of D.
We limit ourselves to histories with complete initial situations.

First, we show that the ASP method is sound and complete with respect to
the specification. This requires showing that there is a 1-to-1 correspondence
between answer sets of the program ΠS(D) ∪ Γn ∪ΩS and trajectories of Γn:

Theorem 1. (Soundness and Completeness of the ASP Method) If Γn is a
consistent history of D such that the initial situation of Γn is complete, then M
is a model of Γn iff M is defined by some answer set of ΠS(D) ∪ Γn ∪ΩS.

Proof. (sketch) We first prove the following: For every system description D
there is a system description D′ with the same signature as D minus the defined
fluents, such that D′ is a residue of D (i.e., restricting the states and actions
of T (D) to the signature of D′ establishes an isomorphism between T (D) and
T (D′) [17]). Then, we apply Lemma 5 from [16] for D′.

Next, we analyze the Flora-2 method. We begin by showing that ΠW (D) ∪
Γn ∪ΩW is computable:

Theorem 2. (Computability in Flora-2) If Γn is a consistent history of D
with a complete initial situation, then the program ΠW (D) ∪ Γn ∪ ΩW is com-
putable by the Flora-2 inference engine.
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Proof. We need to show that the program is occur-check free, does not flounder
and that the computation of the Flora-2 inference engine terminates. We as-
sume that the Flora-2 computation is sound.3 Let us use the notation ΠW (Γn)
for ΠW (D) ∪ Γn ∪ΩW .

(a) ΠW (Γn) is occur-check free: ΠW (Γn) is well-moded [18] for the following
input-output specification:

holds(−,+) fluent(+,−)
defeated(+,+) occurs(+,+)

As there is no rule in ΠW (Γn) whose head contains more than one occurrence
of the same variable in its output positions, then, based on the result of Apt
and Pellegrini [19], ΠW (Γn) is occur-check free.

(b) ΠW (Γn) does not flounder : ΠW (Γn) is well-moded for the input-output spec-
ification in (a) and all predicate symbols occurring under negation as failure
(i.e., defeated and occurs) are moded completely by input. Hence, based
on results by Apt and Pellegrini [19], and Stroetman [20], ΠW (Γn) does not
flounder.

(c) The Flora-2 computation terminates: ΠW (Γn) is a function-free program.
The SLG resolution of XSB terminates for function-free programs [21] and
Flora-2 is build on top of XSB.

We can now state that, for any consistent history with a complete initial situa-
tion, the trajectory computed by the Flora-2 method is sound with respect to
the specification:

Theorem 3. (Soundness of the Flora-2 Method) Let Γn be a consistent his-
tory of D with a complete initial situation, l be a fluent literal, and 0 ≤ i ≤ n.
If h(l, i) is in the well-founded model of ΠW ∪ Γn ∪ΩW , then

∀ model M of Γn,M |= h(l, i)

Proof. (sketch) We use the notation ΠW (Γn) for ΠW ∪ Γn ∪ ΩW and ΠS(Γn)
for ΠS ∪ Γn ∪ΩS . We have to show that the well-founded model W of ΠW (Γn)
is sound with respect to the specification. We prove it by showing that:

(a) Under the given conditions (i.e., Γn is a consistent history of D with a com-
plete initial situation), ΠW (Γn) has the same answer sets as ΠS(Γn).

(b) Based on Corollary 5.7 from [3], the well-founded model W of ΠW (Γn) is
compatible with every answer set of ΠW (Γn).

(c) From (a) and (b), W is compatible with every answer set of ΠS(Γn).

3 Explicit negation is not implemented yet in Flora-2 for programs that do not use
the argumentation theory. Hence, “no consistency check is done to ensure that p and
neg p are not true at the same time” [2]. However, as we only consider consistent
histories and due to the way we encode the inertia axiom, p and neg p (i.e., ¬p, in
the notation we adopted in this paper) can never be obtained simultaneously.
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(d) From Theorem 1, every answer set of ΠS(Γn) defines a trajectory of Γn.
(e) From (c) and (d), W is compatible with all possible trajectories of Γn.

We now continue discussing the completeness of the Flora-2 method. In the
general case, the Flora-2 method is not complete. We will show an example
when the Flora-2 method is incomplete.

