
Integrating Answer Set Reasoning with
Constraint Solving Techniques

Veena S. Mellarkod and Michael Gelfond
{veena.s.mellarkod, michael.gelfond}@ttu.edu

Texas Tech University

Abstract. The paper introduces a collection of knowledge representa-
tion languages, V(C), parametrised over a class C of constraints. V(C) is
an extension of both CR-Prolog and CASP allowing the separation of a
program into two parts: a regular program of CR-Prolog and a collec-
tion of denials1 whose bodies contain constraints from C with variables
ranging over large domains. We study an instance AC0 from this fam-
ily where C is a collection of constraints of the form X − Y > K. We
give brief implementation details of an algorithm computing the answer
sets of programs of AC0 which does not ground constraint variables and
tightly couples the “classical” ASP algorithm with an algorithm check-
ing consistency of difference constraints. We present several examples
to show the methodology of representing knowledge in AC0. The work
makes it possible to solve problems which could not be solved by pure
ASP or constraint solvers.

1 Introduction

Language CR-Prolog has been shown to be a useful tool for knowl-
edge representation and reasoning [6]. The language is expressive, and
has a well understood methodology inherited from Answer Set Prolog
(ASP)[9], for representing defaults, causal properties of actions and flu-
ents, various types of incompleteness, etc. In addition it allows reasoning
with complex exceptions to defaults and hence avoids the occasional in-
consistencies of ASP. CR-Prolog allows natural encoding of “rare events”.
These events are normally ignored by a reasoner associated with the pro-
gram and only used to restore consistency of the reasoner’s beliefs. For
instance a program
¬p(X)← not p(X).
q(a)← ¬p(a).

[r(X)] : p(X)
+←.

consists of two regular rules of Answer Set Prolog and the consistency
restoring rule, [r(X)], which says that in some rare cases, p(X) may be
true. The rule is ignored in the construction of the answer set {¬p(a), q(a)}
of this program. If however the program is expanded by ¬q(a) the rule
r(a) will be used to avoid inconsistency. The answer set of the new pro-
gram will be {p(a),¬q(a)}.

1 By a denial we mean a logic programming rule with an empty head.



CR-Prolog solvers built on top of the ASP solvers: Smodels [11] and
Surya [10], proved to be sufficiently efficient for building industrial size
applications related to intelligent planning and diagnostics [6]. Neither
ASP nor CR-Prolog however, can deal with applications which require
a combination of, say, planning and scheduling. This happens because
scheduling normally requires programs which include variables with rather
large numerical domains. ASP and CR-Prolog solvers compute answer
sets of a ground instance of the input program. If a program contains
variables with large domains such an instance can be too large, which
renders the program unmanageable for the solver, despite the use of
multiple optimization procedures.
A step toward resolving this problem was made in [7], where the authors
introduced a language CASP . The algorithm for computing answer sets
of CASP programs only performs a partial grounding of variables and
computes answer sets of the resulting, partially ground program by com-
bining the classical ASP algorithm and a constrained solver for the con-
straints of C. The CASP solver built loosely couples off-the-shelf ASP
solver Smodels [11] and constraint solver GNU-Prolog [2].
In this paper we expand the idea to CR-Prolog. In particular, we in-
troduce a collection, V(C), of languages parametrised over a class C of
constraints. V(C) is an extension of both, CR-Prolog and CASP. We
study an instance AC0 of the resulting language where C is a collection
of constraints of the form X − Y > K. We design and implement an
algorithm computing the answer sets of programs of AC0 which does not
ground constraint variables and tightly couples the classical ASP algo-
rithm with constraint solving mechanisms. To our knowledge the solver
built is the first tightly coupled solver integrating ASP reasoning mech-
anisms and constraint solving techniques to compute answer sets from
partially ground programs. This makes it possible to declaratively solve
problems which could not be solved by pure ASP or by pure constraint
solvers. The use of the language and the efficiency of its implementation
is demonstrated by a number of examples. The paper is organized as fol-
lows: In section 2 we define the syntax and semantics of V(C) and AC0.
Section 3 contains a brief description of the algorithm for computing
answer sets of programs in AC0. Section 4 gives examples of knowledge
representation and reasoning in AC0 and gives experimental results of
on the use of AC0 for solving a sizable planning and scheduling problem
related to the decision support system for the space shuttle controllers.

