
Approximation of Action Theories and Its

Application to Conformant Planning

Phan Huy Tu a

a Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052

Tran Cao Son b

b Computer Science Department, New Mexico State University, Las Cruces, NM
88003, USA

Michael Gelfond c, A. Ricardo Morales c

c Computer Science Department, Texas Tech University, Lubbock, TX 79409 USA

Abstract

This paper describes our methodology for building conformant planners, which
is based on recent advances in the theory of action and change and answer set
programming. The development of a planner for a given dynamic domain starts with
encoding the knowledge about fluents and actions of the domain as an action theory
D of some action language. Our choice in this paper is AL - an action language with
dynamic and static causal laws and executability conditions. An action theory D of
AL defines a transition diagram T (D) containing all the possible trajectories of the
domain. A transition 〈s, a, s′〉 belongs to T (D) iff the execution of the action a in
the state s may move the domain to the state s′. The second step in the planner
development consists in finding a deterministic transition diagram T lp(D) such that
nodes of T lp(D) are partial states of D, its arcs are labeled by actions, and a path
in T lp(D) from an initial partial state δ0 to a partial state satisfying the goal δf

corresponds to a conformant plan for δ0 and δf in T (D). The transition diagram
T lp(D) is called an ‘approximation’ of T (D). We claim that a concise description of
an approximation of T (D) can often be given by a logic program π(D) under the
answer sets semantics. Moreover, complex initial situations and constraints on plans
can be also expressed by logic programming rules and included in π(D). If this is
possible then the problem of finding a parallel or sequential conformant plan can
be reduced to computing answer sets of π(D). This can be done by general purpose
answer set solvers. If plans are sequential and long then this method can be too
time consuming. In this case, π(D) is used as a specification for a procedural graph
searching conformant planning algorithm. The paper illustrates this methodology
by building several conformant planners which work for domains with complex
relationship between the fluents. The efficiency of the planners is experimentally

Preprint submitted to Elsevier Science

evaluated on a number of new and old benchmarks. In addition we show that for
a subclass of action theories of AL our planners are complete, i.e., if in T lp(D) we
cannot get from δ0 to a state satisfying the goal δf then there is no conformant plan
for δ0 and δf in T (D).

Key words: Reasoning about action and change, Knowledge representation,
Planning, Incomplete information, Answer set programming

1 Introduction

A conformant planner is a program that generates a sequence of actions, which
achieves a goal from any possible initial state of the world, given the informa-
tion about the initial state and the possible effects of actions. Such sequences
are normally referred to as conformant plans. In this paper we describe our
methodology for the design and implementation of conformant planners. The
methodology is rooted in the ideas of declarative programming [42] and uti-
lizes recent advances in answer set programming and the theory of action and
change. This allows the designer to guarantee a substantially higher degree of
trust in the planners’ correctness, as well as a greater degree of elaboration
tolerance [43].

The design of a declarative solution of a problem P normally involves the
selection of a logical language capable of representing knowledge relevant to
P . We base our methodology on representing such knowledge in action lan-
guages - formal models of parts of natural language used for reasoning about
actions and their effects. A theory in an action language (often called an ac-
tion description) is used to succinctly describe the collection of all possible
trajectories of a given dynamic domain. Usually this is done by defining the
transition diagram, T (D), of an action description D. The states of T (D) cor-
respond to possible physical states of the domain represented by D. Arcs of
T (D) are labeled by actions. A transition 〈s, a, s′〉 ∈ T (D) if the execution of
the action a in the state s may move the domain to the state s′. In some ac-
tion languages, actions are elementary (or atomic). In some others, an action
a is viewed as a finite non-empty collection of elementary actions. Intuitively,
execution of an action a = {e1, . . . , en}, where the ei’s are elementary actions,
corresponds to the simultaneous execution of every ei ∈ a.

There are by now a large number of action languages (see for instance

Email addresses: tuphan@microsoft.com (Phan Huy Tu), tson@cs.nmsu.edu
(Tran Cao Son), mgelfond@cs.ttu.edu (Michael Gelfond), ricardo@cs.ttu.edu
(A. Ricardo Morales).

2

[8,24,25,32,41,67]) capturing different aspects of dynamic domains. Our choice
in this paper is AL [8] — an action language with dynamic causal laws de-
scribing direct effects of actions, impossibility conditions stating the conditions
under which an action cannot be executed, and static causal laws (a.k.a. state
constraints) describing static relations between fluents. For example the state-
ment “putting a block A on top of block B causes A to be on top of B” can be
viewed as a dynamic causal law describing the direct effect of action put(A,B).
The statement “a block A cannot be put on B if there is a block located on
A or on B” represents an impossibility condition. The statement “block A is
above block C if A is on C or it is on B and B is above C” is an example of a
(recursive) static causal law. Note that static causal laws can cause actions to
have indirect effects. Consider for instance the effects of executing the action
put(A,B) in a state in which both A and B are clear and B is located above
some block C. The direct effects of this action (described by the dynamic
causal law above) is on(A,B). An indirect effect, above(A,C), is obtained
from our static causal law. The problem of determining such indirect effects,
known as the ramification problem, remained open for a comparatively long
time. In the last decade, several solutions to this problem have been proposed,
for example [5,38,28,37,41,53,54,46,64]. One of these solutions [41] is incorpo-
rated in the semantics of AL. The ability to represent causal laws makes AL
a powerful modeling language. It was successfully used for instance to model
the reactive control system of the space shuttle [4]. The system consists of fuel
and oxidizer tanks, valves and other plumbing needed to provide propellant
to the maneuvering jets of the shuttle. It also includes electronic circuitry;
both to control the valves in the fuel lines and to prepare the jets to receive
firing commands. Overall, the system is rather complex, in that it includes 12
tanks, 44 jets, 66 valves, 33 switches, and around 160 computer commands
(computer-generated signals). The use of static causal laws (including recur-
sive ones) was crucial for modeling the system and for the development of
industrial size planning and diagnostic applications.

While static causal laws have been intensively studied by researchers inter-
ested in knowledge representation, they have rarely been considered by the
mainstream planning community. Although the original specification of the
Planning Domain Description Language (PDDL) – a language frequently used
for the specification of planning problems by the planning community – in-
cludes axioms 1 (which correspond to non-recursive static causal laws in our
terminology) [27], most of the planning domains investigated by this commu-
nity, including those used for planning competitions [1,17,40] do not include
axioms. This is partly due to the fact that the semantics for PDDL with axioms
is not clearly specified, and partly to the (somewhat mistaken but apparently
widespread) belief that static causal laws can always be replaced by dynamic

1 In our view, static causal laws can be used to represent relationships between
fluents and thus could be considered as axioms in PDDL.

3

causal laws. There is fortunately also an opposing view. For instance, in [63],
the authors argue that the use of axioms not only increases the expressiveness
and elegance of the problem representation but also improves the performance
of planners. It is known that the complexity of the conformant planning prob-
lem is much higher than classical planning in deterministic domains (ΣP

2 vs.
NP-complete) [6,68], and hence the question of efficiency becomes even more
important.

An action description D of AL describing the corresponding dynamic domain
can be used for multiple purposes including classical planning and diagnostics
(see for instance [3,4,7,35]). One way to attack this problem is to replace
the transition diagram T (D) by a deterministic transition diagram T lp(D)
such that nodes of T lp(D) are partial states of D, its arcs are labeled by
actions, and a path in T lp(D) from an initial partial state δ0 to a partial state
satisfying δf corresponds to a conformant plan for δ0 and δf in T (D). The
transition diagram T lp(D) is called an approximation of T (D). Even though
T lp(D) normally has many more states than T (D) does, validating whether a
given sequence of actions is a conformant plan using T lp(D) is much easier. As
pointed out in [6] the use of an approximation can substantially help reduce
the complexity of the planning problem. Indeed, an approximation in domains
with incomplete information and static causal laws has been developed and
applied successfully in the context of conditional and conformant planning in
[66]. Of course a drawback of this approach is the possible incompleteness of
approximation based planners, i.e., existence of solvable planning problems
for which such a planner might not find a solution.

According to this methodology the second step in the development of a confor-
mant planner consists in finding a suitable approximation of T (D). We claim
that a concise description of an approximation of T (D) can often be given
by a logic program π(D) under the answer sets semantics [26,62]. Moreover,
complex initial situations and constraints on plans can be also expressed by
logic programming rules and included in π(D). If this is possible then the
problem of finding a parallel or sequential conformant plan can be reduced to
computing answer sets of π(D). This can be done by general purpose answer
set solvers (e.g., [19,33,55]).

If plans are sequential and long then this method can be too time consum-
ing. In this case, the system designer may use π(D) as a specification for a
procedural graph searching conformant planning algorithm.

This paper illustrates the proposed methodology by building several confor-
mant planners which take as input an action description of AL, an incomplete
description of an initial situation, and a description of the goal. In summary,
the main contributions of this paper are

4

• A new approach to defining and computing an approximation of the transi-
tion graph of action theories with incomplete initial situation, static causal
laws, and parallel actions;

• A sufficient condition for the completeness of the reasoning and/or planning
tasks which employ the approximated transition diagram instead of the
possible world semantics; and

• Different approximation-based planners that can generate sequential and/or
parallel conformant plans. These include the planner CPasp and CpA. The
former is a logic programming based planner and can generate both minimal
and parallel conformant plans while the latter is a heuristic forward search
planner, implemented in C++, and can only generate sequential plans.

• The introduction of fairly simple planning problems with static causal laws
that appear to be challenging for many contemporary planners.

In addition, we discuss how complex initial situations and/or constraints on
a planning problem can be easily incorporated into our logic programming
based planner.

The paper is organized as follows. In the next section, we review the basics of
the language AL including its syntax and semantics, the logic programming
representation of transition diagrams specified by AL action theories, and the
problem of conformant planning. In Section 3, we introduce the notion of an
approximation of AL action theories and define a deterministic approxima-
tion of an action theory D by means of a logic program π(D). In Section 4,
we describe an implementation, in the answer set programming paradigm, of
a conformant planner based on this approximation and investigate its com-
pleteness in Section 5. Section 6 extends the results in the previous section
to planning problems with disjunctive initial states. In Section 7, we describe
a heuristic based sequential planner whose basic component is a module for
computing the approximation. We provide a comparative study of the perfor-
mance of our planners against state-of-the-art conformant planners in Section
8. We discuss some advantages of the use of logic programming in conformant
planning in Section 9 and conclude in Section 10.

Acknowledgments: We gratefully acknowledge our debt to the pioneering
work and influence of John McCarthy. The important ideas used and investi-
gated in this paper, including declarative programming, non-monotonic logic,
reasoning about actions and their effects, finding solutions to the frame and
ramification problems, and elaboration tolerance all originated from John Mc-
Carthy’s research [34]. This paper can be viewed as an attempt to apply some
of these ideas to the narrow (but hopefully sufficiently important) topic of

5

conformant planning 2 .

The first two authors would like to acknowledge the partial support from the
NSF grants CNS-0220590, HRD-0420407, and IIS-0812267. The third author
would like to acknowledge the partial support from the NASA contract NASA-
NEG05GP48G.

2 Background

We begin with a short review of the syntax and semantics of the language AL
for domains with static causal laws from [8,67], and the notion of a planning
problem and its solutions.

2.1 Syntax

The signature Σ of an action theory of AL consists of two disjoint, non-empty
sets of symbols: the set F of fluents, and the set A of elementary actions.
By an action we mean a non-empty set a of elementary actions. Informally
an execution of an action a is interpreted as a simultaneous execution of its
components. For simplicity we identify an elementary action e with the action
{e}. A fluent literal (or literal for short) l is a fluent or its negation. By ¬l we
denote the fluent literal complementary to l, i.e., ¬(f) = ¬f and ¬(¬f) = f .
An AL action theory is a set of statements of the following forms:

e causes l if ψ (1)

l if ψ (2)

impossible a if ψ (3)

where e is an elementary action, a is an action, l is a fluent literal, and ψ is a
set of fluent literals from the signature Σ. The set of fluent literals ψ is referred
to as the precondition of the corresponding statement. When the precondition
ψ is empty, the if part of the statement can be omitted. Statement (1),
called a dynamic causal law, says that if e is executed in a state satisfying ψ
then l will hold in any resulting state. Statement (2), called a static causal
law, says that any state satisfying ψ must satisfy l. Statement (3), called an

2 Some of these results have been reported in the proceedings of the 20th National
Conference on Artificial Intelligence [62], the 8th International Conference on Logic
Programming and Nonmonotonic Reasoning Conference [61], and the 20th Interna-
tional Joint Conference on Artificial Intelligence [47].

6

impossibility condition, says that action a cannot be executed in any state
satisfying ψ.

To illustrate the syntax of AL, let us consider an instance of (a variant of)
the Bomb in the toilet domain [45].

Example 1 There are two packages p1 and p2 and two toilets t1 and t2. Each
of the packages may contain a bomb which can be disarmed by dunking the
package into a toilet. Dunking a package into a toilet also clogs the toilet.
Flushing a toilet unclogs it. We are safe only if both packages are disarmed.

Figure 1 shows an action theory of AL, denoted by Dbomb, that describes the
domain 3 . There are four impossibility statements in the action theory. The
first one says that “it is impossible to dunk a package into a toilet that is being
flushed”. The second one states that “it is impossible to dunk two different
packages into the same toilet at the same time”. The third one says that “it
is impossible to dunk a package into two different toilets at the same time”.
Unlike the first three statements that specify physical impossibilities of con-
current actions, the last one specifies physical impossibility of an elementary
action. It says that “it is impossible to dunk a package into a clogged toilet”.

In addition to the impossibility statements, the action theory also includes
statements to describe the effects of actions dunk and flush and the relation-
ship between the fluents safe and armed.

2

2.2 Semantics

Intuitively, an AL action theory describes a transition diagram containing all
possible trajectories of the corresponding domain. Before providing the precise
definition of such a transition diagram, let us introduce some terminology and
notation.

Given an action theory D, a set σ of fluent literals is consistent if it does not
contain two complementary fluent literals. We say that σ is complete if for
every fluent f , either f or ¬f belongs to σ. A fluent literal l holds in σ if l
belongs to σ; l possibly holds in σ if ¬l does not belong to σ. A set γ of fluent
literals holds (resp. possibly holds) in σ if every fluent literal in γ holds (resp.
possibly holds) in σ.

3 Note that in the description of an action theory, we often use typed variables.
A statement with variables are understood as a shorthand for the collection of its
ground instances.

7

Meta variables:

pi’s stand for packages, i ∈ {1, 2}, p1 6= p2

tj ’s stand for toilets, j ∈ {1, 2}, t1 6= t2.

Fluents:

armed(pi): package pi contains the bomb

clogged(tj): toilet tj is clogged

safe: all the bombs are disarmed

Actions:

dunk(pi, tj): dunk package pi into toilet tj

flush(tj): flush toilet tj

Action theory:

impossible {dunk(pi, tj), f lush(tj)}
impossible {dunk(p1, tj), dunk(p2, tj)}
impossible {dunk(pi, t1), dunk(pi, t2)}
impossible dunk(pi, tj) if clogged(tj)

dunk(pi, tj) causes ¬armed(pi)

dunk(pi, tj) causes clogged(tj)

flush(tj) causes ¬clogged(tj)

safe if ¬armed(1),¬armed(2)

¬safe if armed(1)

¬safe if armed(2)

Fig. 1. Dbomb, the bomb in the toilet theory

A set of fluent literals σ is closed under a static causal law (2) if l holds in σ
whenever ψ holds in σ. By ClD(σ) we denote the smallest set of fluent literals
that contains σ and is closed under the static causal laws of D.

A state s is a complete, consistent set of fluent literals closed under the static
causal laws of D. An action b is said to be prohibited in s if D contains an
impossibility condition (3) such that ψ holds in s and a ⊆ b; otherwise, b is
said to be executable in s. An action is executable in a set of states S if it is
executable in every state s ∈ S.

Given a state s and an action a that is executable in s, a fluent literal l is
called a direct effect of a in s if there exists a dynamic causal law (1) such that
e ∈ a and ψ holds in s. By de(a, s) we denote the set of all direct effects of a

8

in s.

The action theory D describes a transition diagram T (D) whose nodes cor-
respond to possible physical states of the domain and whose arcs are labeled
with actions. The transitions of the diagram are defined as follows.

Definition 1 For an action a and two states s and s′, a transition 〈s, a, s′〉 ∈
T (D) iff a is executable in s and s′ = ClD(de(a, s) ∪ (s ∩ s′)).

Intuitively 〈s, a, s′〉 ∈ T (D) indicates that if the system is in state s then after
the execution of a the system may move in state s′. Such state s′ is called
a possible successor state of s as a result of the execution of a. If action a is
clear from the context then we simply say that s′ is a possible successor state
of s. It is worth to note that for action theories without concurrent actions,
the equation in Definition 1 is equivalent to the one proposed in [41].

Example 2 Consider the action theory Dbomb from Example 1. Let

s0 = {armed(1), armed(2),¬clogged(1),¬clogged(2),¬safe}

and
a = {dunk(1, 1), dunk(2, 2)}

Then

s1 = {¬armed(1),¬armed(2), clogged(1), clogged(2), safe}

is the unique successor state of s0, i.e., 〈s0, a, s1〉 ∈ T (Dbomb), because

ClDbomb
(de(a, s0) ∪ (s0 ∩ s1)) =

ClDbomb
({¬armed(1),¬armed(2), clogged(1), clogged(2)} ∪ ∅) =

{¬armed(1),¬armed(2), clogged(1), clogged(2), safe} = s1

Note that safe belongs to the closure of σ = {¬armed(1), ¬armed(2),
clogged(1), clogged(2)} because Dbomb contains the static causal law

safe if ¬armed(1),¬armed(2)

and both ¬armed(1) and ¬armed(2) hold in σ.

Now let
b = {dunk(1, 1), f lush(2)}

Then,

s2 = {¬armed(1), armed(2), clogged(1),¬clogged(2),¬safe}

is the unique successor state of s0, i.e., 〈s0, b, s2〉 ∈ T (Dbomb). 2

9

We next define the notion of a consistent action theory.

Definition 2 (Consistent Action Theory) An action theory D is consis-
tent if for any state s and action a executable in s, there exists at least one
state s′ such that 〈s, a, s′〉 ∈ T (D).

Observe that action AL-theories could be nondeterministic and therefore de-
termining whether or not a given action theory is consistent is not a simple
task. Indeed, we can prove the following complexity result.

Theorem 1 Deciding whether or not a given action theory is consistent or
not is an NP-complete problem.

The proof of this theorem is a straightforward reformulation of a similar result
in [68] and is therefore not presented here.

It is worth mentioning that the problem is a P-problem for action theories
without static causal laws.

