
Authorization and Obligation Policies in
Dynamic Systems

Michael Gelfond1 and Jorge Lobo2

1 Texas Tech University
mgelfond@cs.ttu.edu

2 IBM T. J. Watson Research Center
jlobo@us.ibm.com

Abstract. The paper defines a language for specifying authorization
and obligation policies of an intelligent agent acting in a changing envi-
ronment and presents several ASP based algorithms for checking compli-
ance of an event with a policy specified in this language. The language
allows representation of defeasible policies and is based on theory of ac-
tion and change.

1 Introduction

The goal of this paper is to provide a simple language for specifying authorization
and obligation policies of an intelligent agent acting in a changing environment.
We refer to a pair consisting of an agent and its environment as a dynamic
system. We limit our attention to dynamic systems which can be reasonably well
represented by transition diagrams whose nodes correspond to possible physical
states of the environment and arcs are labeled by actions. A transition 〈σ, a, σ′〉
belongs to such a transition diagram T iff σ′ may be a state resulting from the
execution of action a in state σ. If action a is deterministic and executable in
σ then there exists exactly one such σ′. The system’s diagram T contains all
physically possible trajectories of the system. By an agent’s policy we mean a
description, P, of a subset of trajectories of T deemed to be preferable by the
system’s designer. We often refer to such trajectories as compliant with P.

We start with describing authorization policy of an agent A of a dynamic system
〈A, T 〉 – a set of conditions under which an agent’s action is or is not permitted.
Note that the agent’s use of the authorization policy can differ from application
to application. Some authorization policies can be strict – no unauthorized action
can be performed by an agent. In other cases an autonomous agent can opt for
performing an unauthorized action. In this case the agent may be forced to pay a
penalty, be commended for the initiative or loose his job for insubordination. In
all these cases though it is important to be able to determine when an action is
authorized and when it is not. Of course the agent can do this only on the basis
of his general knowledge of the world, the system’s current state, and its own
abilities, and goals. The algorithms for checking compliance of agent’s actions to
his policies can be used by the agent for deciding what actions to perform as well



as by an outside observers evaluating the agent’s behaviour. Similar observations
are true for obligation policy – a set of conditions defining the actions the agent
is obligated to perform or to abstain from performing in a given state.

In section 2 we describe the syntax and semantics of a language APL for speci-
fying authorization policies of dynamic systems. We also discuss several methods
for checking compliance of authorization policies using the methods of Answer
Set Programming [1]. Section 3 expands APL with obligation policies.

2 Authorization Policy

In this section we define the syntax and semantics of the language APL for
describing authorization policies in a dynamic system 〈A, T 〉, and describe how
checking compliance of actions and trajectories of the system can be reduced
to computing answer sets of logic programs under the answer set semantics [2].
As expected, particular reductions will depend on the knowledge available to
the reasoner checking the compliance. One of our main goals is simplicity of the
language and a high level of elaboration tolerance of its policies. This of course
should be balanced by the expressiveness of the language and the ability to check
compliance in a reasonable amount of time.

2.1 Syntax

Let us consider a dynamic system described by an agent, A, and a transition
diagram T over some fixed signature Σ with sorts:

– fluent – functions whose values can change as a result of actions;
– action – by actions we mean elementary actions;
– domain dependent sorts representing elements of a particular domain.

We use (possibly indexed) letters f and e to denote elements of first two sorts.
Possibly indexed letter a denotes compound actions – sets of (simultaneously ex-
ecuted) elementary actions. The corresponding capital letters denote variables
ranging over the corresponding sorts. The set of elementary actions will be di-
vided into the set of agent’s actions and the set of exogenous actions. The former
are actions executed by the agent A of the dynamic system. The latter are ac-
tions performed by other agents viewed as part of A’s environment or by nature.
Expressions of the form f = y where f is a fluent and y is a possible value of f
will be called fluent atom. Expressions of the form e = true and e = false will be
referred to as action atoms. A Σ-atom is a fluent or action atom of Σ. Σ-atoms
l = true and l = false will be often written as l and ¬l respectively.