2 Syntax and Semantics of V(C)

2.1 Syntax

The language V(C) contains a sorted signature Σ, with sorts partitioned
into two classes: regular, sr, and constraint, sc. Intuitively, the former are
comparatively small but the latter are too large for the ASP grounders.
Functions defined on regular (constraint) classes are called r-functions (c-
functions). Terms are built as in first-order languages. Predicate symbols
are divided into three disjoint sets called regular, constrained and mixed
and denoted by Pr, Pc and Pm respectively. Constraint predicate symbols



are determined by C. Parameters of regular and constraint predicates
are of sorts sr and sc respectively. Mixed predicates have parameters
from both classes. Atoms are defined as usual. A literal is an atom a
or its negation ¬a. An extended literal is a literal l or not l, where not
stands for default negation. Atoms formed from regular, constraint, and
mixed predicates are called r-atoms, c-atoms and m-atoms respectively.
Similarly for literals. We assume that predicates of Pc have a predefined
interpretation, represented by the set Mc of all true ground c-atoms. For
instance, if ′ >′∈ Pc, and ranges over integers, Mc consists of {...0 >
−1, 1 > 0, 2 > 0, ..., 2 > 1, 3 > 1, ...}. The c-literals allowed in V(C)
depend on the class C. The V(C) rules over Σ are defined as follows.

Definition 1. [rules]
1. A regular rule (r-rule) ρ is a statement of the form:

h1 or · · · or hk ← l1, · · · , lm, not lm+1, · · · ,not ln

where k >= 0; hi’s and li’s are r-literals.
2. A constraint rule (c-rule) is a statement of the form:

← l1, · · · , lm, not lm+1, · · · ,not ln

where at least one li is non-regular.
3. A consistency restoring rule (cr-rule) is a statement of the form:

r : h1 or · · · or hk
+← l1, · · · , lm, not lm+1, · · · ,not ln

where k > 0, r is a term which uniquely denotes the name of the rule
and hi’s and li’s are r-literals.

head(r) = h0 or · · · or hk; body(r) = {l1, · · · , lm, not lm+1, · · · ,not ln};
and pos(r), neg(r) denote, respectively, {l1, · · · , lm} and {lm+1, · · · , ln}.
A regular rule and constraint rule have the same intuitive reading as
standard rules of ASP. The intuitive reading of a cr-rule is: if one believes
in l1, . . . lm and have no reason to believe lm+1, . . . , ln, then one may
possibly believe one of h1, . . . , hk. The implicit assumption is that this
possibility is used as little as possible, and only to restore consistency of
the agent’s beliefs.

Definition 2. [program] A V(C) program is a pair 〈Σ,Π〉, where Σ is
a sorted signature and Π is a set of V(C) rules over Σ.

Example 1. To represent conditions: ”John goes to work either by car
which takes 30 to 40 minutes, or by bus which takes at least 60 min-
utes”, we start by defining the signature Σ = {Cr = {start, end}, Pr =
{by car, by bus}, Cc = {Dc = [0..1439], Rc = [−1439..1439]}, Vc =
{Ts, Te}, Fc = {−}, Pc = {>}, Pm = {at}}. The sets Cr and Pr con-
tain regular constants and predicates; elements of Cc, Vc, Fc, and Pc are
constrained constants, variables, functions and predicate symbols. Pm

is the set of mixed predicates. Values in Dc represent time in minutes.
Consider one whole day from 12:00am to 11:59pm mapped to 0 to 1439
minutes. Regular atom “by car” says that “John travels by car”; mixed



atom at(start, T ) says that “John starts from home at time T”. Simi-
larly for “by bus” and “at(end, T )”. Function “−” has the domain Dc

and range Rc; Ts, Te are variables for Dc. The rules below represent the
information from the story.
% ’John travels either by car or bus’ is represented by an r-rule
ra : by car or by bus.
% Travelling by car takes between 30 to 40 minutes. This information is
encoded by two c-rules
rb : ← by car, at(start, Ts), at(end, Te), Te − Ts > 40.
rc : ← by car, at(start, Ts), at(end, Te), Ts − Te > −30.
% Travelling by bus takes at least 60 minutes
rd : ← by bus, at(start, Ts), at(end, Te), Ts − Te > −60.

Example 2. Let us expand the story from example 1 by new informa-
tion: ’John prefers to come to work before 9am’. We add new constant
′time0′ to Cr of Σ which denotes the start time of the day, regular atom
’late’ which is true when John is late and constrained variable Tt for Dc.
Time 9am in our representation is mapped to 540th minute. We expand
example 1 by the following rules:
% Unless John is late, he comes to work before 9am
re : ← at(time0, Tt), at(end, Te), ¬late, Te − Tt > 540
% Normally, John is not late
rf : ¬late ← not late
% On some rare occasions he might be late, which is encoded by a cr-rule

rg : late
+←

In this paper, we study an instance AC0 of V(C), where C consists of
constraints of type X − Y > K, where X, Y are variables and K is a
number. Examples 1 and 2 are examples of AC0 programs.

2.2 Semantics

We denote the sets of r-rules, cr-rules and c-rules in Π by Πr, Πcr and
Πc respectively. A rule r of 〈Π, Σ〉 will be called r-ground if regular
terms in r are ground. A program is called r-ground if all its rules are
r-ground. A rule rg is called a ground instance of a rule r if it is obtained
from r by: (1). replacing variables by ground terms of respective sorts;
(2). replacing the remaining terms by their values. For example, 3+4 will
be replaced by 7. The program ground(Π) with all ground instances of
all rules in Π is called the ground instance of Π. Obviously ground(Π)
is an r-ground program.
We first define semantics for programs without cr-rules. For the defini-
tion, we use the term asp answer set to refer to the definition of answer
sets in answer set prolog [9].

