
Integrating Answer Set Programming and
Constraint Logic Programming

Veena S. Mellarkod and Michael Gelfond and Yuanlin Zhang
{veena.s.mellarkod,mgelfond,yzhang}@cs.ttu.edu

Texas Tech University

Dedicated to Victor Marek on his 65th birthday

Abstract

We introduce a knowledge representation language AC(C) extend-
ing the syntax and semantics of ASP and CR-Prolog, give some ex-
amples of its use, and present an algorithm, ACsolver, for computing
answer sets of AC(C) programs. The algorithm does not require full
grounding of a program and combines “classical” ASP solving methods
with constraint logic programming techniques and CR-Prolog based
abduction. The AC(C) based approach often allows to solve prob-
lems which are impossible to solve by more traditional ASP solving
techniques. We believe that further investigation of the language and
development of more efficient and reliable solvers for its programs can
help to substantially expand the domain of applicability of the answer
set programming paradigm.

1 Introduction

The work presented in this paper is aimed at further development of declar-
ative programming paradigm based on Answer Set Prolog (ASP) [19, 7] and
its extensions. The language has roots in research on non-monotonic logic

1

and semantics of default negation of Prolog (for more details, see [27]). An
ASP program Π is a collection of rules of the form

l1 or . . . or lk ← lk+1, . . . , ln, not ln+1, . . . , not lm (1)

where l’s are literals (statements of the form p(t) and ¬p(t) over some sig-
nature Σ, where t̄ denotes a vector of terms). The expression on the left
hand side of ← is called the head of the rule; that on the right hand side
is called the rule’s body. Note that both the body and the head of the rule
can be empty. If the body of a rule is empty then the ← is omitted and
the rule is referred to as a fact. Often we will use rules with empty heads
which are called denials. Such a rule, ← body, is viewed as a shorthand for a
rule h← body, not h where h is an atom not occurring anywhere else in the
program. Connectives or and not are referred to as epistemic disjunction
and default negation respectively; ¬ is often referred to as classical or strong
negation. An ASP program Π can be viewed as a specification for the sets
of beliefs to be held by a rational reasoner associated with Π. Such sets,
called answer sets of Π, are represented by collections of ground literals (i.e.,
literals containing no variables). A rule (1) is viewed as a constraint which
says that if literals lk+1, . . . , ln belong to an answer set A of Π and none of
the literals ln+1, . . . , lm belong to A then A must contain at least one of the
literals l1, . . . , lk. To form answer sets of Π, the reasoner must satisfy Π’s
rules together with the rationality principle which says: “Believe nothing
you are not forced to believe.”

Given a computational problem P , an ASP programmer

• Expresses information relevant to the problem in the language of ASP;

• Reduces P to a query Q requesting computation of (parts of) answer
sets of Π;

• Uses inference engine, i.e., a collection of reasoning algorithms, to solve
Q.

There is a number of inference engines currently available to an ASP pro-
grammer. If the corresponding program does not contain disjunction, clas-
sical negation or rules with empty heads and is acyclic [1], i.e., only allows
naturally terminating recursion, then the classical SLDNF-resolution of Pro-
log [13] and its variants [12] or fix-point computations of deductive databases

2

(possibly augmented by constraint solving algorithms as in [42, 21, 30]) can be
used to answer the query Q. Presently, there are multiple applications of solv-
ing various computational problems using these methods. In the last decade
we have witnessed the coming of age of inference engines aimed at computing
the answer sets of Answer Set Prolog programs [34, 35, 23, 15, 17, 20]. These
engines are often referred to as answer set solvers . Normally they start their
work with grounding the program, i.e., instantiating its variables by ground
terms. The resulting program has the same answer sets as the original one
but is essentially propositional. The grounding techniques employed by an-
swer set solvers are rather sophisticated. Among other things they utilize
algorithms from deductive databases, and require a good understanding of
the relationship between various semantics of logic programming. The an-
swer sets of the grounded program are often computed using substantially
modified and expanded satisfiability checking algorithms. Another approach
reduces the computation of answer sets to (possibly multiple) calls to existing
satisfiability solvers [2, 20, 25].

The programming methodology based on the use of ASP solvers was origi-
nally advocated in [28, 33]. It proved to be useful for finding solutions to a
variety of programming tasks, ranging from building decision support systems
for the Space Shuttle [6] and product configuration [39], to solving problems
arising in bio-informatics [8], zoology and linguistics [10]. Though positive,
this experience allowed to identify a number of problems and inadequacies
of the ASP approach to declarative programming.

First it became clear that for a number of tasks which require the use of
ASP solvers these solvers are not sufficiently efficient. This becomes imme-
diately obvious if the program contains variables ranging over large domains.
Even though ASP solvers use intelligent grounding optimization techniques,
ground instantiations of such a program can still be huge, which can cause
both memory and time problems and make ASP solvers practically useless.
A partial solution to this problem is suggested in [9, 32] where the language of
ASP and its reasoning mechanism were extended to partially avoid grounding
of variables ranging over the large domains and to replace such grounding
with the use of constraint solving techniques. Specifically, [9] introduces
the syntax and semantics of such a language and gives a simple algorithm
for computing answer sets of its programs. A substantially more efficient
incremental algorithm combining ASP with a specific constraint domain of

3

difference constraints is proposed and implemented in [32]. This work sub-
stantially expands the scope of applicability of the ASP paradigm. In this
paper we further expand this work by designing a more powerful extension
AC(C) of ASP, which combines ASP with Constraint Logic Programming
(CLP). We also give an algorithm, ACsolver, for computing answer sets of
programs in the new language. The algorithm combines “classical” ASP solv-
ing methods with constraint satisfaction techniques and SLDNF resolution.
We are currently working on the solver implementing this algorithm.

The second difficulty of using ASP for a number of applications was related
to insufficient expressive power of the language. For instance, in a typical
diagnostic task one often needs to explain unusual behavior of a system man-
ifested by the incoherence of an ASP program encoding its normal behavior.
This requires the ability to naturally mix the computation of answer sets of
a program with some form of abductive reasoning. We were not able to find
a way to utilize the existing abductive logic programming systems for such
tasks, and opted for an introduction of a new language, CR-Prolog [5, 4],
which is capable of expressing rare events that are ignored during a normal
computation and only used if needed to restore coherence of the program.
Consider, for instance, a program Π0 consisting of regular ASP rules

¬p← not p
q ← ¬p

which say that p is normally believed to be false, and that if p is believed to
be false then q must be believed to be true. The program has a unique answer
set {¬p, q}. Now let us expand Π0 by a coherence restoring rule (cr-rule)

p
+←

which says that p is possible but so rare that it can be ignored during the
reasoning process unless it is needed for restoring coherence. The resulting
program Π1 still has one answer set {¬p, q}. The cr-rule above remains
unused. The situation changes if we expand Π1 by a new fact

¬q

Since regular rules of the new program Π2 are incoherent, i.e., the program
consisting of these rules has no answer set, the reasoner associated with the
program is forced to use the cr-rule. The resulting answer set is {p,¬q}.

4

The expressive power and reasoning ability of CR-Prolog proved to be useful
in many situations beyond diagnostic reasoning. CR-Prolog was also suc-
cessfully used in planning to produce higher quality plans than regular ASP
[3], for reasoning about intentions, reasoning with weak constraints [11] a la
DLV, etc. So we expand AC(C) by cr-rules and show an example of their
use adding CR-Prolog abduction to the plethora of reasoning techniques dis-
cussed above.

In the next section of the paper we define the syntax and semantics of our
language, AC(C). Section 3 contains an algorithm for computing answer
sets of a large subclass of AC(C) programs and the corresponding soundness
results. (The proofs of the theorems can be found in the Appendix.) Section 4
contains examples illustrating the methodology of knowledge representation
and reasoning in AC(C). We end by a short conclusion.

2 Syntax and Semantics of AC(C)

2.1 Answer Set Prolog

Recall that terms, literals, and rules of program Π with signature Σ are called
ground if they contain no variables and no symbols for arithmetic functions.
A program is called ground if all its rules are ground. In this section we
briefly review the semantics of ground programs of Answer Set Prolog.

Consistent sets of ground literals over Σ, containing all ground arithmetic
literals which are true under the standard interpretation of their symbols,
are called partial interpretations of Σ. Expressions l and not l where l is
a literal are called extended literals (e-literals). We say that l is true in a
partial interpretation S if l ∈ S; not l is true in S if l 6∈ S; disjunction
(l1 or . . . or lk) is true in S if at least one of its members is true in S; S
satisfies a logic programming rule (1) if the head of the rule is true in S or
at least one extended literal of the rule’s body is not true in S.

The answer set semantics [18] of a logic program Π with signature Σ assigns
to Π a collection of answer sets – partial interpretations of Σ corresponding
to the possible sets of beliefs which can be built by a rational reasoner on the
basis of the rules of Π and the rationality principle. The precise definition
of answer sets will be first given for ground programs whose rules do not

5

contain default negation. Let Π be such a program and let S be a partial
interpretation of signature Σ of Π.

Definition 1 [Answer set – part one]
A partial interpretation S of Σ is an answer set of Π if S is minimal (in
the sense of set-theoretic inclusion) among the partial interpretations of Σ
satisfying the rules of Π.

(Note that the rationality principle is captured in this definition by the min-
imality requirement.)

To extend the definition of answer sets to arbitrary programs, take any pro-
gram Π, and let S be a partial interpretation of its signature Σ. The reduct,
ΠS, of Π relative to S is the set of rules

l1 or . . . or lk ← lk+1, . . . , lm

for all rules (1) in Π such that {lm+1, . . . , ln} ∩S = ∅. Thus ΠS is a program
without default negation.

Definition 2 [Answer set – part two]
A partial interpretation S of Σ is an answer set of Π if S is an answer set of
ΠS.

(Here the rationality principle is captured by the fix-point condition above.)
A program is called coherent if it has an answer set. In what follows we refer
to answer sets defined by Definitions 1 and 2 as ASP answer sets.

2.2 The language AC(C)
Now we will describe the syntax and informal semantics of the language
AC(C). First let us recall some necessary terminology.

By sort we mean a non-empty countable collection of strings over some fixed
alphabet. Strings of sort Si will be referred to as object constants of Si.
A sorted signature, Σ, is a collection of sorts, properly typed predicate and
function symbols, and variables. Each variable, X, takes on values from a
unique sort denoted by sort(X). When needed we assume that Σ contains
standard numerical sorts of natural numbers, integers, rational numbers,
etc. as well as standard numerical functions and relations such as +, −, >, <

6

etc. Terms, literals, and extended literals of Σ are defined as usual. Rules of
the language, which will be defined below, are similar to rules of CR-Prolog
and may contain variables. In the standard ASP/CR-Prolog semantics a
rule with variables is viewed as a shorthand for a collection of its ground
instantiations. The AC(C) interpretation of rules with variables is different
and allows the construction of solvers which will not require a complete
grounding of the program. To achieve this goal we first expand the language
of ASP by

• Dividing sorts of Σ into regular and constraint. Constraint sorts will be
declared by an expression #csort . For instance, a sort time = {0..1000}
of integers between 0 and 1000 can be declared to be a constraint sort
by statement

#csort(time).

Intuitively a sort is declared to be a constraint sort if it is a large
(often numerical) set with primitive constraint relations from C (e.g.,
≤) defined among its elements. Grounding constraint variables, i.e.,
variables ranging over constraint sorts, would normally lead to huge
grounded program. This is exactly what should be avoided by the
AC(C) solvers. The AC(C) solvers will only ground variables ranging
over regular sorts (regular variables).