Recall that a state of T consists of an assignment of values to all the fluents of
Σ. If 〈σ, a, σ′〉 is a transition of T then the pair 〈σ, a〉 will often be referred to
as an event.

Now we are ready to define the language APL(Σ) for specifying authorization
policy of an agent whose environment is described by T .



The signature of APL(Σ) is obtained from Σ by adding a new predicate symbol
permitted(e), a collection of terms, d1, . . . , dn used to denote default authoriza-
tion rules of APL(Σ), and the relation prefer(d1, d2).

Definition 1. [Authorization Policy]
Authorization policy statements are expressions of the form

permitted(e) if cond (1)

¬permitted(e) if cond (2)

d : normally permitted(e) if cond (3)

d : normally ¬permitted(a) if cond (4)

prefer(d1, d2) (5)

where by cond we mean a collection of atoms of APL(Σ) not containing atoms
formed by prefer.3 (The last restriction is not necessary but it slightly simplifies
the presentation). If cond is empty we simply omit “if cond” from the sentence.
The first two statements will be referred to as strict policies. The next two will be
called defeasible. Names of defeasible authorization statements are optional and
can be omitted. By authorization policy we mean a collection of authorization
policy statements.

Example 1. [Mission Command]
Consider the following (imaginary) policy requirements for mission authorization
and command [3] :

1. A military officer is not allowed to command a mission he authorized.
2. A colonel is allowed to command a mission he authorized.
3. A military observer can never authorize a mission.

To express this policy we must have some information about transition sys-
tem Tm which serves as a mathematical model of our domain. We assume that
the signature, Σm of Tm, contains two domain dependent sorts, mission and
commander. Possibly indexed variables M and C range over missions and com-
manders respectively; Σm also contains

actions: authorize(C,M) and assume command(C,M);

fluents: authorized(C,M), commands(C,M), colonel(C), and observer(C).

Since the first two authorization policy statements of our example are contra-
dictory we naturally assume them to be defeasible. The first policy statement
will be expressed as4

3 The full version of the language will include dynamic preferences, i.e. statements
of the form prefer(d1, d2) if cond. Conceptually the extension is not difficult but
require a little more space.

4 Note that the names of defaults contain the default variables.



d1(C,M) : normally ¬permitted(assume command(C,M)) if authorized(C,M)

The second statement will be expressed as

d2(C,M) : normally permitted(assume command(C,M)) if colonel(C)

Since the second defeasible policy is more specific we assume that it is preferred
over the first one and, accordingly, add the sentence

prefer(d2(C,M), d1(C,M))

The last policy statement seems to be strict and will be represented by

¬permitted(authorize(C,M)) if observer(C)

We will denote the resulting policy by Pm.

2.2 Semantics

The semantics of an authorization policy P will determine a mapping P(σ) from
states of T into permissions – sets of statements of the form permitted(e), and
denials – sets of statements of the form ¬permitted(e).

To give the intuitively correct definition of P(σ) we should be able to refer to
valid consequences of defaults expressed by defeasible rules of our authorization
policy. This can be done by interpreting policies, states and events in terms
of logic programs under the answer set semantics – a non-monotonic logical
formalism well suited for reasoning with defaults. To this end we first translate
authorisation statements of APL into their logic programming counterparts. The
translation, lp, is defined as follows:

– lp(f = y) =def val(f, y);
– lp(permitted(e)) =def permitted(e).
– lp(¬permitted(e)) =def ¬permitted(e).
– If S is a set of atoms then lp(S) =def {lp(at) : at ∈ S}.
– lp of a strict policy statement, SPS, of P is obtained from SPS by simply

replacing “if” by the “←”.
– A defeasible policy statement, DPS, is translated by lp into a standard

Answer Set Prolog default rule:

permitted(e)← lp(cond),
not ab(d),
not ¬permitted(e).

or
¬permitted(e)← lp(cond),

not ab(d),
not permitted(e).

– The preference between two defeasible policies, d1 and d2 is translated by lp
into

ab(d2)← lp(cond1)

where cond1 is the condition of d1.