Example 3 (Consistent and Inconsistent Action Theories) Consider
the following action theory:

D0 =





e causes f if g

e causes ¬f if h

We have that e is executable in s = {f, g, h}. If s′ is a successor state of s
then it is easy to see that both f and ¬f belong to s′. This is a contradiction
because s′ must be consistent. Hence, there exists no successor state for s.
According to the above definition, this implies that D0 is inconsistent.

However, if we add to D0 the following impossibility condition

impossible e if g, h

then the action theory will become consistent because e cannot be executed
in any state in which both g and h holds. Hence, at most one of the above
dynamic causal laws takes effect, which guarantees the consistency of the
theory. 2

The consistency of an action theory ensures that the execution of a legal action
in a state yields at least one possible successor state. In this paper, we are
interested in consistent action theories only. We will next define the notion of
deterministic action theory.

Definition 3 (Deterministic Action Theory) An action theory D is de-
terministic if for any state s and action a, there exists at most one state s′

10

such that 〈s, a, s′〉 ∈ T (D).

It is easy to see that if an action theory D does not contain any static causal
laws then it is deterministic. In the presence of static causal laws, an action
theory, however, may be non-deterministic 4 . The following example shows
such an action theory.

Example 4 (Non-Deterministic Action Theory) Consider the following
action theory:

D1 =





e causes f

g if f,¬h

h if f,¬g

Let s0 = {¬f,¬g,¬h}. We can verify that 〈s0, e, s1〉 ∈ T (D1) and 〈s0, e, s2〉 ∈
T (D1) where s1 = {f, h,¬g} and s2 = {f, g,¬h}. Hence, by definition, D1 is
non-deterministic. 2

For our later discussion, the following definition will be useful.

Definition 4 (Entailment) Let D be an action theory and M be a
path in T (D), i.e., M is an alternate sequence of states and actions
〈s0, a0, s1, . . . , an−1, sn〉 such that 〈si, ai, si+1〉 ∈ T (D) for 0 ≤ i < n. We
say that M entails a set of fluent literals σ, written as M |= σ, if σ holds in
sn.

For a path M = 〈s0, a0, s1, . . . , an−1, sn〉 in T (D), s0 and sn are referred to as
the initial state and final state, respectively, of M . The sequence of actions
α = 〈a0, . . . , an−1〉 is referred to as a chain of events. We also say that M is a
model of α and sometimes write 〈s0, α, sn〉 ∈ T (D) to denote that there exists
a model of α whose initial state and final state are s0 and sn respectively.

A chain of events α = 〈a0, a1, . . . , an−1〉 is executable in a state s if either (i)
n = 0, i.e., α is an empty chain of events, or (ii) a0 is executable in s and
〈a1, . . . , an−1〉 is executable in every s′ such that 〈s, a, s′〉 ∈ T (D). A chain of
events is executable in a set of states S if it is executable in every state s ∈ S.

2.3 A Logic Programming Representation of T (D)

We now describe a logic program, called lp(D), which can be used to compute
the transitions in T (D). lp(D) consists of rules for reasoning about the effects

4 This shows that there exist AL action theories with deterministic actions which
can not be represented in PDDL with deterministic actions and non-recursive ax-
ioms.

11

of actions. Among these rules, the inertial rule encodes the solution to the
frame problem, first discussed by John McCarthy and Pat Hayes in their
landmark paper on reasoning about actions and changes [44].

The signature of lp(D) includes terms corresponding to fluent literals and
actions of D, as well as non-negative integers used to represent time steps. We
often write lp(D, n) to denote the restriction of the program lp(D) to time
steps between 0 and n. Atoms of lp(D) are formed by the following (sorted)
predicate symbols:

• fluent(F) is true if F is a fluent
• literal(L) is true if L is a fluent literal;
• h(L, T) is true if the fluent literal L holds at time-step T ; and
• o(E, T) is true if the elementary action E occurs at time-step T .

In our representation, letters T , F , L, A, and E (possibly indexed) (resp. t, f ,
l, a, and e) are used to represent variables (resp. constants) of sorts time step,
fluent, fluent literal, action, and elementary action correspondingly. Moreover,
we also use some shorthands: if a is an action then o(a, T) = {o(e, T) | e ∈ a}.
For a set of fluent literals γ, h(γ, T) = {h(l, T) | l ∈ γ}, not h(γ, T) =
{not h(l, T) | l ∈ γ}, ¬γ = {¬l | l ∈ γ}, and lit(ψ) = {literal(l) | l ∈ ψ}. The
set of rules of lp(D) is divided into the following five subsets 5 :

(1) Dynamic causal laws: for each statement of the form (1) in D, the rule:

h(l, T)← o(e, T−1), h(ψ, T−1), T > 0 (4)

belongs to lp(D). This rule states that if the elementary action e occurs
at time step T − 1 and the precondition ψ holds at that time step then l
holds afterward.

(2) Static causal laws: for each statement of the form (2) in D, lp(D) contains
the rule:

h(l, T)←h(ψ, T) (5)

This rule states that if ψ holds at T then so does l.
(3) Impossibility conditions: for each statement of the form (3) in D, lp(D)

contains the following rule:

← o(a, T), not h(¬ψ, T) (6)

This rule states that if the precondition ψ possibly holds at time step T
then the action a cannot occur at that time step.

5 For simplicity, we omit atoms of the form lit(l), lit(ψ), and step(T) in the body
of the rules.

12

(4) Inertia: lp(D) contains the following rule which solves the frame problem
[44]:

h(L, T)←h(L, T−1), not h(¬L, T), T > 0 (7)

This rule says that a fluent literal L holds at time step T if it holds at
the previous time step and its negation does not hold at T .

(5) Auxiliary rules: lp(D) also contains the following rules:

←h(F, T), h(¬F, T) (8)

literal(F)← fluent(F) (9)

literal(¬F)← fluent(F) (10)

The first constraint impedes two complementary fluent literals from hold-
ing at the same time. The last two rules are used to define fluent literals.

For an action a and a state s, let

Φ(a, s) = lp(D, 1) ∪ h(s, 0) ∪ o(a, 0) (11)

The next theorem states that the program lp(D) correctly implements T (D)
(see [58,67]).

Theorem 2 [58,67] Let s be a state and a be an action. Then 〈s, a, s′〉 ∈ T (D)
iff there exists an answer set A of Φ(a, s) such that s′ = {l | h(l, 1) ∈ A}.

2.4 Conformant Planning

The conformant planning problem, as investigated in this paper, has been
discussed in [12–15,18,21,52,56] and in our papers [60–62]. Given an action
theory D, a set of fluent literals δ is a partial state if it is a subset of some
state s and is closed under the static causal laws. Intuitively, a partial state
represents the knowledge of an agent associated with D about the current
state of the world. For example, ∅ is a partial state of the action theory Dbomb

because ∅ is closed under the set of static causal laws of Dbomb and it is a
subset of the state s0 in Example 2. Likewise, {armed(1), armed(2),¬safe}
is another partial state of Dbomb. However, {¬armed(1),¬armed(2)} is not a
partial state of Dbomb because it is not closed under the laws in Dbomb.

From now on, we will use symbols σ, s, and δ (possibly indexed) to denote a
set of fluent literals, a state and a partial state respectively. For a partial state
δ, the completion of δ, denoted by comp(δ), is the set of all states s such that
δ ⊆ s.

13

A (conformant) planning problem is defined as follows.

Definition 5 A planning problem P is a tuple 〈D, δ0, δf〉 where D is an ac-
tion theory, and δ0 and δf are partial states of D.

Observe that in this section we consider planning problems whose initial state
description is a set of literals. More general description will be considered in
Sections 6 and 9. The solutions of a planning problem are defined as follows.

Definition 6 Let P = 〈D, δ0, δf〉 be a planning problem. A chain of events
α = 〈a0, . . . , an−1〉 is a solution of P if α is executable in comp(δ0) and for
every model M of α with the initial state in comp(δ0), M |= δf .

We often refer to such an α as a plan for δf . If δ0 is a state and the action
theory D is deterministic then α is called a classical plan; otherwise it is a
conformant plan. Furthermore, if each ai of α is an elementary action then
α is called a sequential plan; otherwise it is called a parallel plan. We next
illustrate these definitions using the bomb-in-the-toilet example.

Example 5 Consider the action theoryDbomb and let δ0 = ∅ and δf = {safe}.
Then, Pbomb = 〈D, δ0, δf〉 is a planning problem.

We can check that

α1 = 〈flush(1), dunk(1, 1), f lush(1), dunk(2, 1)〉

and
α2 = 〈{flush(1), f lush(2)}, {dunk(1, 1), dunk(2, 2)}〉

are two solutions of Pbomb. The first one is a sequential plan, whereas the
second one is a parallel plan. 2

3 Approximations of AL Action Theories

Let D be an action theory. In this section, we first define what we mean by an
approximation of the transition diagram T (D) and discuss how approximations
can be used to find a solution of a planning problem. Then we introduce a
logic program for defining such an approximation.

Let us begin with the definition of an approximation.

Definition 7 (Approximation) A transition diagram T ′(D) is an approxi-
mation of T (D) if

(1) nodes of T ′(D) are partial states of D and arcs of T ′(D) are labeled with

14

actions, and
(2) if 〈δ, a, δ′〉 ∈ T ′(D) then for every s ∈ comp(δ),

(a) a is executable in s and,
(b) δ′ ⊆ s′ for every s′ such that 〈s, a, s′〉 ∈ T (D).

Intuitively, the first condition describes that an approximation T ′(D) is a
transition diagram between partial states and the second condition requires
T ′(D) to be sound with respect to T (D).

Given an approximation T ′(D), we will write 〈δ, α, δ′〉 ∈ T ′(D) to denote
that there exists a path corresponding to α from δ to δ′ in T ′(D) and by
convention 〈δ, 〈〉, δ〉 ∈ T ′(D) for every partial state δ. We say that T ′(D) is
deterministic if for each partial state δ and action a, there exists at most
one δ′ such that 〈δ, a, δ′〉 ∈ T ′(D). Even though approximations can be non-
deterministic, in this paper we are interested in deterministic approximations
only. The next observation shows how the soundness of an approximation
extends from transitions to paths.

Observation 3.1 Let T ′(D) be an approximation of T (D). Then, for every
chain of events α if 〈δ, α, δ′〉 ∈ T ′(D) then for every s ∈ comp(δ),

(1) α is executable in s, and
(2) δ′ ⊆ s′ for every s′ such that 〈s, α, s′〉 ∈ T (D).

Observation 3.1 shows that given an approximation T ′(D), each path from
δ to δ′ corresponds to a solution of the planning problem 〈D, δ, δf〉, where
δf ⊆ δ′. This gives rise to the following questions:

(1) How to find an approximation of T (D)?
(2) How an approximation can be used to solve conformant planning prob-

lems?

In the rest of this section, we define an approximation of T (D) called T lp. In
the next section, we will use T lp to construct a conformant planner.

In our approach, the transitions in T lp(D) are defined by a logic program π(D)
called the cautious encoding of D. Following the lp-function theory from [22],
π(D) is obtained from lp(D) (see Section 2.3) by adding to it some new rules
and modifying the inertial rule (7) to allow π(D) to deal with partial states.

Let b be an action and δ be a partial state. We say that b is safe in δ if there
exists no impossibility condition (3) such that a ⊆ b and ψ possibly holds in δ.
A fluent literal l is a direct effect (resp. possible direct effect) of b in δ if there
exists a dynamic causal law (1) such that e ∈ b and ψ holds (resp. possibly
holds) in δ (Recall that a partial state is also a set of fluent literals and thus
the concepts of “holds” and “possibly holds” are already defined in Section

15

2.2). Observe that if b is safe in δ then b is executable in every state s ⊇ δ.
Furthermore, the direct effects of b in δ are also the direct effects of b in s
which in turn are the possible direct effects of b in δ.

The program π(D): The signature of π(D) is the same as the signature of
lp(D). As before, we write π(D, n) to denote the restriction of π(D) to time
steps between 0 and n. Atoms of π(D) are atoms of lp(D) and those formed
by the following (sorted) predicate symbols:

• de(l, T) is true if the fluent literal l is a direct effect of an action that occurs
at the previous time step; and

• ph(l, T) is true if the fluent literal l possibly holds at time step T .

We still use letters T , F , L, E, and A (possibly indexed) to represent vari-
ables of sorts time step, fluent, fluent literal, elementary action, and action
correspondingly. π(D) includes

(1) the rules (4)–(6) and (8)–(10) from the program lp(D); and
(2) additional rules defined as follows.

(a) For each dynamic causal law (1) in D, π(D) contains the rule

de(l, T)← o(e, T − 1), h(ψ, T − 1), T > 0 (12)

This rule encodes a direct effect of an elementary action e at the time
step T . It says that if e occurs at time step T−1 and the precondition
ψ holds then the fluent literal l is a direct effect of e.

Since the agent’s knowledge about the state of the world at a time
step might be incomplete, we add to π(D) the rule to define what
possibly holds after the execution of an action e at the time step
T − 1:

ph(l, T) ← o(e, T − 1), not h(¬ψ, T − 1), not de(¬l, T), T > 0 (13)

This rule says that a fluent literal l possibly holds after the execution
of an elementary action e if (i) e occurs at the previous time step; (ii)
there exists a dynamic causal law (1) for e such that the precondition
ψ possibly holds at the previous step; and (iii) ¬l is not a direct effect
of some action occurring in the previous time step.

(b) For each static causal law (2) in D, π(D) contains the rule:

ph(l, T)← ph(ψ, T) (14)

This rule states that if ψ possibly holds at T then so does l.
(c) In addition, π(D) contains the following rule

ph(L, T)←not h(¬L, T−1), not de(¬L, T), T > 0 (15)

16

This rule completes the definition of the predicate ph. It defines what
possibly holds by inertia: a fluent literal possibly holds if (i) it pos-
sibly holds at the previous time step; and (ii) its negation is not a
direct effect of an action occurring in the previous time step.

(d) Finally, the inertial law is encoded in π(D) as follows:

h(L, T)←not ph(¬L, T), T > 0 (16)

which says that L holds at the time moment T > 0 if its negation
does not possibly hold at T .

For an action a and a partial state δ, let

Π(a, δ) = π(D, 1) ∪ h(δ, 0) ∪ o(a, 0) (17)

Then, the program Π(a, δ) has the following property.

Proposition 1 Let δ be a partial state and a be an action. If Π(a, δ) is con-
sistent then it has a unique answer set B and δ′ = {l | h(l, 1) ∈ B} is a partial
state.

Proof. See Appendix A.1. 2

We define a transition diagram, called T lp(D), based on the program π(D) as
follows.

Definition 8 Let T lp(D) be a transition diagram such that

(1) nodes of T lp(D) are partial states of D and arcs of T lp(D) are labeled with
actions of D, and

(2) 〈δ, a, δ′〉 ∈ T lp(D) iff Π(a, δ) is consistent and δ′ = {l | h(l, 1) ∈ B} where
B is the answer set of Π(a, δ).

The next theorem states that T lp(D) is indeed an approximation of T (D) and
furthermore it is deterministic.

Theorem 3 T lp(D) is a deterministic approximation of T (D).

Proof. See Appendix A.2. 2

At this point, it is instructive to mention that an approximation for action
theories with static causal laws has been introduced in [66]. This approxima-
tion is an extension of the 0-approximation in [57]. The approximation defined
in this paper is also an extension of the 0-approximation in [57]. Indeed, the
following result holds (similar to Theorem 4.6 in [65]).

Observation 3.2 Let D be action theory without static causal laws, δ be a

17

partial state, and a be an action executable in δ. Then, 〈δ, a, δ′〉 ∈ T lp(D) if
and only if δ′ = Φ0(a, δ) where Φ0 denotes the 0-approximation in [57].

While the approximations in [57,62,66] are proposed in the context of a given
action language, the approximation proposed in this paper, first published in
[61], is applicable for action languages whose semantics can be specified by a
transition diagram. We note that the approximation proposed in this paper
and the one in [66] deal with action theories with static causal laws and the
one in [57] does not. Furthermore, only the approximation proposed in this
paper is applicable to transition diagrams which allow parallel actions.

The approximation in [66] is based on the idea of computing what can possibly
change after an action is executed. A fluent literal l possibly changes its value
after the execution of an action e if (a) it is a direct effect of e; or (b) there
exists some dynamic law [e causes l if ψ] such that ψ possibly changes;
or there exists some static causal law [l if ψ] such that ψ possibly changes.
Furthermore, the approximation in [66] does not consider action theories with
parallel actions. As such, instead of computing what possibly holds (rules
(13), (14), and (15)) and employing this result in the inertial law (rule (16)),
the planner in [66] implements rules for computing what possible changes as
follows 6 :

pc(l, T) ← o(e, T − 1), not h(¬ψ, T)

pc(l, T) ← not h(l, T − 1), pc(l′, T), not de(¬ψ, T)

h(l, T) ← h(l, T − 1), not pc(¬l, T)

The first rule is for a dynamic causal law of the form [e causes l if ψ] and
the second rule is for a static causal law of the form [l if ψ] with l′ ∈ ψ.
The last rule encodes the inertial law. It is worth mentioning that the rule
encoding the inertial law (16) does not include the atom h(l, T − 1), i.e., it is
applicable to fluents whose value is unknown (w.r.t. the approximation) before
the execution of an action. For this reason, we now favor this approximation
over the one developed in [66].

Observe that T lp(D) and the approximation in [66] are incomparable in the
sense that T lp(D) sometimes entails some conclusions that could not be derived
using the approximation in [66] and vice versa. For instance, for the theory

D2 = {a causes ¬h, ¬f if g}

we have that 〈{f}, a, {¬h}〉 ∈ T lp(D) (or {¬h} is the partial state resulting
from the execution of a in {f} according to the approximation T lp) whereas

6 We adapt the encoding style used in this paper in encoding the approximation in
[66].

18

{f,¬h} is the partial state resulting from the execution of a in {f} according
to [66]. On the other hand, for the theory

D3 =





a causes f a causes g if k g if f, h

g if f,¬h k if f p if g, q





we have that 〈{¬f,¬g,¬p,¬q}, a, {f,¬p,¬q, k}〉 ∈ T lp(D3) while {f, k,¬q} is
the partial state resulting from the execution of a in {¬f,¬g,¬p,¬q} according
to [66].

4 An Approximation Based Conformant Planner

Let P = 〈D, δ0, δf〉 be a planning problem. Observation 3.1 implies that for
any (deterministic) approximation T ′(D) of T (D), if α is a chain of events
such that 〈δ0, α, δ′〉 ∈ T ′(D) and δf ⊆ δ′, then α is a solution of P . Because
T lp(D) is a deterministic approximation of T (D), we consider the following
decision problem.

Conformant planning with respect to T lp(D): Given a planning problem
P = 〈D, δ0, δf〉, determine whether P has a solution with respect to T lp(D).

The following complexity result is similar to Theorem 1 in [66].

Theorem 4 The conformant planning problem with respect to T lp(D) is NP-
complete.