• Dividing predicates of the language into four types: regular, constraint,
defined and mixed. Regular predicates denote relations among objects
of regular sorts; constraint predicates denote primitive numerical rela-
tions among objects of constraint sorts; defined predicates are defined
in terms of constraint, regular, and defined predicates; mixed predi-
cates denote relations between objects which belong to regular sorts
and those which belong to constraint sorts. Mixed predicates are not
defined by the rules of the program and are similar to abducible rela-
tions of abductive logic programming.

Consider for instance a regular sort step = {0..30} used to denote steps
of a trajectory of some acting agent, and a constraint sort time =
{0..1000} used to denote actual time (say in minutes). The relation
at(S, T) holds iff step S of the trajectory is executed at time T . It is
a typical example of mixed relation. The corresponding declaration of
this relation will be given by statement

7

#mixed at(step, time).

Without loss of generality, we will assume that in any mixed predicate
m of Π’s signature, constraint parameters follow regular parameters,
i.e., every mixed atom formed by m can be written as m(t̄r, t̄c) where
t̄r and t̄c are the lists of regular and constraint terms respectively. Ac-
cording to our semantics a mixed predicate can be viewed as a function
whose domain and range are collections of properly typed vectors of
regular and constraint terms respectively. Hence m(t̄r, t̄c) can be writ-
ten as m(t̄r) = t̄c. If the range of m is boolean we write m(t̄r) instead
of m(t̄r) = true and ¬m(t̄r) instead of m(t̄r) = false.

Now let acceptable time(T) be true iff time T belongs to the interval
[10, 20] or [100, 120]. It is natural to view this predicate as defined in
terms of primitive constraint relation≤. The corresponding declaration
is as follows:

#defined acceptable time(time).

A predicate occurs has regular parameters and hence will be declared
as

#regular occurs(action, step).

AC(C) does not require special declaration for the constraint predicates.
They are to be specified in the parameter C of the language. A literal
formed by a regular predicate will be called regular literal. Similarly
for constraint, defined, and mixed literals.

Definition 3 [Syntax of AC(C)]
A standard AC(C) rule over signature Σ is a statement of the form

h1or . . . or hk ← l1, . . . , lm, not lm+1, . . . , not ln (2)

such that

• if k > 1 then h1, . . . , hk are regular literals;

• if k = 1 then h1 is a regular or defined literal1; and

• l1, . . . , ln are arbitrary literals of Σ.

1In what follows we use CLP tecniques to reason about defined literals. Since CLP
does not allow disjunction in the heads of rules we prohibit such rules in our language.

8

A coherence restoring rule (cr-rule) of AC(C) is a statement of the form

r : l1
+← l1, . . . , lm, not lm+1, . . . , not ln (3)

where r is a term used to uniquely denote the name of the rule and li’s are
regular literals.

An AC(C) program Π consists of definitions of sorts of a signature Σ, decla-
rations of variables - statements of the form sort(V1, . . . , Vk) = sort name,
and a collection of standard and coherence restoring AC(C) rules over Σ.

Classification of literals of the signature Σ of an AC(C) program Π allows for
partitioning Π into three parts:

• regular part, Πr, consisting of rules built from regular literals,

• defined part, Πd, consisting of rules whose heads are defined literals,
and

• middle part, Πm, consisting of all other rules of Π.

Elements of Πr,Πd and Πm are called regular rules, defined rules, and middle
rules respectively. Note that a standard (ground) ASP/CR-Prolog program
Π can also be viewed as an AC(C) program all of whose predicates are defined
as regular.

2.3 Semantics of AC(C)
First we will need some terminology. Let R be a rule of an AC(C) program
Π with signature Σ. A ground instance of R is obtained from R by

1. replacing variables of R by ground terms from the respective sorts; and

2. replacing all numerical terms by their values.

An ASP/CR-Prolog program ground(Π) consisting of all ground instances
of all rules in Π is called the ground instantiation of Π.

Definition 4 [Partial interpretation]
A consistent set S of ground literals over the signature Σ is called a partial
interpretation of an AC(C) program Π if it satisfies the following conditions:

9

1. A constraint literal l ∈ S iff l is true under the intended interpretation
of its symbols;

2. For every mixed predicate m(X̄r, Ȳc) and every ground instantiation
t̄r of X̄r, there is a unique ground instantiation t̄c of Ȳc such that
m(t̄r, t̄c) ∈ S.

We first define the semantics for programs without cr-rules.

Definition 5 [Answer sets of AC(C) programs without cr-rules]
A partial interpretation S of the signature Σ of an AC(C) program Π is called
an answer set of Π if there is a set M of ground mixed literals of Σ such that
S is an answer set of the ASP program ground(Π) ∪M .

Now we give the semantics for programs with cr-rules. By stand(Π) we
denote the collection of standard rules of Π. By α(r), we denote a standard

rule obtained from a cr-rule r by replacing
+← by ←. For a set R of cr-rules,

α(R) = {α(r) : r ∈ R}. A minimal (with respect to set theoretic inclusion)
collection R of cr-rules of Π such that stand(Π) ∪ α(R) is coherent is called
an abductive support of Π (see [5]).

Definition 6 [Answer sets of arbitrary AC(C) programs]
A set S is called an answer set of AC(C) program Π if it is an answer set of
program stand(Π) ∪ α(R) for some abductive support R of Π.

Let us illustrate the definition by the following example.

Example 1 [AC(C) programs and their answer sets]
Let P be an AC(C) program with sorts

time = {0 ..1000}.
step = {0 ..1}.
action = {a}.
fluent = {f }.

variable declarations

sort(T) = time.
sort(S , S ′) = step.

constraint relation ≤ defined on time, and declarations

10

#csort(time).
#defined acceptable time(time).
#mixed at(step, time).
#regular occurs(action, step).
#regular holds(fluent , step).
#regular next(step, step).

(To make our program executable with our implementations, we should use
the lparse notation time(0 ..1000), step(0 ..1), action(a), and fluent(f) for
sorts, and #domain time(T) and #domain step(S , S ′) for variable declara-
tions.)

The program P also contains rules

acceptable time(T)← 10 ≤ T ≤ 20 .
acceptable time(T)← 100 ≤ T ≤ 120 .
¬occurs(A, S) ← at(S, T),

not acceptable time(T).
next(1, 0).
holds(f , S ′)← occurs(a, S),

next(S ′, S).
occurs(a, 0).

The first two rules comprise the defined part, Pd, of the program. Its middle
part, Pm, consists of the third rule. The remaining rules form P ’s regular
part, Pr.

Let I = [10, 20] ∪ [100, 120] and consider t0, t1, t2 ∈ time such that t0, t1 ∈ I
and t2 6∈ I. Let A1 be a collection of atoms consisting of the specification of
sorts, step(0), step(1), action(a), etc, and atoms

at(0, t0), at(1, t1),
next(1, 0), occurs(a, 0),
holds(f, 1),
acceptable time(t) for every t ∈ I.

Let A2 = (A1 \ {at(1, t1)}) ∪ {at(1, t2),¬occurs(a, 1)}. It is not difficult to
check that A1 and A2 are answer sets of P .

Now let us consider a program P ′ obtained from P by replacing the rule

11

holds(f , S ′)← occurs(a, S),
next(S ′, S).

of P by

holds(f , S ′)← occurs(a, S),
next(S ′, S),
not ab(S , S ′).

and by adding rules

¬holds(f, 1).

and

ab(S, S ′)
+←.

It is not difficult to check that answer sets A′1 and A′2 of P ′ are obtained
from answer sets A1 and A2 of P by replacing holds(f, 1) by ¬holds(f, 1)
and ab(0, 1).

3 Computing answer sets of AC(C) programs

We will need some terminology. To simplify the presentation we will, when-
ever necessary, identify an answer set A of a program Π with signature Σ
with the set

A ∪ {not p : p is an atom of Σ and p 6∈ A}.

Expression not not l will be identified with l. E-literals p(t̄) and not p(t̄) will
be called complementary.

Definition 7 [Query]
A query is a set of defined and constraint e-literals. A ground set S of
e-literals satisfies a query Q if there is a (sort respecting) substitution γ of
variables of Σ by ground terms such that the result, γ(Q), of this substitution
is a subset of S. We will often refer to γ as a solution of Q w.r.t. S.

12

3.1 ACsolver – an algorithm for computing answer
sets

In this section we present a (somewhat simplified) version of ACsolver – an
algorithm for computing answer sets of a subclass of AC(C) programs.

Definition 8 [Simple Programs]
An AC(C) program Π is called simple if

1. Π contains no coherence restoring rules.

2. Π contains no disjunction.

3. Rules of Π with defined predicates in their heads contain neither mixed
nor regular e-literals.

4. The defined part Πd of Π has a unique answer set.

Restricting applicability of the algorithm to simple programs is made pri-
marily to simplify the presentation. Expansion of the algorithm to programs
with coherence restoring rules will be discussed at the end of this section. To
remove the second condition one will need to use an ASP solver for disjunc-
tive logic programs (or, whenever possible, to eliminate the disjunction). The
third condition can be removed by modifying the corresponding constraint
solver to allow proper treatment of global variables (values of the mixed pred-
icates) and by calling constraint solver only when all the regular e-literals of
the defined part, Πd, of Π are assigned their values. (In this case we will
also need an extra requirement prohibiting loops between regular predicates
occurring in Πr and Πd). It is not clear to us if the fourth condition needs to
be removed – constraint solvers normally assume acyclicity or other similar
conditions which guarantee existence and uniqueness of the corresponding
answer sets.

Definition 9 [Canonical Program]
We say that a simple AC(C) program Π is canonical if

1. Π contains no regular variables. (We refer to such programs as r-
ground.)

2. Π contains no ¬.

13

3. Every mixed atom of Π has a form m(t̄r, X̄) where X̄ is a list of con-
straint variables.

4. If an atom occurs in the head of a middle rule it does not occur in the
head of any other rule.

5. Negated mixed atoms are not allowed in the middle rules.

6. A middle rule of Π contains at most one occurrence of a defined atom
and no occurrences of constraint atoms.

The restriction to canonical programs is much less severe. Indeed any sim-
ple AC(C) program Π can be, in a simple and natural way, reduced to its
canonical form. Regular variables may be removed by a grounding process.
The resulting program will be denoted by gr(Π). Classical negation can be
eliminated from gr(Π) by viewing ¬p as a new predicate symbol and adding
constraints ← p(t̄),¬p(t̄). Mixed atom m(t̄r, t

1
c , . . . , t

n
c) can be replaced by

m(t̄r, X1, . . . , Xn) and X1 = t1c , . . . , Xn = tnc . Middle rules p(t̄) ← B1 and
p(t̄) ← B2 can be replaced by p1(t̄) ← B1, p2(t̄) ← B2, p(t̄) ← p1(t̄) and
p(t̄)← p2(t̄), where p1 and p2 are new regular predicate symbols. (Since only
regular predicates can occur in the heads of middle rules the last two rules are
regular.) Every occurrence of a negated mixed atom not m(ti, Xi) in the bod-
ies of middle rules can be replaced by m(ti, Yi), Xi 6= Yi.

2 Finally, a middle
rule p(t̄) ← B1, B2, where B2 is the collection of the defined and constraint
e-literals of the rule can be replaced by d(X̄) ← B2 and p(t̄) ← B1, d(X̄).
(Here X̄ is the list of variables of B2.)

ACsolver takes as an input a canonical AC(C) program Π, a set of ground
regular e-literals B, and a query Q and returns an answer set A of Π which
contains B and satisfies Q. If no such A exists the algorithm returns false.