Example 5. [Incompleteness] Let D be the following system description:

a causes f

¬g1 if f, g2
¬g2 if f, g1
d if g1
d if g2

with inertial fluents f , g1, and g2, and defined fluent d. Let us consider the
history Γn = { observed(f, false, 0), observed(g1, true, 0), observed(g2, true, 0),
happened(a, 0) }.

This system has two possible trajectories: in one of them f , g1, and d are true
and g2 is false at step 1; in the other one f , g2, and d are true and g1 is false at
step 1. However, the only information about step 1 that the well-founded model
of ΠW (D) ∪ Γn ∪ ΩW can provide is that f holds in all possible trajectories of
the system. The values of the remaining fluents, g1, g2, and d, are unknown.

Our goal is to find a class of system descriptions for which the Flora-2 method
is complete. We first introduce the following definition:

Definition 7. A simple system description is a system description of AL such
that:

1. there are no circular dependencies between fluents and
2. all executability conditions are only for single actions.

We can now express the sufficient condition for completeness:

Theorem 4. (Sufficient Condition for Completeness of the Flora-2 Method)
Let D be a simple system description, let Γn be a consistent history of D with a
complete initial situation, l be a fluent literal, and 0 ≤ i ≤ n. If M is a model
of Γn and h(l, i) ∈ M then h(l, i) ∈ W , where W is the well-founded model of
ΠW (D) ∪ Γn ∪ΩW .

Proof. We first introduce some notation: For any logic program P , let P ∗ be the
general logic program obtained from P by replacing all occurrences of ¬pred by
n pred, for every predicate pred from the signature of P . As before, by ΠW (Γn)
we denote the program ΠW (D)∪Γn∪ΩW , and by ΠS(Γn) we denote the program
ΠS(D) ∪ Γn ∪ΩS .
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We prove Theorem 4 by showing that the general logic program ΠW (Γn)∗ is a
locally stratified program when D is a simple system description and Γn is a
consistent history of D with a complete initial situation. From here, we obtain
that ΠW (Γn) has a unique answer set, equivalent to its well-founded model.
Then, we show that the unique answer set of ΠW (Γn) is equivalent to the unique
answer set of ΠS(Γn) modulo the common signature. As the unique answer set
of ΠS(Γn) is complete with respect to the specification (based on Theorem 1),
so must be the well-founded model of ΠW (Γn).

Let us now discuss how we show that ΠW (Γn)∗ is locally stratified. We do so
by first defining the graph of non-static fluents Gns(D) = (V , E) as a directed
graph where:

1. V is the set of all non-static (i.e., inertial or defined) fluent names from the
signature of D

2. For every static causal law “l if p1, . . . , pk” from D, where l is non-static,
and for all 1 ≤ i ≤ k such that pi is non-static, (pi, l) ∈ E.

Given that D is a simple system description, Gns(D) = (V,E) is acyclic. We
define the mapping α : V → {1, 2, . . . , n} as follows:

1. If N ∈ V and N is a source, then: α(N) = 1
2. For every N ∈ V such that (N1, N) ∈ E, . . ., (Nm, N) ∈ E:
α(N) = max{α(N1), . . . , α(Nm)}+ 1

3. n = max{α(N) | N is a sink}

Let k = n + 1. In order to prove that ΠW (Γn)∗ is locally stratified we use the
mapping α defined above and the ranking, ρ, defined as follows:

ρ(happened(a, i)) = 0
ρ(observed(f, true, i)) = ρ(observed(f, false, i)) = 0 if f is non-static
ρ(f) = ρ(n f) = 0 if f is static
ρ(occurs(a, i)) = ρ(n occurs(a, i)) = k ∗ (i+ 1)
ρ(holds(f, i)) = ρ(n holds(f, i)) = k ∗ i+ α(f)

if f is non-static
ρ(defeated(l̄, i)) = k ∗ i+ (α(l)− 1)

It is obvious that ρ is a local stratification for ΠW (Γn)∗.

The results in the theorems above clearly show a difference between the ASP
and Flora-2 method. In the next section we further analyze the relationship
between the two of them.