Definition 3. [answer set 1] Given a program (Σ, Π), where Π con-
tains no cr-rules, let X be a set of ground m-atoms such that for every
predicate p ∈ Pm and every ground r-term tr, there is exactly one c-term
tc such that p(t̄r, t̄c) ∈ X. A set S of ground atoms over Σ is an answer
set of Π if S is an asp answer set of ground(Π) ∪X ∪Mc.



Example 3. Consider Example 1 and let X = {at(start, 430), at(end, 465)}.
The set S = {by car, at(start, 430), at(end, 465)} ∪Mc is an asp answer
set of ground(Π)∪X∪Mc and therefore is an answer set of Π. According
to S, John starts to travel by car at 7:10am and reaches work at 7:45am.
Of course there are other answer sets where John travels by car and his
start and end times differ but satisfy given constraints. There are also
answer sets where John travels by bus.

Now we give the semantics for programs with cr-rules. By α(r), we denote

a regular rule obtained from a cr-rule r by replacing
+← by ←; α is

expanded in a standard way to a set R of cr-rules. Recall that according
to [6], a minimal (with respect to set theoretic inclusion) collection R of
cr-rules of Π such that Πr ∪Πc ∪ α(R) is consistent (i.e. has an answer
set) is called an abductive support of Π.

Definition 4. [answer set 2] A set S is called an answer set of Π if
it is an asp answer set of program Πr ∪ Πc ∪ α(R) for some abductive
support R of Π.

Example 4. Consider Example 2 and let X = {at(start, 430), at(end, 465)}.
The set S = {by car,¬late, at(time0, 0), at(start, 430), at(end, 465)}∪
Mc is an answer set of ground(Π) ∪X ∪Mc and therefore is an answer
set of Π. According to S, John starts by car at 7:10am and reaches work
at 7:45am and is not late. The cr-rule was not applied and α(∅) = ∅.

3 ADsolver

In this section we describe the algorithm which takes a program 〈Σ, Π〉
of AC0 as input and returns a simplified answer set A ∪X (regular and
mixed atoms) such that M = A ∪X ∪Mc is an answer set of Π where
Mc is the intended interpretation of c-predicates. The algorithm works
for a class of AC0 programs satisfying the following syntax restrictions:

– There are no disjunctions in the head of rules.
– Every c-rule of the program contains exactly one c-literal in the body.

ADsolver consists of a partial grounder Pgroundd and an inference en-
gine ADengine. Given a AC0 program Π, ADsolver first calls Pgroundd

to ground r-terms of Π, to get an r-ground program, Pd(Π). TheADengine
combines constraint solving techniques with answer set reasoning and
abduction techniques to compute simplified answer sets of Pd(Π).

3.1 Pgroundd

Given a AC0 program Π, Pgroundd grounds the r-variables in Π and
outputs a r-ground program Pd(Π). The implementation of Pgroundd

uses intelligent grounder lparse [14]. To allow for partial grounding by
lparse, we need intermediate transformations before and after grounding
by lparse. The transformations ensure that c-variables are not ground
and rules containing m-atoms are not removed by lparse. The trans-
formations remove and store c-variables, m-atoms and c-atoms from Π
before grounding and then restore them back after grounding.



Example 5. Let a1 and a2 be two actions. For representing the condition
”a1 should occur 30 minutes before a2”, we begin by defining a signature.
Σ = {Cr = {{a1, a2}, {1, 2}}, Vr = {S}, Pr = {o}, Pm = {at}, Cc =
{Dc = {0..1440}, Rc = {−1440..1440}}, Vc = {T1, T2}, Fc = {−}, Pc =
{>}} and Π be the following rules:

step(1..2).

% only one action can occur at each step

o(a1, S) :- step(S), not o(a2, S).

o(a2, S) :- step(S), not o(a1, S).

% an action can occur at most once

:- step(S1), step(S2), o(a1, S1), o(a1, S2), S1 != S2.

:- step(S1), step(S2), o(a2, S1), o(a2, S2), S1 != S2.

% define ’time’ as a csort, and ’at’ as a mixed predicate

#csort time(0..1440).

#mixed at(step,time).

% time should be increasingly assigned to steps

:- step(S1), step(S2), at(S1,T1), at(S2,T2), S1<S2, T1-T2 > 0.

% a1 should occur 30 minutes before a2

:- step(S1), step(S2), o(a1, S1), o(a2, S2),

at(S1, T1), at(S2, T2), T1 - T2 > -30.

We get Pd(Π) as follows:

step(1). step(2).

o(a1, 1) :- not o(a2, 1). o(a1, 2) :- not o(a2, 2).

o(a2, 1) :- not o(a1, 1). o(a2, 2) :- not o(a1, 2).