2Consider an AC(C) program Π1 and AC(C) program Π2 obtained from Π1 by this
transformation. By Definition 5, S is an answer set of Π1 iff S is an ASP answer set
of ground(Π1) ∪M for some set M of ground mixed literals of Σ. By the Splitting Set
Theorem, S is an answer set of ground(Π1)∪M iff S \M is an answer set of ground(Π1)′

which is the partial evaluation of ground(Π1) with respect to M . By our definition of
partial interpretation there is exactly one x such that m(ti, x) ∈ M . Now it is easy to
check that ground(Π1)′ is also the partial evaluation of ground(Π2) ∪M with respect to
M , and thus Π1 and Π2 have exactly the same answer sets.

14

The computation starts with the derivation of the consequences of B with
respect to program Πr ∪ Πm. If the resulting set, B′, is inconistent the
algorithm returns false. Otherwise it collects all the middle rules whose
regular literals are decided by B′ and adds all the constraints that have to be
made true to satisfy these rules to the query Q. For instance, if Πm contains
a rule← p(t),m(t, Y), d(Y) where p(t) is a regular literal from B′, m(t, Y) is
mixed and d(Y) is defined then not d(Y) is added to Q. After this is done,
Q, together with Πd is given as an input to a CLP solver. If a solution,
say x̄, is found, the corresponding literal m(t, x̄) belongs to the answer set
under construction while d(x̄) does not. If no solution is found, the system
backtracks. Often we limit ourselves to using CLP to simply check existence
of a solution of Q with respect to Πd and, if needed, do actual computation
of the solution only once at the end of the algorithm.

The outline of the algorithm demonstrates the reason for dividing the original
program Π into three parts. Essentially the first part Πr, is used for reasoning
with standard ASP algorithm. The middle part, Πm serves to form a query
to the third part, Πd. In a sense, Πm plays a role of the “bridge” between
ASP and CLP parts of the algorithm. The query is answered by the CLP
inference engine. The latter explains the prohibition of disjunction in the
heads of Πd. A substantial disjunctive information however can be handled
by Πr.

To make the idea above work we need to precisely define the computation
of consequences of B with respect to Πr ∪ Πm and the formation of defined
literals we add to query Q after this computation. This is done by two
functions, Cn and query defined below3.

Now we give a description of these functions.

We say that a set B of e-literals falsifies a set C of e-literals if C contains
an e-literal complementary to some e-literal of B. The functions and the
algorithm will be illustrated using program gr(P) – the result of grounding
the regular variables of program P from Example 1.

Program gr(P)
3An additional challange was presented by our desire to use intelligent grounding sys-

tems like lparse to partially ground the initial program. Such a grounding process is
described and proven correct in [31].

15

1. acceptable time(T) ← 10 ≤ T ≤ 20
2. acceptable time(T) ← 100 ≤ T ≤ 120.
3. ¬occurs(a,0) ← at(0,T0),

not acceptable time(T0).
4. ¬occurs(a,1) ← at(1,T1),

not acceptable time(T1).
5. occurs(a,0)
6. next(1, 0)
7. holds(f,0) ←occurs(a,0), next(0,0).
8. holds(f,1) ←occurs(a,0), next(1,0).
9. holds(f,0) ←occurs(a,1), next(0,1).
10. holds(f,1) ←occurs(a,1), next(1,1).
11. ← ¬occurs(a, 0), occurs(a, 0).
12. ← ¬occurs(a, 1), occurs(a, 1).

(Note that the last two rules are the result of the elimination of classical
negations).

Function Cn
Function Cn(Πr ∪ Πm, B) computes the consequences of a set of ground
regular e-literals B under Πr ∪ Πm. It is defined in terms of two auxiliary
functions: lower bound, lb(Πr ∪ Πm, B), and upper bound, ub(Πr ∪ Πm, B).
The former computes the minimal set X of e-literals containing B which is
closed w.r.t. the following rules:

1. If R ∈ Πr and body(R) ⊆ X, then head(R) ∈ X.

2. If R is the only rule of Πr ∪ Πm whose body is not falsified by X and
if head(R) ∈ X, then the regular e-literals of the body of R are in X.

3. If (not l0) ∈ X, (l0 ← B1, l, B2) ∈ Πr, and B1, B2 ⊆ X, then not l ∈ X.

4. If there is no rule with head l0, or the body of every rule of Πr ∪ Πm

with head l0 is falsified by X, then not l0 ∈ X.

5. If X is inconsistent, X contains all e-literals.

Function ub(Πr ∪Πm, B) returns the answer set X of a definite ground pro-
gram α(Πr ∪ Πm, B) obtained by

16

1. Removing all rules of Πr ∪ Πm whose bodies are falsified by B.

2. Removing any rule R of Πr ∪ Πm such that not head(R) ∈ B.

3. Removing all e-literals of the form not p(t̄) from the rules of Πr ∪ Πm.

4. Removing all defined and mixed e-literals from the rules of Πm.

Now let

fΠ(B) = lb(Πr ∪ Πm, B) ∪ {not p(t̄) : p(t̄) 6∈ ub(Πr ∪ Πm, lb(Πr ∪ Πm, B))}.

The function Cn(Πr ∪ Πm, B) is defined as the least fixed point S of fΠ

such that B ⊆ S. As usual, the existence of the fixpoint follows from the
monotonicity of fΠ(B). Moreover, S = fn−1

Π (B) for some number n.

One can check that Cn(gr(P)r ∪ gr(P)m, ∅) returns the set

S0 = {next(1,0), holds(f,1), occurs(a,0), not next(0,0), not next(0,1),
not next(1,1), not holds(f,0), not occurs(a,1), not ¬occurs(a,0)}.

Functions Cn, lb and ub can be viewed as slight modifications of functions
expand, Atleast and Atmost of Smodels [38]. In fact for programs without
defined and middle rules, our functions are exactly the same. In the general
case our functions extend those of Smodels by taking into account the middle
rules of Π.

Function query
Function query takes as an input a canonical program Π, a ground set of
regular e-literals B and a query Q. It computes a collection of defined literals
Q′ such that Π has an answer set containing B and satisfying Q iff Π has an
answer set containing B and satisfying Q ∪ Q′. The function returns a new
query, Q ∪Q′.

For simplicity of exposition, we limit ourselves to programs whose mixed
predicates have one regular and one constraint parameter. We will need
some terminology.

To every pair 〈m,x〉 where m is a mixed predicate and x is an element of
the sort of its regular parameter, we assign a unique constraint variable V ,
called the value variable of 〈m,x〉.

17

An r ground middle rule R is called active w.r.t. a set of ground regular
e-literals B if B contains all the regular e-literals of the body of R. Program
pe(Π, B) is obtained from the middle part, Πm, of Π by

1. Removing all rules which are not active w.r.t. B.

2. Removing every rule R such that head(R) 6∈ B and not head(R) 6∈ B.

3. Removing regular e-literals from the bodies of all the remaining rules.

4. Renaming apart variables of the program to make sure that no variable
occur in two rules of the program.

5. For every rule R containing a mixed literal m(x, Y) replacing all oc-
currences of variable Y in R by the value variable V of 〈m,x〉.

For every rule R ∈ pe(Π, B) we define a query q(R) as follows:

• If head(R) ∈ B and the body of R contains defined e-literal l then
q(R) = {l};

• If head(R) ∈ B and the body of R contains no defined e-literal then
q(R) = {true};

• If not head(R) ∈ B and the body of R contains defined e-literal l then
q(R) = {l̄} where l̄ is an e-literal complementary to l;

• If not head(R) ∈ B and the body of R contains no defined e-literal
then q(R) = {false}.

Symbols true and false above are constraint e-literals, say, X = X andX 6= X
respectively.

Function query(Π, B,Q) renames the variables of Q to make sure that no
variable of Q occurs in the program pe(Π, B) and returns

Q ∪ {q(R) : R ∈ pe(Π, B)}.

Let us look at the program Π with Πm = {← p(t),m(t, Y), d(Y)}, B =
{p(t)}, and Q = ∅. It is easy to see that, for these parameters, query returns
Q = {not d(Y)}. If x̄ is a solution of not d(Y) with respect to Πd then x̄ will
be used as the value of m(t), i.e., m(t, x̄) will belong to an answer set of Π

18

constructed by our program. If there is no such solution then the rule of Πm

cannot be satisfied by any answer set of Π containing B and satisfying the
original query Q.

Let us illustrate the query algorithm by a more complete example in which
B = {p1, not p2, p3, not p4}, Q = ∅, and the program Π with the middle
part:

p1← m1(t1, Y 1),m(t2, Y 2), d1(Y 1, Y 2).
p2← m3(t3, Y 3), not d2(Y 3).
p3← m4(t4, Y 4), not d3(Y 4).
← m1(t1, Y 5), d4(Y 5).
p4← m1(t1, Y 1).

where p’s are regular, m’s are mixed and d’s are defined predicates. The
program pe(Π, B) is

R1 : p1← m1(t1, X1),m(t2, X2), d1(X1, X2).
R2 : p2← m3(t3, X3), not d2(X3).
R3 : p3← m4(t4, X4), not d3(X4).
R4 : ← m1(t1, X1), d4(X1).
R5 : p4← m1(t1, X1).

where X1, X2, X3, X4 are the corresponding value variables.

Recall that since our program is canonical there are no other rules in Π
with p1 in the head. Similarly for p2, p3, and p4. Since we are looking for
an answer set of Π containing B and p1 ∈ B, we need to justify p1. This
can be done only by finding a solution of constraint d1(X1, X2). To justify
(not p2) ∈ B we need to find X3 such that d2(X3). The justification of
p3 ∈ B is given by a solution of constraint not d3(X4). To satisfy rule R4,
X1 must be a solution of not d4(X1). Since according to our definition of
answer set, any answer set of the program should contain m1(t1, x1) for some
x1, the last rule is not satisfiable. According to our definition,

q(R1) = {d1(X1, X2)},
q(R2) = {d2(X3)},
q(R3) = {not d3(X4)},
q(R4) = {not d4(X1)},
q(R5) = {false}.

19

Not surprisingly, function query returns a constraint

d1(X1, X2) ∧ d2(X3) ∧ not d3(X4) ∧ not d4(X1) ∧ false

where the variables range over their respective sorts, and ∧ is used in place
of comma.

Now let us consider the program gr(P) defined above and the set S0 returned
by Cn(gr(P)r ∪ gr(P)m, ∅), and compute query(gr(P), S0, ∅). The program
has two middle rules (3) and (4) which are both active w.r.t. S0. Since
neither ¬occurs(a, 1) nor not ¬occurs(a, 1) is in S0, function pe(gr(Π)m, S0)
will return

¬occurs(a, 0) ← at(0, T0),
not acceptable time(T0).

Since (not ¬occurs(a, 0)) ∈ S0, function query will return

acceptable time(T0).

Function c solve
We will need the following definition.

Definition 10 [Constraint Program]
A constraint program is a collection, Π, of defined rules formed by defined
e-literals and primitive constraints such that Π has a unique answer set.

Function c solve(Π, Q) takes as an input a constraint program Π and a query
Q. The function returns a pair 〈C, true〉 where C is a consistent set of
primitive constraints, such that for any solution γ of C, γ is a solution of Q
w.r.t. the answer set of Π. If no such C exists the function returns false.
(Note that when both Π and Q are empty, c solve(Π, Q) returns 〈∅, true〉).

For instance, c solve(gr(Π)d, acceptable time(T0)) may return 〈C, true〉 where
C = 10 ≤ T0 ≤ 20.

