
INTEGRATING ASP AND CLP SYSTEMS: COMPUTING ANSWER SETS

FROM PARTIALLY GROUND PROGRAMS

by

VEENA S.MELLARKOD, M. S.

A PHD DISSERTATION

IN

COMPUTER SCIENCE

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Ful�llment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Dr.Michael Gelfond
Committee Chairman

Dr.Tran Cao Son

Dr.Richard Watson

Dr.Yuan-Lin Zhang

Fred Hartmeister
Dean of the Graduate School

December, 2007

Copyright 2007, Veena S. Mellarkod

Texas Tech University, Veena S.Mellarkod, December 2007

To my Guru Michael Gelfond.

I naively jumped into a deep ocean . . .

Thank you for guiding me through.

ii

Texas Tech University, Veena S.Mellarkod, December 2007

ACKNOWLEDGMENTS

I have been privileged to receive all the support I needed to �nish this work. First

and foremost, I thank my parents and sister for their encouragement and for

always being there for me. Thanks Mom and Dad! Thank you Vidhya for your

love and immense con�dence in me.

I am most fortunate to have known my guru Dr.Michael Gelfond and feel blessed

to be his student. The good karma from my previous life must have resulted in

the joyful years of my life as his student. The experience of learning logic and

philosophy of life from him was incredible. Thank you for always being patient

with me and teaching me as much as I could understand, Dr.Gelfond. You have

been my pillar of intellectual strength from the time I blindly followed you to

Lubbock from El paso. This work would not have been possible without your

constant help, guidance, and support. I am sure your teachings will serve me well

in all walks of my life.

Special thanks should be extended to Dr.Richard Watson, Dr. Tran Cao Son and

Dr.Yuan-Lin Zhang for serving on my dissertation committee and for their

detailed reviews and helpful suggestions. Dr. Zhang especially helped me come up

with some of the examples proposed in this work. I should also thank Dr. Enrico

Pontelli for reviewing my work and for his insightful comments.

Dr.David Sallach of Argonne National Laboratory has introduced me to

agent-based modeling and other exciting areas of research that I had never known.

Although this dissertation did not include those aspects, I enjoyed learning from

him and the discussions which usually went on for several hours. I will never

forget his constant support and guidance. I hope he enjoyed teaching me as much

as I enjoyed learning from him. I should also thank Dr.Charles Macal and

iii

Texas Tech University, Veena S.Mellarkod, December 2007

Dr.Mike North, both at ANL, for including me in several of their discussions and

work. Thanks Chick for also letting me in on the secrets of e�ective presentations.

Monica Nogueira and Marcello Balduccini deserve special mention for their

constant guidance and support through my graduate study. They both have been

incredibly helpful through the phases of my student life, classes and research.

Marcy started helping me in Ramon's class while distinguishing classical negation

from default negation when I was still a novice at logic programming and did not

stop until I �nished my dissertation work. He really has been a true friend

whenever I needed. Monica was also ever supportive whenever I requested for her

help. She had a big hand in shaping my Masters' thesis and now my doctoral

dissertation. I especially enjoy her ever-positive attitude and hard work that made

our work together exciting. I will cherish their friendships for life.

Gregory Gelfond must simply be thanked for being such a nice friend. Greg, I

have enjoyed your friendship and am very happy that we will be friends forever.

Thank you for reading my work and helping me whenever I come to you,

including helping me format this work.

The members of Knowledge Representation Lab at Texas Tech University

maintained such a happy and jovial environment in the lab, without which work

would have gotten boring. Being in the lab was such fun with them around!

I wish to thank Lara Gelfond for her support and her wonderful cakes. Lara,

thank you for being so thoughtful to bake my favorite cherry cake for my

dissertation defense.

Seven years of my stay in Lubbock as a foreigner would not have been memorable

but for the constant help and encouragement of my friends. Pradip Sahu, Javed

Ali and Sudhir Prabhu have been such best friends that they have now become a

part of my extended family. Sirisha and Rajmohan have been no di�erent and

iv

Texas Tech University, Veena S.Mellarkod, December 2007

were constantly teaching tips in cooking and taking me out to lunch on Fridays.

I thank my brothers Vinayak, Vivek and Lakshmi Narayan, my parents-in-law

Ranganathan and Kowsalya Ranganathan, my grand mothers Bhageerathy

Ammal and Ramalakshmi Madabhushi for their incredible moral and emotional

support. Vivek and Lakshmi, thank you both for entertaining me and taking care

of me during the last phases of my dissertation work.

I would not even have embarked on a PhD program without moral and �nancial

support from my uncles and aunts Sriram Melarcode, Rajam Sriram, Ganesh

Melarkode, Uma Ganesh, Veerramani and Radha Veerramani. I am relieved that

their thoughtful advice and suggestions have �nally paid o� into making me a

better individual.

Finally, a BIG THANK YOU to the one person who above all has constantly

showered me with his love, care and support. I am excited that we can now ride

into the future together.

v

Texas Tech University, Veena S.Mellarkod, December 2007

ABSTRACT

Answer set programming (ASP) has emerged as a declarative paradigm for

knowledge representation and reasoning. In this approach, a logic program is used

to represent the knowledge of the domain and various tasks are reduced to

computing answer sets of this program. ASP languages A-Prolog and CR-Prolog

have been proven as powerful tools for constructing complex reasoning systems.

Constraint logic programming (CLP) emerged as an alternate paradigm through

the fusion of logic programming and constraint solving. A CLP solver thus

integrates resolution techniques from logic programming and constraint solving

techniques from constraint satisfaction. While ASP is expressive for knowledge

representation and reasoning, CLP solvers are e�cient in reasoning with

numerical constraints.

Every state-of-the-art ASP solver computes answer sets of programs from their

ground equivalents. Though these systems solve large industrial problems, the

ground programs become huge and unmanageable. This is especially true when

programs contain variables that range over large numerical domains; huge memory

requirements eventually force the solvers to fail.

The goal of this research is to address this issue by integrating di�erent types of

reasoning techniques to compute answer sets of programs. First, we investigate

the integration of answer set reasoning, a form of abduction, and constraint

solving techniques. We design a collection of languages, V(C), parameterized over

a class C of constraints. An instance AC0 from this family is studied as a

knowledge representation tool. An algorithm to compute answer sets of AC0

programs is developed. An AC0 solver is built that computes answer sets from

partially ground programs. The use of this language and the e�ciency of the

solver are demonstrated.

vi

Texas Tech University, Veena S.Mellarkod, December 2007

We extend our investigation to develop methods to include resolution techniques.

We design a collection of languages AC(C) parameterized over a class C of

constraints. We develop an algorithm to compute answer sets of AC(C) programs

from their partial ground instances by integrating the four reasoning techniques

and prove correctness. A solver is built to compute answer sets for a class of

AC(C) programs.

Our work is a signi�cant step to declaratively solve problems that cannot be

solved by pure ASP or CLP solvers. The solvers built are the �rst to tightly

integrate di�erent reasoning techniques to compute answer sets from partial

ground programs.