Finally

Definition 2. [Logic programming counterparts of policies and events]

lp(P) =def {lp(st) : st ∈ P}

lp(P, σ) =def lp(P) ∪ lp(σ)

These programs will be used to define important properties of authorization
policies as well as their semantics:

Definition 3. [Consistency of Authorization Policy]
An authorization policy P for 〈A, T 〉 is called consistent if for every state σ of
T logic program lp(P, σ) is consistent, i.e. has an answer set.

Definition 4. [P(σ) for authorization]
Let P be a consistent authorization policy for 〈A, T 〉. Then

– permitted(e) ∈ P(σ) iff a logic program lp(P, σ) entails permitted(e)5.
– ¬permitted(e) ∈ P(σ) iff a logic program lp(P, σ) entails ¬permitted(e).

Definition 5. [Policy Compliance]

– An event 〈σ, a〉 is strongly compliant with authorization policy P if for every
e ∈ a we have that permitted(e) ∈ P(σ).

– An event 〈σ, a〉 is weakly compliant with P if for every e ∈ a we have that
¬permitted(e) 6∈ P(σ).

– An event 〈σ, a〉 is not compliant with P if for some e ∈ a we have that
¬permitted(e) ∈ P(σ).

– A path 〈σ0, a0, σ1, ..., σn−1, an−1, σn〉 of T is said to be strongly (weakly)
compliant with P if for every 0 ≤ i < n the event 〈σi, ai〉 is strongly (weakly)
compliant with P.

Notice that lp(P, σ) may have answer sets S1 and S2 such that permitted(e) ∈
S1 and permitted(e) 6∈ S2. According to our definition permitted(e) is not a
consequence of P, i.e. ambiguity is treated as a complete absence of knowledge.
In some cases (probably most of the time) the system designer may want to avoid
ambiguity and to limit himself to policies satisfying the following condition:

Definition 6. [Categoricity]
An authorization policy P for 〈A, T 〉 is called categorical if for every state σ of
T logic program lp(P, σ) as categorical, i.e. has exactly one answer set.

To illustrate these definitions let us go back to Example 1.

5 A logic program Π entails literal l (Π |= l) if l belongs to every answer set of Π



Example 2. [Mission Command Revisited]
Let us populate the domain of Example 1 with a mission, m1 and a commander
c1. One can use standard answer set programming techniques to easily prove that
for any state σ and action e executable in σ the program lp(Pm, σ) is consistent
(and categorical). Hence policy Pm is consistent and unambiguous.

Now let us consider an event 〈σ0, e0〉 where

σ0 = {colonel(c1), authorized(c1,m1),¬commands(c1,m1),¬observer(c1)}

and

e0 = assume command(c1,m1).

The answer set of lp(Pm, σ0) contains permitted(e0) and hence the event is
strongly compliant with Pm. Similarly one can check that an event 〈σ1, e0〉 where

σ1 = {¬colonel(c1), authorized(c1,m1),¬commands(c1,m1),¬observer(c1)}

is not compliant with Pm. Finally consider a policy P ′m obtained from Pm by
removing its first authorization rule. Again one can easily check that the event
〈σ1, e0〉 is weakly (but not strongly) compliant with P ′m.

2.3 Checking Compliance

In this section we discuss the ways to automatically check compliance of an
agent’s behaviour with consistent authorization policy P of 〈A, T 〉. The algo-
rithms will obviously depend on the type of input information and the goals of
the checker. Let us start with the simplest possible scenario:

Scenario 1: an agent, acting in an environment T , has complete knowledge about
his current state, σ, and contemplates the execution of action e.

The following proposition, which follows immediately from the definition of com-
pliance and properties of ASP logic programs, reduces the task to checking con-
sistency of logic programs.

Proposition 1. [Checking compliance of a completely known event]

– Event 〈σ, e〉 is strongly compliant with consistent policy P of T iff a logic
program

lp(P, σ) ∪ {← permitted(e)}
is inconsistent.