In what follows, we will assume the existence of such a function. There are,
of course, many practical systems which implement such functions for various
classes of queries and constraint programs [42, 21, 22, 37].

20

Function ACsolver
Now we are ready to present the main function (see Figure 1), ACsolver ,
which computes answer sets of canonical programs. If no such answer set
exists ACsolver returns false. Note that, since Π is a canonical program
and thus a simple program, Πd from line 3 of the algorithm is a constraint
program by the fourth condition of the definition of simple programs. Hence
it can be used as an input of our constraint solver, c solve.

function ACsolver
Input

Π: r-ground canonical program and Πd is a constraint program;
B: set of ground regular e-literals;
Q: query;

Output
false if no answer set of Π contains B; 〈A,C〉, otherwise. Here, A is
a set of ground regular e-literals and C is a consistent set of primitive
constraints such that A is the regular part of an answer set W of Π
containing B, and any solution γ of C is a solution of Q w.r.t W .

begin
1. S := Cn(Πr ∪ Πm, B);
2. if S is inconsistent return false;
3. O := c solve(Πd, query(Π, S, Q));
4. if O = false then return false;
5. if O = 〈C, true〉 and p ∈ S or not p ∈ S for any regular atom p then
6. return 〈S, C〉;
7. pick a regular e-literal l such that l, (not l) /∈ S;
8. O := ACsolver(Π, S ∪ {l}, Q) ;
9. if O = false return ACsolver(Π, S ∪ {not l}, Q);
10. else return O;
end

Figure 1: The ACsolver algorithm

Let us trace ACsolver(gr(P), ∅, ∅). In the following, T0 and T1 are value
variables of 〈at, 0〉 and 〈at, 1〉 respectively. We already computed the value
S0 of Cn(gr(P)r ∪ gr(P)m, ∅). S0 is consistent, and query(gr(P), S0, ∅) re-
turns Q0 = acceptable time(T0). Function c solve(gr(P)d, Q0) may return
〈C0, true〉 with C0 = 10 ≤ T0 ∧ T0 ≤ 20. For every t0 satisfying C0,

21

atom acceptable time(t0) belongs to an answer set of gr(P) compatible with
S0. The only regular atom undecided by S0 is ¬occurs(a, 1). Suppose
that ACsolver selects this atom and calls ACsolver(P, S1, ∅) where S1 =
S0 ∪ {¬occurs(a, 1)}. Cn(gr(P)r ∪ gr(P)m, S1) returns S2 = S1. Function
query(gr(P), S2) returnsQ1 = acceptable time(T0)∧not acceptable time(T1).
The possible answer returned by c solve(gr(P)d, Q1) may be, say, 〈C1, true〉
with C1 = 10 ≤ T0 ≤ 20 ∧ T1 < 10. Finally, ACsolver(gr(P), ∅, ∅) re-
turns 〈S2, C1〉. (Of course, the solver can be slightly modified to return
some of the C1’s solutions.) If ACsolver were to select not ¬occurs(a, 1)
instead of ¬occurs(a, 1), then the returned value would be 〈S3, C2〉 with
S3 = S0∪{not ¬occurs(a, 1)} and C2, say, being 10 ≤ T0 ≤ 20∧10 ≤ T1 ≤ 20.

It is easy to check that the algorithm always terminates. But it is not always
correct. Consider for instance a program Pns

#csort(s).
#defined d(s), e(s).
s(0..2).
p← e(Y).
d(1). d(2).
e(Y)← d(Y), Y < 2.

Every answer set of this program contains d(1), d(2), and p. Our algorithm
however may also return sets not containing p. This happens when the
algorithm picks literal not p, and c solve returns, say, Y = 0.

To ensure correctness of the algorithm we will require a program to satisfy

Safety condition for constraint variables of Πm: Every constraint vari-
able occurring in a middle rule of the program should have an occurrence in
a mixed predicate from this rule.

A rule is safe if it satisfies the safety condition; non-safe otherwise. A pro-
gram is safe if it contains only safe rules.

Obviously, the middle rule p ← e(Y) in the example above is non-safe. We
can however construct a safe program Ps equivalent to Pns with respect to
the literals of Pns. The program Ps contains a new defined predicate symbol
d0 and the rules

22

d0 ← e(Y).
p← d0.
d(1). d(2).
e(Y)← d(Y), Y < 2.

This transformation is rather general – it can be expanded to an arbitrary
canonical program as follows.

Let R ∈ Π be a non-safe middle rule. Assume that R is of the form l ←
B, ld(X̄, Ȳ) with the defined e-literal ld(X̄, Ȳ) where Ȳ is the list of constraint
variables of ld not occurring in the middle atoms of R. Let d0(X̄) be a new
predicate symbol. By a safe variant of R we mean two rules

d0(X̄)← ld(X̄, Ȳ).
l← B, d0(X̄).

It is easy to check that a program safe(Π) obtained from Π by replacing
its non-safe rules by their safe variants is equivalent to Π modulo the newly
introduced predicates.

Now we are ready to formulate soundness conditions of our algorithm. We
will use the following notation. If A is a set of ground literals over the
signature of program Π, by c(A,Π) we denote the set

A ∪ {not p : p is a literal of Σ(Π) and p 6∈ A}.

Let Π be a safe canonical program, Σ a signature of Π, B a set of e-literals,
and Q a query.

Theorem 1 [Soundness]

1. If ACsolver(Π, B,Q) returns 〈S, C〉 then there exists an answer set A
of Π satisfying conditions:

(i) c(A,Π) contains B,

(ii) for any regular literal p of Σ, p ∈ A iff p ∈ S,

(iii) A satisfies Q.

2. If ACsolver(Π, B,Q) returns false, there is no answer set A of Π that
contains B and satisfies Q.

23

Finally let us mention that our ACsolver algorithm can be easily expanded to
programs with cr-rules whose standard part is a canonical program satisfying
our safety condition. We refer to such programs as cr-canonical. To see how
this can be done it is sufficient to recall that standard CR-Prolog solver – an
algorithm for computing answer sets of CR-Prolog [4] – employs an answer
set solver to check if the standard part of the program is coherent. If it is
coherent, the algorithm returns a corresponding answer set. Otherwise, it
“guesses” a minimal collection R of coherence restoring rules and checks if
the coherence is indeed restored by making a call to the corresponding answer
set solver with stand(Π)∪α(R) as an input. Note that if Π is a cr-canonical
AC(C) program then stand(Π) and stand(Π) ∪ α(R) are canonical AC(C)
programs, and the expansion of ACsolver to cr-canonical programs can be
obtained from the corresponding CR-Prolog solver by replacing calls to ASP
solvers by calls to ACsolver.

3.2 Implementations

In this section we briefly discuss our prototype implementations of AC(C)
solvers for two subclasses of our language.

Both prototypes use a grounder, Pgroundd, which grounds the regular vari-
ables of AC(C) program Π and outputs an r-ground program gr(Π). The
implementation of Pgroundd uses intelligent grounder lparse [41]. Therefore
it is only applicable to programs which satisfy lparse’s safety conditions. To
allow the use of lparse for partial grounding, we implemented intermedi-
ate transformations that remove constraint variables, mixed and constrained
atoms from Π before lparse grounding and then restore them back after
lparse grounding. They ensure that the constraint variables are not grounded
and the rules containing mixed atoms are not removed by lparse. (Recall
that since mixed atoms do not occur in the heads of rules of the program,
lparse believes them to be false and acts accordingly).

An AC(C) program Π can serve as an input to our first implementation,
called ADengine, if

• Π contains no defined predicates;

• Middle rules of Π are denials;

• Constraints of Π are of the form X − Y > K;

24

• The body of a middle rule of Π contains exactly one constraint literal.

We refer to such programs as AC0 programs. Since the middle rules of AC0

programs contain constraint predicates, our ACsolver algorithm is not di-
rectly applicable to them. It can, however, be easily modified to accommo-
date AC0 programs. To do that we need to modify function query with Q = ∅
by replacing “defined literal l” in the definition of q(R) by “constraint atom
X−Y > K.” Since the head ofR is never true inB, q(R) = {not X−Y > K}
which can be written as {X − Y ≤ K}. Hence the query will return a col-
lection of difference constraints – inequalities of the form X − Y ≤ K. Such
constraints can be efficiently solved by a number of algorithms available in
the literature. The ADengine uses an incremental difference constraint al-
gorithm in [36]. The treatment of coherence restoring rules of AC0 programs
is based on the modification of the CR-Prolog solver built on top of the ASP
solver Surya [31]. According to our general strategy, calls to Surya in this
CR-Prolog solver are replaced by calls to ADengine with inputs not con-
taining coherence restoring rules. The corresponding implementation can be
downloaded from

http://www.cs.ttu.edu/~mellarko/adsolver.html.

The second implementation, called ACengine, is currently under develop-
ment. It is based on the ASP inference engine Surya (developed at TTU)
and the CLP system CLP(R) [21] with constructive negation [40]. Comple-
tion of the ACengine and the experimental evaluation of both systems is the
subject of ongoing work.

4 Representing Knowledge in AC(C)

Several examples presented in this section are meant to illustrate the use of
AC(C) for knowledge representation. None of the examples can successfully
run with traditional ASP solvers while all of them are easily solvable by
the AC(C) solvers discussed above. We start with a simple planning and
scheduling example.

Example 2 [Planning and Scheduling]
John, who is currently at work, needs to be in his doctor’s office in one hour
carrying the insurance card and money to pay for the visit. The card is at

25

home and money can be obtained from the nearby ATM. John knows the
minimum time (in minutes) needed to travel between the relevant locations.
Can he find a plan to make it on time? (assuming of course that there will be
no delays and the actual time of travel will be the minimum time). To solve
the problem we will divide it into two parts: planning and scheduling. The
solution of the former will use the standard ASP based methods. We use
variables P for people, L for locations, O for objects (cash and the insurance
card), and S for steps of the planned trajectory. We will need an action
go to(P ,L) and fluents at loc(P ,L), at loc(O ,L), and has(P ,O) with self-
explanatory intuitive meaning. (To simplify the solution we assume that
person P automatically gets the object O when both, P and O, share the
same location). The transition diagram whose states are collections of fluents
describing possible physical states of the domain and arcs are labeled by
actions is defined by causal laws written as logic programming rules. For
instance, direct effects of the actions are described by the rule

holds(at loc(P,L),S1) ← next(S1, S0), occurs(go to(P,L),S0).

Indirect effects will be captured by the corresponding relationships between
fluents:

holds(has(P,O),S) ← holds(at loc(P,L),S), holds(at loc(O,L),S).
holds(at loc(O,L),S) ← holds(at loc(P,L),S), holds(has(P,O),S).
¬holds(at loc(X,L2),S) ← holds(at loc(X,L1),S), L1 6= L2.

The problem of representing the unchanged fluents is solved by the inertia
axioms (variable F is used for fluents):

holds(F,S1) ← next(S1,S0), holds(F,S0), not ¬holds(F,S1).
¬holds(F,S1) ← next(S1,S0), ¬holds(F,S0),not holds(F,S1).

John’s goal and his options will be described by the rules:

occurs(go to(john,L),S) or ¬occurs(go to(john,L),S).

goal(S) ← holds(at loc(john,doctor),S),
holds(has(john,card),S),
holds(has(john,cash),S).

succeed ← goal(S).

← not succeed.

26

Let us denote by Dn
r the above program with initial conditions and sort step

defined as a collection of integers from 0 to n. Normally ASP planning is
performed by computing answer sets of Dn

r for n = 1, 2, The desired
plans can be easily extracted from the answer sets of the first coherent pro-
gram Dk

r . A possible plan returned by this planning method can be, say,
[go to(john,home), go to(john,atm),go to(john,doctor)].