:- o(a1, 1), o(a1, 2). :- o(a2, 1), o(a2, 2).

#csort time(0..1440).

:- at(1, V1), at(2, V2), V1 - V2 > 0.

:- o(a1, 1), o(a2, 2), at(1, V1), at(2, V2), V1 - V2 > -30.

:- o(a1, 2), o(a2, 1), at(2, V2), at(1, V1), V2 - V1 > -30.

Note that V 1 and V 2 are constraint variables with domain [0..1440].

3.2 ADengine

The ADengine integrates a standard CR-Prolog solver and a difference
constraint solver. CR-Prolog solver consists of a meta layer and computes
answer sets by using an underlying ASP inference engine. For ADengine,
we use Surya [10] as the underlying inference engine.
Suppose there are no c-rules in a program Π, then Π is a CR-Prolog
program. Typical CR-Prolog solvers available now, compute answer sets
of Π as follows:
1. a meta-layer selects a minimal set R of cr-rules of Π called a candi-

date abductive support of Π;
2. an ASP inference engine is used to check program Πr ∪ α(R) for

consistency and compute an answer set.
3. if an answer set is found at step (2) then R is an abductive support

with respect to Π and the answer set computed is an answer set of
Π and is returned2; otherwise the solver loops back to step(1) to
find another minimal set R not tried so far.

2 This algorithm is a simplification of the actual algorithm [5], which requires addi-
tional checking due to dynamic and special preference rules allowed in the language.



To compute answer sets of AC0 programs, we modify the solver to accept
c-rules; and then change step(2) of the algorithm. Given a AC0 program
Π, we modify the underlying inference engine Surya to compute answer
sets of Πr ∪Πc ∪α(R). Note that the program Πr ∪Πc ∪α(R) does not
contain cr-rules but only r-rules and c-rules.

ADengine integrates a form of abductive reasoning using the meta-layer
with answer set reasoning and constraint solving of the underlying infer-
ence engine. Surya has been modified to tightly couple with a difference
constraint solver (for constraint solving). The algorithm presented in
[7] uses constraint solving techniques for checking consistency of con-
straints with respect to a partial model computed. Our algorithm uses
constraint solving techniques for checking consistency and for comput-
ing consequences with respect to a given program and a partial model
computed. The solver implemented for constraint solving is an incre-
mental difference constraint solver that computes solutions of a set of
constraints (constraint store) using a previous solution and changes to
the constraint store. This method is more efficient than computing solu-
tions from scratch.

To our knowledge this is the first tightly coupled solver for integrating
answer set reasoning and constraint solving to compute answer sets from
partially ground programs. In the next section, we show that the solver
can efficiently compute answer sets for a large complex system and it
makes it possible to solve problems which could not be solved by pure
ASP, CR-Prolog or constraint solvers. ADsolver is available at [1].

4 Representing Knowledge in AC0

AC0 is good for representing planning and scheduling problems. Given a
task of executing n actions and time restrictions on their executions, a
scheduling problem consists of finding times T1, . . . , Tn such that action
’ai occurs at time Ti’ and satisfies all the time restrictions. The timing re-
strictions can be temporal distance constraints between any two actions.
Such constraints can be represented in AC0 as follows. Let a1, . . . , an

be n actions and S1, . . . , Sn be variables in domain [1..n]. The r-atom
occurs(ai, Si) is read as, ”action ai occurs at step Si”. The step Si is a
number and denotes a time point Ti and is represented by an m-atom
at(Si, Ti). Atom at(S, T ) is read as ’step S occurs at time T ’. The do-
main of a step S (r-variable) is comparatively smaller to domain of a
time variable T (c-variable).

When actions have durations, the scheduling problem finds the start and
end time points of actions such that all timing restrictions are satisfied.
One method of representing constraints on action durations in AC0 is
as follows. Let a1, . . . , an be actions and S1, . . . , Sn be variables from
the domain [1..n]. The r-atom occurs(ai, Si) is read as, ”action ai occurs
at step Si”. The variable Si is a number which denotes a time interval
[Tsi, Tei]. The time interval of step Si is represented by two m-atoms
at(Si, start, Tsi) and at(Si, end, Tei). Atom at(S, start, T ) is read as ’step
S starts at T’. We can write temporal constraints using the c-variables
Tsi and Tei.



Example 6. [12] [Breakfast problem] We have a scheduling problem,
”Prepare coffee and toast. Have them ready within 2 minutes of each
other. Brew coffee for 3-5 minutes; toast bread for 2-4 minutes.” We start
by defining signature, Σ = {Cr = { start, end, brew, toast, Sc = [1..2]
}, Pr = {step, occurs}, Cc = {Dc = [0..1439], Rc = [−1439..1439]}, Vc =
{T1, T2}, Fc = {−}, Pc = {>}, Pm = {at}}. Constants ”brew, toast”
represents actions ’brewing coffee’ and ’toasting bread’. To solve this, we
first represent constraints and then we have a small planning module to
represent action ai occurs at some time step Si. The constraints are as
follows.
% Brew coffee for 3 to 5 minutes is represented using two c-rules
← occurs(brew, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 5.
← occurs(brew, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −3.