5 Comparative Analysis of the ASP and Flora-2
Methods

The two methods for computing trajectories rely on different non-monotonic
formalisms that correspond to different intuitions. On the one hand, we have
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the answer set semantics based on the principle of belief, which implies the pos-
sibility of multiple valid models. On the other hand, we have the well-founded
semantics and hence the idea of a unique set of conclusions for every program.
This distinction has direct implications for the properties of the two methods.
In particular, it determines the completeness of the ASP method and the in-
completeness, in the general case, of the Flora-2 method. Depending on the
reasoning task to be performed, the incompleteness of the Flora-2 method
can be seen as a limitation. This is especially the case when reasoning about
the effects of non-deterministic actions, if we desire to know the consistent ef-
fects of these actions over all possible trajectories. Such effects are not detected
by the Flora-2 method. For instance, in Example 5 the fact that d holds at
time step 1 is not inferable by Flora-2 ; however, d is an indirect effect of the
non-deterministic action a, and d holds in every state following the execution of
a in every trajectory that is a model of the history. The ASP method has an
advantage here, as each possible trajectory of the system is defined by an answer
set.

The Flora-2 method might have an advantage over the ASP method in terms
of efficiency. The SLG algorithm of XSB, the basis of the Flora-2 inference
engine, has polynomial time complexity for function-free programs [21]. The
logic programs described in this paper are indeed function-free. However, with
the efficiency of ASP solvers constantly improving, we cannot make strong claims
here. We ran tests on 30 examples using the inference engine Flora-2 and the
answer set solver clasp.4 In most cases the two systems were equally efficient;
only a minimal difference5 was noted on three examples containing numerical
constraints, where numbers ranged over a large set. New solvers integrating
answer set reasoning with constraint solving techniques may annul this minimal
advantage of Flora-2. This remains to be explored in the future.

In terms of applications of the two methods, we see an advantage for the ASP
method. Substantial work has been done to investigate the suitability of ASP for
solving reasoning problems related to dynamic domains and used in answering
questions from natural language, for example planning [5], diagnosis [16], or the
computation of preferred trajectories [22], [23]. Our ASP method can be easily
extended with a planning or diagnosis module or a theory of intentions in order
to accomplish those tasks. As far as we know, such work still remains to be
done for Flora-2. Furthermore, although we were concerned in this paper only
with consistent histories with a complete initial situation, the ASP approach
can easily perform temporal projection for other types of histories. However, in
the case of histories with an incomplete initial situation, the set of conclusions
produced by Flora-2 would be limited, due to the underlying formalism.

The use of AL as a specification language in both methods has two advantages.
First of all, it determines a smaller class of logic programs for which it is easy to
4 http://potassco.sourceforge.net
5 30 seconds versus 60 seconds on a machine with 1.73 GHz CPU and 1GB RAM

running 32-bit Windows.
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compare ASP and Flora-2. Focusing on this small class can, however, shed some
light on the relationship between ASP and Flora-2 in general, and can even
contribute to the comparative study of their underlying formalisms, the answer
set and the well-founded semantics. Secondly, the Flora-2 programs presented
here receive a specification independent from the computational technique that
is used: in terms of a system description of AL and the transition diagram it
describes. This gives trustworthiness to the system, as it ensures that whatever
is computed is indeed correct.

6 Conclusions and Future Work

We presented two approaches for computing trajectories in dynamic domains:
one based on ASP, and another one based on the language and inference engine
Flora-2. We showed that both methods are sound, while only the ASP method
is complete for the general case. We identified a class of what we called simple
system descriptions for which the Flora-2 method is also complete. Finally,
we investigated the relationship between the two methods by showing some of
their advantages and limitations. The Flora-2 method can be used to perform
temporal projection in the Digital Aristotle reasoning system.

Both methods start with the description of the domain in action language AL
with defined fluents. The AL system description, together with a given history,
is encoded as a logic program under the syntax of clasp for the ASP method.
The answer sets of this program define trajectories for the given history. For the
Flora-2 method, the input information is encoded as a logic program under
the syntax of Flora-2 ; the conclusions that are inferred are compatible with
all trajectories for that specific history.

The work presented here can continue in several directions. We plan to investi-
gate the properties of the two methods for other types of histories (for example,
inconsistent histories). We also intend to relax the sufficient condition for the
completeness of the Flora-2 method so that it would characterize a larger
class of system descriptions. In particular, we plan to find a condition for the
system description and history that would ensure that the resulting logic pro-
gram is weakly stratified; we would then apply the result of Przymusinska and
Przymusinski [24], which states that, for weakly stratified programs, the weakly
perfect model is also well-founded and unique stable. Finally, the efficiency of
the two methods can be investigated on examples illustrating a larger number of
difficulties. Such results may be useful in comparing the two logic programming
paradigms, ASP and Flora-2, and their underlying non-monotonic formalisms.
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