Now we concentrate on the scheduling part of the problem. Actual time will
range from 0 to 1440 (number of minutes in 24 hours). The schedule should
assign time T to each step S of the plan. This will be achieved by introducing
a mixed relation at(S ,T) and specifying the necessary constraints, e.g.,

← next(S1, S0),
at(S0, T0),
at(S1, T1),
T1 < T0.

← goal(S),
at(0, T1),
at(S, T2),
T2− T1 > 60.

← next(S1, S0),
occurs(go to(john, home), S0),
holds(at loc(john, office), S0),
at(S0, T0),
at(S1, T1),
T0− T1 > −20.

The first rule requires time to be a monotonic function of steps; the second
guarantees that the trip does not take more than an hour; the third assumes
that the trip from office to home takes at least twenty minutes. Other con-
straints are added in a similar fashion. Let us denote the resulting program
by Dn.

It is easy to check that Dn is an AC0-program satisfying the safety condition,
and hence the program can be run as an input to ADengine. The solver will
(almost instantaneously) return an answer set of Dn, containing a plan, say

27

[occurs(go to(john,home),0),
occurs(go to(john, atm), 1),
occurs(go to(john,doctor),2)]

and a schedule, say, at(0 , 0), at(1 , 20), at(2 , 35), at(3, 55) for executing its
actions. It is guaranteed that if John performs the corresponding actions
as scheduled he will get to see his doctor on time. If the initial conditions
were modified to ensure that no plan of length n satisfies the desired goal
the program would have no answer set and ADengine would return false.

In the next example we show how our language can express and reason with
disjunctive temporal constraints.

Example 3 [Disjunctive Temporal Constraints]
Suppose we would like to schedule an action “a” such that it occurs either
between 3am and 5am or between 7am and 8am. To represent this restriction,
we would require a constraint of the form, “if action “a” occurs at step S and
step S occurs at time T , then T cannot be outside intervals [3-5] or [7-8]”.
Because of the disjunction we cannot represent this directly in AC0. Instead
we introduce two regular atoms int1 and int2 . The atom int1 denotes that
“action “a” occurs in interval [3-5]”. Similarly for int2 . Assuming that time
steps range from 0 to some n this disjunctive temporal constraint can be
represented by the following rules.

% action a occurs in interval int1 or int2 .

int1 or int2 .

% If a occurs at step S and int1 is true, then S should be assigned the time
from [3− 5].

← int1 , occurs(a, S), at(0 ,T1), at(S ,T2),T1 − T2 > −3
← int1 , occurs(a, S), at(0 ,T1), at(S ,T2),T2 − T1 > 5

% If a occurs at step S and int2 is true, then S should be assigned the time
from [7− 8].

← int2 , occurs(a, S), at(0 ,T1), at(S ,T2),T1 − T2 > −7
← int2 , occurs(a, S), at(0 ,T1), at(S ,T2),T2 − T1 > 8

28

For simplicity we can also assume that step 0 occurred at time 0 and that
action a occurred at step 1. The former can be expressed by

← at(0, T), T > 0.

The latter by

occurs(a, 1).

To eliminate disjunction we replace the first (disjunctive) rule by

int1 ← not int2 .
int2 ← not int1 .

The resulting program can run as an input to ADengine which will returns
an answer set containing {occurs(a, 1), int2 , at(0 , 0), at(1 , 7)}, where a
occurs at 7 am.

In our next example we illustrate the use of our language for representing
weak (defeasible) constraints.

Example 4 [Planning with Weak Constraints]
Let us now consider a variant of the story from Example 2 in which the
requirement “the trip does not take more than an hour” is replaced “the trip
does not take more than an hour, but John prefers to make it in 50 minutes”.
Such requirements are often referred to as weak constraints.

The new information can be encoded by the defeasible rule which says that
“under normal circumstances the trip will be made in 50 minutes (or less)”.

← goal(S),
at(0, T1),
at(S, T2),
T2− T1 > 50,
not ab(S).

The cr-rule

ab(S)
+← step(S).

29

allows, when necessary, to consider exceptions to this rule. If John can get
to the doctor’s office in 50 minutes the program will find the corresponding
plan and a proper schedule for its actions. If the initial time conditions are
such that John cannot get to the doctor in 50 minutes the cr-rule will be used
to defeat the weak constraint above and find a possible plan, say, requiring
55 minutes. The desired solutions can be easily found by ADengine.

The next example illustrates the use of defined predicates of the language.

Example 5 [Using Defined Predicates]
Let us now consider an extension of the John’s problem from Example 2 by
assuming that “John always travels in a taxi and that the taxi rate is $2.45
per minute. John knows the amount of money in his bank account as well
as the amount he should pay to the doctor. Now he needs not only get to the
doctor on time and ready but also make sure that he has enough money for
the visit.” To solve the problem one may try to encode this knowledge by
the following rules.

bank account(john, 200).
doctor payment(130).
taxi rate(2 .45).

We assume that John has $200 in his bank account and that the doctor
charges $130. The next rule defines the relation enough money(P) which
holds iff person P has enough money to accomplish the task.

enough money(P) ← goal(S),
at(0,T1),
at(S,T2),
money needed(P,T1,T2,Y1),
bank account(P,Y2),
Y2 - Y1 ≥ 0.

The next two rules are self-explanatory.

money needed(P,T1,T2,Y) ← doctor payment(Y1),
taxi payment(T1,T2,Y2),
Y = Y1 + Y2.

taxi payment(T1,T2,Y) ← taxi rate(Rate),
Y = Rate * (T2 - T1).

30

Since at the final state of the trajectory John should have enough money to
pay the doctor and the taxi driver, we expand this program by a regular rule

← not enough money(john).

It is natural to declare enough money as a regular predicate, and the rest,
except the mixed predicate at and the primitive constraints, as defined pred-
icates. Let us denote the resulting program by Π. Even though the program
correctly represents our knowledge of the domain, due to the middle rule
defining enough money, the program is neither canonical nor safe and hence
its answer sets cannot be computed by ACsolver. To remedy the problem
we use the transformations of Section 3.1 to construct its canonical and safe
counterpart, Π′. To this end we first introduce a new defined predicate
d1(P, T1, T2, Y 1, Y 2) and replace the definition of enough money(P) by

enough money(P) ← goal(S),
at(0,T1),
at(S,T2),
d1(P, T1, T2, Y 1, Y 2).

d1(P, T1, T2, Y 1, Y 2) ← money needed(P,T1,T2,Y1),
bank account(P,Y2),
Y2 - Y1 ≥ 0.

The resulting program is canonical but not safe because constraint variables
Y 1, Y 2 of d1 do not occur in the mixed predicates of the middle rule defin-
ing enough money. To achieve safety, we introduce a new defined predicate
d0(P, T1, T2) and replace this middle rule by the rules

enough money(P) ← goal(S),
at(0,T1),
at(S,T2),
d0(P, T1, T2).

d0(P, T1, T2)← d1(P, T1, T2, Y 1, Y 2).

The resulting program Π′ is canonical and safe. Now to solve our problem
we simply need to call ACengine with Π′ as an input.

31

To test our inference engines in realistic applications we used an extension of
USA-Advisor[6] – a decision support system for the reaction control system
(RCS) of the space shuttle.

The RCS has primary responsibility for maneuvering the aircraft while it is
in space. It consists of fuel and oxidizer tanks, valves and other plumbing
needed to provide propellant to the maneuvering jets of the shuttle. It also
includes electronic circuitry both to control the valves in the fuel lines and
to prepare the jets to receive firing commands. Overall the system is rather
complex, on that it includes 12 tanks, 44 jets, 66 valves, 33 switches, and
around 160 computer commands (computer-generated signals). The RCS
can be viewed, in a simplified form, as a directed graph whose nodes are
tanks, jets and pipe junctions, and whose arcs are labeled by valves. For
a jet to be ready to fire, oxidizer and fuel propellants need to flow through
the nodes (tanks, junctions) and valves which are open and reach the jet. A
node is pressurized when fuel or oxidizer reaches the node.

The system can be used for checking plans, planning and diagnosis. To test
our solver, we have expanded the system to allow explicit representation of
time to combine planning and scheduling. We will illustrate our extension
by the following example.

Example 6 [Planning and scheduling in USA-Advisor]
Assume that after a node N gets pressurized it takes around 5 seconds for
the oxidizer propellant to get stabilized at N and 10 seconds for fuel propel-
lant to get stabilized. Furthermore, we cannot open a valve V which links N1
to N2 (link(N1,N2,V)), until N1 has been stabilized. Time steps of the pro-
gram should be assigned actual time (in seconds) satisfying these constraints.
We should be able to answer questions like: can a particular maneuver be
performed in less than 30 secs?

To solve the problem, we expand the signature of USA-Adviser by con-
straint sorts time = [0..400] and mixed predicate at(S ,T) where S and T
are variables for steps and actual time receptively. The relation holds if
step S is performed at time T . In addition we need relations otank(X) and
ftank(X) which hold if X is a oxidizer tank and fuel tank respectively. Flu-
ent got opened(V , S) is true when valve V was closed at step S − 1 and got
opened at step S. Fluent got pressurized(N ,X , S) is true when node N is
not pressurized at step S − 1 and is pressurized at step S by tank X. The

32

new program contains all rules from original USA-advisor, and new rules de-
scribing the scheduling constraints. Here are typical examples of such rules.

The first rule, which is a part of the original USA-advisor, says that a tank
node N1 is pressurized by tank X at step S if it is connected by an open
valve V to a node which is pressurized by tank X of sub-system R.

holds(pressurized by(N1 ,X), S)← step(S), tank of (N1 ,R),
holds(in state(V , open), S), link(N2 ,N1 ,V),
tank of (X ,R), holds(pressurized by(N2 ,X), S).

The second rule defines a new relation got pressurized in terms of pressurized by
and other relations of the old system.

got pressurized(N ,X , S + 1) ← link(N1 ,N ,V), tank of (X ,R),
not holds(pressurized by(N ,X), S),
holds(pressurized by(N ,X), S + 1).

Next four rules are typical examples of temporal constraints. The first rule
says that if N1 is pressurized by oxidizer tank, N1 takes 5 seconds to stabilize.

← link(N1 ,N2 ,V), got pressurized(N1 ,X , S1), S1 < S2 , otank(X),
got opened(V , S2), at(S1 ,T1), at(S2 ,T2),T1 − T2 > −5 .

The second guarantees that if N1 is pressurized by fuel tank, N1 takes 10
seconds to stabilize.

← link(N1 ,N2 ,V), got pressurized(N1 ,X , S1), S1 < S2 , ftank(X),
got opened(V , S2), at(S1 ,T1), at(S2 ,T2),T1 − T2 > −10 .

The third specifies that some time should elapse between steps.

← S1 < S2 , at(S1 ,T1), at(S2 ,T2),T1 − T2 > −1 .

Finally we require that the jets of a system should be ready to fire by 30
seconds.

← system(R), goal(S ,R), at(0 ,T1), at(S ,T2),T2 − T1 > 30 .

33

The program can serve as an input to ADengine. We tested the solver on
450 auto-generated instances of the initial situations and maneuvers. The
results show that ADengine could compute answer sets for most of the in-
stances tried in less than two minutes. (The acceptable performance given
by our USA customers was 20 minutes). It is worth noting that for the stan-
dard translation of our program into a regular ASP program, the grounder
lparse1.1.1 (run on the same machine) can’t ground the simplest program
instance in a day. The latest version of grounder gringo4 takes an hour to
ground this instance, producing a file of size 16 Gbytes, but the answer set
solver clasp can not produce any results in 30 hours.