– Event 〈σ, e〉 is weakly compliant with P iff a logic program

lp(P, σ) ∪ {← ¬permitted(e)}

is consistent.
– Event 〈σ, e〉 is not compliant with policy P iff a logic program

lp(P, σ) ∪ {← ¬permitted(e)}

is inconsistent.



Now let us look at the slight generalization of this scenario.

Scenario 2: Suppose that the agent’s knowledge about the current state is limited
to the values of some (but not necessarily all) fluents.

Let us denote the collection of such fluent atoms by s, and assume that δ(s)
consists of all states of the system containing s. If an event 〈σ, e〉 is strongly
(weakly) compliant with the agent’s policy for every σ ∈ σ(s) then the execution
of e is obviously authorized (not prohibited); if for every σ ∈ σ(s) the event 〈σ, e〉
is not permitted the agent will be wise not to perform e. Otherwise the agent
does not have enough information to determine compliance of the event. But
how our reasoner can check which of the above conditions (if any) are satisfied?
It is obvious that to be able to do that he needs sufficient knowledge about δ(s).
The precise logical form of this knowledge depends on the way we choose to
describe our transition system T . For the purposes of this paper we assume that
such description is given by an action theory, A, in an action language AL [4]
Such action theories provide a concise and convenient way of describing a large
class of discrete dynamic systems. In particular we will need static causal laws
(often referred to as state constraints) of AL – statements of the form

f = y if P (6)

where P is a collection of atoms of signature Σ of T . We say that a (partial)
assignment of values to fluents of Σ satisfies (6) if it contains f = y or does
not contain P . A state of a transition system defined by action theory A is a
complete assignment of values to fluents which satisfies all the static causal laws
of A. Partial assignment satisfying these laws is called a simple knowledge state
of an agent with action theory A.

To compute σ(s) we expand the translation lp of our policy statements into logic
programs to the laws of the form (6): function lp will map (6) into

val(f, y)← lp(P ).

(The translation follows [5].) Let D be the collection of all statements of the
form

val(f, y1) or . . . or val(f, yk)

where f is a fluent, {y1, . . . , yk} is the set of all its possible values, and let SL
be the set of all static causal laws from the action theory A describing T . The
following proposition reduces computing of δ(s) to finding answer sets of logic
programs.

Proposition 2. [States compatible with partial knowledge state s]
Let s be a simple knowledge state of an agent with action theory A. Then
σ ∈ δ(s) iff lp(σ) is an answer set of lp(s) ∪D ∪ lp(SL).

The following proposition provides the means for checking authorization status
of action e given a simple knowledge state s of an agent whose transition diagram
is given by an action theory A.



Proposition 3. [Checking compliance given simple knowledge state]
For any consistent authorization policy P

– Event 〈σ, e〉 is strongly compliant with P for every σ ∈ δ(s) iff program
lp(P, s) ∪D ∪ lp(SL) ∪ {← permitted(e)} is inconsistent.

– If P is categorical then an event 〈σ, e〉 is weakly compliant with P for every
σ ∈ δ(s) iff program lp(P, s) ∪ D ∪ lp(SL) ∪ {← not ¬permitted(e)} is
inconsistent.

– Event 〈σ, e〉 is not compliant with P for every σ ∈ δ(s) iff program lp(P, s)∪
D ∪ lp(SL) ∪ {← ¬permitted(e)} is inconsistent.

– If P is categorical then an event 〈σ, e〉 is not compliant with P for some
σ ∈ δ(s) iff program lp(P, s) ∪ D ∪ lp(SL) ∪ {← not ¬permitted(e)} is
consistent.

Scenario 3: In many cases however the agent’s knowledge base contains neither
current physical nor current simple knowledge state of the system. Instead, as
in the agent architecture from [6], it may maintain history, Hn, of the system’s
activity – the complete or partial description of the initial state σ0 together with
a collection of actions e0, . . . , en−1 performed in the domain up to the current
time-step n6. We discuss how, given this information, the agent can check if he
is permitted to execute a particular action e. First we will reify steps of history
and define a new function, lp(P, I), obtained by adding step I as an additional
(last) parameter to predicates from the definition of function lp. For instance,

lp(f = y, I) =def val(f, y, I),

lp(e, I) =def occurs(e, I),

etc. Similarly, for any history Hn = 〈s, [e0, . . . , en−1]〉

lp(P,Hn) =def lp(P, I) ∪ lp(s, 0) ∪ lp(e0, 0) ∪ . . . ∪ lp(ei−1, I − 1).