% Toast bread for 2 to 4 minutes is represented by two c-rules
← occurs(toast, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 4.
← occurs(toast, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −2.

% Coffee and bread should be ready between 2 minutes of each other
← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

at(S2, end, T2), T2 − T1 > 2.
← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

at(S2, end, T2), T1 − T2 > −2.
% Start time of step 1 is before step 2
← at(S1, start, T1), at(S2, start, T2), S1 < S2, T1 − T2 > −1.

% A simple planning module to represent occurrence of actions:
step(1..2).
occurs(brew, S) or occurs(toast, S) ← step(S).
← action(A), occurs(A, S1), occurs(A, S2), S1 6= S2.

The first c-rule is read as: ’If brewing coffee occurs at step S, then du-
ration between start and end of S cannot be more than 5 minutes’. The
second c-rule says that ’start and end times for S cannot be less than 3
minutes. The c-atom is written as T1 − T2 > −3 instead of T2 − T1 < 3
as the implementation allows only constraints of the form X − Y > K.
The disjunctions in the head of the rules of the above program can be
eliminated using non-disjunctive rules. A solution to the above break-
fast scheduling problem can be found by computing answer sets of the
program using ADsolver . A solution would be to start brewing coffee at
0th minute and end at 3rd minute; start toasting bread at 2nd minute
and end at 4th minute. This solution can be extracted from an an-
swer set {occurs(brew, 1), occurs(toast, 2), at(1, start, 0), at(1, end, 3),
at(2, start, 2), at(2, end, 4)} ∪Mc.
Suppose we would like to schedule an action a such that it occurs either
between 3am and 5am or between 7am and 8am. To represent this re-
striction, we would require a constraint of the form, if action ’a’ occurs
at step S and step S occurs at time T , then T cannot be outside inter-
vals [3-5] or [7-8]. We cannot represent this directly in AC0. Instead we
introduce two r-atoms int1 and int2 to represent intervals [3-5] and [7-8]
respectively. The r-atom int1 denotes that action a occurs in interval [3-
5]. We write a disjunction on inti to choose the interval and then use inti

to write the constraints. The following example shows the representation
of the constraint.



Example 7. ”action a should be performed in between intervals [3-5] am
or [7-8] am”. Let r-atoms int1 and int2 represent intervals [3-5] and [7-8]
respectively and inti is true when action a occurs in interval inti. To
keep it simple, let us suppose that action a occurs at some step say 1.
We need to assign time for this step. Atom at(0, T ) denotes time of step
0 and represents start time for our problem 12 am.

occurs(a, 1).
% action ’a’ occurs in interval int1 or int2

int1 or int2.
% ’If a occurs at step S and int1 is true, then S should be between [3-5]’,
is encoded using two c-rules
← int1, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −3
← int1, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 5

% ’If a occurs at step S and int2 is true, then S should be between [7-8]’,
is encoded using two c-rules
← int2, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −7
← int2, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 8

An answer set for this program would be {occurs(a, 1), int2, at(0, 0),
at(1, 7)} ∪Mc, where a occurs at 7 am. The following example is from
[8], we show that we can represent the problem and answer some of the
questions asked in the example. Though, syntax of AC0 does not allow
choice rules and cardinality constraints [11], ADsolver built on top of
lparse and Surya allows these type of rules in its input language. We
use choice rules in the following example.

Example 8. [8] [Carpool] John goes to work either by car (30-40 mins),
or by bus (at least 60 mins). Fred goes to work either by car (20-30
mins), or in a car pool (40-50 mins). Today John left home between 7:10
and 7:20, and Fred arrived between 8:00 and 8:10. We also know that
John arrived at work about 10-20 mins after Fred left home. We wish to
answer queries such as: ”Is the information in the story consistent?”,”Is
it possible that John took the bus, and Fred used the carpool?”, ”What
are the possible times at which Fred left home?”.

%% John goes to work either by car or by bus. (a choice rule)

1{ j_by_car, j_by_bus }1.

%% Fred goes to work either in car or by car pool

1{ f_by_car, f_by_cpool }1.

%% define ’time’ as csort and ’at’ as a mixed predicate

#csort time(0..1440).

timepoint(start_time; start_john; end_john; start_fred; end_fred).

#mixed at(timepoint, time).

%% "It takes John 30 to 40 minutes by car"

:- j_by_car, at(start_john,T1), at(end_john,T2), T2 - T1 > 40.

:- j_by_car, at(start_john,T1), at(end_john,T2), T1 - T2 >-30.