5 Conclusion

In this paper we introduced a knowledge representation language AC(C) ex-
tending the syntax and semantics of ASP and CR-Prolog, gave some ex-
amples of its use for knowledge representation, and presented an algorithm,
ACsolver, for computing answer sets of AC(C) programs. The algorithm does
not require full grounding of a program and combines “classical” ASP solving
methods with CLP techniques and CR-Prolog based abduction. The AC(C)
based approach often allows to solve problems which are impossible to solve
by more traditional ASP solving techniques. We believe that further inves-
tigation of the language and the development of more efficient and reliable
solvers for its programs can help to substantially expand the domain of ap-
plicability of the answer set programming paradigm. The work is based on
previous results by Baselice, Bonatti, and one of the authors [9]. In [16], an
algorithm is developed to combine ASP computation with constraint solving
for the purpose of reasoning with ASP aggregates. The corresponding lan-
guage however does not allow classification of predicates and hence does not
avoid grounding of variables (except the variables which are local w.r.t. the
aggregates). An interesting line of work investigates ways of replacing ASP
programs by the corresponding constraint programs (see for instance [14]).
We hope that our approach will prove more attractive from the standpoint of
knowledge representation and also more efficient but this is of course a mat-
ter for further research. There is also a substantial amount of work on the
development of a generalization of ASP by rules which allows arbitrary “con-
straints atoms” [29, 26]. It remains to be seen if work on the development of

4Unreleased version obtained from the author in Aug 2008.

34

AC(C) solvers can profit from insights from this work.

6 Acknowledgments

This work was supported in part by NASA contract NASA-NEG05GP48G
and ATEE/DTO contract ASU-06-C-0143. We thank Roland H. C. Yap for
many discussions and help in our implementation of the prototype system
ACengine.

References

[1] K. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9(3,4):335–365, 1991.

[2] Yulia Babovich and Marco Maratea. Cmodels-2: SAT-based answer
set solver enhanced to non-tight programs. In International Conference
on Logic Programming and Nonmonotonic Reasoning, LPNMR-05, Jan
2004.

[3] Marcello Balduccini. USA-Smart: Improving the Quality of Plans in An-
swer Set Planning. In PADL’04, Lecture Notes in Artificial Intelligence
(LNCS), Jun 2004.

[4] Marcello Balduccini. CR-MODELS: An inference engine for CR-Prolog.
In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the 9th In-
ternational Conference on Logic Programming and Non-Monotonic Rea-
soning (LPNMR’07), volume 3662 of Lecture Notes in Artificial Intelli-
gence, pages 18–30. Springer, 2007.

[5] Marcello Balduccini and Michael Gelfond. Logic Programs with
Consistency-Restoring Rules. In Patrick Doherty, John McCarthy, and
Mary-Anne Williams, editors, International Symposium on Logical For-
malization of Commonsense Reasoning, AAAI 2003 Spring Symposium
Series, pages 9–18, Mar 2003.

[6] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer
set based design of knowledge systems. Annals of Mathematics and
Artificial Intelligence, 47:183–219, 2006.

35

[7] Chitta Baral. Knowledge Representation, Reasoning, and Declarative
Problem Solving. Cambridge University Press, Jan 2003.

[8] Chitta Baral, Karen Chancellor, Nam Tran, Nhan Tran, Anna Joy, and
Michael Berens. A knowledge based approach for representing and rea-
soning about cell signalling networks. In Proceedings of European Con-
ference on Computational Biology, Supplement on Bioinformatics, pages
15–22, 2004.

[9] Sabrina Baselice, Piero A. Bonatti, and Michael Gelfond. Towards an
integration of answer set and constraint solving. In Proceedings of ICLP-
05, pages 52–66, 2005.

[10] Daniel R. Brooks, Esra Erdem, James W. Minett, and Donald Ringe.
Character-based cladistics and answer set programming. In Proceedings
of International Symposium on Practical Aspects of Declarative Lan-
guages, pages 37–51, 2005.

[11] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Adding Weak
Constraints to Disjunctive Datalog. In Proceedings of the 1997 Joint
Conference on Declarative Programming APPIA-GULP-PRODE’97,
1997.

[12] Weidong Chen, Terrance Swift, and David S. Warren. Efficient top-
down computation of queries under the well-founded semantics. Journal
of Logic Programming, 24(3):161–201, 1995.

[13] Keith Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[14] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. An experi-
mental comparison of constraint logic programming and answer set pro-
gramming. In Proceedings of AAAI07, pages 1622–1625, 2007.

[15] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A deductive system for nonmonotonic reasoning.
In International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR97, LNAI 1265, pages 363–374. Springer Verlag,
Berlin, 1997.

36

[16] Islam Elkabani, Enrico Pontelli, and Tran Cao Son. Smodelsa - a sys-
tem for computing answer sets of logic programs with aggregates. In
LPNMR, pages 427–431, 2005.

[17] M. Gebser, B. Kaufman, A. Neumann, and T. Schaub. Conflict-driven
answer set enumeration. In C. Baral, G. Brewka, and J. Schlipf, editors,
Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’07), volume 3662 of lnai, pages
136–148. Springer, 2007.

[18] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP-88, pages 1070–1080, 1988.

[19] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9(3/4):365–386, 1991.

[20] Enrico Giunchiglia, Yulia Lierler, and Marco Maratea. Answer set pro-
gramming based on propositional satisfiability. Journal of Automated
Reasoning, 36:345–377, 2006.

[21] J. Jaffar, S. Michaylov, P. J. Stuckey, and Roland H. C. Yap. The
CLP(R) language and system. ACM Transactions on Programming Lan-
guages and Systems, 14(3):339–395, 1992.

[22] Joxan Jaffar and M. J. Maher. Constraint Logic Programming. Journal
of Logic Programming, 19/20:503–581, 1994.

[23] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, George
Gottlob, Stefania Perri, and Francesco Scarcello. The DLV system for
knowledge representation and reasoning. ACM Transactions on Com-
putational Logic, 7:499–562, 2006.

[24] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In
Proceedings of the eleventh international conference on Logic program-
ming, pages 23–37, Cambridge, MA, USA, 1994. MIT Press.

[25] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a
logic program by SAT solvers. Artificial Intelligence, 157(1-2):115–137,
2004.

37

[26] Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczyn-
ski. Logic programs with abstract constraint atoms: The role of com-
putations. In Proceedings of ICLP-07, pages 286–301, 2007.

[27] Victor W. Marek and Miroslaw Truszczynski. Nonmonotonic logics;
context dependent reasoning. Springer Verlag, Berlin, 1993.

[28] Victor W. Marek and Miroslaw Truszczynski. Stable models and an
alternative logic programming paradigm, pages 375–398. The Logic Pro-
gramming Paradigm: a 25-Year Perspective. Springer Verlag, Berlin,
1999.

[29] Victor W. Marek and Miroslaw Truszczynski. Logic programs with ab-
stract constraint atoms. In Proceedings of AAAI04, pages 86–91, 2004.

[30] K. Marriott and Peter J. Stuckey. Programming with Constraints: an
Introduction. MIT Press, Cambridge, MA, 1998.

[31] Veena S. Mellarkod. Integrating ASP and CLP Systems: Computing
Answer Sets from Partially Ground Programs. PhD thesis, Texas Tech
University, Dec 2007.

[32] Veena S. Mellarkod and Michael Gelfond. Enhancing asp systems for
planning with temporal constraints. In LPNMR 2007, pages 309–314,
May 2007.

[33] Ilkka Niemela. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3–4):241–273, 1999.

[34] Ilkka Niemela and Patrik Simons. Smodels - an implementation of the
stable model and well-founded semantics for normal logic programs. In
Proceedings of the 4th International Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR’97), volume 1265 of Lecture
Notes in Artificial Intelligence (LNCS), pages 420–429, 1997.

[35] Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and im-
plementing the stable model semantics. Artificial Intelligence, 138(1–
2):181–234, Jun 2002.

38

[36] G. Ramalingam, Junehwa Song, Leo Joskowicz, and Raymond E. Miller.
Solving systems of difference constraints incrementally. Algorithmica,
23(3):261–275, 1999.

[37] SICStus Prolog. SICStus Prolog User’s Manual Version 4.
http://www.sics.se/isl/sicstuswww/site/index.html, 2007.

[38] Patrik Simons. Extending and implementing the stable model seman-
tics. Research Report A58, Helsinki University of Technology, Depart-
ment of Computer Science and Engineering, Laboratory for Theoretical
Computer Science, Espoo, Finland, April 2000. Doctoral dissertation.

[39] Timo Soininen and Ilkka Niemella. Developing a declarative rule lan-
guage for applications in product configuration. In Proceedings of In-
ternational Symposium on Practical Aspects of Declarative Languages,
pages 305–319, 1998.

[40] Peter J. Stuckey. Constructive negation for constraint logic program-
ming. In LICS, pages 328–339, 1991.

[41] Tommi Syrjanen. Implementation of logical grounding for logic programs
with stable model semantics. Technical Report 18, Digital Systems Lab-
oratory, Helsinki University of Technology, 1998.

[42] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989.

Appendix

In the following, we will use Π,Φ, and Ψ, possibly with indexes, to repre-
sent programs of AC(C), reduct programs, and “mixed” programs respec-
tively. Rules will be represented by R with indexes. For atoms and e-
literals, we use letters a and l respectively. Letters lr, lm, and ld refer to
regular e-literals, mixed literals and defined literals respectively. Sets of
literals are denoted by S with indexes, and sets of atoms by A with in-
dexes. For a rule R, head(R) and body(R) are the sets of e-literals in
the head and body of R respectively. For a set of e-literals S, we de-
fine pos(S) = {a : a ∈ S} and neg(S) = {a : not a ∈ S}; and notations
mixed(S), defined(S) and regular(S) refer to the set of mixed, defined, and

39

regular e-literals of S respectively. The set S is complete with respect to a
program if for any atom p of the program, either p ∈ S or not p ∈ S. For a
rule R, we also use mixed(R), defined(R), and regular(R) to denote the set
of mixed, defined, and regular e-literals in the body of R.

Given a program Π,M denotes the set of atoms of Σ(Π) of the form m(t, Y)
where m is a mixed predicate, t is a ground regular term, and Y is the
value variable of 〈m, t〉. Given a ground substitution θ, θ(M) is the result of
replacing every value variable Y occurring in M by θ. If Πd has an answer
set, it has a unique answer set Ad because Πd is a constraint program. We
define

(1) Φ(Π, θ) = {head(R)← regular(R) : R ∈ ground(Πm),
mixed(R) ⊆ θ(M), defined(R) ⊆ c(Ad ,Πd)},

(2) Ψ(Π, θ) = ground(Πr) ∪ Φ(Π, θ), and

(3) Π (θ) = ground(Π) ∪ θ(M).

A(θ) and AΨ(θ) denote the answer set of the ASP program Π(θ) and Ψ(Π, θ)
respectively.

Given a set of atoms A, A denotes all the ground atoms from the signature
Σ(Π) excluding those of A; not A denotes {not a : a ∈ A}.

Lemma 1 Consider a canonical program Π, a ground substitution θ, and a
set of e-literals S. Assume Πd has the answer set Ad. pos(S)∪Ad ∪ θ(M) is
an answer set of Π(θ) iff pos(S) is an answer set of Ψ(Π, θ).

Proof.