By D0 we denote the collection of all statements of the form

val(f, y1, 0) or . . . or val(f, yk, 0)

where f is a fluent and {y1, . . . , yk} is the set of all its possible values.

Finally, let Check1(Hn) and Check2(Hn) be pairs of rules

¬strongly compliant← occurs(E, I), not permitted(E, I)

← not ¬strongly compliant

and

¬weakly compliant← occurs(E, I),¬permitted(E, I)

← not ¬weakly compliant

6 In addition history can contain observations of values of particular fluents at any
step 0 ≤ i ≤ n.



respectively. Let us recall that a trajectory σ0, e0, . . . , en−1, σn of T is called a
model of history Hn = 〈s, [e0, . . . , en−1]〉 if s ⊆ σ0 [1]. Intuitively such models
are possible past compatible with the agent’s knowledge. Policy compliance of
an agent with history Hn can be checked using the following proposition.

Proposition 4. [Checking compliance given system’s history]]
For any categorical authorization policy P and history Hn of the system

– Every model of Hn is strongly compliant with P iff a program lp(P,Hn) ∪
D ∪ lp(A) ∪ Check1 is inconsistent.

– Every model of Hn is weakly compliant with P iff a program lp(P,Hn) ∪
D ∪ lp(A) ∪ Check2 is inconsistent.

3 Obligation Policy

Now we are ready to consider obligation policies. As before we assume a fixed
dynamic system described by an agent, A, and a transition diagram T over
signature Σ, and define syntax and semantics of the policy language, AOPL(Σ),
allowing specification of authorization and obligation policies.

3.1 Syntax

The signature of the new language, AOPL(Σ), is obtained from the signature
of APL(Σ) by adding a new predicate symbol obl(E) where E is an elementary
action of A or negation of such an action. Intuitively if obl(e) is true in a state σ
of a dynamic system 〈A, T 〉 then agent A has an obligation of executing e in this
state; if instead obl(¬e) holds in σ then A is obligated to refrain from executing
this action.

Definition 7. [Obligation Policy]
Obligation policy statements of AOPL(Σ) are expressions of the form

obl(happening) if cond (7)

¬obl(happening) if cond (8)

d : normally obl(happening) if cond (9)

d : normally ¬obl(happening) if cond (10)

prefer(d1, d2) (11)

where happening stands for an elementary action of A or its negation and cond
is a collection of atoms of AOPL(Σ) not containing atoms formed by prefer.
The form of obligation rules is very similar to that of authorization rules. Syn-
tactically permissions are replaced by obligations and actions by happenings –
actions or their negations.



Example 3. [Student’s Responsibilities]
Let us consider the following sentence from the list of student’s responsibilities
“Students are expected not to miss classes, to do their homework independently
and to submit it on time”. To represent this information we start with intro-
ducing sorts, student, class, meeting and assignment of the corresponding sig-
nature Σ. Students could be represented by names or social security numbers
and classes by the corresponding course numbers (e.g. cs4101). Meetings and as-
signments will be represented by records m(class, pos int) and a(class, pos int).
For instance, m(cs4101, 3) refers to the third meeting of the class cs4101 while
a(cs4101, 5) refers to the fifth assignment given to students of this class. Signa-
ture Σ will also contain fluents

enrolled(student, class),
due date(meeting, assignment).

For instance Mary may be enrolled in cs4101 (enrolled(Mary, cs4101)) and the
due date for the third assignment in this class may be the seventh class meeting,
due date(m(cs4101, 7), a(cs4101, 3))).

We will also need the following actions

attend(student,meeting),
submit(student, assignment,meeting),
accept unauthorized help(student).