The fact that T lp(D) is deterministic also allows us to use the program π(D)
to compute solutions of P . In this section, we describe how to construct a logic
program from π(D) for this purpose. This logic program, denoted by π(P , n),
has two input parameters: a planning problem P and an integer n. The answer
sets of π(P , n) contain solutions of length n of P .

Like π(D), the signature of π(P , n) includes terms corresponding to fluent
literals and actions of D. Rules of π(P , n) include all the rules of π(D, n) and
the following rules:

(1) Initial partial state encoding: we add to π(P , n) the following facts to
describe the initial partial state

h(δ0, 0) . (18)

Note that the above is a shorthand for the set of facts {h(l, 0). | l ∈ δ0}.
(2) Goal encoding: for each l ∈ δf , π(P , n) contains the constraint:

19

←not h(l, n) (19)

This set of constraints makes sure that every fluent literal in δf holds in
the final state.

(3) Action generation rule: π(P , n) contains the following rules for generating
action occurrences:

o(E, T) ∨ ¬o(E, T)←T < n (20)

←not o(A, T), T < n (21)

(Recall that A is the set of all actions.) These rules state that at any
time step T < n at least one action occurs 7 .

The following theorem shows that we can use π(P , n) to find solutions of P .

Theorem 5 Let C be an answer set of π(P , n) and let ai = {e | o(e, i) ∈ C}
(0 ≤ i < n). Then, α = 〈a0, . . . , an−1〉 is a solution of P.

Proof. See Appendix B. 2

It is worth noticing that the program π(P , n) is similar to the one presented
in [58] in that each of its answer sets corresponds to a solution of the planning
problem P . Nevertheless, there are two important differences between π(P , n)
and the program in [58]. π(P , n) can deal with incomplete initial situation and
also considers parallel actions. None of these aspects were considered in [58].
The program π(P , n) is strongly related to the planner in [66]. They differ
from each other in that they implement different approximations and π(P , n)
can deal with parallel actions and the one in [66] cannot.

Theorem 5 implies that each answer set of π(P , n) corresponds to a solution
of length n of P . To find minimal solutions, we run the program π(P , n) with
n = 0, 1, . . . sequentially until it returns an answer set (i.e., the first n such
that π(P , n) is consistent). The chain of events corresponding to this answer
set is a minimal solution of P . This framework is hereafter referred to as the
planner CPasp 8 .

As will be seen in Section 8, CPasp can solve a wide range of planning prob-
lems. However, it is incomplete, i.e. there are some planning problems for which
a solution exists but cannot be found by CPasp. A precise definition of the
(in-)completeness of CPasp is given below.

7 An alternative for this set of rules is a choice rule

1{o(E, T) : action(E)} ← T < n

which were introduced in [55].
8 CPasp stands for Conformant Planning using Answer Set Programming.

20

Definition 9 (Completeness and Incompleteness of CPasp) Let P be
a planning problem. We say that CPasp is complete with respect to P if
either (i) P does not have a solution; or (ii) P has a solution and there exists
an integer n such that π(P , n) is consistent. Otherwise, we say that CPasp is
incomplete with respect to P.

Observe that Theorem 5 shows that if P does not have a solution then and
π(P , n) is inconsistent for every n. One of the main reasons for the incom-
pleteness of CPasp is the inability of the program π(P , n) to do reasoning by
cases. The following example demonstrates this issue.

Example 6 Consider the action theory D4 with two dynamic causal laws

e causes f if g

e causes f if ¬g

Let P4 = 〈D4, ∅, {f}〉. Clearly 〈e〉 is a solution of P4 because either g or ¬g
is true in any state belonging to comp(∅) and thus one of the above dynamic
causal laws would take effect when e is performed. Yet, it is easy to verify that
this solution cannot be generated by CPasp due to the fact that for every n,
π(P4, n) does not have any answer set (Constraint (19) cannot be satisfied).
2

The next example shows that not only conditional effects but also static causal
laws can cause CPasp to be incomplete.

Example 7 Consider the action theory D5:

e causes f

g if f, h

g if f,¬h

We can check that 〈e〉 is a solution of the planning problem P5 =
〈D5, {¬f,¬g}, {g}〉 since e causes f to be true and the two static causal laws
make g become true whenever f is true.

Now suppose that the program π(P5, 1) has an answer set C which corresponds
to the plan 〈e〉. This implies that o(e, 0) ∈ C. Then, because of the rule (12),
we have that de(f, 1) ∈ C. Furthermore, any atom of the form de(. . . , . . .)
belongs to C if and only if it is the head of a ground instance of the rule (12).
Thus, the only atom of the form de(. . . , . . .) in C is de(f, 1) ∈ C.

By rule (13), this implies that ph(f, 1) ∈ C. By rule (15), ph(¬g, 1), ph(h, 1),
ph(¬h, 1) all belong to C. By rule (16), because ph(¬g, 1) ∈ C, h(g, 1) cannot

21

belong to C. As a result, constraint (19) is not satisfied. This is a contradiction
because C must satisfies all the constraints of π(P5, 1).

Hence, π(P5, 1) does not have any answer set. In fact, we can verify that for
any integer n, π(P5, n) does not have an answer set. This implies that CPasp
cannot find a solution of P5. 2

The above examples raise a question about the applicability of CPasp: what
kind of planning problems can CPasp solve? Observe that the action the-
ories presented in Examples 6 and 7 are rather artificial and are not likely
to come up in the specification of real-world domains. In fact, the theo-
ries in Examples 6 and 7 can be simplified to D′

4 = {e causes f} and
D′

5 = {e causes f} ∪ {g if h} respectively. It is easy to see that CPasp
is complete with respect to the simplified domains. In [59], we developed a
transformation that removes such artificial situations. It is worth to mention
that CPasp can solve all benchmark problems with non-disjunctive initial
state that we have encountered so far.

5 A Sufficient Condition for the Completeness of CPasp

In this section, we present our initial study of the completeness of CPasp.
Specifically, we introduce a class of planning problems, called simple planning
problems (Definition 14) with respect to which CPasp is complete. For con-
venience, given an action theory D, for a set S of states and action a, by
Res(a, S) we denote the set of possible successor states of states in S after the
execution of a, i.e.,

Res(a, S) = {s′ | s ∈ S, 〈s, a, s′〉 ∈ T (D)}

For a chain of events α, by Res(α, S) we denote the set of possible states
reachable from some state in S after the execution of α, i.e.,

Res(α, S) = {s′ | s ∈ S, 〈s, α, s′〉 ∈ T (D)}

Definition 10 (Simple Action Theories) A static causal law is simple if
its precondition contains at most one fluent literal. An action theory D is
simple if each of its static causal laws is simple.

By this definition, action theories without static causal laws are simple 9 .
Furthermore, we observe that many real world static causal laws are simple

9 This implies that all benchmarks used in the international planning competi-
tions involve only simple action theories as static causal laws are not used in their
representation.

22

in nature. For example, to represent the unique location of a robot at a time,
we can use the following collection of static causal laws:

{¬at(X) if at(Y) | X 6= Y }

Likewise, to represent the unique value of a multi-valued object obj, we can
use:

{¬value(obj, X) if value(obj, Y) | X 6= Y }.
Observe that simple action theories can be translated into action theories
without static causal laws by

• computing S(l) = {h | there exists a sequence l0 = l, . . . , ln = h such that
li if li−1 for 1 ≤ i ≤ n}, for each fluent literal l, and

• replacing a dynamic law [a causes l if ϕ] with the set of dynamic laws

{a causes h if ϕ | h ∈ S(l)}.

A main disadvantage of this approach lies in that the number of dynamic laws
might increase quadratically in the number of static laws.

To characterize situations in Examples 6-7, we define a notion of dependency
between fluent literals.

Definition 11 (Dependencies Between Literals) A fluent literal l de-
pends on a fluent literal g, written as l / g, if one of the following conditions
holds.

(1) l = g.
(2) There exists a (dynamic or static) causal law of D such that l is the head

and g belongs to the precondition of the law.
(3) There exists a fluent literal h such that l / h and h / g.
(4) The complementary of l depends on the complementary of g, i.e., ¬l /¬g.

Note that the dependency relationship between fluent literals is reflexive, tran-
sitive but not symmetric. The next definition is about the dependence between
actions and fluent literals.

Definition 12 (Dependencies Between Actions and Fluent Literals)
An action b depends on a fluent literal l, written as b / l, if

(1) there exists an impossibility condition (3) such that a ⊆ b and ¬l ∈ ψ, or
(2) there exists a fluent literal g such that b / g and g / l.

For a set of fluent literals σ and a fluent literal l, we write l / σ to denote that
l / g for some g ∈ σ and l 6 σ to denote that there exists no g ∈ σ such that
l / g.

23

The next definition characterizes when a set of states S representing the pos-
sible states of the world can be reduced to a single partial state δ.

Definition 13 (Reducibility) Let S be a set of states, δ be a partial state,
and σ be a set of fluent literals. We say that S is reducible to δ with respect
to σ, denoted by S Àσ δ if

(1) δ is a subset of every state s in S,
(2) for any fluent literal l ∈ σ, there exists a state s ∈ S such that l 6 (s\ δ),

and
(3) for any action a, there exists a state s ∈ S such that a 6 (s \ δ).

There are two interesting properties about the reducibility of a set of states.
First, if S Àσ δ and S represents the set of possible states of the world then
to reason about (formulae composed from) σ, it suffices to know δ.

Proposition 2 Let D be a simple action theory, S be a set of states, δ be a
partial state, and σ be a set of fluent literals such that S Àσ δ. Then,

⋃

s∈S

s ∩ σ = δ ∩ σ

Proof. See Appendix C.1. 2

The reducibility of a set of states is preserved along the course of the execution
of actions.

Proposition 3 Let D be a simple action theory, S be a set of states, δ be a
partial state, and σ be a set of fluent literals such that S Àσ δ. For any action
a, if a is executable in S then

(1) a is safe in δ,
(2) Res(a, S) Àσ δ′ where 〈δ, a, δ′〉 ∈ T lp(D).

Proof. See Appendix C.2. 2

The second property can be extended to a chain of events α as follows.

Proposition 4 Let D be a simple action theory, S be a set of states, δ be a
partial state, and σ be a set of fluent literals such that S Àσ δ. For any chain
of events α, if α is safe in S then

(1) α is safe in δ
(2) Res(a, S) Àσ δ′ where 〈δ, a, δ′〉 ∈ T lp(D).

Proof. See Appendix C.3. 2

24

We define a class of planning problems, called simple planning problems, as
follows.

Definition 14 (Simple Planning Problems) A planning problem
〈D, δ0, δf〉 is simple if

(1) D is simple, and
(2) comp(δ0) Àδf δ0.

The following theorem states that for the class of simple planning problems
the planner CPasp is complete.

Theorem 6 Let P = 〈D, δ0, δf〉 be a planning problem. If P is simple then
CPasp is complete with respect to P.

Proof. See Appendix C.4. 2

We would like to conclude this section by relating our completeness condition
for approximation based reasoning in action theories with incomplete initial
state to other works. The proposed condition is strongly related to the result
in [60], in which a completeness condition was developed for action theories
without static causal laws 10 . Observe that the proofs of this result in [60] make
use of different techniques while the proofs of the completeness result in this
paper relies on techniques developed by the logic programming community.

In [49], Palacios and Geffner presented several translations that convert a
planning problem P = 〈D, δ0, δf〉 into a classical planning problem P ′ =
〈D′, γ0, γf〉 (γ0 is complete) whose solutions can be computed using classical
planners (e.g. FF). A translation might introduce new fluents and actions.
Roughly, the completeness of a translation depends on the set of new fluents
and actions. The authors of [49] identified a class of complete translations.
They can be characterized by the width of the problem, which depends on a
relevance relation between literals. This relation is similar to the dependency
relation between literals in Definition 11. Similar to [60], the approach in [49]
does not deal with action theories with static causal laws. Nor does it consider
parallel actions.

The determinicity of T lp(D) and the fact, that computing the result of the
execution of an action in a given partial state can be done in polynomial time
(in the size of the theory), imply that computing the result of the execution
of an action sequence from a given state can be done in polynomial time. In
other words, the temporal projection problem [30] in the class of simple action

10 This result is similar to Theorem 4 in [60]. Theorem 3 in [60] is incorrect but this
does not invalidate Theorem 4. A corrected version of Theorem 3 can be found in
[65].

25

theories is tractable. This result is similar to the result developed by Liu and
Levesque in [39]. As with other works, the work [39] does not deal with static
causal laws or parallel actions.

6 A Logic Programming Based Planner for Disjunctive Initial
State

Besides being sometimes incomplete, another weakness of CPasp is that it
does not consider planning problems with disjunctive information about the
initial state. We call such problems disjunctive planning problems and formally
define them as follows.

Definition 15 (Disjunctive Planning Problems) A disjunctive planning
problem P is a tuple 〈D, ∆0, δf〉 where D is an action theory, ∆0 is a non-
empty set of partial states and δf is a partial state.

It is easy to see that a planning problem in Definition 5 is a special case of
a disjunctive planning problem where ∆0 is a singleton set. Solutions of a
disjunctive planning problem are defined as follows.

Definition 16 A chain of events α = 〈a0, . . . , an−1〉 is a solution of a disjunc-
tive planning problem P = 〈D, ∆0, δf〉 if for every δ0 ∈ ∆0, α is a solution of
the planning problem 〈D, δ0, δf〉.

Example 8 Consider the domain

D6 =





e causes f if g

e causes f if h

and let ∆0 = {{g}, {h}} and δf = {f}. Then, P6 = 〈D6, ∆
0, δf〉 is a disjunctive

planning problem. By Definition 16, it is easy to see that α = 〈{e}〉 is a solution
of P6. 2

It turns out that the framework in the previous section can be naturally ex-
tended to find solutions of a disjunctive planning problem P . First, we extend
the program π(D) to deal with explicit disjunctive information about the ini-
tial state; the newly extended program will be referred to as Γ(D). Then, we
construct a program Γ(P , n) from Γ(D) so that every answer set of Γ(P , n),
if exists, represents a solution of P .

The basic idea in the development of Γ(D) is based on the approach in [66]. We
add a second constant to Γ(D), called worlds, to denote the number of initial
partial states in ∆0, i.e., worlds = |∆0|. With the exception of the predicate

26

o(A, T) and the auxiliary predicates (e.g., literal(L), fluent(F), etc.), every
other predicate of π(D) is modified to accept a third parameter W to indicate
the possible world that the reasoner may be in during the execution of the
plan, in the following way:

• h(l, T,W) is true if the fluent literal l holds at time-step T in the world W ;
• de(l, T,W) is true if the fluent literal l is a direct effect of an action that

occurs at the previous time step in the world W ; and
• ph(l, T, W) is true if fluent literal l possibly holds at time step T in the

world W .

The rules of Γ(D) are obtained from the rules of π(D) by replacing predicates
h(l, T), de(l, T) and ph(l, T) with the new predicates h(l, T, W), de(l, T,W)
and ph(l, T, W) respectively. For example, the rule (4) will become

h(l, T + 1, W)← o(e, T), h(ψ, T, W).

Similarly, the rule (13) becomes

ph(l, T + 1,W) ← o(e, T), not h(¬ψ, T,W), not de(¬l, T + 1,W).

As before, we use the notation Γ(D, n) to denote the restriction of Γ(D) to
the time step to take value between 0 and n. Suppose ∆0 = {δ0, . . . , δk−1}.
The program Γ(P , n) is constructed as follows:

(1) The value of the constant worlds is k.
(2) The set of rules of Γ(P , n) includes

(a) the rules of Γ(D, n), and
(b) for each δi ∈ ∆0, the rule

h(δi, 0, i).

(c) for each l ∈ δf and i ∈ {1, . . . , k}, the rule

← not h(l, n, i).

The following proposition establishes the relationship between Γ(P) and Π(P).

Proposition 5 Let P = 〈D, {δ0}, δf〉 and P ′ = 〈D, δ0, δf〉. A set of atoms A
is an answer set of Γ(P , n) iff there exists an answer set B of π(P ′, n) such
that

(1) for every fluent literal l, h(l, i, 0) ∈ A iff h(l, i) ∈ B, and
(2) for every elementary action e, o(e, i, 0) ∈ A iff o(e, i) ∈ B.

27

Theorem 7 Let P = 〈D, ∆0, δf〉 be a disjunctive planning problem. If A is
an answer set of Γ(P , n) then α = 〈a0, . . . , an−1〉, where ai = {e | o(e, i) ∈ A},
is a solution of P.

Proposition 5 is intuitive and it is not difficult to prove its correctness. The
proof of Theorem 7 is similar to the proof of Theorem 5 in Appendix B. Hence,
we omit the proofs of both of them here for brevity.

7 Heuristic Search Through T lp

In the previous sections, we demonstrated the usefulness of approximations
in planning in the logic programming paradigm. The experiments (Section 8)
show that CPasp is really good in planning with parallel actions and in do-
mains rich in static causal laws. However, it does not perform well in domains
with large grounded representation. One of the main reasons for this problem
is because the current answer set solvers do not scale up well to programs that
require large grounded representation. Various approaches have been proposed
to attack this issue from different perspectives [9,20]. To further investigate
the usefulness of approximations, we implemented a C++ sequential planner,
called CpA, based on the transition diagram induced by T lp. CpA employs
the best first search strategy with repeated state avoidance and the number
of fulfilled subgoals as the heuristic function. The initial state is described as
a CNF formula and thus CpA allows for disjunctive information as well.

One of the main functions inside CpA is to compute the transition function
specified by T lp. The algorithm for this function is presented in Figure 2.
It takes as input an action theory D, an action a and a partial state δ and
returns as output the successor partial state of δ. Note that because T lp is
deterministic, such a successor partial state exists and is unique, provided
that a is safe in δ. In the algorithm, variables de and pde denote the set of
direct effects and the set of possible direct effects respectively; ph is the set
of fluent literals that possibly holds in the successor partial state; and lit is
the set of all fluent literals. The only for loop is to compute the sets of direct
effects and possible direct effects.

The algorithm makes two calls to the Closure function (depicted in Figure
3). The Closure function takes as input an action theory D and a set of
fluent literals σ and returns as output ClD(σ). This process is performed in
the following steps. First, the closure is set to σ. Then the function loops over
the static causal laws, adding to the closure the head of static causal laws
whose bodies hold in the previous iteration. The loop terminates when no
more fluent literals can be added to the closure.

28

Res(D,a,δ)

Input: An action theory D, an action a, and a partial state δ

Output: successor partial state of δ

1. Begin

2. de = ∅ pde = ∅ lit = F ∪ ¬F
4. for each dynamic causal law (1) in D do
5. if ψ holds in δ then de = de ∪ {l}
6. if ψ possibly holds in δ then pde = pde ∪ {l}
6. ph = Closure(D, (pde ∪ (lit \ ¬δ)) \ ¬de)
7. return Closure(D, de ∪ (lit \ ¬ph))
8. End

Fig. 2. An algorithm for computing the transition function of T lp

Closure(D,σ)

Input: An action theory D and a set of fluent literal σ

Output: ClD(σ)
1. Begin

2. σ1 = σ2 = σ

3. repeat
4. fixpoint = true

5. for each static causal law (2) in D do
6. if ψ holds in σ1 and l 6∈ σ2 then
7. σ2 = σ2 ∪ {l} fixpoint = false

8. σ1 = σ2

9. until fixpoint

10. return σ1;
11. End

Fig. 3. Computing the closure of a set of fluent literals

The correctness of the algorithm is stated in the following theorem.