vii

Texas Tech University, Veena S.Mellarkod, December 2007

CONTENTS

ACKNOWLEDGMENTS . iii

ABSTRACT . vi

LIST OF FIGURES . xii

LIST OF TABLES . xiii

I INTRODUCTION . 1

1.1 Declarative Paradigms . 2

1.1.1 ASP paradigm . 2

1.1.1.1 Language CR-Prolog 3

1.1.2 CLP Paradigm . 4

1.1.2.1 Language and solver CLP(R) 6

1.2 Problem Description . 6

1.3 Goal of this Research . 9

1.3.1 Language AC(C) . 10

1.3.2 Algorithm ACsolver . 16

1.3.3 Language AC(C)cr . 19

1.3.4 Language V(C) . 20

1.3.5 Language AC0 . 21

1.3.6 Solver ADsolver . 22

1.4 Summary . 24

II BACKGROUND . 26

2.1 Answer Set Programming Paradigm 26

2.1.1 Language A-Prolog . 26

2.1.2 ASP solvers . 29

2.1.3 ASP Applications . 33

viii

Texas Tech University, Veena S.Mellarkod, December 2007

2.2 Constraint Logic Programming Paradigm 35

2.2.1 Language of CLP . 35

2.2.2 CLP solvers . 39

2.2.3 CLP Applications . 40

III LANGUAGE AC(C) . 42

3.1 Syntax . 42

3.2 Semantics . 45

IV PARTIAL GROUNDER Pground 49

4.1 Syntax Restrictions . 49

4.2 Pground . 52

V ALGORITHM . 62

5.1 T ranslator . 62

5.2 ACengine . 68

5.2.1 Main Computation Cycle 69

5.3 The expand Cycle . 72

5.3.1 Functions atleast, atmost 72

5.3.1.1 Function atleast 72

5.3.1.2 Function atmost 74

5.3.2 The expand Function . 76

5.4 The Query: query(Π, S) . 78

5.5 The c solve cycle . 83

5.5.1 The clp-solver of ACengine 83

5.5.1.1 Function clp . 84

5.5.1.2 Constructive Negation 87

5.5.1.3 Function clp-solver 89

5.5.2 The c solve Function . 101

ix

Texas Tech University, Veena S.Mellarkod, December 2007

5.6 The pick Function . 103

VI LANGUAGE V(C) . 105

6.1 Syntax and Semantics of V(C) 106

6.1.1 Syntax . 106

6.1.2 Semantics . 110

6.2 ADsolver . 112

6.2.1 Pgroundd . 112

6.2.2 ADengine . 114

6.2.2.1 Dsolver . 115

6.2.2.2 Suryad . 116

6.2.2.3 Function expand dc 117

VII KNOWLEDGE REPRESENTATION 126

7.1 Representing Knowledge in AC0 and AC0cr 127

7.2 Representing Knowledge in AC(R) and AC(R)cr 144

VIII PROOFS . 162

8.1 Partial Grounding . 162

8.1.0.4 Splitting Sets . 165

8.1.1 P(Π) . 165

8.1.2 Step (1) of P(Π) . 168

8.1.3 Step (2) of P(Π) . 171

8.1.4 Step (3) of P(Π) . 173

8.1.5 Step (4) of P(Π) . 174

8.1.6 Step (5) of P(Π) . 183

8.1.7 Step (6) of P(Π) . 184

8.1.8 Step (7) of P(Π) . 187

8.2 Function expand . 187

x

Texas Tech University, Veena S.Mellarkod, December 2007

8.3 Function c solve . 190

8.4 AC(C) solver . 206

IX RELATED WORK . 220

9.1 Language ASP-CLP . 220

9.2 Language CASP . 223

9.3 ASP and SAT solvers . 225

9.3.1 Satis�ability Modulo Theories 226

X CONCLUSIONS AND FUTURE WORK 228

10.1 Future Work . 230

BIBLIOGRAPHY . 237

xi

Texas Tech University, Veena S.Mellarkod, December 2007

LIST OF FIGURES

5.1 ACengine : computation of answer sets of Π 69

5.2 Function expand . 77

5.3 Function c solve . 102

6.1 Suryad: computation of answer sets of Π 117

6.2 Function expand dc . 123

7.1 ADsolver Time Results (1) on Planning and Scheduling in USA-

Advisor . 141

7.2 ADsolver Time Results (2) on Planning and Scheduling in USA-

Advisor . 141

7.3 ADsolver Time Results (3) on Planning and Scheduling in USA-

Advisor . 161

xii

Texas Tech University, Veena S.Mellarkod, December 2007

LIST OF TABLES

1.1 Travel time (in minutes) between several locations in Example 1.2.1 7

7.1 Languages and their Features . 126

7.2 Languages and Solvers . 126

7.3 ADsolver Time Results (4) on Planning and Scheduling in USA-

Advisor . 142

7.4 Travel time (in minutes) between several locations in Example 7.2.4 147

xiii

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 1

INTRODUCTION

Programming languages can be divided into two main categories, algorithmic

and declarative. Programs in algorithmic languages describe sequences of actions

for a computer to perform, while declarative programs can be viewed as collections

of statements describing the objects of a domain and their properties. Such sets of

statements are often called a knowledge base. The semantics of a declarative

program Π is normally given by de�ning its models, i.e., possible states of the

world compatible with Π. The work of computing these models, or consequences,

is often done by an underlying inference engine. For example, Prolog is a logic

programming language that has such an inference engine built into it. The

programmer does not have to specify the steps of the computation and can

therefore concentrate on the speci�cations of the problem. It is this separation of

logic from control that characterizes declarative programming [48, 69, 64].

Declarative programs need to meet certain requirements. Some of these

requirements are[48]:

� The syntax should be simple and there should be a clear de�nition of the

meaning of the program.

� Knowledge bases constructed in this language should be elaboration

tolerant. This means that a small change in our knowledge of a domain

should result in a small change to our formal knowlegde base[71].

� Inference engines associated with declarative languages should be su�ciently

general and e�cient. It is often necessary to �nd a balance between the

expressiveness of the language and the desired e�ciency.

1

Texas Tech University, Veena S.Mellarkod, December 2007

1.1 Declarative Paradigms

Two declarative programming paradigms of interest in this work are the Answer

Set Programming (ASP) paradigm and the Constraint Logic Programming

(CLP) paradigm. ASP paradigm was introduced by Michael Gelfond and

Vladimir Lifschitz in 1988 [50] and CLP paradigm was introduced by Joxan Ja�er

and Jean-Louis Lassez in 1987 [54]. We brie
y describe these two paradigms

before we state the goal of this research. Additional information on ASP and CLP

with references to literature can be found in chapter 2.

1.1.1 ASP paradigm

Of the many languages in the ASP paradigm, the most studied and used is the

declarative language A-Prolog [50]. The language has its roots in the research on

the semantics of logic programming languages and non-monotonic reasoning

[49, 51]. The syntax of A-Prolog is similar to Prolog, with some di�erences in

connectives. For instance, unlike Prolog, A-Prolog allows disjunctions in the head

and classical negation but does not allow the cut (!) operator. The following is a

simple example of a program in A-Prolog.

Example 1.1.1. Consider the program Π below:

q(a).

q(b).

p(X)← q(X).

Π consists of three rules de�ning properties {p, q} of objects {a, b}. X is a

variable ranging over objects in the program.

The semantics of A-Prolog is given by answer set semantics. There are several

solvers/ inference engines that compute answer sets of programs written in

2

Texas Tech University, Veena S.Mellarkod, December 2007

A-Prolog [19, 75, 68, 21, 62, 72]. These ASP solvers are quite e�cient and have

been used for solving complex applications [77, 36, 40, 41]. Computing answer

sets of an A-Prolog program is a two step process. Given an A-Prolog program

Π, ASP solvers �rst ground Π by replacing variables by constants to get a ground

program, ground(Π); then they use inference techniques to �nd answer sets of

ground(Π). The answer sets of ground(Π) are the answer sets of the program Π.

Example 1.1.2. Let Π be the program as in example 1.1.1. The ground

program, ground(Π) is:

q(a).

q(b).

p(a)← q(a).

p(b)← q(b).

Program ground(Π) has a single answer set S = {q(a), q(b), p(a), p(b)}.

The set S is the answer set of Π.

There can be no answer sets or single answer set or several answer sets for a

program. A detail description of the syntax and semantics of A-Prolog and ASP

solvers can be found in chapter 2.

1.1.1.1 Language CR-Prolog

The knowledge representation language CR-Prolog [3] is an extension of

A-Prolog. CR-Prolog allows natural encoding of \rare events". These events are

normally ignored by a reasoner associated with the program and only used to

3

Texas Tech University, Veena S.Mellarkod, December 2007

restore consistency of the reasoner's beliefs. For instance a program:

¬p(X)← not p(X).

q(a)← ¬p(a).

[r(X)] : p(X)
+← .

consists of two regular rules of ASP and the consistency restoring rule, [r(X)],

which says that in some rare cases, p(X) may be true. The rule is ignored in the

construction of the answer set {¬p(a), q(a)} of this program. If however the

program is expanded by ¬q(a) then the rule r(a) will be used to avoid

inconsistency. The answer set of the new program will be {p(a),¬q(a)}.

CR-Prolog has been shown to be a useful tool for knowledge representation and

reasoning [3, 6]. The language is expressive, and has a well understood

methodology inherited from ASP, for representing defaults, causal properties of

actions and
uents, various types of incompleteness, etc. In addition, it allows

reasoning with complex exceptions to defaults and hence avoids some occasional

inconsistencies of A-Prolog.

Simple CR-Prolog solvers [62, 4] built on top of the ASP solvers proved to be

su�ciently e�cient for building industrial size applications related to intelligent

planning and diagnostics [6].

1.1.2 CLP Paradigm

Constraint logic programming (CLP) is a merger of two declarative paradigms:

constraint solving [54], and logic programming [63, 25]. Constraint logic

programming can be said to involve the incorporation of constraints and

constraint "solving" methods in logic-based languages. This characterization

suggests the possibility of many interesting languages, based on di�erent

4

Texas Tech University, Veena S.Mellarkod, December 2007

constraints and di�erent logics. In general CLP(X) is used to denote a constraint

logic programming language with constraint domain X.

The syntax of a typical language of CLP resembles prolog syntax. For instance,

the program in example 1.1.2 can be viewed as a program in CLP. CLP languages

di�er on the type of constraints (relations) that are allowed and the domain in

which these constraints operate. Constraints are a set of relations over a given

domain, for instance the constraint domain for reals include standard arithmetic

relations of the form: X − Y � d, a � X + b � Y + c � Z = e etc., where X, Y, Z are

variables ranging over reals and a, b, c, d, e are real constants.

Prolog can be said to be a CLP language where the constraints are equations over

the algebra of terms (also called algebra of �nite trees, or the Herbrand Domain)

[56]. The CLP program in example below de�nes the relation

sumto(n, 1 + � � �+ n) for natural numbers.

Example 1.1.3. [55]

sumto(0, 0).

sumto(N,S) :− N � 1, N � S, sumto(N − 1, S − N).

The semantics of CLP languages is based on the operational interpretation of

constraints rather than declarative interpretation like in logic programming

languages. There are several state-of-the-art solvers for CLP languages with

constraint domains over real, rational, �nite trees and �nite domains. Some of the

current popular solvers are ECLiPSe (�nite domain) [2], GNU Prolog (�nite

domain) [31], SICStus Prolog's CLP(Q,R) and CLP(FD) solvers (rational, real

and �nite domain) [18, 20]. There are a wide range of CLP applications from

industry, business, manufacturing and science [90, 61, 53, 81, 22, 82, 88].