Now we need to think about our understanding of the obligation policy rules from
our example. Are they strict or defeasible? The informal specification does not
say and hence the decision is left to us. One can easily imagine the situation when
the first rule can be canceled for some particular student and/or meeting by the
introduction of some exceptional circumstances. A person can be released from
the first obligation because of illness, family emergencies, etc. Instead of putting
these exceptions in the condition of the first rule we adopt a more elaboration
tolerant approach and view the rule as defeasible. This leads us to the following
formal rule:

d1(S, C, N) : normally obl(attend(S, m(C,N))) if enrolled(S, C).

In the properly extended signature an exception to this default can be repre-
sented as follows

¬obl(attend(S, M)) if family emergency(S, M).

where family emergency(S, M) holds if student S has family emergency at the
time of meeting M . Similarly for other exceptions. The second rule basically tells
the students not to cheat. Since cheating is never justified we make this a strict
obligation policy rule.

obl(¬accept unauthorized help(S)).

The knowledge base we are building may be extended by possible exceptions to
the third rule. Hence we make it defeasible: Normally a student S should submit



its assignment N1 for class C at the N2’th meeting of class C if S is enrolled in
C and N2 is the deadline for the assignment.

d2(S, C, N1, N2) : normally obl(submit(S, a(C,N1),m(C,N2)) if
enrolled(S, C),
due date(m(C,N2), a(C,N1)). .

As expected preference between defeasible obligation policies will be used when
policies lead to contradictory obligations. For instance a religious obligation of
abstaining from work during important religious holidays can contradict the
obligation of attending classes. Some schools allow such holidays to be a sufficient
excuse for not attending classes, while others do not. In a simplified form the
new obligation can be expressed as

d3(S, M) : normally obl(¬attend(S, M)) if religious holiday(M).

where religious holiday(M) holds if some important religious holiday occurs at
the same day as the meeting M . If the designer of our knowledge base believes
that religious obligations overrule secular once he can expand the base by

prefer(d3(S, m(C,N)), d1(S, C, N)).

The opposite preference can be given by a more secularly minded designer. Of
course if no preference is given the user of the base may have two different
contradictory obligations. Such a policy however will be ambiguous and will
allow the user freedom to decide if one or both obligations should be ignored
and accept the corresponding rewards and punishments. As with authorization
policies the designer should attempt to avoid ambiguty and limit himself to
categorical policies.

3.2 Semantics

To define the semantics of AOPL(Σ) we expand the function P(σ) from the
definition of the semantics of authorization policy of APL(Σ). In addition to
permissions and denials the function will now return obligations the agent of a
dynamic system has in a state σ. As expected this can be done by expanding
logical counterpart lp defined above by mapping statements of the form (7) and
(8) to logic programming rules

obl(h)← lp(cond)

¬obl(h)← lp(cond).

Statements (9) and (10) will be mapped into rules

obl(h)← lp(cond).
not ab(d),
not ¬obl(h).

¬obl(h)← lp(cond).
not ab(d),
not obl(h).



The notions of consistency and categoricity of a policy of a new language remains
unchanged. The function P(σ) is expanded as follows

Definition 8. [P(σ) for obligations]
Let P be a consistent policy for 〈A, T 〉. Then obl(h) ∈ P(σ) iff a logic program
lp(P, σ) entails obl(h).

Let Pa be a policy obtained from P by dropping its obligation rules; Po is
obtained from P by dropping its authorization rules. Obviously P = Pa ∪ Po.
We say that Pa is an authorization policy induced by P. Similarly for Po.

Definition 9. [Policy compliance]
An event 〈σ, a〉 is compliant with obligation policy P if

1. For every obl(e) ∈ P(σ) we have that e ∈ a, and
2. For every obl(¬e) ∈ P(σ) we have that e 6∈ a.

An event 〈σ, a〉 is strongly (weakly) compliant with arbitrary policy P from
AOPL(Σ) if it is strongly (weakly) compliant with the authorization policy
induced by P and with the obligation policy induced by P.

Compliance of events with respect to an obligation policy can be checked by
ASP methods similar to those used in Section 2.3. Space limitations preclude
discussing the corresponding details.