%% "It takes John atleast 60 minutes by bus"

:- j_by_bus, at(start_john,T1), at(end_john,T2), T1 - T2 >-60.



%% We view the start time as 7am, that is 0 minutes = 7am

%% Today John left home between 7:10 and 7:20

:- at(start_john,T), at(start_time,T0), T0 - T > -10.

:- at(start_john,T), at(start_time,T0), T - T0 > 20.

The other informations in the example are represented by similar c-rules.
Now let us look at answering each of the questions in the problem.

Question (1) Is the information in story consistent?

To answer this question, we find answer sets of the program.

Answer Set: j_by_car f_by_cpool at(start_fred,20) at(end_fred,60)

at(start_time,0) at(start_john,10) at(end_john,40)

The above answer set corresponds to John using the car and Fred using
the car pool. John starts at 7:10 am and reaches at 7:40 am. Fred starts
at 7:20 am and reaches at 8:00 am. The information is consistent since
the program has an answer set. The time taken by ADsolver to find an
answer set was 0.065 secs of which 0.018 secs was used by Pgroundd.

Question(2) Is it possible that John took the bus and Fred

used carpool? To answer this question, we add the following

knowledge to our program and compute answer sets.

j_by_bus.

f_by_cpool.

There are no answer sets for this new program.

Therefore, according to the story, it is not possible for John to take a
bus and Fred to use a carpool and have the story consistent. The time
taken by ADsolver was 0.029 secs of which Pgroundd took 0.018 secs.

Question (3) What are the possible times that Fred left home?

To answer this question, we need to find the interval of time

when Fred can leave home and still have the story consistent.

This answer cannot be found using ADsolver , as the underlying con-
straint solver built cannot answer these type of interval questions.

The temporal constraints from the above problems are examples of sim-
ple and disjunctive temporal constraints [8]. Using cr-rules in AC0 we
can represent important information like, ”an event e may happen but
it is very rare”. Such information is very useful in default reasoning.
Combining such information together with c-rules allows us to represent
qualitative soft constraints [13] like, ”an event e may happen but it is
very rare; if event e happens then ignore constraint c”. The following
example is an extension of Example 8 and shows the representation of
qualitative soft temporal constraints.

Example 9. Consider example 8, we remove information that ”John ar-
rived at work about 10-20 mins after Fred left home” and extend the
story as follows: It is desirable for Fred to arrive atleast 20 mins before
John.



%% Fred desires to arrive atleast 20 mins before John.

:- at(end_fred,T1), at(end_john,T2), not is_late, T1-T2 >-20.

%% CR-rule r1: We may possibly believe that Fred is late

r1: is_late +-.

For the newly added information, we get two models where Fred arrives
before John in each of them.

Answer set(1):j_by_bus f_by_car at(end_john,100) at(end_fred,60)

at(start_time,0) at(start_john,20) at(start_fred,30)

Answer set(2):j_by_bus f_by_cpool at(end_john,80) at(end_fred,60)

at(start_time,0) at(start_john,20) at(start_fred,20)

To compute the two models, ADsolver took 0.064 seconds of which 0.019
seconds were used for grounding and loading. Now we would like to ex-
pand our story, ”We come to know that Fred’s car is broken and therefore,
he cannot use it”. We add the following rule to the program.

:- f_by_car.

For the new program, we get one model where John travels by bus and
Fred uses the carpool and still reaches before John.

Answer set:j_by_bus f_by_cpool at(end_john,80) at(end_fred,60)

at(start_time,0) at(start_john,20) at(start_fred,20)

ADsolver took 0.053 seconds to compute the model. Suppose we know
that John used his car today. Will Fred arrive atleast 20 mins before
John as desired? For this, we add the following rule to the program.

j_by_car.

There is no model where Fred arrives 20 minutes before John and the
cr-rule was fired to give the following answer set.

Answer set: j_by_car f_by_cpool is_late at(start_fred,20)

at(end_fred,60) at(start_time,0) at(start_john,20) at(end_john,60)

Fred is late and cannot arrive 20 minutes before John as desired.ADsolver
took 0.052 seconds to compute the model.

The examples show that AC0 allows a natural representation of simple
temporal constraints, disjunctive temporal constraints and qualitative
soft constraints. The implemented solver is faster than a standard ASP
solver when domains of constraint variables are large. The language of
CR-Prolog also allows preferences on the cr-rules [4]. Given two cr-rules
r1 and r2, the statement prefer(r1, r2) allows preference to cr-rule r1

when compared to cr-rule r2. CR-Prolog allows static and dynamic pref-
erences. The language AC0 does not allow preferences but AC0 syntax
can be easily extended to allow CR-Prolog style preferences and the se-
mantics would be a natural extension of CR-Prolog. Though language
AC0 does not allow preferences, the solver ADsolver which is built us-
ing the meta layer of CR-Prolog solver, allows preferences. So, we can
express soft qualitative temporal constraints with preferences which is
used in constraint programming [13].