A CLP solver reads and compiles a user written program and then answers user's

5

Texas Tech University, Veena S.Mellarkod, December 2007

queries (goals in the form of constraints). For instance, the program in example

1.1.3 above can be compiled in CLP(R), (a solver for CLP with real domain) and

query S <= 3, sumto(N,S) gives rise to three answers: (N = 0, S = 0),

(N = 1, S = 1), and (N = 2, S = 3) and terminates. A brief overview of constraint

languages, solver and applications can be found in chapter 2.

1.1.2.1 Language and solver CLP(R)

In this work, we are interested in the language CLP(R) [58] which is an instance of

constraint logic programming language because we have the source code of

CLP(R) solver. The domain of computation R is the algebraic structure consisting

of uninterpreted functors over real numbers. CLP(R) solver [52], reads a user

input program in language CLP(R) and answers queries or goals. If a goal is

successful i.e., has a solution, then the solver returns primitive answer

constraints whose solutions are solutions to the goal.

The CLP(R) solver's inference engine uses resolution techniques for reasoning

with non-primitive constraints in the goal while accumulating primitive

constraints. The primitive constraints are solved using constraint solving

techniques. The underlying constraint solver is incremental and uses di�erent

constraint solving techniques based on the classes of constraints solved.

The following sections describe in more detail a motivation for this work and a

proposed solution.

1.2 Problem Description

This section describes the problem of grounding A-Prolog programs containing

numerical constraints with variables ranging over large domains and �nding

answer sets of such ground programs by ASP solvers. Before addressing the

6

Texas Tech University, Veena S.Mellarkod, December 2007

Locations Doctor Home O�ce Atm

Doctor 0 20 30 40

Home 20 0 15 15

O�ce 30 15 0 20

Atm 40 15 20 0

Table 1.1: Travel time (in minutes) between several locations in Example 1.2.1

problem, let us look at a simple knowledge representation and planning example,

involving large numerical domains.

Example 1.2.1. Ram is at his o�ce and has a dentist appointment in one

hour. For the appointment, he needs his insurance card which is at home

and cash to pay the doctor. He can get cash from the nearby atm. Table 1.1

shows the time in minutes needed to travel between locations: Doctor, Home,

O�ce and Atm. For example, the time needed to travel between Ram's o�ce

to the Atm is 20 minutes. If the available actions are: moving from one

location to another and picking items such as cash or insurance card then,

(a) �nd a plan which takes Ram to the doctor on time, and

(b) �nd a plan which takes Ram to the doctor at least 15 minutes early.

The above planning problem can be expressed in A-Prolog language using direct

e�ects, indirect e�ects and executability conditions for actions, along with inertia

axiom, a planning module and initial situation (scenario). Declarative description

of the problem requires representation of time. One natural way to do this is to

use natural numbers from 0 to 1440 (which is the number of minutes in the day).

Given a program Π to represent the above problem, classical ASP solvers

[62, 72, 76], could not solve the problem. Even though A-Prolog is expressive

enough to allow for an appropriate and concise representation of this problem, all

current ASP solvers compute answer sets of a program from its ground

7

Texas Tech University, Veena S.Mellarkod, December 2007

instantiation and therefore, are not capable of handling representations involving

large ground instantiations as this one. Since the problem contains numerical

constraints with time variables that range over large domains (here [0..1440]), the

ground instantiation is quite huge. ASP solvers can not ground the program due

to huge memory requirements and hence can not compute its answer sets.

When programs contain variables that range over large domains then classical

methods of ASP solvers cannot be used to solve these problems. We need to �nd

methodologies to compute answer sets without computing the whole ground

instantiation. To further understand the signi�cance of this problem, we present a

simpler example that contains variables that range over large domains and

compare it to the size of its ground instantiation.

Example 1.2.2. Let Π be a program as given below:

r1 : time(0..1440).

r2 : #domain time(T1; T2).

r3,4 : q(1). q(2).

r5 : p(X, Y) ← q(X), q(Y), X! = Y, not r(X, Y)

r6 : r(X, Y) ← q(X), q(Y), X! = Y, not p(X, Y)

r7 : ← r(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 3

r8 : ← p(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 10

r9 : 1 { at(X, T) : time(T) } 1← q(X)

When we ground the above program using an intelligent grounder, lparse, we

get the number of rules in lparse(Π) = 8226921.

The system lparse [98] is a state-of-the-art program used as a front-end to ASP

inference engines to ground A-Prolog input programs before they can be

processed by these engines. Since lparse uses intelligent grounding mechanisms,

normally the size of lparse(Π) is less than the size of its ground instantiation

8

Texas Tech University, Veena S.Mellarkod, December 2007

ground(Π), without losing answer sets of Π. We see in the example that the

program with 9 rules has more than 8 million rules in lparse(Π). Further notice

that rules r3 to r6 and r9 together comprise of only 7 rules in ground program

lparse(Π). The rules r1 and r2 specify the domain of time variables and are used

only during grounding. An intelligent grounder would not output their ground

instantiations. Therefore, the 8 million rules in the ground instantiation of Π are

from rules r7 and r8 which contain numerical timing constraints.

It becomes clear that when there are variables that range over large domains the

current ASP solvers are ine�cient to compute answer sets and most times they

fail. We need to investigate methods to compute answer sets of programs without

computing the whole ground instantiation. This is one of the goals of this

research.

1.3 Goal of this Research

The goal of this research is to investigate the integration of four types of reasoning

capabilities:

. answer set reasoning from A-Prolog,

. abductive reasoning from CR-Prolog,

. resolution from CLP,

. constraint solving mechanisms from CLP.

We propose to achieve this in two steps:

1. Design a collection of languages AC(C), parameterized over a collection C of

constraints. The set of constraints (relations) in C de�nes the di�erence

between the languages in the collection AC(C). These languages di�er from

9

Texas Tech University, Veena S.Mellarkod, December 2007

A-Prolog and CR-Prolog by classifying predicates into di�erent types. This

information will be used by an inference engine of AC(C) to classify rules to

di�erent types and therefore apply di�erent reasoning mechanisms to

di�erent types of rules.

2. Design an algorithm to compute answer sets of AC(C) programs. The

algorithm would integrate four types of reasoning capabilities: answer sets,

abduction, resolution and constraint solving mechanisms to compute answer

sets. Further, the algorithm allows for computing answer sets of AC(C)

programs from their partial ground instantiations.

1.3.1 Language AC(C)

The �rst goal comprises of de�ning the syntax and semantics of AC(C). Since

A-Prolog and CR-Prolog have been proven to be a useful tool for knowledge

representation and reasoning [48, 10, 11, 5, 78], for this work, we desire

. to keep the syntax of AC(C) close to the syntax of A-Prolog, and

. to keep the semantics of AC(C) as a natural extension of semantics of

A-Prolog.

To understand the intuitive reasoning and motivation for this work, we now

present a brief introduction to this approach. We begin by giving a brief

introduction to the language AC(C). The syntax and semantics of AC(C) are

described in detail in chapter 3.

Signature of the language AC(C) is sorted. Predicates in the signature of the

language are divided into four types: regular, constraint, defined and mixed.

Intuitively, regular predicates de�ne relations with variables that range over small

domains. Constraint predicates de�ne primitive numerical relations with variables

10

Texas Tech University, Veena S.Mellarkod, December 2007

ranging over large domains. De�ned predicates which de�ne non-primitive

relations with variables ranging over large domains. The mixed predicates de�ne

relationships between regular and defined; and regular and constraint

predicates. The atoms formed from these predicates are called regular, constraint,

de�ned and mixed atoms.

The intuitive idea behind classifying predicates is to use di�erent methods of

inferencing: answer set, abduction, resolution and constraint solving for

di�erent types of rules formed from these atoms. Though, we give the formal

syntax and semantics of AC(C) later in chapter 3, let us look at some parts of the

example 1.2.1 and how we can represent it in the new language. The full example

can be found in chapter 7.

We �rst represent the regular part of the example which consists of regular atoms

and rules formed from these atoms. The representation of time that involves

variables with large domains and constraint atoms is described later.

There is only one person ram in our example and locations: dentist place, ram's

o�ce, ram's home and the atm. We also have two items, insurance card and cash.

The atom step represented below describes a higher level time frame involved in

reasoning with time. A step in the world is a discrete time representation. These

steps are used to perform higher intelligent reasonings. The real time is

represented by atom time whose domain is [0..1440] and will be introduced later

in the example along with rules for numerical reasoning. Finally, we will see that

a mixed atom is used to eventually associate each discrete step to a real time in

the world. To make it simple we only have one action: go to. There are three

uents: a person P is at location L; an item I is at location L and a person P has

item I. The following rules represent these informations.

person(ram).

11

Texas Tech University, Veena S.Mellarkod, December 2007

item(icard). item(cash).

loc(dentist). loc(office).

loc(home). loc(atm).

step(1..4).

% Actions

action(go_to(P,L)) :- person(P), loc(L).

% Fluents

fluent(at_loc(P,L)) :- person(P), loc(L).

fluent(at_loc(I,L)) :- item(I), loc(L).

fluent(has(P,I)) :- person(P), item(I).

The direct e�ect of a person going to a location is represented in the following

rule. Note that the atom next(S0, S1) is true when step S1 = S0 + 1. The atom

o(go to(P, L), S0) is read as: action, person P goes to location L, occurs at step

S0. The atom h(at loc(P, L), S1) is read as:
uent, person P is at location L,

holds at step S1.

% If a person P goes to loc L at step S0 then he is at L at step S0+1.

h(at_loc(P,L),S1) :- person(P), loc(L),

next(S0,S1),

o(go_to(P,L),S0).