Theorem 8 Let D be an action theory, a be an action, and δ be a partial
state. If a is safe in δ then Res(D, a, δ) = δ′ iff 〈δ, a, δ′〉 ∈ T lp(D).

Proof. See Appendix D. 2

We would like to note that CpA also deals with disjunctive information about
the initial state. CpA employs an explicit DNF representation of the initial
state. Given an CNF representation of the initial state 11 , CpA converts it into
its internal DNF representation. Naturally, this might be very time consuming

11 In PDDL, this is specified by oneof- and or-clauses.

29

and could affect the planner’s performance. Finding an implementation of
CpA that does not require an DNF representation of the initial state is an
interesting topic but is beyond the scope of this paper and is considered as
one of our goals in the future.

8 Experiments

In this section, we will present our experimental evaluation of the performance
of CPasp and CpA. The platform used for testing CPasp is a 2.4 GHz CPU,
768MB RAM machine, running Slackware 10.0 operating system. Experiments
with CpA and sequential planners are conducted on a 3.2 Ghz CPU, 2GB
RAM, running Suse Linux 9.0 operating system. Every experiment had a time
limit of 30 minutes.

8.1 Evaluation of CPasp

8.1.1 Planning Systems Used

We compared CPasp with three other conformant planners: CMBP [15], DLVK

[18], and C-Plan [14]; We selected these planners because they are designed
in spirit similar to CPasp (that is, a planning problem is translated into an
equivalent problem in a more general setting which can be solved by an off-the-
shelf software system) and can directly deal with static causal laws. The main
difference between these planners and CPasp lies in the use of different types
of reasoning in searching for plans. CMBP, DLVK, and C-Plan use the possible
world semantics whereas CPasp uses the approximation. A brief overview of
these planners is given below.

• CMBP (Conformant Model Based Planner): CMBP is a conformant plan-
ner developed by Cimatti and Roveri [15]. CMBP employs BDD (Binary
Decision Diagram) techniques to represent planning domains and search
for solutions. CMBP allows non-deterministic domains with uncertainty in
both the initial state and action effects. However, it does not have the
capability of generating concurrent plans. The input language is the ac-
tion language AR [28]. The version used for testing was downloaded from
http://www.cs.washington.edu/research/jair/contents/v13.html .

• DLVK: DLVK is a declarative, logic-programming-based planning system built
on top of the DLV system (http://www.dbai.tuwien.ac.at/proj/dlv/). Its
input language K is a logic-based planning language described in [18]. The
version used for testing was downloaded from http://www.dbai.tuwien.ac.

at/proj/dlv/K/ . DLVK is capable of generating both concurrent and confor-

30

mant plans.
• C-Plan: C-Plan is a SAT-based conformant planner. C-Plan works using

a generate-and-test method. The input language is the action language C
[21,29]. C-Plan is primarily designed for generating concurrent plans.

8.1.2 Benchmarks

We prepared two test suites. The first test suite contains sequential, confor-
mant planning benchmarks and the second contains concurrent, conformant
planning benchmarks. Many benchmarks are taken from the literature (e.g.
[12,14,18]) and some were developed for the international planning competi-
tion (e.g. [17]). To test the performance of our systems in domains with static
causal laws, we developed two simple domains which are rich in static causal
laws.

Sequential Benchmarks. The sequential benchmark test suite includes
the following domains:

• BT(m,n): This domain is a variant of the well-known Bomb-In-the-Toilet
domain. In this domain, there are m packages and n toilets. One of the
packages contains a bomb. The bomb can be disarmed by dunking the
package that contains it into a toilet. The goal is to disarm the bomb.

• BTC(m,n): This domain is similar to BT . However, we assume that dunk-
ing a package into a toilet will clog the toilet; flushing the toilet will make
it unclogged.

• RING(n): The encoded version of this problem follows the encoding in the
distribution of CFF. In this domain, the agent can move (forward or back-
ward) around a building with n-rooms arranged in a ring in a cyclic fashion.
Each room has a window which can be closed or open. Closed windows
may be locked. Initially, neither the location of the agent nor the states
(open/locked) of the windows is known. The goal is to have all windows
locked. A possible conformant plan consists of performing actions forward,
close, lock repeatedly. Notice that the initial location of the agent needs to
be represented as a disjunction.

Observe that the location of the agent satisfies the well-known static
causal law stating that an agent cannot be in two places at the same time.
We therefore created a domain, called RING-C(n), by introducing this
static causal law.

We should remark here that this domain is used in different ways in our
experiments. In testing CPasp, we assume that the location of the agent
is known in the initial state. This is because CPasp does not deal with
disjunctive information. On the other hand, we assume that the location of
the agent is unknown in the initial state when testing CpA.

31

• Domino(n): We have n dominoes standing on a line in such a way that if
one of them falls then the domino on its right side also falls. There is a ball
hanging close to the leftmost one. Touching the ball causes the first domino
to fall. Initially, the states of dominoes are unknown. The goal is to have
the rightmost domino fall.

• Gaspipe(n): The objective of this domain is to start a flame in a burner
which is connected to a gas tank through a pipe line. The gas tank is on
the left-most end of the pipe line and the burner is on the right-most end.
The pipe line is made of sections connected with each other by valves. The
pipe sections can be either pressured by the tank or un-pressured. Opening
a valve causes the section on its right side to be pressured if the section
to its left is pressured. Moreover, for safety reasons, a valve can be opened
only if the next valve on the line is closed. Closing a valve causes the pipe
section on its right side to be un-pressured. Static causal laws are useful in
the representation of this domain. One such law is that if a valve is open
and the section on its left is pressured then the section on its right will be
pressured. Otherwise (either the valve is closed or the section on the left is
un-pressured), the pipe on the right side is un-pressured. The burner will
start a flame if the pipe connecting to it is pressured. The gas tank is always
pressured. The uncertainty in the initial situation is that the states of the
valves are unknown. A possible conformant plan will be to close all valves
except the first one (that is, the one that directly connects to the gas tank)
from right to left and then opening them from left to right.

• Cleaner(n,p): This domain is a modified version of the Ring domain in
which instead of locking windows, the goal of the agent is to clean multiple
objects located in every room (there are p objects in each room). To contrast
with the Ring domain, we assume that initially, the agent is in the first room
and does not know whether or not any of the objects are cleaned.

Concurrent Benchmarks. There are four domains in this test suite,
namely BTp, BTCp, Gaspipep and Cleanerp. The BTp and BTCp domains
are modifications the BT and BTC domains respectively in which we allow to
dunk different packages into different toilets at the same time. The Gaspipep

domain is a modification of the Gaspipe domain, which allows to close multiple
valves at the same time. In addition, it is possible to open a valve while clos-
ing other valves. However, it is not allowed to open and close the same valve
or open two different valves at the same time. The final domain in the test
suite, Cleanerp, is a modified version of the Cleaner domain where we allow the
robot to concurrently clean multiple objects in the same room. Modifications
to the Ring and Domino domain are not considered as these problems only
have sequential solutions.

32

8.1.3 Experimental Results

We ran CPasp using the answer set solvers smodels [55] and cmodels [33]
and observed that cmodels yielded better performance in general. The running
times of CPasp reported here were obtained using cmodels. The timing results
for the sequential benchmarks is shown in Tables 1 & 2, and the results for
the concurrent benchmarks is shown in Table 3. We did not test C-Plan on
the sequential planning benchmarks since it was developd only for concurrent
planning. In these tables, times are shown in seconds; The “PL” column shows
the length of the plan found by the planner. “-” denotes that the planner did
not return a solution within the time limit for some reasons: e.g., out of time or
out of memory. “NA” denotes that the problem was not run with the planner.
Since both DLVK and CPasp require as an input parameter the length of a plan
to search for, we ran them inside of a loop in which we incrementally increase
the plan length to search for, starting from 1 12 , until a plan is found. Notice
that in this way CPasp is not only finding conformant plans but minimal
conformant plans with respect to the defined approximation. For example, C-
Plan and CPasp took 0.74 second and 2.72 second, respectively, to find the
solution for the BTC(6,2) problem. Nevertheless, CPasp’s solution is shorter.

Table 1
Sequential Benchmarks: Bomb & Ring domains

CMBP DLVK CPasp

Problem PL Time PL Time PL Time
BT(2,2) 2 0.03 2 0.04 2 0.20
BT(4,2) 4 0.17 4 0.55 4 0.41
BT(6,2) 6 0.21 6 216.55 6 0.77
BT(8,4) 8 0.63 - 8 6.73
BT(10,4) 10 1.5 - 10 890.06
BTC(2,2) 2 0.16 2 0.12 2 0.22
BTC(4,2) 6 0.26 6 72.44 6 0.71
BTC(6,2) 10 0.74 - 8 2.72
BTC(8,4) - - -
BTC(10,4) - - -
Ring(2) 5 0.06 5 0.10 5 0.52
Ring(4) 11 0.10 11 2.14 11 2.98
Ring(6) 17 0.48 - 17 44.43
Ring(8) - - 23 1424.07
Ring(10) - - -

As it can be seen in Table 1, in the BT and BTC domains CMBP outperforms
both DLVK and CPasp on most problem instances. In general CPasp has better

12 We did not start from 0 because none of the benchmarks has a plan of length 0.

33

performance than DLVK on these domains. As an example, DLVK took more than
three minutes to solve BT(6,2), while it took only 0.77 seconds for CPasp to
solve the same problem. In addition, within the time limit, CPasp was able to
solve more problems than DLVK. In the Ring domain, although outperformed
by both CMBP and DLVK in some small instances, CPasp is the only planner
that was able to solve Ring(8).

Table 2
Sequential Benchmarks: Domino, Gaspipe & Cleaner domains

CMBP DLVK CPasp

Problem PL Time PL Time PL Time
Domino(100) 1 0.26 1 0.1 1 0.21
Domino(200) 1 1.79 1 0.35 1 0.28
Domino(500) 1 7.92 1 2.40 1 0.74
Domino(1000) 1 13.20 1 13.10 1 1.23
Domino(2000) 1 66.60 1 62.42 1 2.41
Domino(5000) 1 559.46 - 1 6.07
Domino(10000) - - 1 12.584
Gaspipe(3) NA 5 0.13 5 1.34
Gaspipe(5) NA 9 0.42 9 2.22
Gaspipe(7) NA 13 42.62 13 6.18
Gaspipe(9) NA - 17 39.32
Gaspipe(11) NA - 21 868.10
Cleaner(2,2) 5 0.1 5 0.104 5 0.49
Cleaner(2,5) 11 0.61 11 214.69 11 3.88
Cleaner(2,10) - - -
Cleaner(4,2) 11 0.13 11 14.82 11 2.09
Cleaner(4,5) - - -
Cleaner(4,10) - - -
Cleaner(6,2) 17 4.1 - 17 224.39
Cleaner(6,5) - - -
Cleaner(6,10) - - -

CPasp works well with domains rich in static causal laws (Domino and
Gaspipe). In the Domino domain, CPasp outperforms all the other planners
in most of instances. It took only 2.41 seconds to solve Domino(2000), while
both DLVK and CMBP took more than one minute. In fact CPasp could scale
up very well to larger instances, e.g., Domino(10000). In the Gaspipe domain,
CPasp also outperforms DLVK: it was able to solve all the problem instances
while DLVK was able to solve only the first three problem instances 13 .

13 We tried to test this domain with CMBP but had some problem with the encod-
ing. We contacted the author of CMBP and are still waiting for response

34

Table 3
Concurrent Benchmarks: Bomb, Gaspipe & Cleaner domains

C-Plan DLVK CPasp

Problem PL Time PL Time PL Time
BTp(2,2) 1 0.07 1 0.07 1 0.11
BTp(4,2) 2 0.05 2 0.09 2 0.26
BTp(6,2) 3 1.81 3 3.06 3 0.34
BTp(8,4) 2 4.32 2 10.52 2 0.24
BTp(10,4) - - 3 1.91
BTCp(2,2) 1 0.05 1 0.05 1 0.13
BTCp(4,2) 3 0.07 3 0.90 3 0.30
BTCp(6,2) 5 7.51 5 333.27 5 0.67
BTCp(8,4) - - 3 0.50
BTCp(10,4) - - 5 1192.45
Gaspipep(3) - 4 0.08 4 0.40
Gaspipep(5) - 6 0.17 6 0.75
Gaspipep(7) - 8 0.44 8 1.22
Gaspipep(9) - 10 17.44 10 3.17
Gaspipep(11) - - 12 8.83
Cleanerp(2,2) 3 0.05 3 0.07 3 0.26
Cleanerp(2,5) 3 0.12 3 0.06 3 0.30
Cleanerp(2,10) 3 0.06 3 0.07 3 0.30
Cleanerp(4,2) 7 0.06 7 0.19 7 0.77
Cleanerp(4,5) 7 0.09 7 0.80 7 0.93
Cleanerp(4,10) 7 0.13 7 237.63 7 1.16
Cleanerp(6,2) 11 0.11 11 4.47 11 1.98
Cleanerp(6,5) 11 0.19 11 986.73 11 2.94
Cleanerp(6,10) 11 0.35 - 11 3.73

The Cleaner domain turns out to be hard for the planners: they could solve
very small instances only. In this domain, CPasp is outperformed by CMBP.
To solve the Cleaner(6,2), CMBP took only 4.1 seconds while CPasp took
more than 3 minutes. However, CPasp performs better than DLVK in general:
DLVK reported a timeout with the problem Cleaner(6,2).

We have seen that CPasp can be competitive with CMBP and DLVK on the
sequential benchmarks. Let us move our attention now to the concurrent
benchmarks. As can be seen from Table 3, CPasp outperforms both DLVK

and C-Plan on most instances of the BTp, BTCp, and Gaspipep domains.
Furthermore, CPasp is the only planner that was able to solve all the in-
stances in the test suite. In the Cleaner domain, C-Plan is the best. To
solve the Cleanerp(6,10) problem, C-Plan took only 0.35 seconds, whereas
DLVK reported a timeout and CPasp needed 3.73 seconds. As CMBP does not
produce concurrent plans, it is not included in this table.

35

8.2 Evaluation of CpA

8.2.1 Planning Systems Used

We compared CpA with four conformant planners: CFF [12], KACMBP [16],
t0 [49], and POND [13]. These planners were, at the time of our experiments,
known as the fastest conformant planners on most of the conformant planning
benchmarks in the literature 14 . CFF [12] is superior to other state-of-the-art
conformant planners like GPT [11], MBP [15]; KACMBP is reported [16] to
outperform DLVK and C-Plan in many domains in the literature. t0 [49] is
known to be better than CFF in many domains. We did not compare our
planners with the PKS system [50] (improved in [51]) which employs a richer
representation language and the knowledge-based approach to reason about
effects of actions in the presence of incomplete information as most planners
used in the comparison are domain-independent planners. A brief overview of
these planners is given below.

• KACMBP: KACMBP is an extension of CMBP. Similarly to CMBP,
KACMBP uses techniques from symbolic model checking to search in belief
space. However, in KACMBP, the search is guided by a heuristic func-
tion which is derived based on knowledge associated with a belief state.
KACMBP is designed for both sequential and concurrent settings. The in-
put language of KACMBP is SMV. The system used in the experiments
was downloaded from http://sra.itc.it/tools/mbp/AIJ04/.

• Conformant-FF (CFF): CFF 15 extends the classical FF planner [31] to
deal with uncertainty in the initial state. The basic idea is to represent a
belief state s just by the initial belief state (which is described as a CNF
formula) together with the action sequence that leads to s. In addition, the
reasoning is done by checking the satisfiability of CNF formulae. The input
language of CFF is a subset of the PDDL language with a minor change that
allows the users to specify the initial state as a CNF formula. CFF supports
sequential conformant planning. However, it does not support concurrent
and conditional planning.

• POND: POND extends the planning graph algorithm [10] to deal with sens-
ing actions. Conformant planning is also supported as a feature of POND.
The input language is a subset of PDDL. The version for testing was ob-
tained through email communication with Daniel Bryce, author of POND.
This is the version 1.1.1. of POND.

14 In a recent planning competition, an improved version of CpA won the first price
over t0 (see http://ippc-2008.loria.fr/wiki/index.php/Results). The version
of CpA used in this paper, however, is the version used at the time of the original
submission of this paper.
15 We would like to thank Jörg Hoffmann for providing us with an executable version
of the system for testing.

36

• t0 is the winner of the 2006 International Planning Competition, in the
“Conformant Planning” category. t0 solves a planning problem P by trans-
lating it into a classical planning problem P ′. The earlier version of t0, called
cf2cs(ff), [48] is incomplete but t0 [49] is complete. As with other planners
(e.g., CFF, POND), t0 does not deal with static causal laws.

8.2.2 Benchmarks

We evaluated the performance of the planning systems on the four domains
tested with CPasp: Ring, Domino, Cleaner, and BTC. In addition, we use four
other domains: Cube-Center (Cube-C), Logistic (Log), Sortnet, and UTS.

The Ring, Domino, BTC and Cleaner domains have been described in the
previous section. We remark that the initial location of the agent is unknown
in the Ring domain for the experiments conducted in this section.

The Cube-Center(2k+1) domain is described in [16]. In this domain, an agent
can move up, down, left, and right in a three-dimension grid of the size 2k +1.
A move results in the agent being in a corresponding cell (e.g., moving up,
down changes the y-coordinate of the agent) or being in the same cell (e.g.,
moving up when the y coordinate is 2k + 1 does not result in any change).
The goal of the agent is to be at the center of the Cube. Initially, the agent
does not know its location.

The Logistic(l,c,p) domain is described in [12] and distributed together with
CFF. In this domain, we need to transport p packages between locations of c
cities (each city has p locations) via trucks and airplanes. The uncertainty in
the initial state is that the exact locations of the packages are unknown in the
beginning.

The Sortnet(n) and UTS(n) are two domains from the 2006 International
Planning Competition, downloaded from http://www.ldc.usb.ve/~bonet/.
The Sortnet(n) domain is a synthesis of sorting networks which has disjunctive
goals and a large number of possible initial states. The UTS(n) domain is
the computation of universal transversal sequence for graphs. In this domain,
the goal is to visited all the nodes. To do so, an agent must start traveling.
Afterwards, he/she can visit neighbor nodes. The uncertainty lies in the initial
location of the agent.