Example 10. This example shows the representation of qualitative soft
temporal constraints with preferences. Let us use example 9. We remove
information that ”John arrived at work about 10-20 mins after Fred left
home and Fred arrived between 8:00 and 8:10” and extend the story as
follows: It is desirable for Fred to arrive atleast 20 mins before John. If
possible, Fred desires to start from home after 7:30am. We also know
that Fred’s car is broken and John used his car today.

%% If possible, Fred desires to leave after 7:30am

:- at(start_time,T1), at(start_fred,T2), not start_early,

T1 - T2 > -30.

%% CR-rule r2: sometimes, Fred may need to start early.

r2: start_early +-.

The above rules along with other rules from examples 9 and 8 represent
the information in the story. We get two answer sets where cr-rules were
used in both.

Answer set (1): j_by_car f_by_cpool is_late

at(start_john,20) at(start_fred,30)

at(end_john,60) at(end_fred,70) at(start_time,0)

Answer set (2): j_by_car f_by_cpool start_early

at(start_john,20) at(start_fred,0)

at(end_john,60) at(end_fred,40) at(start_time,0)

Now we add new preference information that ”Fred prefers coming be-
fore John than starting late from home”. we represent the preference as
follows:

% Prefer starting early to reaching late

prefer(r2,r1).

Now, we get only one model:

Answer set: j_by_car f_by_cpool start_early

at(start_john,20) at(end_john,60)

at(start_fred,0) at(end_fred,40) at(start_time,0)

The other model is not preferred when compared to this one and therefore
is not returned. ADsolver computed the answer set in 0.13 seconds.

The above example clearly shows the use of preferences from CR-Prolog
along with c-rules gives a natural representation of qualitative soft con-
straints with preferences. Similarly, we can use cr-rules, cr-preferences
and c-rules together to represent disjunctive soft temporal constraints
and disjunctive soft temporal constraints with preferences which are also
useful for scheduling problems.
Another investigation we are concerned with is whether AC0 can be used
for complex planning and scheduling problems. Also, whether we can use
ADsolver to compute answer sets in realistic time for these problems. To
test this, we have used the system USA-Advisor[6] , a decision support
system for the Reaction Control System (RCS) of the Space Shuttle.
The RCS has primary responsibility for maneuvering the aircraft while
it is in space. It consists of fuel and oxidizer tanks, valves and other



plumbing needed to provide propellant to the maneuvering jets of the
shuttle. It also includes electronic circuitry: both to control the valves in
the fuel lines and to prepare the jets to receive firing commands. Overall
the system is rather complex, on that it includes 12 tanks, 44 jets, 66
valves, 33 switches, and around 160 computer commands (computer-
generated signals). The RCS can be viewed, in a simplified form, as a
directed graph whose nodes are tanks, jets and pipe junctions, and whose
arcs are labeled by valves. For a jet to be ready to fire, oxidizer and fuel
propellants need to flow through the nodes (tanks, junctions) and valves
which are open and reach the jet. A node is pressurized when fuel or
oxidizer reaches the node.

The system can be used for checking plans, planning and diagnosis. To
test our solver, we have expanded the system to allow explicit represen-
tation of time to perform some scheduling. We use it to solve planning
and scheduling tasks. We will illustrate our extension by the following
example.

Example 11. [Planning and scheduling in USA-Advisor] Assume
that after a node N gets pressurized it takes around 5 seconds for the
oxidizer propellant to get stabilized at N and 10 seconds for fuel propel-
lant to get stabilized. Further, we cannot open a valve V which links N1
to N2, (link(N1,N2,V)), until N1 has been stabilized. We would like to
assign real times to the time steps given in the program such that this
constraint is satisfied. Also, can we answer questions like: can the whole
manuver take less than 30 secs?
Σ = Σold ∪ {Pr = {otank, ftank, got opened, got pressurized}, Pm =
{at}, Cc = {Dc = [0..400], Rc = [−400..400]}, Fc = {−}, Pc = {>}}.
Atoms otank(X) and ftank(X) denote that X is a oxidizer tank and
fuel tank respectively. Fluent got opened(V, S) is true when valve V was
closed at step S−1 and got opened at step S. Fluent got pressurized(N, X, S)
is true when node N is not pressurized at step S − 1 and is pressurized
at step S by tank X. Atom at(S, T ) is read as ’step S is performed at
time T ’, where S is a regular variable with domain 0 to plan length; T
is a constraint variable with domain [0..400] seconds. The new program
contains all rules from original advisor, and new rules describing the
scheduling constraints. The first rule is from USA-Advisor, followed by
some new rules. The second rule shows the connection between original
program and new one.
% Tank node N1 is pressurized by tank X if it is connected by an open
valve to a node which is pressurized by tank X of sub-system R

h(pressurized by(N1, X), S)← step(S), tank of(N1, R),
h(in state(V, open), S), link(N2, N1, V ),
tank of(X, R), h(pressurized by(N2, X), S).