The next two rules represent in-direct e�ects. Instead of introducing a new action

pick an item, to make the representation simpler, we describe that a person has

an item I if he is at the location where the item is. This allows us to represent the

12

Texas Tech University, Veena S.Mellarkod, December 2007

�rst rule. The second in-direct e�ect describes the change in location of an item

with changes in location of the person who is carrying the item.

% If Ram is at loc L and item I is at loc L then he has item I

h(has(P,I),S) :- step(S),

h(at_loc(P,L),S),

h(at_loc(I,L),S).

% If a person has an item then the item is at same loc as the person

h(at_loc(I,L),S) :- step(S),

h(has(P,I),S),

h(at_loc(P,L),S).

Next we see how we can represent the constraint and mixed predicates in language

AC(C). In order to represent a constraint predicate and sort, AC(C) uses the key

word #csort. The �rst rule below is read as: time is a constraint sort with

values ranging from 1 to 1440. The number 1440 is selected because it is the

number of minutes in a day and we use minutes as the smallest measurement of

time in this example. In order to represent mixed predicates, AC(C) uses the key

word #mixed. The second rule is read as: at is a mixed predicate of arity two

with �rst parameter as a step and second parameter as time. The default

predicate type is regular. Therefore, if we do not mention the type of the

predicate then it is regular. In this example, time is a constraint predicate, at is a

mixed predicate and all others are regular. There are no defined predicates in

this example. Recall that a mixed predicate de�nes relationships between regular

and constraint parameters. In this example at is a mixed predicate relating a

regular parameter step and a constraint parameter time.

13

Texas Tech University, Veena S.Mellarkod, December 2007

#csort time(1..1440).

#mixed at(step,time).

Next we show how to represent the timing constraints like the minimum time

taken to travel between the dentist's place and ram's home is 20 minutes.

Using the mixed predicate at, we can assign a real time in minutes for each step.

We can read at(S, T) as: step S occurs at time T . With the assumption that step

1 occurs prior to step 2 etc., we write the �rst rule which constrains models to

assign real time for step increasingly. The other two rules represent the timing

constraints. Though we show only two timing constraint rules, we need a rule for

each of the timing constraint given in the example.

% Timing constraints

% assign times increasingly for steps.

:- next(S1, S2), at(S1,T1), at(S2,T2), T1 - T2 > 0.

% minimum time for travel between dentist and home is 20 mins

:- h(at_loc(P, home), S1), o(go_to(P, dentist),S1),

next(S1,S2), at(S1,T1), at(S2,T2), T1 - T2 > -20.

% minimum time for travel between home and atm is 15 minutes

:- h(at_loc(P, home), S1), o(go_to(P, atm),S1),

next(S1,S2), at(S1,T1), at(S2,T2), T1 - T2 > -15.

Finally, we represent the planning module which selects one action for each step; a

goal that Ram should be at the dentist with his insurance card and cash; a timing

constraint for the goal that he should be at the dentist in sixty minutes; and

14

Texas Tech University, Veena S.Mellarkod, December 2007

initial situation in which Ram is at his o�ce and insurance card is at home and

cash is at the atm.

%% Planning Module

1 { o(A,S) : action(A) } 1 :- step(S), not goal(S).

goal(S) :- h(at_loc(ram,dentist),S), h(has(ram,icard),S),

h(has(ram,cash),S).

plan :- goal(S).

:- not plan.

% Problem (a): He should be at the dentist in 60 minutes

:- goal(S), at(0,T1), at(S,T2), T2 - T1 > 60.

% Initial Situation

h(at_loc(ram,office),0). h(at_loc(icard,home),0).

h(at_loc(cash,atm),0).

Along with inertia for
uents and other timing constraints, this represents the

formalization of example 1.2.1 in language AC(C). Notice that there are very few

di�erences between the syntax of this AC(C) program and A-Prolog programs. In

fact, we could easily modify this AC(C) program to a semantically equivalent

A-Prolog program in a few steps as follows:

. First, we delete the following rules:

#csort time(1..1440).

#mixed at(step,time).

15

Texas Tech University, Veena S.Mellarkod, December 2007

. and then add the following rules:

time(1..1440).

1 { at(S,T) : time(T) } 1 :- step(S).

The �rst A-Prolog rule added, states that time is a sort with values ranging from

1 to 1440. The next rule is a choice rule [75], which can be read as: for each step

s, select exactly one atom at(s,t), where t is of type time. This rule is not

needed for AC(C) programs as the mixed predicate at acts like a function which

assigns a value T for every S. This shows how close the programs in AC(C) and

A-Prolog are in syntax. These small di�erences however allow us to build e�cient

solvers for AC(C).

1.3.2 Algorithm ACsolver

After designing the language AC(C), we will address the second goal of this work,

which is to design an algorithm ACsolver for computing answer sets of AC(C)

programs and prove its correctness. The algorithm integrates di�erent reasoning

techniques: answer set inferencing, abduction, resolution and constraint

solving to compute answer sets of AC(C) programs. This integration allows for

selectively using a particular reasoning technique which is best suitable for the

kind of reasoning needed. For instance, solving a set of numerical constraints

using constraint solving mechanisms.

It was also clear in section 1.2, that when there are numerical constraints and

variables that range over large domains, ASP solvers could not compute answer

sets. The solvers were computing answer sets from ground instantiations. When

the ground instantiations become huge and unmanageable, the solvers failed.

An interesting area for research is to look for algorithms that can compute answer

sets without grounding the program. Our current work is a step towards this

16

Texas Tech University, Veena S.Mellarkod, December 2007

ultimate goal. We design an algorithm to compute answer sets of AC(C) programs

from their partial ground instantiations. For this, we develop a partial grounder

which takes as input an AC(C) program Π and returns a partially ground program

P(Π). The program P(Π) is used to compute answer sets of Π.

The partial grounder uses the classi�cation of predicates in AC(C) program Π to

partially ground Π. The chapter 4 describes in detail the partial grounding of

AC(C) programs. The algorithm for partial grounder classi�es each rule to a

particular type and grounds the rules with the use of this classi�cation. In slightly

modi�ed terms, we can think that the partial grounder grounds the regular atoms

in a rule and leaves the constraint and de�ned atoms non-ground. The mixed

atoms are ground partially that is, only the regular terms in a mixed atom are

ground and the constraint terms are non-ground.

Clearly, a partially ground program is smaller than a fully ground instantiation. It

is more interesting to see how small the size of partial ground program P(Π) is

when compared to the fully ground instantiation ground(Π). For this let us use

the simple example 1.2.2.

Example 1.3.1. Let Π be the ASP program from example 1.2.2. Then an

equivalent program Π 0 for Π in AC(C) is as follows:

#csort time(0..1440).

#mixed at(q, time).

q(1). q(2).

p(X, Y) ← q(X), q(Y), X! = Y, not r(X, Y)

r(X, Y) ← q(X), q(Y), X! = Y, not p(X, Y)

← r(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 3

← p(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 10

Now let us look at the rules in P(Π 0):

17

Texas Tech University, Veena S.Mellarkod, December 2007

#csort time(0..1440).

q(1). q(2).

p(1, 2) ← not r(1, 2)

p(2, 1) ← not r(2, 1)

r(1, 2) ← not p(1, 2)

r(2, 1) ← not p(2, 1)

← r(1, 2), at(1, T1), at(2, T2), T1 − T2 > 3

← r(2, 1), at(2, T2), at(1, T1), T2 − T1 > 3

← r(1, 1), at(1, T1), at(1, T1), T1 − T1 > 3

← r(2, 2), at(2, T2), at(2, T2), T2 − T2 > 3

← p(1, 2), at(1, T1), at(2, T2), T1 − T2 > 10

← p(2, 1), at(2, T2), at(1, T1), T2 − T1 > 10

← p(1, 1), at(1, T1), at(1, T1), T1 − T1 > 10

← p(2, 2), at(2, T2), at(2, T2), T2 − T2 > 10

The number of rules in P(Π 0) = 14.

The example above shows that the partial grounding of a program has 14 rules

and is much smaller than the whole ground instantiation which has 8 million rules

as seen in example 1.2.2.

The solver ACsolver mainly consists of two parts.

. Partial Grounder Pground

. Inference Engine ACengine

As described earlier, the input of Pground is a AC(C) program and the output is

a partially ground program P(Π). The correctness of the partial grounder

Pground is shown by proving the following proposition.

18

Texas Tech University, Veena S.Mellarkod, December 2007

Proposition: Answer sets of Π are same as answer sets of P(Π).

Instead of using a naive grounder, we would like to use an intelligent grounder like

lparse [99], in our partial grounder to ground the regular terms. This makes the

proof of correctness of Pground non-trivial.

The inference engine ACengine computes simpli�ed answer sets of a AC(C)

program Π from a partially ground program P(Π). A simpli�ed answer set M of a

program Π is a subset of an answer set M 0 of Π, more precisely, M contains all the

regular atoms and mixed atoms of M 0. The soundness of the inference engine is

proved using the following proposition.

Proposition: If ACengine returns true and a set M, then M is a simpli�ed

answer set of Π.

The engine ACengine tightly couples the reasoning capabilities of a ASP solver

(answer set and abduction reasoning techniques) and a constraint logic

programming (CLP) solver (resolution and constraint solving techniques). At a

higher level, we can describe that the inferences of regular part are computed by

ASP solver; the inferences of consistency restoring part are computed by

abductive reasoning techniques; the inferences of defined and constraint parts

are computed by resolution and constraint solving mechanisms of CLP solver and

�nally the inferences of the mixed part are computed by communications between

ASP and CLP solvers. The ACsolver is implemented by integrating an existing

CR-Prolog solver with ASP solver Surya and CLP solver CLP(R).