Let A1 be the set of ground atoms from signature Σ(Π) formed by defined and
mixed predicates. Since, by the definition of canonical programs, Πd contains
no regular e-literals, A1 forms a splitting set of Π(θ). It splits the program
into Π1 = ground(Πd) ∪ θ(M) and Π2 = ground(Πr) ∪ ground(Πm). From
the construction, it immediately follows that

(4) Ad ∪M is an answer set of Π1.

Since pos(S) and M ∪ Ad are disjoint, by splitting set theorem [24], (1) and
(2), A is an answer set of Π(θ) iff pos(S) is an answer set of Ψ(Π, θ). �

40

Now we present the proof for the first part of Theorem 1.

Proof.

Let

(5) < S,C >= ACsolver(Π, B,Q).

By line 5 and line 2 of Figure 1,

(6) S is complete and consistent.

To prove the theorem, we will construct an answer set, A, of Π from< S,C >.

The definition of ACsolver and (5) imply that

(7) there is a query Q′ = query(Π, S, Q) such that

(8) 〈C , true〉 = c solve(Πd ,Q
′),

(9) C is consistent, and

(10) every solution of C is a solution of Q′ w.r.t. the answer set of Πd.

Let

(11) γ be a solution of C,

(12) M = γ(M),

(13) Φ = Φ(Π, γ),

(14) Ψ = Ψ(Π, γ), and

(15) Π(M) = Π(γ).

Let

(16) A = pos(S) ∪M ∪ Ad .

By Definition 5 of answer set, to prove A is an answer set of Π, it is sufficient
to show that A is an answer set of ASP program Π(M).

41

To prove (i), we show B ⊆ S. By considering the ACsolver algorithm it is
easy to prove that there is a set of ground regular e-literals B′ such that

(17) B ⊆ B′ and

(18) S = Cn(Πr ∪ Πm, B
′).

By the definition of lb, ub, and Cn,

(19) B′ ⊆ S, which, together with (17), implies

(20) B ⊆ S.

Since S is consistent (6), S ⊆ c(A,Π). Therefore, (20) implied condition (i):
B ⊆ c(A,Π).

Clearly pos(S) = regular(A) because of (16), and thus condition (ii) of the
theorem holds.

To prove (iii), note that the specification of function query ensures that Q ⊆
Q′ and thus, by (10) and (11),

(21) γ is a solution of Q w.r.t. the answer set of Πd, i.e., Ad.

Since Ad is a subset of A (16), A satisfies Q. Hence, (iii) holds.

We next show that A is an answer set of ASP program Π(M). By Lemma 1,
A is an answer set of Π(M) iff

(22) pos(S) is an answer set of Ψ.

Let

(23) S3 = lb(Πr ∪ Πm, S), and

(24) S4 = {not a : a 6∈ ub(Πr ∪ Πm, S3)}.

By the definition of Cn,

(25) S = S3 ∪ S4.

42

By the definition of lb,

(26) S ⊆ S3. Since S is complete (6),

(27) S3 is complete.

Since S3 ⊆ S (25), S3 and S are complete (27,6), and S is consistent, we
have

(28) S = S3.

To prove (22), we first show (29) and then (30).

(29) The set pos(S) satisfies the ASP program Ψ.

(30) The set pos(S) is an answer set of the reduct Ψ pos(S).

Let

(31) R be a rule from Ψ such that pos(S) satisfies the body of R.

To show that head(R) ∈ S , we consider two cases.

Case 1 R belongs to the regular part of ground(Π). Then

(32) body(R) is satisfied by pos(S3) (31, 28).

By (27) and (32) we have

(33) body(R) ⊆ S3 .

From (33), (23), and the clause (1) of the definition of lb we have that
head(R) ∈ S3 . Together with (28), this implies

(34) head(R) ∈ S

43

Case 2 (35) R ∈ Φ,

i.e., R is obtained by removing mixed and defined e-literals from the
body of some rule R′ ∈ ground(Πm) such that mixed(R′) ⊆ M and
defined(R′) ⊆ c(Ad,Πd).

Let us assume that

(36) head(R) 6∈ pos(S).

Let

(37) R′ be obtained by grounding a rule R′′ ∈ Πm.

Since head(R′′) is grounded, this, together with (36), implies that

(38) head(R′′) 6∈ pos(S).

Recall that to simplify the presentation we assumed that no rule R of
Πm contains more than one defined e-literal.

(39) defined(R) is either empty or equal to {d(X̄)} or {not d(X̄)}

for some defined predicate d and a list of variables X̄.

Hence, defined(R′′) is equal to {d(X̄)} or {not d(X̄)}, or is empty. Let
us consider the first case,

(40) defined(R′′) = {d(X̄)}

where X̄ = [X1, . . . , Xk]. Since program Πm satisfies the safety condi-
tion, we have that variables X̄ appear in the atoms of mixed(R′′). Re-
call that for simplicity of the presentation we assumed that mixed liter-
als of the language have exactly one regular and one constraint param-
eter. This means that mixed(R′′) contains m1(t1, X1), . . . ,mk(tk, Xk).

44

Consider query Q′ from (7). By the definition of function query , (31),
(38), and (40) we have

(41) not d(Ȳ) ∈ Q′

where Ȳ = [Y1, . . . , Yk] with Yi being the value variable of 〈mi, ti〉 for
every 1 ≤ i ≤ k.

Since γ is a solution of C (11), the definition of c solve guarantees that
γ(Q′) ⊆ c(Ad,Πd). This, together with (41), implies

(42) d(γ(Ȳ)) 6∈ Ad

To obtain a contradiction we show that (42) cannot be true. By (37) we
have that R′ is obtained from R′′ by a substitution which replaces oc-
currences of X̄ by x̄. Hence defined(R′) = d(x̄) where x̄ = [x1, . . . , xk].
But, since R ∈ Φ (35), we have that m1(t1, x1), . . . ,mk(tk, xk) ∈ M .
From the construction of M (12) we can conclude that

(43) x̄ = γ(Ȳ). Therefore,

(44) defined(R′) = d(γ(Ȳ)).

This together with definition of Φ (13) and (35) implies that

(45) d(γ(Ȳ)) ∈ Ad

which contradicts (42).

The case of

(46) defined(R′′) = {not d(X̄)}

will be treated in a similar manner.

To complete the proof of (29), it suffices to notice that if defined(R′′)
were empty then, by the definition of function query, (38) and (31),
query(Π, S, Q′′) would return a set containing false which would con-
tradict (8).

45

Now to complete the proof, we need to prove (30). Assume that pos(S) is
not the minimal set satisfying Ψ pos(S). Let

(47) S0 be a complete and consistent set of e-literals such that pos(S0) ⊂ pos(S),
and pos(S0) satisfies Ψ pos(S).

Let

(48) Φ1 be α(Πr ∪ Πm, S3). We claim

(49) pos(S0) satisfies Φ1

whose proof will be given later.

Since ub(Πr ∪ Πm, S3) is the answer set of Φ1 and pos(S0) satisfies Φ1 (49),
ub(Πr ∪ Πm, S3) ⊆ pos(S0), which in turn implies that neg(S0) ⊆ S4 (24).
Since S = S3 ∪ S4 (25), S4 ⊆ neg(S). Therefore, neg(S0) ⊆ neg(S). Since
both S0 and S are complete and consistent, pos(S) ⊆ pos(S0),which contra-
dicts the assumption pos(S0) ⊂ pos(S). So, (30) holds.

To show (49), we prove

(50) For any rule R ∈ Φ1, R ∈ Ψ pos(S).

By the construction of Φ1, there are two cases: R is obtained from R′ ∈ Πr

or R′ ∈ Πm.

Case 1 R′ ∈ Πr. By the construction of Φ1(48), body(R′) ⊆ S3. Therefore,
R ∈ Ψ pos(S) because S = S3 (28).

Case 2 R′ ∈ Πm. By clause 1 and 2 of the definition of ub, regular(R′) ⊆ S3

and head(R′) ∈ S3 . We next show that head(R′)← regular(r ′) ∈ Φ.
By (7), defined(R′) ∈ Q ′. Since c solve returns 〈C, true〉 (8) and γ is
a solution of C (11), γ(defined(R′)) ⊆ c(Ad,Πd). By the definition of
M (12), γ(mixed(R′)) ⊆M . Therefore, by (13) and (14), head(R′)←
regular(r′) ∈ Φ ⊆ Ψ. Hence, R ∈ Ψ pos(S).

By (50), Φ1 ⊆ Ψ pos(S). Since pos(S0) satisfies Ψ pos(S) (47), pos(S0) satisfies
Φ1. �

Let S be a set. A function f : 2S → 2S is monotonic if for any sets A and
B, A ⊆ B implies f(A) ⊆ f(B).

46

Lemma 2 (Lemma A.1 [38])
Let S be a set, f : 2S → 2S a monotonic function, and X ⊆ S. If f(X) ⊆ X,
then lfp(f) ⊆ X, where lfp(f) denotes the least fixed point of f .

A set of atomsA agrees with a set of e-literals S if pos(S) ⊆ A and neg(S) ∩ A = ∅.
Alternatively, A agrees with S if S ⊆ A ∪ not A.

Corresponding to the five clauses in the definition of lb, we define the follow-
ing functions on a collection of sets of e-literals.

Let

(51) f1(X) = {head(R) : R ∈ Πr, body(R) ⊆ X},

(52) f2(X) = {l ∈ body(R) : R ∈ Πr ∪ Πm, R is the unique rule with
head(R), head(R) ∈ X, and body(R) is not falsified by X},

(53) f3(X) = {not l : ∃(not l0) ∈ X, (l0 ← B1, l, B2) ∈ Πr, and B1, B2 ⊆
X}, and

(54) f4(X) = {not l0 : the body of every rule of Πr ∪ Πm with head l0 is
falsified by X}.

Let U be the set of all ground regular e-literals from the signature Σ(Π), and
B a set of e-literals. We define

(55) f(B,X) = B ∪X ∪ f1(X) ∪ f2(X) ∪ f3(X) ∪ f4(X).

(56) f ′(B,X) = f(B,X) if f(B,X) is consistent, and U otherwise.

Lemma 3 The function f ′(, X) is monotonic with respect to its second
parameter.

Proof.

Assuming

(57) S ⊆ S ′,

we will show f ′(, S) ⊆ f ′(, S ′). Consider the following two cases.

47

Case 1 (58) f(, S ′) is inconsistent. By the definition of f ′, f ′(, S ′) = U ,
implying that f ′(, S) ⊆ f ′(, S ′).

Case 2 (59) f(, S ′) is consistent. By the definition of f ′,

(60) f ′(, S ′) = f(, S ′).

One can verify that

(61) Functions f1, f3, f4 are monotonic.

We next show that

(62) f(, S) ⊆ f(, S ′).

Assuming that

(63) f(, S) 6⊆ f(, S ′),

we will later obtain a contradiction (to (59))

(64) f(, S ′) is inconsistent.

By (59) and (62), f(, S) is consistent. By the definition of f ′

(65) f ′(, S) = f(, S).

Therefore, (62), together with (59) and (65), gives

f ′(, S) ⊆ f ′(, S ′).

We show (64) below. By (63) and (61), there exists a ∈ f2(S)− f2(S ′).
By the definition of f2,

(66) there is a unique rule R ∈ Πr ∪ Πm with head(R),

48

(67) body(R) is not falsified by S, and

(68) head(R) ∈ S .

(57) and (68) imply

(69) head(R) ∈ S ′.