4 Related Work

To illustrate the relationship between our work and more traditional methods for
representing and reasoning with policies let us consider Role-based Access Con-
trol (RBAC) – a method used in computer system security for restricting system
access to authorized users. The signature of a typical policy of RBAC contains
object constants for users (called subjects), their roles (e.g. job functions or ti-
tles), operations (e.g. read or write) and resources (e.g. files or disk or databases)
to which these operations can be applied. There are relations plays role(S, R)
– a user S plays a role R, has permission(R,O,D) – every user playing a role
R has the permission to apply operation O to resource D, and R1 ≤ R2 - R1

inherits permissions from R2. There is also an action execute(S, O, D) – user
S executes operation O on resource D. States of the system should satisfy a
constraint
has permission(R1, P ) if has permission(R2, P ),

R1 ≤ R2.

A typical permission policy has the form:

permitted(execute(S, O, D)) if plays role(S, R),
has permission(R,O,D).

Hence the RBAC approach seems to be a very narrow special case of the method-
ology for specifying and reasoning about policies suggested in this paper. Note



that S can get access to the system (and therefore change its state) only if he
is granted permission to do so. Normally the user will not be able to record
his actions in the system’s log. This will be done by an administrator with his
own set of policies not expressible in the language of RBAC. Our method allows
natural specification and reasoning with combined, administrative and access
control policies. Authorization policies are typically defined as inputs to access
control systems. Most access control system more or less follow the operational
model behind the XML access control language XACML [7]: given the current
state of a system there is a (some times partial) function encoding the policy
that maps the state and an operation on the system into a decision as to whether
the operation is permitted. Most formal modeling work and analysis of policies
make the simplified assumption that policies depend on a subset of the state
that does not change over time or if it changes the changes are only made by
an administrator of the access control system and they are ignored. For example
a system implementing Access Control Lists (ACL) fixes a list of subjects for
each operation or a set of operations and if the subject requesting permission to
execute the operation is in the list the operation is permitted.7 Only administra-
tors are allowed to make changes to the ACL. In RBAC only administrators can
define new roles and assign permissions to roles. More sophisticated associations
can be made between subjects and permissions if one can express the associa-
tions as predicates over the state. This is what is expressed operationally with a
function in the definition of XACML policies. Still these predicates are on parts
of the state that don’t change over time (i.e., they change only by administra-
tive changes of the system). There is a large body of work in policy analysis and
policy modeling but mostly in these static situations. Barker [8] uses stratified
logic programs to describe RBAC-like systems. In a series of papers Jojadia and
his co-authors [9–12] developed the Flexible Authorization Framework (FAF)
using stratified logic programs. FAF is a very sophisticated extension of RBAC
that incorporates positive and negative authorizations as well as methods to ex-
press different conflict resolution policies, all in the context of access control to
relational databases. They handle some state dynamics but it is limited to their
database system model. Stoller et al. [13] use planning techniques to characterize
the complexity and solve problems over administrative operations in RBAC sys-
tems. Kolovski et al. [14] use description logic to formalize and analyze XACML
policies including administrative policies. Halpern and Weissman use a subset of
first order logic to specified policies (without the system) and do analysis [15].
The closest to our work are the models presented in [16] and [17]. [16] is mostly
concerned with obligations. The authors, as we do, present a model for obli-
gations and authorizations that incorporates the model of a system where the
policies are supposed to be enforced. Although the authors claim that minimal
changes will accommodate a more general model, obligations are expressed as
a condition to obtain authorization to access to a resource. In our case obli-
gations are separate from authorizations and we can represent mutual depen-

7 This is call a white list. There is a complementary implementation (black list) in
which only subjects not in the list are permitted to execute the operation.