1.3.3 Language AC(C)cr

Language AC(C)cr is a natural extension of language AC(C) with consistency

restoring capabilities of language CR-Prolog. The syntax of language AC(C)cr is a

natural extension: allowing consistency restoring rules of CR-Prolog in AC(C).

19

Texas Tech University, Veena S.Mellarkod, December 2007

The semantics of AC(C)cr naturally extends the semantics of AC(C) using

abductive reasoning of CR-Prolog.

Description of syntax and semantics of this language is out of scope of this work

but we describe the syntax and semantics of a special case called V(C). We also

study an instance AC0 of V(C) in this work. We use an existing implementation of

a CR-Prolog solver in our integration to allow for abductive reasoning capabilities

used in language AC0.

1.3.4 Language V(C)

Next we introduce a collection of knowledge representation languages, V(C),

parametrised over a class C of constraints. V(C) is a special case of AC(C)cr with

the following properties:

. there are no de�ned predicates in V(C), and

. if a rule r contains mixed predicates in the body then head of r is empty.

Note that the previous examples presented are examples of programs in V(C).

V(C) is an extension to language CASP [12], with the introduction of consistency

restoring capabilities from CR-Prolog. V(C) allows the separation of a program

into two parts: a regular program of CR-Prolog and a collection of denials1 whose

bodies contain constraints from C with variables ranging over large domains. We

study an instance AC0 from this family where C is a collection of constraints of

the form X − Y > K, where X and Y are variables and K is any number. A solver

for any language of V(C) can be built using answer set reasoning, abductive and

constraint solving techniques. The syntax and semantics of V(C) is presented in

chapter 6.

1By a denial we mean a logic programming rule with an empty head.

20

Texas Tech University, Veena S.Mellarkod, December 2007

1.3.5 Language AC0

Our next goal is to study an instance AC0 of V(C) where C is a collection of

constraints of the form X − Y > k, where X and Y are variables and k is a real

number. Note that the examples presented so far are examples of AC0. In general,

a program of AC0 consists of two modules:

. regular rules of ASP and consistency restoring rules of CR-Prolog;

. denials with constraints of type X − Y > k.

The variables of a AC0 program Π that occur in constraints are called constraint

variables and the rest are regular variables. The semantics of AC0 described in

chapter 6 extends ASP, CR-Prolog and CASP semantics in a natural way.

The interest in studying this language comes from the fact that, in addition to

standard power of ASP , and CR-Prolog, AC0 allows natural encoding of

constraints and consistency restoring rules, including

. simple temporal constraints like "John needs to be at the o�ce in two

hours",

. disjunctive temporal constraints like "action a can occur either between

8-9 am or between 4-5 pm",

. qualitative soft temporal constraints like "It is desirable for John to come

to o�ce 15 mins early"

. disjunctive qualitative soft temporal constraints like "It is desirable for

action a to occur either between 2-4 pm or between 6-8 pm".

These temporal constraints are used widely in planning and scheduling

applications [83, 44, 43, 84]. Further, the constraint literals in a AC0 program

21

Texas Tech University, Veena S.Mellarkod, December 2007

occur only in the body of denials. This allows us to use simple constraint

satisfaction algorithms instead of using a complex constraint logic programming

algorithms (resolution techniques are not required). Also, note that the only

constraint literals allowed are of the type X − Y > k. This allows us to use

di�erence constraint satisfaction algorithms which are simpler to build than a

general constraint solver. For this language, we can build a system tightly

coupling an CR-Prolog inference engine and a simple di�erence constraint solver.

1.3.6 Solver ADsolver

An algorithm to compute answer sets of programs in AC0, integrates

1. Davis-Putnam type algorithm for computing answer sets of ASP programs

[27],

2. the form of abduction from CR-Prolog [62], and

3. incremental constraint satisfaction algorithm for di�erence constraints [85].

We build a solver ADsolver to compute answer sets of programs in AC0.

ADsolver consists of two parts:

(a). Partial grounder Pground.

� Pground uses a modi�ed version of lparse to ground regular variables

of input program Π of AC0.

� The output program P(Π) is much smaller when compared to

lparse(Π).

� Proposition: Answer sets of Π are same as answer sets of P(Π).

(b). Inference engine ADengine .

22

Texas Tech University, Veena S.Mellarkod, December 2007

� ADengine combines ASP , CR-Prolog and di�erence constraint solving

methods to compute answer sets of program P(Π) of AC0.

We build the inference engine ADengine that integrates a CR-Prolog engine with

a di�erence constraint solver Dsolver. The algorithm [85] was used to build

Dsolver. The CR-Prolog engine has a underlying ASP engine. The ASP engine

was modi�ed to tightly couple Dsolver and allows for the interaction of ASP

reasoning with constraint solving techniques to compute answer sets of AC0. The

implemented Dsolver, computes a solution for given a set of di�erence constraints

D of the form X − Y � k. Dsolver is an incremental constraint solver: given a set

of constraints D, a solution S to D and a new constraint X − Y � k, Dsolver uses

S to compute a solution for D [{X − Y � k}. Recall that the ASP reasoning

techniques use Davis-Putnam strategy to compute answer sets. To tightly couple

such a solver with a constraint solver, it is important (for e�ciency sake) that the

constraint solver is incremental and backtrackable. Dsolver built is incremental

and backtrackable.

To illustrate the e�ciency of ADsolver , consider the representation of example

1.2.1 shown before. Let us call the program Π. The partial ground program P(Π)

has 610 rules and ADsolver took 0.17 seconds to solve both problems in 1.2.1. Let

us translate Π to an equivalent ASP program Πa as shown before. The grounder

lparse could not ground the program Πa. If constraint variables range from

[0..100] instead of [0..1440], then lparse could ground the program and its ground

instantiation consists of 366060 rules. Using ASP solvers, it takes 183.18 and

161.20 seconds to solve �rst and second problems of example 1.2.1 respectively.

Since ADsolver uses a di�erence constraint solver, the domain size of constraint

variables does not a�ect the e�ciency of ADsolver . That is, ADsolver solves

both problems of 1.2.1 in 0.17 seconds independent of whether the constraint

23

Texas Tech University, Veena S.Mellarkod, December 2007

variables range from [0..100] or [0..1440].

1.4 Summary

The contribution of this dissertation is tabulated as follows:

1. Develop a collection of languages AC(C) parameterized over C.

. syntax of AC(C) is an extension to syntax of A-Prolog.

. semantics of AC(C) is a natural extension of semantics of A-Prolog.

2. Design an algorithm ACsolver , to compute answer sets of programs in

AC(C) and prove its correctness.

. partial grounder uses intelligent grounding mechanisms.

. the algorithm tightly couples ASP , CR-Prolog and CLP's resolution

and constraint solving techniques.

3. Implement ACsolver for a particular C.

. CLP(R)

4. Design a collection of languages V(C) parameterized over C. These languages

allow consistency restoring capabilities of CR-Prolog [3].

5. Study an instance of V(C) called AC0. The study concentrates on knowledge

representation methodologies and reasoning capabilities of AC0.

6. Design an algorithm ADsolver , to compute answer sets of programs in AC0

and prove correctness.

. partial grounder uses intelligent grounding mechanisms.

24

Texas Tech University, Veena S.Mellarkod, December 2007

. the algorithm tightly couples ASP , CR-Prolog and di�erence

constraint solving techniques.

. di�erence constraint solving is incremental.

7. Implement ADsolver .

8. Show e�ciency of ADsolver over classical ASP and CR-Prolog solvers for

planning with temporal constraints.

This dissertation is organized in the following manner. Chapter 2 gives the

necessary back ground information for ASP and CLP paradigms useful to

understand the subject. Chapter 3 presents the syntax and semantics of the

language AC(C). Chapter 4 presents the algorithm for partial grounder Pground.

Chapter 5 describes the ACsolver algorithm. Chapter 6 describes the language

AC0 and knowledge representation methodologies. Chapter 7 gives examples of

the use of the languages AC0 and AC(C) and e�ciency results of ADsolver and

ACsolver . Chapter 8 presents the proofs of all the propositions in the work.

Chapter 9 brie
y describes other works related to this research. Finally, Chapter

10 give conclusions and future work.

25

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 2

BACKGROUND

This chapter reviews two declarative programming paradigms:

. Answer Set Programming

. Constraint Logic Programming

2.1 Answer Set Programming Paradigm

A-Prolog is a knowledge representation language with roots in the research on the

semantics of logic programming languages and non-monotonic reasoning [49, 51].

Language A-Prolog is based on the answer set semantics [50, 49].

A-Prolog has been shown to be a useful tool for knowledge representation and

reasoning [3, 6]. The language is expressive, and has a well understood

methodology for representing defaults, causal properties of actions and
uents,

various types of incompleteness, etc. There are several derivatives and expansions

of A-Prolog. The following section describes the A-Prolog language that is most

generally used.

2.1.1 Language A-Prolog

The syntax of A-Prolog is determined by a typed signature Σ consisting of types,

typed object constants, typed variables, typed function symbols and typed

predicate symbols. We assume that the signature contains symbols for integers

and for the standard functions and relations of arithmetic. Terms are built as in

�rst-order languages. By simple arithmetic terms of Σ we mean its integer

constants, that is 2 + 3 and 3 are terms and 3 is a simple arithmetic term.