% node gets pressurized when it was not pressurized at S and pressurized
at S+1.

got pressurized(N, X, S + 1) ← link(N1, N, V ), tank of(X, R),
not h(pressurized by(N, X), S),
h(pressurized by(N, X), S + 1).

% A valve V linking N1 to N2 cannot be opened unless N1 is stabilized.
% If N1 is pressurized by oxidizer tank, N1 takes 5 seconds to stabilize.



← link(N1, N2, V ), got pressurized(N1, X, S1), S1 < S2, otank(X),
got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5

% If N1 is pressurized by fuel tank, N1 takes 10 seconds to stabilize.
← link(N1, N2, V ), got pressurized(N1, X, S1), S1 < S2, ftank(X),

got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5
% time should be increasingly assigned to steps
← S1 < S2, at(S1, T1), at(S2, T2), T1 − T2 > −1

% The jets of a system should be ready to fire by 30 seconds
← system(R), goal(S, R), at(0, T1), at(S, T2), T2 − T1 > 30

ADsolver was tested using USA-Advisor extension example 11. We tested
the solver on 450 auto-generated instances. The files used were ”rcs1,
plan, heuristics, problem-base” [3], an instance file and scheduling con-
straints file (see example 11). The files and instances can be found at [3].
Due to space limitations, timing results of only 300 instances are shown
in Figure 1. The instances of the left (right) figure are the first 50 in-
stances from folder ’instances/instances-auto /ins’ (instances/instances-
auto /ins-4). Each instance is run to compute answer sets to find plans
of length n=3, n=4 and n=5. The timing results shown is the time taken
for ADsolver to compute a single answer set or return false to denote
no plan for the specified plan length (n) exists.

Fig. 1. ADsolver Timing Results on Planning and Scheduling in USA-Advisor

The results show that ADsolver could compute answer sets for most of
the instances tried in less than two minutes. There was one instance not
shown in the figure (from ins-4, n=4) that took around 3359 seconds
to find that there was no plan, this was the only instance that took
so long. The number of rules (partially ground) for instances with n=3
was approximately 95,000 rules. The domain of time variables was 0..400
seconds. The USA-Advisor example 11 can be transformed to a regular
ASP program. ASP solvers [10, 11, 6] were not able to compute answer
sets, the grounder lparse they use returned a malloc error because of
huge memory requirements.



5 Conclusions
This paper introduces a collection V(C) of languages parameterized over
a class C of constraints. We study an instance AC0 of the resulting lan-
guage where C is a collection of constraints of the form X − Y > k. We
design and implement an algorithm for computing the answer sets of a
class of AC0 programs. The algorithm computes answer sets from partial
ground programs and tightly couples answer set reasoning mechanisms
with constraint solving techniques. This makes it possible to declara-
tively solve problems which could not be solved by pure ASP or by pure
constraint solvers. The use of the language and efficiency of the solver is
demonstrated.

References

1. Adsolver. http://www.cs.ttu.edu/∼mellarko/adsolver.html.
2. GNU Prolog. http://www.gprolog.org.
3. Rcs. http://www.krlab.cs.ttu.edu/Software/Download/rcs/.
4. M. Balduccini. Answer Set Based Design of Highly Autonomous,

Rational Agents. PhD thesis, Texas Tech University, Dec 2005.
5. M. Balduccini. CR-models: An inference engine for CR-prolog. In

Logic Programming and Nonmonotonic Reasoning, May 2007.
6. M. Balduccini, M. Gelfond, and M. Nogueira. Answer set based

design of knowledge systems. Annals of Mathematics and Artificial
Intelligence, 2006.

7. S. Baselice, P. A. Bonatti, and Michael Gelfond. Towards an inte-
gration of answer set and constraint solving. In In Proceedings of
ICLP, pages 52–66, 2005.

8. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.
Artificial Intelligence, 49:61–95, 1991.

9. Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Proceedings of ICLP-88, pages 1070–1080,
1988.

10. Veena S. Mellarkod. Optimizing the computation of stable models
using merged rules. Master’s thesis, Texas Tech University, May
2002.

11. Ilkka Niemela and Patrik Simons. Extending the Smodels System
with Cardinality and Weight Constraints, pages 491–521. Logic-
Based Artificial Intelligence. Kluwer Academic Publishers, 2000.

12. Martha E. Pollack and Nicola Muscettola. Temporal and resource
reasoning for planning, scheduling and execution. Tutorial Forum
Notes, AAAI06, Jul 2006.

13. F. Rossi, A. Sperduti, K. Venable, L. Khatib, P. Morris, and R. Mor-
ris. Learning and solving soft temporal constraints: An experimental
study, 2002.

14. Tommi Syrjanen. Implementation of logical grounding for logic pro-
grams with stable model semantics. Technical Report 18, Digital
Systems Laboratory, Helsinki University of Technology, 1998.