8.2.3 Experimental Results

The experimental results are shown in Tables 4-7. Times are shown in seconds.
“-” indicates that the planner did not return a solution within the time limit
and “NA” indicates that the problem is not applicable. “AB” denotes that

37

Table 4
Classical Domains: Ring, Cube-Center, BTC, and Logistics

Prob. KACMBP CFF POND t0 CpA

Size PL Time PL Time PL Time PL Time PL Time

Ring(n)
2 8 0.00 7 0.01 6 0.00 5 0.04 5 0.00
3 15 0.01 15 0.12 13 0.10 8 0.05 8 0.05
4 22 0.02 26 2.13 16 4.34 13 0.06 11 0.40
5 35 0.03 45 40.77 20 247.45 17 0.05 14 2.05

Cube-Center(n)
3 14 0.04 6 0.00 6 0.55 6 0.08 6 0.10
5 25 0.16 33 0.28 15 10.00 15 0.12 24 9.82
7 35 0.16 40 22.62 24 162.85 28 0.14 42 117.57
9 45 0.32 - - 45 0.32 73 797.84

11 55 0.36 - - 48 0.23 81 1405.24

BTC(p,t)
10,1 19 0.01 19 0.01 19 0.00 19 0.06 19 0.00
20,1 39 0.04 39 0.06 39 0.02 39 0.06 39 0.05
50,1 99 0.35 99 2.18 99 0.19 99 0.10 99 0.64

100,1 199 2.52 199 57.77 199 2.05 199 0.24 199 4.98
10,5 15 0.06 15 0.01 15 0.01 15 0.03 15 0.03
20,5 35 0.18 35 0.02 AB 35 0.06 35 0.12
50,5 95 0.96 95 1.82 97 0.63 95 0.12 95 1.48

100,5 195 3.94 195 53.49 195 1.80 195 0.42 195 9.85
10,10 10 0.17 10 0.00 10 0.02 10 0.05 10 0.05
20,10 30 0.55 30 0.03 30 0.13 30 0.08 30 0.31
50,10 90 2.96 90 1.52 94 1.45 90 0.16 90 2.88

100,10 190 17.42 190 47.85 194 17.97 190 0.42 190 16.84

Logistics(l,c,p)
2,2,2 14 0.13 16 0.00 16 0.07 16 0.05 10 0.11
2,3,3 34 161.13 24 0.00 30 1.49 24 0.08 48 7.43
3,2,2 14 0.12 20 0.02 22 0.45 20 0.08 44 3.33
3,3,3 40 .19 34 0.03 38 24.07 34 0.11 350 340.09
4,3,3 - 37 0.04 37 34.32 36 0.15 -

the program encountered some error and halted abnormally.

As can be seen in Table 4, in the Ring domain, KACMBP performs the best.
t0 is almost as good as KACMBP. CFF and POND on the contrary did not
perform well on this domain. As explained in [12], CFF does not perform well
on this domain because of the lack of informativity of the heuristic function

38

in the presence of non-unary effect conditions and the problem with checking
repeated states. Although CpA was able to solve all the instances, its perfor-
mance is not as good as KACMBP or t0, e.g., to solve Ring(5), CpA needed
more than two seconds, while KACBMP or t0 needed less than 0.05 seconds.

A similar performance trend can be observed in the Cube-Center domain. t0
and KACMBP dominate in this domain and t0 yields better performance and
also shorter plans than KACMBP in large instances. CpA outperforms POND
but is slower than CFF in instances solvable by CFF. Again, CpA was able
to solve all instances in this domain but its solutions are usually longer than
the solutions returned by other planners.

In the BTC domain, t0 is better in general. POND and KACMBP are com-
parable to each other. CpA is competitive with others in many instances. It
outperforms CFF, POND, and KACMBP in BTC(100,10) but takes twice the
time comparing to POND and KACMBP in solving the BTC(100,1) instance.
It is interesting to observe that CFF and t0 seem to have no problem when the
number of toilets increases, while there is a significant increase in the amount
of time needed to find a solution for KACMBP, POND, and CpA. This in-
crease is, however, less substantial for CpA than for KACMBPor POND. For
example, if the number of packages is fixed to 100 and the number of toilets
increases from 5 to 10, the amount of time needed by CFF even decreases,
while the time needed by KACMBP increases about 5 times, CpA’s time dou-
bles, and POND’s time increases more than 10 times while t0’s remains the
same.

In the Logistic domain, both KACMBP and CpA had difficulty in finding
plans. Although KACMBP performs better than CpA, its performance is far
from that of CFF or t0, which solved every problem instance in less than one
second. POND can solve all problems but the time increases very fast. We
believe that the poor performance of CpA on this domain lies in the not-so-
good heuristic function used. This is reflected in the lengths of the plans found
by CpA.

Table 5 contains experimental results on the performance of the planners in
domains that are different from domains described in Table 4 in the following
way: these domains are either rich in static causal laws or have a high degree
of uncertainty in the initial state. The domains encoded for CpA use static
causal laws. These static causal laws are compiled away in the encodings used
for other planners, following the procedure suggested in [63].

In the Domino domain, with the exception of CpA, none of the other planners
performed well. The reason being that this domain is rich in static causal laws
– a feature that is not directly supported by KACMBP, CFF, t0, or POND.
Thus, we had to compile them away when encoding this domain for these

39

planners, which requires the introduction of extra actions and fluents. As a
result, the performance of these planners is hit by an extra overhead that CpA
is not affected with. It is worth mentioning that the ‘NA’ in CFF’s column is
due to some predefined constants of the system (e.g. maximal plan length is
set to 500).

In the Cleaner domain, CpA also obtained good performance and it is the only
planner that could solve all instances. KACMBP behaves well only on small
problems but does not scale up as well as CFF and CpA. CFF is very good at
all instances of the domain, except Cleaner(5,100) where it reported the error
message: “maximum length of plans is exceeded”. We believe that this can
easily be fixed by increasing some constant for the maximum length of plans
allowed. POND could not solve only one instance in this set of problems. In
this domain, the high degree of uncertainty in the initial state increases with
the number of objects.

It is interesting to observe how static causal laws affect the performance of
CpA and how different reasoning method could be useful in other planners.
As we have mentioned before, the only difference between the Ring-C domain
and the Ring domain is that we add the encoding of the static causal laws “an
agent cannot be at two different locations at the same time” to the problem
specification. In the encoding used to run CpA, it is expressed as a static causal
law. This information is expressed in the encoding for other planners by adding
the additional (negative) effects to the forward/backward of the domain. For
example, if we have three rooms 1, 2, and 3, the encoding for CpA will include
the action forward causes ini+1 if ini where i = 1, 2, 3 and in4 ≡ in1, and
the static causal law ¬inj if ini for i 6= j; the encoding of this action for other
planners will have conditional effects of the form (when(in3)(in1∧¬in2∧¬in3))
etc. CpA yields the best result in this domain. Only CpA and t0 were able
to solve all instances of this problem. Neither CFF nor POND returned a
solution for the smallest instance of this domain (Ring-C(10)). The difference
between t0 and CFF indicates that in this domain, the method employed by t0
is better than that of CFF. It is likely that the translation t0 introduces only
a few actions and fluents into the problem which ultimately results in better
performance.

We have seen that CpA performed reasonably well in several domains. Let us
now focus on its performance in the two domains Sortnet (Table 6) and UTS
(Table 7). As we have mentioned earlier, the Sortnet domain has disjunctive
goals. The two systems CFF and t0 does not consider problems with disjunc-
tive goals. CpA does not consider disjunctive goals directly and we have to
introduce additional fluents and static causal laws to encode the goal. For
example, we replace a goal of the form f ∨ g by the fluents fg and add to the

40

Table 5
Domains with Static Causal Laws and High Degree of Uncertainty: Ring-C, Domino,
an Cleaner
Prob. KACMBP CFF POND t0 CpA

Size PL Time PL Time PL Time PL Time PL Time

Domino(n)
10 23 0.04 10 0.00 10 0.00 10 0.05 1 0.00
50 163 0.13 50 0.00 50 0.35 50 0.07 1 0.01

100 376 1.45 NA 100 4.51 100 0.21 1 0.02
200 852 16.42 NA 200 128.26 200 1.93 1 0.02
500 - NA 500 378.44 500 58.34 1 0.05

1000 - NA 1000 1258.17 1000 745.95 1 0.16
2000 - NA - - 1 0.52
5000 - NA - - 1 3.12

Cleaner(r,o)
2,10 21 0.04 21 0.00 21 19.30 21 0.05 21 0.03
2,20 41 0.36 41 0.02 - 41 0.08 41 0.19
2,50 101 7.89 101 0.29 - 101 .10 101 2.76

2,100 201 113.99 201 3.48 - 201 0.23 201 22.71
5,10 56 0.57 54 0.03 - 54 0.06 54 0.26
5,20 106 4.75 104 0.27 - 104 0.10 104 1.78
5,50 256 143.40 254 7.46 - 254 0.23 254 26.66

5,100 - NA - 504 0.79 504 214.27

Ring with Static Causal Laws, Ring-C(n)
10 85 0.49 - - 30 1.01 30 0.83
15 231 9.03 - - 45 6.76 45 5.57
20 270 503.99 - - 60 27.44 60 22.20
25 - - - 75 79.58 75 65.32

problem the set of static causal laws {fg if f, fg if g,¬fg if ¬f ∧ ¬g}. We
observe that this encoding is not applicable to the CFF and t0 systems. In
this domain, POND is the best. It can solve every instance in less than half
a second with the exception of the instance Sortnet(9) where it halts abnor-
mally. KACMBP can solve all instances but it was much slower than POND.
CpA, on the other hand, can only solve instances from 1 to 10 (when n = 11,
the number of partial states in the initial state is 211). This domain indicates
that the explicit representation of the set of partial states used by CpA needs
to be compensated in some ways for the planner to scale up.

Finally, Table 7 indicates that the UTS domain is also a challenging problem
for CpA and KACMBP. In this domain, the number of initial states is linear
in the size of the problem. We believe that the heuristic used by CpA is not

41

Table 6
Sortnet Domains

KACMBP CFF POND t0 CpA

Problem PL Time PL Time PL Time PL Time PL Time

Sortnet(1) 1 0.00 NA 1 0.00 NA 1 0.00
Sortnet(2) 3 0.00 NA 3 0.00 NA 3 0.00
Sortnet(3) 6 0.02 NA 5 0.00 NA 5 0.05
Sortnet(4) 10 0.05 NA 9 0.00 NA 9 0.40
Sortnet(5) 15 0.19 NA 12 0.01 NA 15 0.66
Sortnet(6) 21 0.20 NA 16 0.00 NA 21 9.76
Sortnet(7) 28 0.42 NA 19 0.01 NA 27 35.51
Sortnet(8) 36 0.76 NA 26 0.01 NA 35 117.41
Sortnet(9) 45 1.24 NA 31 ∗ NA 44 371.58
Sortnet(10) 55 2.18 NA 38 0.05 NA 55 1010.10
Sortnet(11) 66 3.22 NA 43 0.06 NA -
Sortnet(12) 78 5.55 NA 50 0.11 NA -
Sortnet(13) 91 8.24 NA 55 0.13 NA -
Sortnet(14) 105 20.62 NA 61 0.20 NA -
Sortnet(15) 120 28.54 NA 65 0.22 NA -

providing good guidance for the search in this domain. Even though CpA can
solve all problems with the exception of the l09 problem, it requires much more
time than other planners in large instances and also returns significant longer
plans. For example, in the k10-problem, CpA needs 401 seconds while CFF
and POND only require around 24 seconds and t0 needs less than 3 second;
CpA’s plan is also contains 20 or 30 actions more than those of POND or
CFF and t0. On the other hand, CpA can solve all problems but one while
KACMBP can solve only three smaller problems.

Observe that CpA relies on the approximation defined by T lp(D) in its search
for a solution. Therefore, it is, theoretically, a sound but incomplete planner
because T lp(D) is deterministic whereas D can be nondeterministic as dis-
cussed Subsection 2.2. To make sure that our approach can cover a broader
spectrum of planning problems, we also tested CpA with classical planning
problems. The first domain considered was the Blocks World, and we per-
formed tests with five problem instances described in [18]. We then tested
with problems in the Rovers domain 16 . We experimented with five problem
instances, different from each other in the numbers of way points, rovers, cam-
eras, rock and soil samples, and objectives. It turns out that CpA can solve
all those problems.

16
http://planning.cis.strath.ac.uk/competition/

42

Table 7
UTS Domains

KACMBP CFF POND t0 CpA

Problem PL Time PL Time PL Time PL Time PL Time

k01 4 0.01 4 0.00 4 0.00 4 0.04 4 0.00
k02 11 0.20 10 0.00 12 0.01 11 0.06 12 0.03
k03 25 12.11 16 0.03 19 0.06 AB 20 0.28
k04 - 22 0.08 26 0.24 23 0.15 28 1.62
k05 - 28 0.33 33 0.67 29 0.25 40 7.69
k06 - 34 1.04 40 1.65 35 0.42 47 18.81
k07 - 40 2.57 47 3.55 41 0.73 57 51.52
k08 - 46 5.98 54 7.20 47 1.20 82 122.22
k09 - 52 12.09 61 14.02 53 1.91 81 217.95
k10 - 58 23.64 68 24.76 59 2.94 90 400.79
l01 - 4 0.01 4 0.00 4 0.05 4 0.00
l02 - 11 0.00 14 0.02 13 0.04 14 0.02
l03 - 17 0.01 23 0.08 23 0.07 30 0.36
l04 - 23 0.01 33 0.32 30 0.08 60 2.24
l05 - 29 0.33 46 1.11 47 0.14 53 9.32
l06 - 35 0.08 AB 62 0.22 89 24.75
l07 - 41 0.21 64 7.40 67 0.35 141 106.37
l08 - 47 0.45 70 16.99 64 0.70 213 456.24
l09 - 52 0.86 82 39.53 90 2.30 -
l10 - 58 1.60 88 100.00 85 4.12 194 1147.51
r03 - 17 0.02 17 0.08 19 0.07 18 0.23
r04 - 25 0.04 24 0.23 26 0.10 31 1.81
r05 - 33 1.47 32 0.65 34 0.20 50 9.94
r06 - 38 9.65 41 1.73 40 0.30 60 24.15
r07 - 47 1.60 53 4.14 44 0.59 105 98.41
r08 - 48 4.76 54 8.95 49 1.03 107 230.63
r09 - 62 3.82 64 17.44 57 1.46 146 480.28
r10 - 66 11.63 68 36.59 67 2.12 128 698.11

9 Conformant Planning —Logic Programming vs. Heuristic Search
Through Approximation

The experimental results in the previous section indicate that the C++ plan-
ner CpA yields better performance than the logic programming based planner
CPasp in most of the sequential benchmarks. However, CPasp is competitive
for the planning problems with short solutions. Our experimental results also
show that in problems with complex static causal laws, CPasp seems to do
better than CpA and other state-of-the-art planners but it does not do well
on large problems. One of the main reasons for this weakness of CPasp is its

43

reliance on a general answer set solver in computing a solution. On the other
hand, the use of logic programming brings a number of advantages. We will
now discuss some of these advantages in detail.

(1) Generating Parallel Plans: Logic programming based planners such as
CPasp and DLVK can generate parallel plans. In CPasp, this is achieved
by the rules (20) and (21). On the other hand, most of the state-of-the-art
planners do not compute parallel plans.

(2) Incorporation of Control Knowledge and/or Preferences: Logic program-
ming provides an ideal environment for adding control knowledge and/or
preferences in searching for plans satisfying some qualitative criteria. For
example, in the bomb in the toilet domain with one package, flushing the
toilet followed by dunking the package (flush; dunk) is a plan achieving
the goal of having the package disarmed, even when we know that the
toilet is unclogged in the initial situation. Although it is a valid solution,
this plan is hardly a preferable one. The problem is that the action theory
does not include knowledge stipulating the planner not to consider such
a plan when the plan with a single action dunk would be sufficient. This
type of knowledge cannot be represented by an impossibility condition for
flush. As such, for planners relying on a fixed representation language
(e.g. PDDL), the incorporation of knowledge in planning requires a lot
of work (e.g. TPlan [2] develops separate modules to deal with tempo-
ral knowledge). In logic programming, we can easily express the above
knowledge by the constraint

← occ(flush(t), T), h(¬clogged(t), T).

which disallows answer sets in which the action flush occurs when the
toilet is unclogged. The paper [58] discusses in detail how different types
of control knowledge can be easily incorporated in answer set planning.

(3) Dealing with Complex Initial Situations: Section 6 discusses how CPasp
can be easily adapted to handle disjunctive information about the ini-
tial situations. This type of knowledge generates multiple branches in the
search tree and can be dealt with fairly efficiently by state-of-the-art se-
quential planners. Yet, the specification of the initial situation in CPasp
and its extension described in Section 6 remains simple in the sense that
the initial state can be expressed by a set of facts. While this is ade-
quate in all benchmarks found in the literature, the following example,
discussed in [26], shows that allowing the specification of more complex
initial situations is sometimes necessary and useful.
Example 9 (Complex initial situation) Assume that the packages in the
bomb in the toilet domain are coming from different sources belonging
to one of two hierarchically structured organizations, called b (bad) and
g (good). The hierarchies are described in the usual way using relation
link(D1, D2) which indicates that a department D1 is a subdivision of

44

a department D2. Organization g for instance can be represented by a
collection of atoms:

link(d1, g).

link(d2, g).

link(d3, d1).

link(d4, d1).

These atoms represent the fact that di (i = 1, 2, 3, 4) are departments in
the good company. It is known that packages coming from the organi-
zation g are safe and the bomb is sent by someone working for b. There
are packages labeled by the name of the department the sender works
for, which can be recorded by the atom from(P, D) - package P came
from department D. There are also some unlabeled packages. The initial
situation of the modified bomb in the toilet problem will be described
by the program H consisting of the above atoms and the following rules
which define the organization the package came from and our trust in the
good guys from g.

from(P, D2) ← from(P,D1), link(D1, D2)

h(¬armed(P), 0) ← from(P, g)

As usual, P ranges over packages and D’s range over the departments.
It is easy to see that such a program has a unique answer set and can be
used to specify the initial situation.

It is easy to see that for π(D) (as well as Γ(D)) to work with the
planning problems with this type of initial situation, we only need to
replace the rule (18) by the above program.

10 Conclusion and Future Work

We define the notion of an approximation of action theories with static causal
laws, concurrent actions, and incomplete information. The proposed approx-
imation is deterministic and can be computed efficiently, using either logic
programs or an imperative language (C++).

We develop two conformant planners using the proposed approximation, a
logic programming based planner (called CPasp) and a heuristic search based
planner (CpA). CPasp can generate parallel plans and CpA is a sequential
planner. Both can handle disjunctive information about the initial state. Un-
like many state-of-the-art conformant planners, these planners deal directly
with static causal laws. Their performance is comparable with state-of-the-art

45

conformant planners over several benchmark domains as well as over newly
invented domains. Due to the simple heuristic used in the implementation of
CpA, we believe that the good performance of CpA lies in the use of the
approximation. In a recent development, one of the authors has worked to
improve this aspect of CpA and entered an improved version of CpA into the
International Planning Competition. The improved version of CpA won the
best price in the conformant planning category 17 . This result and the devel-
opment of these planners demonstrates that a careful study in approximated
reasoning may pay off well in the development of practical planners.