26

Texas Tech University, Veena S.Mellarkod, December 2007

Atoms are expressions of the form p(t1, . . . , tn), where p is a predicate symbol

with arity n and ti's are terms of suitable types. Atoms formed by arithmetic re-

lations are called arithmetic atoms. Atoms formed by non-arithmetic relations are

called plain atoms. We allow arithmetic terms and atoms to be written in

notations other than pre�x notation, according to the way they are traditionally

written in arithmetic (e.g. we write 3 = 1 + 2 instead of = (3, +(1, 2))).

Literals are atoms and negated atoms, i.e. expressions of the form ¬p(t1, . . . , tn).

Literals p(t1, . . . , tn) and ¬p(t1, . . . , tn) are called complementary. By �l we denote

the literal complementary to l.

Definition 2.1.1. A rule r of A-Prolog is a statement of the form:

h1 or h2 or . . . or hk ← l1, . . . lm, not lm+1, . . . ,not ln. (2.1)

where l1, . . . , lm are literals, and hi's and lm+1, . . . , ln are plain literals. We

call h1 or h2 or . . . or hk the head of the rule (head (r));

l1, . . . lm, not lm+1, . . . ,not ln is its body (body(r)), and pos(r), neg(r)

denote, respectively, {l1, . . . , lm} and {lm+1, . . . , ln}.

The informal reading of the rule (in terms of the reasoning of a rational agent

about its own beliefs) is "if you believe l1, . . . , lm and have no reason to believe

lm+1, . . . , ln , then believe one of h1, . . . , hk ." The connective "not" is called

default negation.

A rule such that k = 0 is called denial, and is considered a shorthand of:

? ← not ?, l1, . . . , lm, not lm+1, . . . ,not ln.

Definition 2.1.2. An A-Prolog program is a pair hΣ,Πi, where Σ is a

signature and Π is a set of rules.

27

Texas Tech University, Veena S.Mellarkod, December 2007

Whenever possible, we denote programs by their second element. The correspond-

ing signature is denoted by Σ(Π). The terms, atoms and literals of a program Π

are denoted respectively by terms(Π), atoms(Π) and literals(Π).

Rules containing variables (denoted by capital letters) are viewed as shorthands

for the set of their ground instantiations, obtained by substituting the variables

with all the terms of appropriate type from the signature of the program. The

semantics of a program of A-Prolog is de�ned over its ground instantiation.

The semantics of A-Prolog is de�ned in two steps. The �rst step consists in

giving the semantics of programs that do not contain default negation. We will

begin by introducing some terminology.

An atom is in normal form if it is an arithmetic atom or if it is a plain atom and

its arguments are either non-arithmetic terms or simple arithmetic terms. Notice

that atoms that are not in normal form can be mapped into atoms in normal form

by applying the standard rules of arithmetic. For example, p(4 + 1) is mapped

into p(5). For this reason, in the following de�nition of the semantics of basic

A-Prolog, we assume that all literals are in normal form unless otherwise stated.

A literal l is satis�ed by a consistent set of plain literals S (denoted by S |= l) if:

- l is an arithmetic literal and is true according to the standard arithmetic

inter- pretation;

- l is a plain literal and l 2 S.

If l is not satis�ed by S, we write S 6|= l. An expression not l, where l is a plain

literal, is satis�ed by S if S 6|= l. A set of literals is satis�ed by S if each element of

the set is satis�ed by S.

We say that a consistent set of plain literals S is closed under a program Π not

28

Texas Tech University, Veena S.Mellarkod, December 2007

containing default negation if, for every rule

h1 or . . . or hk ← l1, . . . , lm

of Π such that the body of the rule is satis�ed by S, we have {h1, . . . , hk} \ S 6= ;.

Definition 2.1.3. [Answer Set of a program without default negation] A

consistent set of plain literals, S, is an answer set of a program Π not

containing default negation if S is minimally (set theoretic) closed under all

the rules of Π.

Programs without default negation and whose rules have at most one literal in the

head are called de�nite. It can be shown that de�nite programs have at most one

answer set [80, 100].

The second step of the de�nition of the semantics consists in reducing the

computation of answer sets of A-Prolog programs to the computation of the

answer sets of programs without default negation, as follows.

Definition 2.1.4. [Reduct of a A-Prolog program] Let Π be an arbitrary

A-Prolog program. For any set S of ground plain literals, let ΠS be the

program obtained from Π by deleting:

- each rule, r, such that neg(r) \ S 6= ;;

- all formulas of the form not l in the bodies of the remaining rules.

Definition 2.1.5. [Answer Set of a A-Prolog program] A set of plain literals,

S, is an answer set of a A-Prolog program Π if it is an answer set of ΠS.

2.1.2 ASP solvers

This section describes the solvers for computing answer sets of A-Prolog programs

and describes brie
y a standard algorithm for computing answer sets by A-Prolog

29

Texas Tech University, Veena S.Mellarkod, December 2007

solvers.

The smodels algorithm [76] is a standard algorithm used for the computation of

answer sets or stable models of a program in A-Prolog. The algorithm is based on

Davis − Putnam [27] strategy for computing answer sets of a program. Though

A-Prolog programs allow to express disjunctions in the head, smodels algorithm

does not allow disjunctions in the head. System DLV [19], allows A-Prolog

programs with disjunctions in the head. The Smodels system is one of the

state-of-the-art implementations of the smodels algorithm. The system has a two

level architecture. The frontend called lparse [98], takes a program with variables

and returns a ground program by replacing all variables by constants in the

program.

Example 2.1.1. The grounding of program Π shown in example 1.1.1 would

result in the program:

q(a).

q(b).

p(a) :− q(a).

p(b) :− q(b).

In reality, lparse does an intelligent grounding of the program, which is more than

just replacing variables by constants. Therefore, the output of lparse is a ground

program which is much smaller in size when compared to regular grounding. The

second part of the Smodels system is the inference engine smodels. It takes the

ground program output by lparse and computes the answer sets of the program.

The smodels inference engine [92, 72] uses two methods of inference to compute

the stable models or answer sets of a program. The �rst is called lower closure

computation and second is called upper closure computation. Next, we brie
y

describe these two closures. The lower closure computation is based on a set of

30

Texas Tech University, Veena S.Mellarkod, December 2007

inference rules. There are four inference rules in the smodels algorithm. Given a

set S of ground literals and a program Π,

1. If the body of a rule r, in Π, is satis�ed by S then add the head of r to S.

2. If an atom a is not in the head of any rule in Π, then not a can be added to

S.

3. If r is the only rule of Π with h in the head and h 2 S then the literals in the

body of r can be added to S.

4. If h is in the head of rule r, in Π, not h 2 S, and all literals in the body of r

except li belong to S, then add not li to S.

Consider the following example which demonstrates the use of inference rule #4.

Example 2.1.2. Let S = {a, b,not h} be a set of literals and rule r be of the

form,

h← a, b, c.

Since literal not h 2 S, and literals a and b are true in S; by the inference

rule #4 we can conclude not c and add it to S.

The lower closure of a program Π with respect to a set of literals S is de�ned as

the minimal set of literals that satisfy the four inference rules.

Let S be a set of literals and Π be a program. By α(Π, S) we denote a de�nite

program obtained from Π by

1. Removing all rules in Π whose head or body are not satis�ed by S.

2. Removing from the result of step one, all not-atoms from the bodies of rules.

31

Texas Tech University, Veena S.Mellarkod, December 2007

The upper closure of a program Π with respect to S, denoted as up(Π, S), is

de�ned as the minimal set closed under the rules of α(Π, S). The set of atoms in

up(Π, S) comprises of all possible atoms that may be added to S during answer set

computation. If an atom a does not belong to up(Π, S) then it follows that for any

answer set M that agrees with S, a 62 M. Therefore, we can add literal not a to S.

Example 2.1.3. Let S = { } be an empty set of literals and program Π be as

follows:

a← b.

b← a.

c← not a.

The upper closure of Π with respect to S is U = {c}. Since atoms a and b do

not belong to U, we can conclude not a and not b and add it to S.

The lower closure and upper closure computations together form the expand

procedure in smodels algorithm. The procedure expand computes the set of

consequences of Π with respect to S. Procedure expand repeatedly computes

lower and upper closures until no new literals can be added to S.

A simpli�ed description of smodels algorithm is as follows. The smodels

algorithm accepts as input a ground program Π of A-Prolog and a set of literals

S. The output of smodels is true if there exists an answer set of Π agreeing with

S; otherwise it returns false. If it returns true then it also returns an answer set

of Π agreeing with S. The algorithm has the following main steps:

1. Procedure expand computes the set of consequences of Π given S and adds

them to S.

2. If set S is not consistent then there exists no answer sets of Π agreeing with

S and the algorithm returns false.

32

Texas Tech University, Veena S.Mellarkod, December 2007

3. If S covers all atoms of Π then atoms(S) is an answer set of Π. The

algorithm returns true and atoms(S).

4. Otherwise, following Davis-Putnam strategy [27], the algorithm guesses a

literal l, and calls itself recursively with inputs Π and S [{l}.

5. If it cannot �nd any answer sets of Π agreeing with S [{l} then it calls itself

recursively with inputs Π and S [{not l}.

This algorithm is the basis for many solvers [76, 72, 4] built for computing answer

sets of program in A-Prolog. The inference methods have been studied well

[76, 92] with respect to e�cient implementations. Several techniques [92, 76, 72]

have been adopted to improve the e�ciency of the solvers like look-ahead,

heuristics etc.