dencies between obligations and authorizations. Their model is agnostic to how
system transitions and policies are represented. Systems are considered to be a
set of state traces (sequences) and obligations abstract functions constraining
that set. We have shown in the paper that by choosing an action theory de-
scribed in an A-like language, we can check system properties using ASP logic
programs. Theirs is a theoretical framework to define obligations, ours is more a
specification framework where we would like to facilitate the definition of poli-
cies and check system properties. Craven et al.[17] also model authorizations,
obligations and the system together. They use the event calculus [18] for system
description and ASP logic programs to represent the policies. Their main goal
is to prove properties of the policies, not of the systems. They use abductive
constraint logic programming as proof framework [19]. Finally, [20] provides a
model of non-monotonic authorization based on a paraconsistent variant of ex-
tended logic programs ASP semantics. Despite multiple differences this can be
viewed as a precursor of our work. One fundamental difference between all the
work referenced above (except that in [20]) and ours is the presence of defeasi-
ble policies. Policies are assumed to be strict limiting the modeling of complex
scenarios.

5 Conclusion

We presented a simple and general language, AOPL(Σ), for specifying autho-
rization and obligation policies of an intelligent agent acting in a changing envi-
ronment and presented several ASP based algorithms for checking compliance of
an event with a policy specified in this language. The language has the following
distinctive features:

– Our approach allows to represent and reason about both, static and dynamic
domains.

– The ability to represent defeasible policies improves elaboration tolerance of
the policies and flexibility of the agent’s behavior.

– Policy specifications and algorithms can be naturally encorporated into var-
ious software systems including agents with high degree of autonomy, access
control and other security system, etc. They can be used by an agent for
finding authorized sequences of actions to achieve their goals and to fulfill
their obligations, as well as by systems monitoring such a compliance.

– The compliance checking methods are based on theory of action and change
and on answer set programming. This allows the use of general reasoning
techniques and systems (answer set solvers) and simplifies the correctness
proofs of the corresponding algorithms.

in the full version of this paper we will test the expressibility of our language on
the wide variety of policies and refine and expand the ASP based methods for
checking event compliance and other policy related reasoning tasks.

Acknowledgments: We would like to thank Vladimir Lifschitz for drawing our
attention to work by T. Woo and S. Lam.



References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP-88. (1988) 1070–1080

3. Bandara, A., Calo, S., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Toward a formal
characterization of policy specification and analysis. In: Electronic Proceedings of
the Annual Conference of ITA (ACITA). (2007)

4. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In Minker, J., ed.:
Logic-Based Artificial Intelligence. Kluwer Academic (2000) 257–279

5. Turner, H.: Representing actions in logic programs and default theories: A situation
calculus approach. J. Log. Program. 31(1-3) (1997) 245–298

6. Balduccini, M., Gelfond, M.: The aaa architecture: An overview. In: AAAI Spring
Symposium 2008 on Architectures for Intelligent Theory-Based Agents (AITA08).
(2008)

7. OASIS Standard: extensible access control markup language (XACML) v2.0 (2005)
8. Barker, S.: Security policy specification in logic. In: Proc. of Int. Conf. on Artificial

Intelligence. (June 2000) 143–148
9. Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework

for enforcing multiple access control policies. In: Proc. of the ACM Int. SIGMOD
Conf. on Management of Data. (May 1997)

10. Jajodia, S., Samarati, P., Subrahmanian, V.: A logical language for expressing
authorizations. In: Proc. of the IEEE Symposium on Security and Privacy. (1997)
31

11. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2) (2001) 214–260

12. Chen, S., Wijesekera, D., Jajodia, S.: Incorporating dynamic constraints in the
flexible authorization framework. In: ESORICS. (2004) 1–16

13. Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analysis
for administrative role based access control. In: ACM Conference on Computer
and Communications Security. (2007) 445–455

14. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:
WWW. (2007) 677–686

15. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
Proc. of 16th IEEE Computer Security Foundations Workshop. (2003) 251–265

16. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Obligations and their interaction
with programs. In: ESORICS. (2007) 375–389

17. Craven, R., Lobo, J., Lupu, E., Ma, J., Russo, A., Sloman, M., Bandara, A.: A
formal framework for policy analysis. Technical Report, Department of Computing,
Imperial College London (2008)

18. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4 (1986) 67–95

19. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive constraint logic pro-
gramming. J. Log. Program. 44(1-3) (2000) 129–177

20. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2-3) (1993) 107–136