We also provide a sufficient condition for the completeness of the approxima-
tion. The condition is applicable to simple action theories whose static causal
laws are of a special form. We do believe that this condition can be extended
to cover a broader class of action theories. We leave this as one of our primary
tasks in the near future. Furthermore, we would also like to investigate the
use of more informative heuristics in improving the performance of CpA.

References

[1] F. Bacchus. The AIPS’00 Planning Competition. AI Magazine, 22(3), 2001.
http://www.cs.toronto.edu/aips2000/.

[2] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116(1,2):123–191, 2000.

[3] M. Balduccini and M. Gelfond. Diagnostic Reasoning with A-Prolog. Theory
and Practice of Logic Programming, 3(4,5):425–461, 2003.

[4] M. Balduccini, M. Gelfond, and M. Nogueira. Answer Set Based Design of
Knowledge Systems. Annals of Mathematics and Artificial Intelligence, 2006.

[5] C. Baral. Reasoning about Actions : Non-deterministic effects, Constraints
and Qualification. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pages 2017–2023. Morgan Kaufmann Publishers, San
Francisco, CA, 1995.

[6] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning
and approximate planning in the presence of incompleteness. Artificial
Intelligence, 122:241–267, 2000.

[7] C. Baral, S. McIlraith, and T.C. Son. Formulating diagnostic problem
solving using an action language with narratives and sensing. In Proceedings
of the Seventh International Conference on Principles of Knowledge and
Representation and Reasoning (KR’2000), pages 311–322, 2000.

17 http://ippc-2008.loria.fr/wiki/index.php/Results

46

[8] C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In J. Minker,
editor, Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic
Publishers, 2000.

[9] S. Baselice, P. A. Bonatti, and M. Gelfond. Towards an integration of answer
set and constraint solving. In Maurizio Gabbrielli and Gopal Gupta, editors,
Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain,
October 2-5, 2005, Proceedings, volume 3668 of Lecture Notes in Computer
Science, pages 52–66, 2005.

[10] A. Blum and M. Furst. Fast planning through planning graph analysis. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 1636–1642. Morgan Kaufmann Publishers, San Francisco, CA, 95.

[11] B. Bonet and H. Geffner. GPT: a tool for planning with uncertainty and
partial information. In A. Cimatti, H. Geffner, E. Giunchiglia, and J. Rintanen,
editors, Proc. IJCAI-01 Workshop on Planning with Uncertainty and Partial
Information, pages 82–87, Seattle, WA, 2001.

[12] R. Brafman and J. Hoffmann. Conformant planning via heuristic forward
search: A new approach. In Sven Koenig, Shlomo Zilberstein, and Jana Koehler,
editors, Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS-04), pages 355–364, Whistler, Canada, 2004.
Morgan Kaufmann.

[13] D. Bryce, S. Kambhampati, and D. Smith. Planning Graph Heuristics for Belief
Space Search. Journal of Artificial Intelligence Research, 26:35–99, 2006.

[14] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based Planning in
Complex Domains: Concurrency, Constraints and Nondeterminism. Artificial
Intelligence, 147:85–117, July 2003.

[15] A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking.
Journal of Artificial Intelligence Research, 13:305–338, 2000.

[16] A. Cimatti, M. Roveri, and P. Bertoli. Conformant Planning via Symbolic
Model Checking and Heuristic Search. Artificial Intelligence Journal, 159:127–
206, 2004.

[17] S. Edelkamp, J. Hoffmann, M. Littman, and H. Younes. The IPC-
2004 Planning Competition, 2004. http://ls5-www.cs.uni-dortmund.de/

~edelkamp/ipc-4/.

[18] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming
Approach to Knowledge State Planning, II: The DLVK System. Artificial
Intelligence, 144(1-2):157–211, 2003.

[19] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons, and Benchmarks. In International Conference
on Principles of Knowledge Representation and Reasoning, pages 406–417, 1998.

47

[20] I. Elkabani, E. Pontelli, and T. C. Son. Smodels with CLP and Its Applications:
A Simple and Effective Approach to Aggregates in ASP. In Bart Demoen and
Vladimir Lifschitz, editors, Logic Programming, 20th International Conference,
ICLP 2004, Saint-Malo, France, September 6-10, 2004, Proceedings, volume
3132 of Lecture Notes in Computer Science, pages 73–89. Springer, 2004.

[21] P. Ferraris and E. Giunchiglia. Planning as satisfiability in nondeterministic
domains. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, July 30 - August 3, 2000, Austin, Texas, USA, pages 748–753.
AAAI Press / The MIT Press, 2000.

[22] M. Gelfond and A. Gabaldon. From functional specifications to logic programs.
In J. Maluszynski, editor, Proceedings of International symposium on logic
programming, pages 355–370, 1997.

[23] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Logic Programming: Proceedings of the
Fifth International Conf. and Symp., pages 1070–1080, 1988.

[24] M. Gelfond and V. Lifschitz. Representing actions and change by logic
programs. Journal of Logic Programming, 17(2,3,4):301–323, 1993.

[25] M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.

[26] M. Gelfond and R. Morales. Encoding conformant planning in a-prolog. In
Proceedings of DRT’04, Lecture Notes in Computer Science. Springer, 2004.

[27] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL — the Planning Domain Definition Language.
Version 1.2. Technical Report CVC TR98003/DCS TR1165, Yale Center for
Comp, Vis and Ctrl, 1998.

[28] E. Giunchiglia, G. Kartha, and V. Lifschitz. Representing action: indeterminacy
and ramifications. Artificial Intelligence, 95:409–443, 1997.

[29] E. Giunchiglia and V. Lifschitz. An action language based on causal
explanation: preliminary report. In Proceedings of AAAI 98, pages 623–630,
98.

[30] S. Hanks and D. V. McDermott. Default reasoning, nonmonotonic logics, and
the frame problem. In Proceedings of the 5th National Conference on Artificial
Intelligence. Philadelphia, PA, pages 328–333. Morgan Kaufmann, 1986.

[31] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research, 14:253–
302, 2001.

[32] G. Kartha and V. Lifschitz. Actions with indirect effects: Preliminary report.
In KR 94, pages 341–350, 1994.

48

[33] Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced
to Non-tight Programs. In Vladimir Lifschitz and Ilkka Niemelä, editors,
Proceedings of the 7th International Conference on Logic Programming and
NonMonotonic Reasoning Conference (LPNMR’04), volume 2923, pages 346–
350. Springer Verlag, LNCS 2923, 2004.

[34] V. Lifschitz, editor. Formalizing Common Sense: Papers by John McCarthy.
Ablex Publishing Corporation, 1989.

[35] V. Lifschitz. Answer set programming and plan generation. Artificial
Intelligence, 138(1–2):39–54, 2002.

[36] V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck,
editor, Proceedings of the Eleventh International Conf. on Logic Programming,
pages 23–38, 1994.

[37] V. Lifschitz. On the Logic of Causal Explanation (Research Note). Artif. Intell.,
96(2):451–465, 1997.

[38] F. Lin. Embracing causality in specifying the indirect effects of actions. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 1985–1993. Morgan Kaufmann Publishers, San Mateo, CA, 95.

[39] Y. Liu and H. Levesque. Tractable reasoning with incomplete first-order
knowledge in dynamic systems with context-dependent actions. In Proceedings
of the 19th International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, IJCAI, 2005.

[40] D. Long and M. Fox. The 3rd International Planning Competition: Results and
Analysis. Journal of Artificial Intelligence Research (JAIR), 20:1–59, 2003.
http://planning.cis.strath.ac.uk/competition/.

[41] N. McCain and H. Turner. A causal theory of ramifications and qualifications. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
pages 1978–1984. Morgan Kaufmann Publishers, San Mateo, CA, 1995.

[42] J. McCarthy. Programs with common sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pages 75–91, London,
1959. Her Majesty’s Stationery Office.

[43] J. McCarthy. Elaboration tolerance. In Proceedings of the 98’s Common Sense
Workshop, 1998. http://www-formal.stanford.edu/jmc/elaboration.
html.

[44] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 463–502. Edinburgh University Press, Edinburgh, 1969.

[45] D. McDermott. A critique of pure reason. Computational Intelligence, 3:151–
160, 1987.

[46] S. McIlraith. Intergrating actions and state constraints: A closed-form solution
to the ramification problem (sometimes). Artificial Intelligence, 116:87–121,
2000.

49

[47] A. R. Morales, P. H. Tu, and T. C. Son. An extension to conformant
planning using logic programming. In Manuela M. Veloso, editor, IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007, pages 1991–1996, 2007.

[48] H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant
Planning Problems Using a Classical Planner (Sometimes). In Proceedings of
the the Twenty-First National Conference on Artificial Intelligence, 2006.

[49] H. Palacios and H. Geffner. From Conformant into Classical Planning:
Efficient Translations that may be Complete Too. In Proceedings of the 17th
International Conference on Planning and Scheduling, 2007.

[50] R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with
incomplete information and sensing. In Proceedings of the Sixth International
Conference on Artificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France, pages 212–222. AAAI, 2002.

[51] R. P. A. Petrick and F. Bacchus. Extending the knowledge-based approach to
planning with incomplete information and sensing. In Proceedings of the Sixth
International Conference on Automated Planning and Scheduling, 2004, pages
2–11, 2004.

[52] J. Rintanen. Asymptotically optimal encodings of conformant planning in
qbf. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages
1045–1050. AAAI Press, 2007.

[53] E. Sandewall. Assessments of ramification methods that use static domain
constraints. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of
KRR, pages 89–110. Morgan Kaufmann, 1996.

[54] M. Shanahan. The ramification problem in the event calculus. In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI
99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages
140–146, 1999.

[55] P. Simons, N. Niemelä, and T. Soininen. Extending and Implementing the
Stable Model Semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

[56] D.E. Smith and D.S. Weld. Conformant graphplan. In AAAI, pages 889–896,
1998.

[57] T.C. Son and C. Baral. Formalizing sensing actions - a transition function based
approach. Artificial Intelligence, 125(1-2):19–91, January 2001.

[58] T. C. Son, C. Baral, N. Tran, and S. McIlraith. Domain-Dependent Knowledge
in Answer Set Planning. ACM Transactions on Computational Logic, 7(4):613–
657, 2006.

[59] T. C. Son and E. Pontelli. Some Results on The Completeness of
Approximation Based Reasoning. In Proceedings of the the Tenth Pacific Rim
International Conference on Artificial Intelligence, pages 358–369, 2008.

50

[60] T. C. Son and P. H. Tu. On the Completeness of Approximation Based
Reasoning and Planning in Action Theories with Incomplete Information. In
Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning, pages 481–491, 2006.

[61] T. C. Son, P. H. Tu, M. Gelfond, and R. Morales. An Approximation of Action
Theories of AL and its Application to Conformant Planning. In Proceedings of
the the 7th International Conference on Logic Programming and NonMonotonic
Reasoning, pages 172–184, 2005.

[62] T. C. Son, P. H. Tu, M. Gelfond, and R. Morales. Conformant Planning
for Domains with Constraints — A New Approach. In Proceedings of the
the Twentieth National Conference on Artificial Intelligence, pages 1211–1216,
2005.

[63] S. Thiebaux, J. Hoffmann, and B. Nebel. In Defense of PDDL Axioms. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI’03), 2003.

[64] M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1-2):317–
364, 1997.

[65] P. H. Tu. Reasoning AND Planning With Incomplete Information In The
Presence OF Static Causal Laws. PhD thesis, New Mexico State University,
2007.

[66] P. H. Tu, T. C. Son, and C. Baral. Reasoning and Planning with
Sensing Actions, Incomplete Information, and Static Causal Laws using Logic
Programming. Theory and Practice of Logic Programming, 7:1–74, 2006.

[67] H. Turner. Representing actions in logic programs and default theories. Journal
of Logic Programming, 31(1-3):245–298, May 1997.

[68] H. Turner. Polynomial-length planning spans the polynomial hierarchy. In
Proc. of Eighth European Conf. on Logics in Artificial Intelligence (JELIA’02),
pages 111–124, 2002.

A Proofs of Proposition 1 and Theorems 3 & 5

Suppose an action theory D is given. Let s be a state, δ be a partial state and
a be an action. From Theorem 2, we have the following result.

Lemma 1 Let A be an answer set of Φ(a, s) and let s′ = {l | h(l, 1) ∈ A}.
Then s′ is a state and 〈s, a, s′〉 ∈ T (D).

Since this appendix mainly deals with programs Φ(a, s) and Π(a, δ) (defined
by (17)), to simplify the proofs, we remove from the programs atoms and rules
that are of no interest.

51

First, let Φ0(a, s) (resp. Π0(a, δ)) denote the program obtained from Φ(a, s)
(resp. Π(a, δ)) by removing its constraints.

Lemma 2 Π0(a, δ) is a stratified program.

Proof. We need to find a function λ which maps atoms in Π0(a, δ) into non-
negative integers such that for every r in Π0(a, δ) with the head y,

• λ(y) ≥ λ(x) for every atom x such that x appears in the body of r; and
• λ(y) > λ(x) for every atom x such that not x appears in the body of r.

It is easy to check that the following function λ satisfies the above property.

• λ(de(l, 1)) = 1;
• λ(ph(l, 1)) = 2;
• λ(h(l, 1)) = 3; and
• λ(at) = 0 for any other atom at, e.g., λ(h(l, 0)) = 0 for every fluent literal

l.

2

Lemma 3 The program Π0(a, δ) is consistent and has a unique answer set.

Proof. It follows from Lemma 2 and [23]. 2

Let X be the set of atoms of the forms fluent(F) and literal(L). Clearly X
is a splitting set [36] of both Φ0(a, s) and Π0(a, δ). It is easy to see that the
bottom parts of Φ0(a, s) and Π0(a, δ) with respect to X are positive programs
and have only one answer set

U = {fluent(F), literal(F), literal(neg(F)) | F ∈ F} (A.1)

Let Φ1(a, s) and Π1(a, δ) denote the evaluation of the top parts of Φ0(a, s) and
Π0(a, δ) with respect to U . The rules of these programs are listed below (the
condition for each rule follows the rule).

• Φ1(a, s) contains the following rules:

52

h(l, 1) ← o(e, 0), h(ψ, 0) (A.2)

([e causes l if ψ] ∈ D)

h(l, 0) ← h(ψ, 0) (A.3)

([l if ψ] ∈ D)

h(l, 1) ← h(ψ, 1) (A.4)

([l if ψ] ∈ D)

h(L, 1) ← h(L, 0), not h(¬L, 1) (A.5)

h(s, 0)← (A.6)

h(a, 0) ← (A.7)

• Π1(a, δ) contains the following rules:

h(l, 1) ← o(e, 0), h(ψ, 0) (A.8)

([e causes l if ψ] ∈ D)

de(l, 1) ← o(e, 0), h(ψ, 0) (A.9)

([e causes l if ψ] ∈ D)

ph(l, 1) ← o(e, 0), not h(¬ψ, 0), not de(¬l, 1) (A.10)

([e causes l if ψ] ∈ D)

ph(L, 1) ← not h(¬L, 0), not de(¬L, 1) (A.11)

h(l, 0) ← h(ψ, 0) (A.12)

([l if ψ] ∈ D)

h(l, 1) ← h(ψ, 1) (A.13)

([l if ψ] ∈ D)

ph(l, 1) ← ph(ψ, 1) (A.14)

([l if ψ] ∈ D)

h(L, 1) ← not ph(¬L, 1) (A.15)

h(δ, 0)← (A.16)

h(a, 0) ← (A.17)

Let Y be the set of atoms of the form o(e, 0), h(l, 0), or ph(l, 0). Then it is
easy to see that Y is a splitting set of both Φ1(a, s) and Π1(a, δ).

Because s is a state, the bottom part of Φ1(a, s) with respect to Y has the
unique answer set

V = o(a, 0) ∪ h(s, 0) (A.18)

Hence, the evaluation of the top part of Φ1(a, s) with respect to V is the
following set of rules

53

h(l, 1)← (A.19)

(l is a direct effect of a in s)

h(l, 1) ← h(ψ, 1) (A.20)

([l if ψ] ∈ D)

h(L, 1) ← not h(¬L, 1) (A.21)

(L holds in s)

Let Φ2(a, s) denote this program.

Lemma 4 A is an answer set of Φ(a, s) iff there exists an answer set A1 of
Φ2(a, s) such that

A = U ∪ V ∪ A1

where U and V are defined by (A.1) and (A.18). Furthermore, we have

h(l, 1) ∈ A iff h(l, 1) ∈ A1

Proof. By the splitting set theorem [36]. 2

Similarly, because δ is a partial state, the bottom part of Π1(a, δ) has the
unique answer set

W = o(a, 0) ∪ h(δ, 0) (A.22)

The evaluation of the top part of Π1(a, δ) with respect to W is the following
set of rules

h(l, 1)← (A.23)

(l is a direct effect of a in δ)

de(l, 1)← (A.24)

(l is a direct effect of a in δ)

ph(l, 1)←not de(¬l, 1) (A.25)

(l is a possible direct effect of a in δ)

ph(L, 1)←not de(¬L, 1) (A.26)

(L possibly holds in δ)

h(l, 1)←h(ψ, 1) (A.27)

([l if ψ] ∈ D)

ph(l, 1)← ph(ψ, 1) (A.28)

([l if ψ] ∈ D)

h(L, 1)←not ph(¬L, 1) (A.29)

Let us denote this program by Π2(a, δ).