There are currently several inference engines for computing the answer sets of

A-Prolog programs. Some of them are Smodels [92], Surya [72], DLV [19],

Cmodels [35, 66], ASSAT [68] etc. The e�ciency of these engines has led to some

important applications including the use of Smodels, in the development of a

decision support system for the space shuttle [77]. Other important applications

are wire routing and satis�ability planning [40], encoding planning problems [32] ,

applications in product con�guration [94], data integration application INFOMIX

[65], and checking medical invoices for health insurance companies [59] etc. The

next section describes some of the applications.

2.1.3 ASP Applications

One of the �rst complex dynamic ASP application built is a modeling and

reasoning system USA-Advisor [77]. USA-Advisor can be viewed as a decision

support system for the Reaction Control System (RCS) of the space shuttle. A

33

Texas Tech University, Veena S.Mellarkod, December 2007

full description of the system can be found in Monica Nogueira's PhD thesis:

Building Knowledge Systems in A-Prolog [77]. For extensions and investigations

of the system refer [5, 78, 79, 7, 8, 6]. Now, we give a brief description of the

system (from [6]) as we use it to test the solvers built in this work.

The RCS is the Shuttle's system that has primary responsibility for maneuvering

the aircraft while it is in space. It consists of fuel and oxidizer tanks, valves and

other plumbing needed to provide propellant to maneuvering jets of the Shuttle.

It also includes electronic circuitry: both to control the valves in the fuel lines and

to prepare the jets to receive �ring commands. Overall, the system is rather

complex, in that it includes 12 tanks, 44 jets, 66 valves, 33 switches, and around

160 computer commands.

When an orbital maneuver is required, the astronauts must con�gure the RCS

accordingly. This involves changing the positions of several switches, which are

used to open or close valves or to energize the proper circuitry. Some of these

switches may be faulty and valves may be leaky. This makes the pre-scripted

sequence of actions inapplicable and further complicates the challenge of coming

up with plans to achieve the desired results without causing any possibly

dangerous side e�ects.

USA-Advisor can be viewed as a part of a decision support system for Shuttle

ight controllers. It is an intelligent system capable of verifying and generating

plans that prepare the RCS for a given maneuver. It can be used when the
ight

controllers have to come up with a plan for an emergency situation. It can also be

used o�-line to pre-determine the plans for possible fault conditions.

Other ASP applications include wire routing and phylogeny re-construction.

Wire routing is the problem of determining the physical locations of all the wires

interconnecting the circuit components on a chip. Some of the wires cannot

34

Texas Tech University, Veena S.Mellarkod, December 2007

intersect with each other, they are competing for limited spaces, thus making

routing a di�cult combinatorial optimization problem. More details on wire

routing application can be found at [40, 36, 42].

Phylogeny re-construction is a problem of constructing and labeling an

evolutionary tree for a set of taxa (a taxanomic group of any rank such as species,

family or class), which describes the evolution of the taxa in that set from their

most common ancestors. More details of the application can be found at

[42, 38, 39, 17, 16]. Other applications can be found at the WASP: Working

group on Answer Set Programming website at [101, 45].

2.2 Constraint Logic Programming Paradigm

This section describes Constraint Logic Programming paradigm [58, 55, 70].

Constraint Logic Programming (CLP) began as a natural merger of two

declarative paradigms: constraint solving and logic programming. This

combination helps make CLP programs both expressive and
exible.

Constraint logic programming can be said to involve the incorporation of

constraints and constraint "solving" methods in logic-based language. This

characterization suggests the possibility of many interesting languages, based on

di�erent constraints and di�erent logics.

Prolog can be said to be a CLP language where the constraints are equations over

the algebra of terms (the Herbrand domain). The next sections describe the

syntax, semantics of CLP languages, CLP solvers and applications.

2.2.1 Language of CLP

The syntax of a program in CLP is de�ned using a signature and constraint

domain pair hΣ, Ci. The signature Σ, de�nes the allowed set of typed function and

35

Texas Tech University, Veena S.Mellarkod, December 2007

predicate symbols and associates an arity with each symbol. The constraint

domain C de�nes the legitimate forms of constraints in the language.

The constraint domain speci�es the syntax of the constraints. C gives the allowed

constants, functions and constraint relations and their arity. The constraint

domain also determines the values that variables can take.

For example, in the constraint domain of real numbers, which we call R, variables

take real number values. The set of function symbols for this constraint domain is

+,�,−, /, while the set of constants is all the
oating point numbers. The

constraint relation symbols are =, <,�, >,�, all of which take two arguments.

The constraint domain of language CLP(R) [58, 52] is the constraint domain of

real numbers. Some CLP languages use the domain(s) as part of their names. For

example CLP(R) for real domain, CLP(FT) for domain of �nite trees, CLP(Q) for

rational domain, CLP(FD) for �nite domain and so on.

Given a constraint domain C, the simplest form of constraint we can de�ne is a

primitive constraint. A primitive constraint consists of a constraint relation

symbol from C together with appropriate number of arguments. These are

constructed from the constants, functions of C and variables. The constraints

X > 3 and X + Y � Y − 3� Z = 5 are examples of primitive constraints of reals.

More complicated constraints can be built from primitive constraints by using the

conjunctive connective ∧ which stands for "and".

Definition 2.2.1. A constraint is of the form c1 ∧ � � �∧ cn where n � 0 and

c1, . . . , cn are primitive constraints.

The symbol ∧ denotes and, so a constraints c1 ∧ � � �∧ cn holds whenever all of

the primitive constraints c1 . . . cn hold. There are two distinct constraints true

and false. The constraint true always holds while false never holds. The empty

conjunction of constraints (when n = 0) is written as true.

36

Texas Tech University, Veena S.Mellarkod, December 2007

Given a constraint, we can determine values of variables for which the constraint

holds. By replacing variables by a value substitution θ, the constraint becomes

variable-free and they can be evaluated and seen to be either true or false. If true

then the substitution θ is a solution to the constraint.

An atom has the form p(t1, . . . , tn), where t1, . . . , tn are terms and p is a n-ary

predicate symbol from Σ.

Definition 2.2.2. A CLP program is a collection of rules of the form:

a :− b1, . . . , bn. (2.2)

where a is an atom and bi's are either atoms or constraints.

The atom a in rule 2.2 is called the head of the rule and b1, . . . , bn is called the

body of the rule. A fact is a rule a :− c where c is a constraint. A goal (or

query) is a conjunction of constraints and atoms. The following is a CLP(R)

program computing �bonacci numbers.

Example 2.2.1. [58] The example de�nes a relation fib(A,B) which can be

read as: "Ath �bonacci number is B".

fib(0, 1).

fib(1, 1).

fib(N,X1 + X2) :− N > 1, fib(N − 1, X1), fib(N − 2, X2).

A goal (query) which asks for a number A such that fib(A) lies between 80

and 90 is

? − 80 � B, B � 90, fib(A,B)

The CLP languages use an operational semantics to give meaning to the

programs. Next, we describe brie
y the operational semantics of the language

37

Texas Tech University, Veena S.Mellarkod, December 2007

CLP(R). For a detailed description of operational semantics of a generalized CLP

language refer to [55, 56], for CLP(R) refer to [58].

The operational semantics of CLP(R) is presented using a transition system of

states: hA,Ci, where A is a multi-set of atoms and constraints, and C is a

multi-set of constraints. There is also a special state denoted by fail.

The set C is referred to as a constraint store. The constraints of C are divided

into two categories: solved and delayed. The solved constraints are simple linear

constraints that can be checked for solvability. The delayed constraints are

non-linear constraints and maybe di�cult to check for solvability. The constraints

in C are solvable if the set of solved constraints in C is consistent i.e. has a

solution.

Given a program Π, a query Q = l1, . . . , ln, and a constraint store C, there is a

derivation step from a pair hQ,Ci to another pair hQ1, C1i if:

(→c) Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a constraint and C1 is a (possibly

simpli�ed) set of constraints equivalent to C [{li}. Furthermore, C1 is

solvable;

(→r) or Q1 = l1, . . . , li−1, x1 = t1, . . . , xk = tk, b1, . . . , bm, li+1, . . . , ln, where there

is a rule r 2 Π such that head of r, h, can be uni�ed with li, xi are term

parameters from li, ti are term parameters from h, body(r) is uni�ed with

the set of literals {b1, . . . , bm} and C1 = C.

A derivation sequence is a possibly in�nite sequence of transitions

hQ0, C0i→ hQ1, C1i→ . . . , starting with an initial query Q0 and initial constraint

store C0, such that there is a derivation step to each pair hQi, Cii, i > 0, from the

preceding pair hQi−1, Ci−1i. A state which cannot be re-written further is called a

�nal state.

38

Texas Tech University, Veena S.Mellarkod, December 2007

A sequence is successful if it is �nite and its last element is h;, Cni, where Cn is

a set of solved constraints. A sequence is conditionally successful if it is �nite

and its last element is h;, Cni, where Cn consists of delayed and possibly some

solved constraints. A sequence is �nitely failed if it is �nite, neither successful nor

conditionally successful, and such that no derivation step is possible from its last

element. There can be several derivation sequences for a query with respect to a

program. Each of these sequences can be successful, conditionally successful,

�nitely failed or in�nite.