However, since a 6∈ f2(S ′), (66) and (69), body(R) is falsified by S ′ by
the definition of f2. Furthermore, since R is the only rule with the head
head(R) (66),

(70) not head(R) ∈ f4 (S ′)

by the definition of f4.

By the definition of f , we have S ′ ⊆ f(, S ′) and f4(S ′) ⊆ f(, S ′).
Hence, (69) and (70) imply that f(, S ′) is inconsistent, i.e., (64) holds.

�

Lemma 4 Given a canonical program Π, θ and a set of e-literals B, if AΨ(θ)
agrees with B, AΨ(θ) agrees with fi(B) for i from 1 to 4.

Proof.

One can verify that the claim is true for f1, f3, and f4. To prove that AΨ(θ)
agrees with f2(B), we show

(71) pos(f2 (B)) ⊆ AΨ (θ), and

(72) neg(f2 (B)) ∩ AΨ (θ) = ∅.

To prove (71) and (72), consider any literal l ∈ f2(B). By the definition of
f2,

(73) there is a unique rule R ∈ Πr ∪ Πm with head(R),

(74) body(R) is not falsified by B, and

49

(75) head(R) ∈ B , which implies

(76) head(R) ∈ AΨ (θ) because AΨ(θ) agrees with B.

Since R is the only rule with head head(R) (73), (76), and AΨ(θ) is the answer
set of Ψ(Π, θ)AΨ(θ), we have head(R)← pos(R) ∈ Ψ(Π , θ)AΨ (θ). Hence, if l is
an atom of body(R), l ∈ AΨ(θ) and thus (71) holds; otherwise, not l 6∈ AΨ(θ)
and thus (72) holds. �

Proposition 1 (Lower bound)
Given a canonical program Π, θ and a set of e-literals B, let S = lb(Πr ∪
Πm, B). If AΨ(θ) agrees with B, it agrees with S.

Proof.

By the definition of lb,,

(77) S is the minimal set of e-literals closed under the five clauses. Hence,

(78) S is the least fixed point of f ′(B,X) (56).

(79) By Lemma 3, f ′(B,X) is monotonic on its second parameter.

Let SΨ = AΨ(θ) ∪ not AΨ(θ). We next show

(80) f ′(B, SΨ) ⊆ SΨ.

By Lemma 4, AΨ(θ) agrees with fi(AΨ(θ)) (i ∈ [1..4]), implying that fi(AΨ(θ)) ⊆
SΨ (i ∈ [1..4]). Since AΨ(θ) agrees with B, B ⊆ SΨ. By the definition of f ,
i.e., f(B, SΨ) = B ∪ SΨ ∪ f1(SΨ) ∪ f2(SΨ) ∪ f3(SΨ) ∪ f5(SΨ),

(81) f(B, SΨ) ⊆ SΨ. Hence,

f(B, SΨ) is consistent because SΨ is so.

By the definition of f ′,

(82) f ′(S,Ψ) = f(B, SΨ).

(82) and (81) imply that f ′(B, SΨ) ⊆ SΨ.

Since S is the least fixed point of f ′ (78), S ⊆ SΨ. Therefore, AΨ(θ) agrees
with S. �

50

Proposition 2 (Upper bound)
Given a canonical program Π, θ and a set of e-literals B, let A1 = ub(Πr ∪
Πm, B). If AΨ(θ) agrees with B, AΨ(θ) ⊆ A1.

Proof.

Since AΨ(θ) agrees with B, we have

(83) pos(B) ⊆ AΨ (θ), and

(84) neg(B) ∩ AΨ (θ) = ∅.

Let

(85) Φ1 = Ψ(Π, θ)AΨ(θ), and

(86) Φ2 = α(Πr ∪ Πm, B) and A1 be the answer set of Φ2.

Given a normal program P without default negation and a set of atoms X,
we define functions

(87) f(P,X) = X ∪ {head(R) : R ∈ P, body(R) ⊆ X}, and

(88) g(X) = f(Φ1, AΨ(θ) ∩X).

One can verify that

(89) function f is monotonic with respect to its second parameter, implying

(90) function g is monotonic.

We will show later that

(91) g(A1) ⊆ A1, and

(92) g(X) and f(Φ1, X) have the same least fixed point.

Since AΨ(θ) is the answer set of Φ1 (85),

(93) AΨ(θ) is the least fixed point of f(Φ1, X), which, together with (92),
implies

51

(94) AΨ(θ) is the least fixed point of g(X).

By Lemma 2, (91) and (94) result in

AΨ(θ) ⊆ A1.

The following is the proof for (91). We first show

(95) f(Φ1, AΨ(θ) ∩ A1) ⊆ f(Φ2, AΨ(θ) ∩ A1).

Consider any atom

(96) a ∈ f(Φ1, AΨ(θ) ∩ A1).

If a ∈ AΨ(θ)∩A1, a ∈ f(Φ2, AΨ(θ)∩A1) by the definition of (87). Otherwise,
(87) implies that there exists R ∈ Φ1 such that a = head(R) and

(97) body(R) ⊆ AΨ (θ) ∩ A1 .

(98) In forming Φ1, let R be obtained from R′ ∈ Ψ(Π, θ) that is obtained
from R′′ ∈ Πr ∪ Πm.

Clearly, body(R) = pos(regular(R′′)). Hence,

(97) implies

(99) pos(regular(R′′)) ⊆ AΨ (θ) ∩ A1 ⊆ AΨ (θ).

By (98),

(100) neg(regular(R′′)) ∩ AΨ (θ) = ∅.

By (100) and (83),

(101) neg(regular(R′′)) ∩ pos(B) = ∅.

By (99) and (84),

(102) pos(regular(R′′)) ∩ neg(B) = ∅.

By (101) and (102),

52

(103) body(R′′) is not falsified by B.

Since f(P,X) is monotonic with respect to X (89) and AΨ(θ) is the least
fixed point of f(Φ1, X) (93),

(104) f(Φ1, AΨ(θ) ∩ A1) ⊆ f(Φ1, AΨ(θ)) = AΨ(θ).

Since a ∈ f(Φ1, AΨ(θ) ∩ A1) (96), (104) implies

(105) a ∈ AΨ(θ). Therefore,

(106) not a = not head(R′′) 6∈ B.

because AΨ(θ) agrees with B (84).

(103) and (106), together with clause 1 and 2 respectively in obtaining α(Πr∪
Πm, B), imply that R′′ is not removed in forming Φ2. By removing the default
negations (clause 3) and mixed and defined literals (clause 4) from R′′, we
have the rule head(R′′)← pos(regular(R′′)), i.e.,

(107) R ∈ Φ2.

By (97) and the definition of f(P,X), we have a ∈ f(Φ2, AΨ(θ) ∩ A1), im-
plying that (95) holds.

Since f(P,X) is monotonic w.r.t. X and A1 is the answer set of Φ2 (86), by
(95), we have

(108) f(Φ1, AΨ(θ) ∩ A1) ⊆ f(Φ2, AΨ(θ) ∩ A1) ⊆ f(Φ2, A1) = A1, implying

(109) g(A1) = f(Φ1, AΨ(θ) ∩ A1) ⊆ A1. Hence, (91) holds.

Now, we prove (92) by showing first A3 ⊆ AΨ(θ) and then AΨ(θ) ⊆ A3 where
A3 is the least fixed point of g(X).

By the definition of g (88),

(110) g(AΨ(θ)) = f(Φ1, AΨ(θ) ∩ AΨ(θ)). Hence

(111) g(AΨ(θ)) = AΨ(θ) because AΨ(θ) is the least fixed point of f(Φ1, X).

53

Since A3 is the least fixed point of g(X),

(112) A3 ⊆ AΨ(θ), and

(113) A3 = g(A3) = f(Φ1, AΨ(θ) ∩ A3).

By (112),

(114) AΨ(θ) ∩ A3 = A3.

(113) and (114) imply A3 = f(Φ1, A3). Hence, A3 is a fixed point of f(Φ1, X).
Therefore, AΨ(θ) ⊆ A3 because AΨ(θ) is the least fixed point of f(Φ1, X)
(93). �

Corollary 1 Given a canonical program Π, θ and a set of e-literals B, let
S = Cn(Πr ∪ Πm, B). If AΨ(θ) agrees with B, it agrees with S.

Proof.

By definition of Cn, it is sufficient to prove that if AΨ(θ) agrees with B, it
agrees with fΠ(B).

Let

S1 = lb(Πr ∪ Πm, B), and

S2 = {not a : a 6∈ ub(Πr ∪ Πm, S1)}.

By the definition of fΠ,

(115) fΠ(B) = S1 ∪ S2.

Since AΨ(θ) agrees with B, by Proposition 1, AΨ(θ) agrees with S1, and
by Proposition 2, AΨ(θ) ⊆ ub(Πr ∪ Πm, S1) and thus AΨ(θ) agrees with S2.
Therefore, AΨ(θ) agrees with S1 ∪ S2, i.e., fΠ(B). �

We are now in a position to prove the part 2 of Theorem 1.

Proof.

Prove by induction on the number n of undecided e-literals in B.

54

In the following, the line numbers refer to those in Figure 1.

Base case: n = 0.

By line 1 and 3 of Algorithm 1 of ACsolver, we have

(116) S = Cn(Πr ∪ Πm, B), and

(117) O = c solve(Πd , query(Π , S ,Q)).

When n is 0, there are only two cases for ACsolver to return false:

(118) S is inconsistent (line 2), or

(119) O = false (line 4).

Note that lines 7–10 are not reachable because there is no undecided e-literals
in S.

We prove the base case by contradiction. Assume there is an answer set A
such that it agrees with B and satisfies Q. Let θ be a solution of Q w.r.t. A
such that θ(M) ⊆ A.

Consider the first case: S is inconsistent (118). By Corollary 1 and Lemma 1,
AΨ(θ) agrees with S and thus S is consistent, a contradiction.

Next, consider the second case O = false (119). Let C = {x1 = θ(x1), x2 =
θ(x2), ...} be a set of constraints. Clearly, the solution of C is a solution of
Q. Therefore, c solve will not return false, contradicting O = false.

Inductive hypothesis: assume the theorem is correct for B with n < k(k ≥ 0).

Prove that when n = k, the theorem holds.

Let l be the literal picked in line 7.

There are three cases for ACsolver returns false:

(120) S is inconsistent (line 2),

(121) O is false (line 4), or

55

(122) ACsolver(Π, S ∪ {l}) returns false at line 8, and ACsolver(Π, S ∪
{not l}) returns false at line 9.

For the first two cases, the proposition can be proved in the similar fashion
to those in the base case.

For the last case, we use proof by contradiction. Assume there is an answer
set A such that it agrees with B and satisfies Q. Let θ be a solution of Q
w.r.t. A such that θ(M) ⊆ A.

(123) AΨ(θ) agrees with B because A(θ) agrees with B.

By (116) and Corollary 1, (123) implies

(124) AΨ(θ) agrees with S.

Since either l ∈ AΨ(θ) or l 6∈ AΨ(θ), (124) implies that

(125) AΨ(θ) agrees with either {l} ∪ S or {not l} ∪ S, hence,

(126) A(θ) agrees with {l} ∪ S or {not l} ∪ S, and satisfies Q.

However, since both ACsolver(Π, {l}∪S,Q) and ACsolver(Π, {not l}∪S,Q)
return false, and both {l} ∪ S and {not l} ∪ S have less than k undecided
e-literals, by inductive hypothesis, we have

(127) there is no answer set of Π that agrees with {l} ∪ S and satisfies Q,
and

(128) there is no answer set of Π that agrees with {not l} ∪ S and satisfies
Q.

(127) and (128) contradict (126). �

56