Lemma 5 B is an answer set of Π0(a, δ) iff there exists an answer set B0 of

54

Π2(a, δ) such that
B = U ∪W ∪B0 (A.30)

where U and W are defined by (A.1) and (A.22). Furthermore, we have

h(l, 1) ∈ B iff h(l, 1) ∈ B0 (A.31)

Proof. It follows from the splitting set theorem. 2

Let us further split the program Π2(a, δ) by using the splitting set consisting
of atoms of the form de(l, 1). The bottom part of Π2(a, δ) contains only rules
of the form (A.24) and thus it has the only answer set

{de(l, 1) | l is a direct effect of a}

Hence, the evaluation of the top part of Π2(a, δ) with respect to this answer
set, denoted by Π3(a, δ), contains the following rules:

h(l, 1)← (A.32)

(l is a direct effect of a in δ)

ph(l, 1)← (A.33)

(l is a possible direct effect of a in δ,¬l is not a direct effect of a)

ph(L, 1)← (A.34)

(L possibly holds in δ,¬L is not a direct effect of a) (A.35)

h(l, 1)←h(ψ, 1) (A.36)

([l if ψ] ∈ D)

ph(l, 1)← ph(ψ, 1) (A.37)

([l if ψ] ∈ D)

h(L, 1)←not ph(¬L, 1) (A.38)

Lemma 6 B is an answer set of Π0(a, δ) iff there exists an answer set B1 of
Π3(a, δ) such that

B = U ∪W ∪ {de(l, 1) | l is a direct effect of a in δ} ∪B1 (A.39)

Furthermore, we have

h(l, 1) ∈ B iff h(l, 1) ∈ B1 (A.40)

Proof. It follows from Lemma 5 and the splitting set theorem. 2

For a set of atoms X, let ΦX
2 (a, s) (resp. ΠX

3 (a, δ)) denote the reduct of Φ2(a, s)
(resp. Π3(a, δ)) with respect to X. That is, ΦX

2 (a, s) is the following set of rules:

55

h(l, 1)← (A.41)

(l is a direct effect of a in s)

h(l, 1) ← h(ψ, 1) (A.42)

([l if ψ] ∈ D)

h(L, 1) ← (A.43)

(L holds in s, h(¬L, 1) 6∈ X)

and ΠX
3 (a, δ) is the following set of rules:

h(l, 1)← (A.44)

(l is a direct effect of a in δ)

ph(l, 1)← (A.45)

(l is a possible direct effect of a in δ,¬l is not a direct effect of a)

ph(L, 1)← (A.46)

(L possibly holds in δ,¬L is not a direct effect of a)

h(l, 1)←h(ψ, 1) (A.47)

([l if ψ] ∈ D)

ph(l, 1)← ph(ψ, 1) (A.48)

([l if ψ] ∈ D)

h(L, 1)← (A.49)

(ph(¬L, 1) 6∈ X)

Let us prove the following lemma

Lemma 7 Let A1 be an answer set of Φ2(a, s) and B1 be an answer set of
Π3(a, δ). If δ ⊆ s then for any fluent literal l, ph(l, 1) ∈ B1 implies that
h(l, 1) ∈ A1.

Proof. Suppose δ ⊆ s. Let P = ΦA1
2 (a, s) and Q = ΠB1

3 (a, δ). Because A1

and B1 are answer sets of Φ2(a, s) and Π3(a, δ) respectively, we have

A1 =
⋃

i

T i
P (∅) (A.50)

B1 =
⋃

i

T i
Q(∅) (A.51)

where TP and TQ are the immediate consequence operators of programs P and
Q respectively.

First of all, we show that for any integer i ≥ 0 the following result holds

h(l, 1) ∈ T i
P (∅) ⇒ ph(l, 1) ∈ T i

Q(∅) (A.52)

56

Let us prove by induction on i.

(1) Base case: i = 0. (A.52) holds because T 0
P (∅) = T 0

Q(∅) = ∅.
(2) Inductive step: suppose (A.52) holds for i = k, we need to show that it

also holds for i = k + 1.
Let l be a fluent literal such that h(l, 1) ∈ T k+1

P (∅). By the definition
of T k+1

P (∅), there are three cases
(a) h(l, 1) holds in T k+1

P (∅) by rule (A.41). This means that l is a direct
effect of a in s. Observe that a direct effect of a in s is always a
possible direct effect of a in δ. Furthermore, because D is consistent,
¬l is not a direct effect of a in s. Hence, ¬l is not a direct effect
of a in δ. As a result, rule (A.45) belongs to Q, which implies that
ph(l, 1) ∈ T k+1

Q (∅).
(b) h(l, 1) holds in T k+1

P (∅) by rule (A.42). This means that there exists
a static causal law (2) such that

h(ψ, 1) ⊆ T k
P (∅)

By the inductive hypothesis, we have

ph(ψ, 1) ⊆ T k
Q(∅)

By rule (A.48), this implies that ph(l, 1) ∈ T k+1
Q (∅).

(c) h(l, 1) holds in T k+1
P (∅) by rule (A.43). This means that l holds in s

and h(¬l, 1) 6∈ A1.
Because l holds in s, l possibly holds in δ. On the other hand,

h(¬l, 1) 6∈ A1 implies that ¬l is not a direct effect of a in s (because
of rule (A.41)). Hence, ¬l is not a direct effect of a in δ. Accordingly,
Q contains the rule of the form (A.46) with L = l. Thus, it follows
that ph(l, 1) ∈ T k+1

Q (∅).

As a result, (A.52) holds. The lemma directly follows from (A.52), (A.50), and
(A.51). 2

Lemma 8 Let A be an answer set of Φ(a, s) and B be an answer set of
Π0(a, δ). If δ ⊆ s then for any fluent literal l, h(l, 1) ∈ B implies h(l, 1) ∈ A.

Proof. By Lemmas 4 and 6, the programs Φ2(a, s) and Π3(a, s) have answer
sets A1 and B1, respectively, such that

A = U ∪ V ∪ A1

and
B = U ∪W ∪ {de(l, 1) | l is a direct effect of a in δ} ∪ B1

57

Let P and Q be programs defined in Lemma 7. First of all, we will show that

h(l, 1) ∈ T i
Q(∅) ⇒ h(l, 1) ∈ A1 (A.53)

for i ≥ 0 by using induction on i.

(1) Base case: trivial because there exist no fluent literal l such that l ∈
T i

Q(∅) = ∅.
(2) Inductive step: suppose (A.53) holds for i ≤ k.

Let l be a fluent literal such that h(l, 1) ∈ T k+1
Q (∅). We need to show

that h(l, 1) ∈ A1. Consider the following cases
(a) h(l, 1) ∈ T k+1

Q (∅) by rule (A.44). This means that l is a direct effect
of a in δ. On the other hand, a direct effect of a in δ is also a direct
effect of a in s. As a result, l is a direct effect of a in s. By rule (A.19),
this implies that h(l, 1) ∈ A1.

(b) h(l, 1) ∈ T k+1
Q (∅) by rule (A.47). This implies that h(ψ, 1) ⊆ T k

Q(∅).
By the inductive hypothesis, we have h(ψ, 1) ⊆ A1. As a result, by
rule (A.20), it follows that h(l, 1) ∈ A1.

(c) h(l, 1) ∈ T k+1
Q (∅) by rule (A.49). This implies that ph(¬l, 1) 6∈ B1. It

follows from Lemma 7 that h(¬l, 1) 6∈ A1, i.e.,

h(¬l, 1) 6∈ A (A.54)

Let s′ = {g | h(g, 1) ∈ A}. From (A.54), we have ¬l 6∈ s′. On the
other hand, by Lemma 1, s′ is a state, which implies that either l or
¬l belongs to s′. Accordingly, we have l ∈ s′. From this, it follows
that h(l, 1) ∈ A and thus h(l, 1) ∈ A1.

From (A.53) and (A.51), we have

h(l, 1) ∈ B1 ⇒ h(l, 1) ∈ A1

On the other hand, by Lemmas 4 and 6, we have

h(l, 1) ∈ A1 iff h(l, 1) ∈ A

and
h(l, 1) ∈ B1 iff h(l, 1) ∈ B

Consequently, we can conclude that the lemma holds.

2

Lemma 9 Π(a, δ) is consistent iff a is safe in δ.

Proof. Suppose Π(a, δ) is consistent. Let B denote the answer set of Π(a, δ).
According to the definition of an answer set of a program with constraints,
B is an answer set of Π0(a, δ) and B does not violate constraints (6) and (8).

58

This implies that there exists no impossibility condition

impossible b if ψ

in D such that o(b, 0) ⊆ B and h(¬ψ, 0)∩B = ∅. Because o(a, 0) is the set of
all atoms of the form o(e, 0), where e is an elementary action, contained in B
(see Lemma 5), there exists no impossibility condition

impossible b if ψ

such that b ⊆ a and ψ possibly holds in δ. By definition, this means a is safe
in δ.

Now suppose that a is safe in δ. By Lemma 3, Π0(a, δ) has a unique answer
set B. We will show that B is also an answer set of Π(a, δ) by showing that it
satisfies constraints (6) and (8):

(1) Constraint (6): Trivial because a is safe in δ.
(2) Constraint (8): Since δ is a partial state, there exists a state s such that

δ ⊆ s. As a is safe in δ, it is executable in s. By Theorem 3, it follows
that the program Φ(a, s) has an answer set A and this answer set satisfies
constraint (8). By Lemma 8, it follows that B also satisfies constraint (8).

2

Lemma 10 If Π(a, δ) is consistent then the only answer set of Π(a, δ) is the
answer set of Π0(a, δ).

Proof. The lemma follows from Lemma 3 and from the fact that Π(a, δ)
differs from the program Π0(a, δ) in two constraints (6) and (8) only. 2

A.1 Proof of Proposition 1

Suppose Π(a, δ) is consistent. Lemma 10 implies that the only answer set of
Π(a, δ) is the answer set of Π0(a, δ). Let

δ′ = {l | h(l, 1) ∈ B}

To complete the proof, we need to show that δ′ is a partial state. First of all,
observe that δ′ satisfies all the static causal laws of D because of constraint
(5). So, we only need to show that there exists a state s′ such that δ′ ⊆ s′.

Since δ is a partial state there exists a state s such that δ ⊆ s. Because Π(a, δ)
is consistent, by Lemma 9, a is safe in δ. Thus, it is executable in s. Since we
assume D is consistent, there must be a state s′ such that 〈s, a, s′〉 ∈ T (D).

59

By Theorem 2, this implies that the program Φ(a, s) has an answer set A such
that s′ = {l | h(l, 1) ∈ A}. By Lemma 8, it is easy to see that δ′ ⊆ s′.

A.2 Proof of Theorem 3

Let 〈δ, a, δ′〉 be a transition in T lp(D). It follows from Definition 8 that the
program Π(a, δ) is consistent and has an answer set B such that δ′ = {l |
h(l, 1) ∈ B}. Note that by Lemma 10, such an answer set B is unique and it
is also the answer set of Π0(a, δ).

First, let us show that T lp(D) is an approximation of T (D). Clearly, to prove
that, it suffices to show that for every s ∈ comp(δ),

(1) a is executable in s
(2) for every state s′ such that 〈s, a, s′〉 ∈ T (D), δ′ ⊆ s′.

Consider a state s ∈ comp(δ). By Lemma 9, a is safe in δ. Because δ ⊆ s,
a is executable in s. Now let s′ be a state such that 〈s, a, s′〉 ∈ T (D). By
Theorem 2, this implies that there exists an answer set A of Φ(a, s) such that
s′ = {l | h(l, 1) ∈ A}. By Lemma 8, we have δ′ = {l | h(l, 1) ∈ B} ⊆ {l |
h(l, 1) ∈ A} = s′.

We have showed that T lp(D) is an approximation of T (D). The determinism
of T lp(D) follows directly from the fact that B is unique.

B Proof of Theorem 5

This appendix contains the proof of Theorem 5. We assume that a planning
problem P = 〈δ0,D, δf〉 is given. For the sake of simplicity of the proof,
similarly to the previous section, we will begin with a simplification of the
program π(P , n).

Let π0(P , n) be the program obtained from π(P , n) by removing constraints
(6) and (8). Let X be the set of atoms of the forms fluent(F) and literal(L).
Then, X is a splitting set of π0(P , n). The bottom part of π0(P , n) is a positive
program and has a unique answer set U defined by (A.1). Let π1(P , n) denote
the evaluation of the top part of π0(P , n) with respect to U .

Lemma 11 A set of atoms C is an answer set of π0(P , n) iff C = C1 ∪ U
where C1 is an answer set of π1(P , n).

Proof. Follows from the splitting set theorem. 2

60

For an integer 0 ≤ i ≤ n, let Xi denote the set of atoms whose time parameters
are less than or equal to i. Then, it is easy to see that the sequence 〈Xi〉ni=0 is
a splitting sequence [36] of π1(P , n).

Lemma 12 A set of atoms C1 is an answer set of π1(P , n) iff there is a se-
quence of sets of atoms 〈Di〉ni=0 such that the following conditions are satisfied.

(1) D0 is an answer set of

µ0 = bX0(π1(P , n)) (B.1)

(2) For every 1 ≤ i ≤ n, Di is an answer set of

µi = eXi
(bXi

(π1(P , n)) \ bXi−1
(π1(P , n)),

⋃

1≤j≤i−1

Dj) (B.2)

(3)

C1 =
n⋃

i=0

Di (B.3)

where bX(P) denote the bottom part of a program P with respect to X and
eX(Q, V) denote the evaluation of a program Q relative to V .

Proof. Follows from the splitting sequence theorem [36]. 2

Now suppose that C is an answer set of π(P , n). By definition C is also an
answer set of π0(P , n) and C does not violate any constraint of π(P , n). By
Lemma 11, the program π1(P , n) has an answer set C1 such that C = C1 ∪U .
By Lemma 12, it follows that there exists a sequence of sets of atoms 〈Di〉ni=0

that satisfies (B.1)–(B.3). Let δi = {l | h(l, i) ∈ Di} and let ai = {l | o(e, i) ∈
Di}. It is easy to see that µ0 is the following set of rules

h(l, 0) ← h(ψ, 0) (B.4)

([l if ψ] ∈ D)

h(δ0, 0)← (B.5)

o(E, 0) ∨ ¬o(E, 0) ← (B.6)

and for i ≥ 1, µi is the following set of rules

61

h(l, i)← (B.7)

(l is a direct effect of ai−1 in δi−1)

de(l, i)← (B.8)

(l is a direct effect of ai−1 in δi−1)

ph(l, i)←not de(¬l, i) (B.9)

(l is a possible direct effect of ai−1 in δi−1)

ph(L, i)←not de(¬L, i) (B.10)

(h(¬L, i− 1) 6∈ Di−1)

h(l, i)←h(ψ, i) (B.11)

([l if ψ] ∈ D)

ph(l, i)← ph(ψ, i) (B.12)

([l if ψ] ∈ D)

h(L, i)←not ph(¬L, i) (B.13)

o(E, 0) ∨ ¬o(E, 0)← (B.14)

Lemma 13 If δi−1 is a partial state then 〈δi−1, ai−1, δi〉 ∈ T lp(D)

Proof. Suppose δi−1 is a partial state. To prove that 〈δi−1, ai−1, δi〉 ∈ T lp(D)
we need to show that Π(ai−1, δi−1) is consistent and its only answer set B
satisfies

{l | h(l, 1) ∈ B} = δi

First, observe that because C is an answer set of π(P , n), its satisfies the
constraint (6). As a result, ai−1 is safe in δi−1. By Lemma 9, this implies that
Π(ai−1, δi−1) is consistent and thus, by Proposition 1, it has a unique answer
set B. By Lemma 5, the program Π2(ai−1, δi−1) (rules (A.23)–(A.29) with
a = ai−1 and δ = δi−1) has an answer set B0 such that

{l | h(l, 1) ∈ B} = {l | h(l, 1) ∈ B0}

Furthermore, such B0 is unique because Π2(ai−1, δi−1) is stratified.

Observe that the program Π2(ai−1, δi−1) is the same as µi except that the time
parameter of predicates in the former is 1 while it is i in the latter. Hence, we
have

{l | h(l, 1) ∈ B0} = δi

That is, the lemma holds. 2

Let us go back to the proof of Theorem 5. It is easy to see that δ0 = δ0 and
thus it is a partial state. By Lemma 13, it easy to see that for all 1 ≤ i ≤ n
we have 〈δi−1, ai−1, δi〉 ∈ T lp(D).

Hence, we have 〈δ0, α, δn〉 ∈ T lp(D). On the other hand, because C satisfies
constraint (19), we have δf ⊆ δn. Accordingly, α is a solution of P . Thus, the

62

theorem is proved.

C Proofs of Propositions 2–4 and Theorem 6

This appendix contains the proofs of Propositions 2–4 and Theorem 6. We
assume that a simple planning problem P is given. In addition, for simplicity,
we assume that the body of each static causal law of D has exactly one fluent
literal as with some minor changes, the proofs in this appendix can be applied
to simple action theories with arbitrary simple static causal laws, including
those with an empty body. To make the proofs easy to follow, let us define
some notions.

Definition 17 Let a be an action and s be a state. A fluent literal l is called
an effect of a in s if either

(1) l is a direct effect of a in s; or
(2) D contains a static causal law

l if g

such that g is an effect of a in s.

Definition 18 Let a be an action and δ be a state. A fluent literal l is called
a possible effect of a in δ iff either

(1) l is a possible direct effect of a in δ; or
(2) l possibly holds by inertia, i.e., l possibly holds in δ and ¬l is not a direct

effect of a in δ; or
(3) D contains a static causal law

l if g

such that g is a possible effect of a in δ.

The proofs in this appendix will make use of programs Φ2(a, s) (rules (A.19)–
(A.21)) and Π3(a, δ) (rules (A.32)–(A.38)) and some results from Appendices
A & B.

Let s and s′ be states, δ and δ′ be partial states and a be an action such that
〈s, a, s′〉 ∈ T (D) and 〈δ, a, δ′〉 ∈ T lp(D). By Theorems 2 & 3, and Definition
8,the programs Φ(a, s) and Π(a, δ) have answer sets A and B, respectively,
such that

s′ = {l | h(l, 1) ∈ A} (C.1)

63

and
δ′ = {l | h(l, 1) ∈ B} (C.2)

By Lemmas 4 and 6, this implies that the programs Φ2(a, δ) and Π3(a, δ) have
answer sets A1 and B1 respectively such that

A = U ∪ V ∪ A1 (C.3)

B = U ∪W ∪ {de(l, 1) | l is a direct effect of a in δ} ∪B1 (C.4)

where U , V , and W are defined by (A.1) and (A.18), and (A.22). Furthermore,
we have

h(l, 1) ∈ A iff h(l, 1) ∈ A1 (C.5)

h(l, 1) ∈ B iff h(l, 1) ∈ B1 (C.6)

Let P and Q be the reducts of Φ2(a, s) and Π3(a, δ) with respect to A1 and
B1 respectively. That is, P is the set of rules (A.41)–(A.43) where X = A1,
and Q is the set of rules (A.44)–(A.49) where X = B1.

Lemma 14 If g 6∈ s and h(g, 1) ∈ A1 then g is an effect of a in s.

Proof. Let i ≥ 0 be an arbitrary integer. Because A1 =
⋃

i T
i
P (∅), to prove

the lemma, it suffices to show that if g 6∈ s and h(g, 1) ∈ T i
P (∅) then g is an

effect of a in s. We prove this by induction on i.

(1) Base case: i = 0. Trivial because there exists no fluent literal g such that
h(g, 1) ∈ T 0

P (∅) = ∅.
(2) Inductive step: Suppose the lemma holds for i ≤ k. We will show that it

also holds for i = k + 1. Let g be a fluent literal such that

g 6∈ s ∧ h(g, 1) ∈ T k+1
P (∅)

Because g does not hold in s, the rule (A.43) with L = g does not belong
to P . As a result, there are two possibilities for h(g, 1) ∈ T k+1

P (∅):
(a) g is a direct effect of a in s. By Definition 17, g is an effect of a in s.
(b) D contains a static causal law

g if h (C.7)

such that

h(h, 1) ∈ T k
P (∅) (C.8)

It is easy to see that
h 6∈ s (C.9)

because if otherwise, we would have g ∈ s (note that s is a state and

64

thus it satisfies static causal law (C.7)).
From (C.8) and (C.9) and by the inductive hypothesis, it follows

that h is an effect of a in s. Hence, by Definition 17, g is also an effect
of a in s.

2

Lemma 15 If ph(g, 1) ∈ B1 then g is a possible effect of a in δ.

Proof. Let i ≥ 0 be an arbitrary integer. Clearly, to prove the lemma, it
suffices to show that

if ph(g, 1) ∈ T i
Q(∅) then g is a possible effect of a in δ (C.10)

Let us prove (C.10) by induction on i.

(1) Base case: i = 0. Trivial because there is no i such that ph(g, 1) ∈ T 0
Q(∅) =

∅.
(2) Inductive step: Suppose (C.10) is true for i ≤ k. We will show that it is

also true for i = k + 1.
Let g be a fluent literal such that ph(g, 1) ∈ T k+1

Q (∅). Recall that Q is
the set of rules of the form (A.44)–(A.49) where X = B1. Hence, there
are three possibilities for ph(g, 1) ∈ T k+1

Q (∅).
(a) g is a possible direct effect of a in δ and ¬g is not a direct effect of a

in δ. By definition, g is also a possible effect of a in δ.
(b) g possibly holds in δ and ¬g is not a direct effect of a in δ. By

definition, in this case g is also a possible effect of a in δ.
(c) D contains a static causal law

g if h

such that ph(h, 1) ∈ T k
Q(∅). By the inductive hypothesis, h is a possi-

ble effect of a in δ. Hence, by Definition 18, g is also a possible effect
of a in δ.

So, (C.10) is true. The lemma follows directly from this result. 2

We will also need the following propostion.

Proposition 6 Let D be a simple action theory. Let 〈s, a, s′〉 ∈ T (D) and
〈δ, a, δ′〉 ∈ T lp(D). If δ ⊆ s then for every fluent literal l ∈ s′ \ δ′, we have
l / (s \ δ).

Proof. Suppose δ ⊆ s and l be a fluent literal in s′ \ δ′. We need to show
that there exists a fluent literal g ∈ s \ δ such that l / g.

65

If l ∈ s \ δ then the proposition is trivial because by definition, l depends on
itself and thus we can take g = l ∈ s \ δ to have l / g. Now, consider the case
that l 6∈ s \ δ. There are two possibilities

(1) l 6∈ s, or
(2) l ∈ δ.

Let us consider each possibility in turn.

(1) l 6∈ s. As l ∈ s′ \ δ′, we have l ∈ s′. This implies that h(l, 1) ∈ A1.
According to Lemma 14, l is an effect of a in s. It follows from Definition
17, that one of the following two cases occurs
(a) D contains a dynamic causal law

e causes l if ψ

such that e ∈ a and ψ holds in s.
If ψ holds in δ then l is a direct effect of a in δ. By rule (A.44), we

have h(l, 1) ∈ B1, i.e., l ∈ δ′. This contradicts to l ∈ s′ \ δ′.
Because ψ holds in s and does not hold in δ, we have

ψ ⊆ s and ψ 6⊆ δ

As a result, there exists a fluent literal g ∈ ψ such that g ∈ s \ δ. By
the definition of dependencies (Definition 11), we have l / g.

(b) D contains a dynamic causal law e causes l0 if ψ and a sequence of
static causal laws [l1 if l0], [l2 if l1], . . . , [ln if ln−1], [l if ln] such that
e ∈ a and ψ holds in s.

If ψ holds in δ then by rule (A.44), we have l0 ∈ δ′; on the other
hand, because δ′ is closed under the static causal laws of D, it follows
that l ∈ δ′; this contradicts to the assumption l ∈ s′ \ δ′.

So, we have ψ does not hold in δ. Similarly to previous case, this
implies that there exists a fluent literal g ∈ ψ such that g ∈ s \ δ.
Hence, we have

l / ln / ln−1 / . . . / l0 / g

(2) l ∈ δ.
First, we will show that ph(¬l, 1) ∈ B1. Since l 6∈ δ′, we have h(l, 1) 6∈

B1. By rule (A.49), it follows that ph(¬l, 1) ∈ B1.
According to Lemma 15, ph(¬l, 1) ∈ B1 implies that ¬l is a possible

effect of a in δ. By the definition of a possible effect (Definition 18), we
have the following three cases
(a) ¬l is a possible direct effect of a in δ. That is, D contains a dynamic

causal law
e causes ¬l if ψ

66

such that e ∈ a and ψ possibly holds in δ. This implies that

¬ψ ∩ δ = ∅ (C.11)

As l ∈ s′ and s′ is a state, we have ¬l 6∈ s′. This means that
h(¬l, 1) 6∈ A. By rule (A.41), it follows that ¬l is not a direct effect
of a in s. Hence, ψ does not hold in s, i.e.,

¬ψ ∩ s 6= ∅ (C.12)

From (C.11) and (C.12), it follows that there exists a fluent literal
g ∈ ¬ψ such that g ∈ s \ δ. Because [e causes ¬l if ψ] belongs to D,
this implies that ¬l /¬g. By the definition of dependencies, it follows
that l / g.

(b) l does not hold in δ and l is not a direct effect of a. Because l ∈ δ,
this case never happens.

(c) D contains a sequence of static causal laws

[l1 if l0], [l2 if l1], . . . , [ln if ln−1], [¬l if ln]

such that l0 is a possible effect of a in δ or l0 possibly holds by inertia.
(i) l0 is a possible direct effect of a. By definition, this means that

D contains a dynamic causal law

e causes l0 if ψ

such that e ∈ a and ψ possibly holds in δ.
As ψ possibly holds in δ, we have

¬ψ ∩ δ = ∅ (C.13)

On the other hand, it is easy to see that ψ does not hold in s
as if otherwise, we would have ¬l ∈ s′, which contradicts to the
assumption l ∈ s′. Therefore, we have

¬ψ ∩ s 6= ∅ (C.14)

By (C.13) and (C.14), there exists a fluent literal g ∈ s \ δ such
that ¬g ∈ ψ. It is easy to see that

¬l / ln / ln−1 / . . . l0 / ¬g

Hence, we have l / g.
(ii) l0 possibly holds by inertia. This means that l0 possibly holds

in δ and ¬l is not a direct effect of a in δ.
It is easy to see that l0 does not hold in s as if otherwise, we

would have ¬l ∈ s′, which is impossible due to l ∈ s′. Because s

67

is a state, it follows that ¬l0 ∈ s.
As l0 possibly holds in δ and ¬l0 ∈ s, we have ¬l0 ∈ s \ δ.

On the other hand, by the definition of dependencies, we have
l / ¬l0. Accordingly, we can select g = ¬l0 ∈ s \ δ to have l / g.

C.1 Proof of Proposition 2

By the definition of Àσ (Definition 13), δ is a subset of every state s in S.
Hence, the right hand side of the equation of the proposition is a subset of the
left hand side. Therefore, to prove the lemma, it is sufficient to show that

(
⋂

s∈S

s) ∩ σ ⊆ δ ∩ σ

Suppose otherwise, that is, there exists a fluent literal l such that l ∈ (
⋂

s∈S s)∩
σ but l 6∈ δ ∩ σ. This implies that (i) l ∈ σ, and (ii) l ∈ s \ δ for every s ∈ S.
The latter implies that l / (s \ δ) for every s ∈ S. By the definition of À,
S 6Àσ δ. This is a contradiction.

C.2 Proof of Proposition 3

(1) Assume that a is not safe in δ. That means there exists an impossibility
condition

impossible b if ψ

such that b ⊆ a and ψ possibly holds in δ, i.e.,

¬ψ ∩ δ = ∅ (C.15)

By the definition of À, S Àσ δ implies that there exists a state s ∈ S
such that b 6 (s \ δ). Because a is executable in s, ψ does not hold in s,
i.e., ψ 6⊆ s. Because s is a complete set of fluent literals, it follows that

¬ψ ∩ s 6= ∅ (C.16)

By (C.15) and (C.16), there exists a fluent literal l ∈ (s \ δ) such that
l ∈ ¬ψ. By the definition of dependencies, we have b / l and this is a
contradiction because b 6 (s \ δ).

(2) Let S ′ = Res(a, S).
Consider an arbitrary state s ∈ S. Because a is executable in S, it fol-

lows from the previous item that a is safe in δ. By Lemma 9, Proposition
1, and the definition of T lp(D), it follows that there exists a (unique) par-
tial state δ′ such that 〈δ, a, δ′〉 ∈ T lp(D). We need to show that S ′ Àσ δ′.

68

Suppose otherwise, that is, S ′ 6Àσ δ′. Then, there are two possible cases
(note that because δ ⊆ s for every s ∈ S, by Theorem 3, δ′ ⊆ s′ for every
s′ ∈ S):
(a) there exists a fluent literal l ∈ σ such that l¢(s′\δ′) for every s′ ∈ S ′.

Let l be such a fluent literal. Consider an arbitrary state s ∈ S
and let 〈s, a, s′〉 be a transition in T (D). Furthermore, let g ∈ s′ \ δ′

such that l / g. By Proposition 6, because g ∈ s′ \ δ′, there must be a
fluent literal h ∈ s \ δ such that g / h. Because of the transitivity of
/, we have l / h. This implies that

l / (s \ δ) (C.17)

Because s can be any arbitrary state in S, (C.17) implies that S 6Àσ δ.
This is a contradiction.

(b) there exists an action b such that b / (s′ \ δ′) for every s′ ∈ S ′.
Consider an arbitrary state s ∈ S and let 〈s, b, s′〉 be a transition

in T (D). Furthermore, let l ∈ s′ \ δ′ be a fluent literal such that b / l.
By Proposition 6, because l ∈ s′ \ δ′, there exists a fluent literal g in
s \ δ such that l / g. By the definition of dependencies, it follows that
b / g ∈ (s \ δ). Hence, we have

b / (s \ δ) (C.18)

Because s can be any arbitrary state in S, (C.18) implies that S 6Àσ δ.
This is a contradiction.

C.3 Proof of Proposition 4

Let α = 〈a0, a1, . . . , an−1〉. For i ≥ 0, let α[i] denote the chain of the initial
i events of α, i.e., α[i] = 〈a0, a1, . . . , ai−1〉. We will prove the proposition by
induction on the length n of α.

(1) Base case: n = 0.
Item 1 is trivial. Item 2 is true because Res(α, S) = S Àσ δ, 〈δ, 〈〉, δ〉 ∈

T lp(D) and T lp(D) is deterministic.
(2) Inductive Step: Suppose the proposition is true for n ≤ k. We need to

show that it is true for n = k + 1.
Let Si = Res(α[i], S) and let δi be the partial state such that

〈δ, α[i], δi〉 ∈ T lp(D). Clearly to prove the inductive step, we only need to
show that
(a) ak is safe in δk, and
(b) Sk+1 Àσ δk+1

By the inductive hypothesis, we have Sk Àσ δk. By Proposition 3, it
follows that ak is safe in δk and Sk+1 Àσ δk+1.

69

C.4 Proof of Theorem 6

This theorem follows directly from Proposition 4 and the definition of a sim-
ple planning problem (Definition 14). If P has no solution then it is trivial.
Suppose that P has a solution, say, α = 〈a0, . . . , an−1〉. We will show that
π(P , n) is consistent.

Because α is a solution of P , there exists a sequence of sets of states 〈S〉ni=0

such that

(1) S0 = comp(δ0)
(2) Si = Res(ai−1, Si−1) for i ≥ 1
(3) δf ⊆ s for every s ∈ Sn.

According to Proposition (4), there exists a sequence of partial states 〈δi〉ni=0

such that δ0 = δ0 and Sn Àδf δn. By Proposition 2, we have δf ⊆ δn.

Let us construct a sequence of sets of atoms Di as follows:

D0 = h(δ0, 0) ∪ o(a0, 0) ∪ ¬o(A \ a0, 0)

for 1 ≤ i ≤ n− 1,

Di = h(l, δi) ∪ o(ai, i) ∪ ¬o(A \ ai, i)

{de(l, i) | l ∈ de(ai−1, δi−1)} ∪ {ph(l, i) | l ∈ ph(ai−1, δi−1)}

and

Dn = {h(l, n) | l ∈ δn} ∪
{de(l, n) | l ∈ de(an−1, δn−1)} ∪ {ph(l, n) | l ∈ ph(an−1, δn−1)}

It is easy to see that for 0 ≤ i ≤ n, Di is an answer set of µi (defined previously
in Appendix B). By Lemma 12, C1 =

⋃n
i=0 Di is an answer set of π1(P , n). As

a result, by Lemma 11, C = C1 ∪ U is an answer set of π0(P , n).

We will show that C is also an answer set of π(P , n). Because π(P , n) is the
program π0(P , n) with additional constraints (6), (8), (19), and (21), all we
need to do is to show that C does not violate any of these constraints. For (6)
and (8), it is trivial because δi is a partial state and〈δi−1, ai−1, δi〉 ∈ T lp(D).
Constraint (19) is satisfied by C because δf ⊆ δn. Constraint (21) is satisfied
because ai is an action, i.e., a non-empty set of elementary actions.

Hence, C is an answer set of π(P , n). This means that the program π(P , n) is

70

consistent. As a result, the theorem holds.

D Proof of Theorem 8

We begin with a lemma about the operator ClD that will be used in the proof.

Given an action theory D, for a set of fluent literals σ, let

Λ(σ) = σ ∪ {l | ∃[l if ψ] ∈ D such that ψ ⊆ σ} (D.1)

Let Λ0(σ) = σ and Λi+1(σ) = Λ(Λi(σ)) for i ≥ 0. Since, by the definition of Λ,
for any set of fluent literals σ′ we have σ′ ⊆ Λ(σ′), the sequence 〈Λi(σ)〉∞i=0 is
monotonic with respect to the set inclusion operation. In addition, 〈Λi(σ)〉∞i=0

is bounded by the set of fluent literals. Thus, there exists σlimit such that

σlimit
D =

∞⋃

i=0

Λi(σ) (D.2)

Furthermore, σlimit
D is unique and satisfies all static causal laws in D.

Lemma 16 For any set of fluent literals σ, we have σlimit
D = ClD(σ).

Proof. By induction we can easily show that Λi(σ) ⊆ ClD(σ) for all i ≥ 0.
Hence, we have

σlimit
D ⊆ ClD(σ)

Furthermore, from the construction of Λi(σ), it follows that σlimit satisfies all
static causal laws in D. Because of the minimality property of ClD(σ), we have

ClD(σ) ⊆ σlimit
D

Accordingly, we have
σlimit
D = ClD(σ)

2

Lemma 17 For every set of fluent literals σ, Closure(D,σ) = ClD(σ).

Proof. It is easy to see that the function Closure(D,σ) is a straightforward
computation of σlimit

D (Equations (D.2) and (D.1)). Hence, by Lemma 16, we
have Closure(D,σ) = ClD(σ). 2

The following lemma shows a code fragment that correctly computes the clo-
sure of a set of fluent literals.

71

Lemma 18 Let i ≥ 0 be an arbitrary integer, and x be a binary predicate
symbol. For any set σ of fluent literals, the following program

x(l, i) ← (l ∈ σ)

x(l, i) ← x(ψ, i) ([l if ψ] ∈ D)

has the unique answer set {x(l, i) | l ∈ ClD(σ)}.

Proof. By the definition of an answer set of a positive program, it is easy to
see that the above program has the unique answer set {x(l, i) | l ∈ σlimit

D } =
{x(l, i) | l ∈ ClD(σ)} (see Lemma 16). 2

Let a be an action and δ be a partial state such that Π(a, δ) is consistent. By
Proposition 1, Π(a, δ) has a unique answer set, say B. Let lit denote the set
of all fluent literals, i.e., lit = F ∪ ¬F. We define

de(a, δ) = {l | l is a direct effect of a in δ} (D.3)

pde(a, δ) = {l | l is a possible direct effect of a in δ} (D.4)

ph(a, δ) = ClD((pde(a, δ) ∪ (lit \ ¬δ)) \ de(a, δ)) (D.5)

Then, we have the following lemma.

Lemma 19 For any fluent literal l, h(l, 1) ∈ B iff l ∈ ClD(de(a, δ) ∪ (lit \
¬ph(a, δ))).

Proof. Because B is an answer set of Π(a, δ), it is also an answer set of
Π0(a, δ) (recall that Π0(a, δ) is the program obtained from Π(a, δ) by removing
constraints).

According to Lemma 6, there exists an answer set B1 of the program Π3(a, δ)
(rules (A.32)–(A.38)) such that (A.39) and (A.40) hold.

It is easy to see that X = {ph(l, 1) | l ∈ lit} is a splitting set of Π3(a, δ). The
bottom part of Π3(a, δ) with respect to X is the following set of rules

ph(l, 1)←
(l is a possible direct effect of a in δ,¬l is not a direct effect of a)

ph(L, 1)←
(L possibly holds in δ,¬L is not a direct effect of a)

ph(l, 1)← ph(ψ, 1)

([l if ψ] ∈ D)

which can be rewritten to (see (D.3) and (D.4) for the definition of de(a, δ)

72

and pde(a, δ))

ph(l, 1)←
(l ∈ (pde(a, δ) \ ¬de(a, δ)) ∪ (lit \ ¬(δ ∪ de(a, δ)))

ph(l, 1)← ph(ψ, 1)

([l if ψ] ∈ D)

By Lemma 17, this program has a unique answer set (see (D.5) for the defini-
tion of ph(a, δ))

M = {ph(l, 1) | l ∈ ph(a, δ)}

Hence, the evaluation of the top part of Π3(a, δ) with respect to M is the
following set of rules:

h(l, 1)←
(l ∈ de(a, δ))

h(l, 1)←h(ψ, 1)

([l if ψ] ∈ D)

h(L, 1)←
(¬l 6∈ ph(a, δ))

Again, by Lemma 17, this program has a unique answer set (note that (¬l 6∈
ph(a, δ)) ⇔ (l ∈ (lit \ ¬ph(a, δ)))):

N = {h(l, 1) | l ∈ ClD(de(a, δ) ∪ (lit \ ¬ph(a, δ)))}

By the splitting set theorem, we have B1 = M ∪N . Hence by (A.40), we have

(h(l, 1) ∈ B) ⇔ (l ∈ ClD(de(a, δ) ∪ (lit \ ¬ph(a, δ))))

Hence, the lemma holds. 2

We now show that Theorem 8 holds. By Lemma 18, it is easy to see that
Res(D, a, δ) = ClD(de(a, δ) ∪ (lit \ ¬ph(a, δ))). By Lemma 19, it follows that
Theorem 8 holds.

73