The computation tree of a query Q for a program P in a CLP system is a tree

with nodes labeled by states and edges labeled by →r or →c such that: root is

labeled by hQ, ;i. If a node S has a outgoing edge labeled →r then the node has a

child for each rule in P and the state labeling each child is the state obtained from

S by →r transition for that rule.

Every branch of a computation tree is a derivation. Di�erent selection strategies

for selecting a literal in the derivation step, gives rise to di�erent computation

trees. Existing CLP languages use selection strategy based on the Prolog

left-to-right computation rule. The problem of �nding answers to a query can be

seen as the problem of searching a computation tree. Most CLP languages employ

a depth-�rst search with chronological backtracking.

2.2.2 CLP solvers

Some of the most used CLP solvers are ILOG [53], CHIP[33], CLP(R)[58],

CLP(FD)[23], CLP(BNR) [14], Prolog IV, SICStus Prolog [18, 20], ECLiPSe [2],

GNU Prolog [31]. Each of these solvers cover one domain or more. Most of them

can handle linear systems of equations over real and rational domains. Many

application domains like circuit veri�cation, scheduling, resource allocation,

39

Texas Tech University, Veena S.Mellarkod, December 2007

timetabling, control systems and combinatorial problems have been successfully

tackled by these solvers [88].

2.2.3 CLP Applications

This section brie
y describes some of the applications in which CLP has been

successfully used [88].

Assignment problems are one of the �rst type of industrial applications where

CLP was used. Examples in this domain are typically like allocation of gates to

planes [22] in an airport or containers in harbor etc. The �rst industrial CLP

application was developed for the HIT container harbor in Hong Kong [82], using

language CHIP. Personnel assignments are a special case of assignment problems

where humans are involved as a resource. The Gymnaste system [81] produces

rosters for nurses in hospitals and is used in many hospitals in France. The

OPTI-SERVICE system [24], generates weekly work plans for individual activities

for 250 technicians and journalists of the French TV and radio station RFO.

The PLANETS system, developed by the University of Catalonia for a spanish

electric company, is a tool for electrical power network recon�guration which

allows to schedule maintenance operations by isolating network segments without

disrupting customer services. One of the most successful application domain for

�nite domain CLP are temporal scheduling problems [88]. The system ATLAS

[91] is a constraint based scheduling application that schedules the production of

herbicides at Monsanto Plant in Antwerp. The PLANE system [13] is used by

Dassault Aviation to plan the production of jets.

The COBRA system [90] generates work plans for train drivers of North Western

Trains in UK by scheduling nearly 25000 activities. ILOG Scheduler [53] can be

used for pre-emptive scheduling problems where activities can be interrupted over

40

Texas Tech University, Veena S.Mellarkod, December 2007

time. For a more detailed description of reasearch and applications in CLP refer

[88, 93].

41

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 3

LANGUAGE AC(C)

This dissertation starts with the design of a collection, AC(C), of languages

parametrised over a collection C of constraints. In this chapter, we de�ne the

syntax and semantics of AC(C).

3.1 Syntax

The syntax of AC(C) is determined by a sorted signature Σ, consisting of sorts

S1, . . . , Sn, properly typed predicate symbols, variables and function symbols. By

a sort we mean a non-empty countable collection of strings in some �xed

alphabet. Strings of sort Si will be referred as object constants of Si.

Variables of AC(C) have a sort assigned to them. Each variable ranges over

objects constants from their sort. A term of Σ is either a constant, a variable, or

an expression f(t1, . . . , tn), where f is a function symbol of arity n, t1, . . . , tn are

terms of proper sorts. The sort of value of a function f : S1, . . . , Sn → S is S.

Terms also have sorts and are assigned in the natural way. An atom is of the

form p(t1, . . . , tn) where p is an n-ary predicate symbol, and t1, . . . , tn are terms

of proper sorts.

We assume that the standard numerical sorts like N and R and numerical

functions like +, − etc., and numerical relations like >, < etc., are present in Σ.

The numerical constants, functions and relations have their natural intended

interpretations. For instance, relation 0 > 0 is interpreted as numerical 'greater

than' inequality relation; 0+ 0 is interpreted as addition and 3 + 4 is equal to 7.

Terms of numerical sorts are called numerical terms.

Each sort is further distinguished as either a regular sort (denoted by sr) or a

42

Texas Tech University, Veena S.Mellarkod, December 2007

constraint sort (denoted by sc). The object constants from regular sorts and

constraint sorts are called r-constants and c-constants respectively. A variable is

an r-variable (c-variable) if it ranges over constants from a regular (constraint)

sort. A function symbol is either an r-function symbol or a c-function symbol

depending on the sort of its value. We denote the set of r-constants, r-variables

and r-function symbols in Σ by Cr, Vr and Fr respectively. Similarly, we denote

the set of c-constants, c-variables and c-function symbols in Σ by Cc, Vc and Fc

respectively. Terms from regular sorts and constraint sorts are called r-terms and

c-terms respectively. Predicate symbols of Σ are divided into four disjoint sets

called regular, constrained, mixed and de�ned, denoted by Pr, Pc, Pm and Pd

respectively.

The collection of constraints, C, is a set of formulas constructed in the natural

way. The formulas in C are formed from a set of predicate symbols P and a set of

function symbols F . The c-predicate symbols Pc and c-function symbols Fc in Σ

are subsets of P and F respectively.

An atom p(t1, . . . , tn) is

. an r-atom if p 2 Pr and t1, . . . , tn are r-terms;

. a c-atom if p 2 Pc and t1, . . . , tn are c-terms;

. a m-atom if p 2 Pm and t1, . . . , tn are r-terms or c-terms with at least one

from each;

. a d-atom if p 2 Pd and where each parameter ti is either an r-term or a

c-term.

A literal is either an atom a or its negation ¬a. Literals formed by r-atoms,

c-atoms, m-atoms and d-atoms are called r-literals, c-literals, m-literals and

43

Texas Tech University, Veena S.Mellarkod, December 2007

d-literals respectively. An extended literal is either a literal l, or its negation

not l. Literals of the form not l are called negative literals. The symbol not ,

denotes a logical connective known as default negation. The expression not l is

read as "there is no reason to believe in l". Ground expressions are expressions

which do not contain variables. Ground terms are represented by lower case

letters, and variables by upper case letters.

A rule r of AC(C) over Σ is a statement of the form:

h1 or . . . or hk ← l1, . . . , lm, not lm+1, . . . , not ln (3.1)

where h1, . . . , hk are r-literals or d-literals and l1, . . . , ln are arbitrary literals.

Literals h1, . . . , hk constitute the head of the rule denoted by head(r), and

l1, . . . , ln constitute the body of the rule denoted by body(r). Both the head and

body of the rule may be empty. If the body is empty, i.e., n = 0, the rule is called

a fact, and we write it as: h1 or . . . or hk. If the head is empty then we call the

rule a denial and assume false as the head.

A rule is an r-rule (regular rule) if the literals in the head and body of the rule

are all r-literals. A rule is a d-rule (de�ned rule) if all literals in the head are

d-literals. The rest of the rules are called m-rules (middle rules).

A program of AC(C) is a pair hΣ,Πi, where Σ is a signature and Π is a collection of

rules over Σ. Π can be divided into three disjoint sets of rules. The set consisting

of r-rules of Π is called the regular part of Π denoted by ΠR. Similarly, the set

consisting of m-rules of Π is called the middle part of Π denoted by ΠM and the

set consisting of d-rules of Π is called the de�ned part of Π denoted by ΠD.

The following example shows a signature Σ and programs in the language AC(C).

Note that, for readability, we use in�x notations for numerical terms and atoms.

44

Texas Tech University, Veena S.Mellarkod, December 2007

Example 3.1.1. Let Σ be a signature with constants Cr = {a, b} and

Cc = {0, . . . , 100}; predicates Pr = {p(Cr, Cr), q(Cr)}, Pm = { at(Cr, Cc) },

Pc = {>, =, �, �} with parameters from Cc and Pd = { equal(Cc, Cc) }; variables

Vr = {X, Y} range over Cr and Vc = {T1, T2} range over Cc. Following are examples

of programs in AC(C):

Π1 : q(a).

q(b).

p(X, Y) ← q(X), q(Y), at(X, T1), at(Y, T2), T1 > T2.

Π2 : q(a).

q(b).

p(X, Y) ← q(X), q(Y), at(X, T1), at(Y, T2), equal(T1, T2).

equal(T1, T2) ← T1 = T2.

3.2 Semantics

To give semantics of programs in AC(C), �rst we transform an arbitrary program

Π into its ground instantiation ground(Π). Then we de�ne the semantics of

ground(Π). The semantics of ground(Π), will be viewed as the semantics of

program Π. A ground instance of a rule r is a rule obtained from r by:

1. replacing variables of r by ground terms from respective sorts;

2. replacing all numerical terms by their values.

A program ground(Π) consisting of all ground instances of all rules in Π is called

the ground instantiation of Π. A program hΣ,Πi is called r-ground if all rules of

Π contain no r-variables. Given a program hΣ,Πi, we can get r-ground(Π) by

45

Texas Tech University, Veena S.Mellarkod, December 2007

grounding only the r-terms using the procedure given above. Obviously

ground(Π) is an r-ground program.

Example 3.2.1. Let Π1 be as in example 3.1.1. Then r-ground(Π1) is:

q(a). q(b).

p(a, a) ← q(a), q(a), at(a, T1), at(a, T2), T1 > T2.

p(a, b) ← q(a), q(b), at(a, T1), at(b, T2), T1 > T2.

p(b, a) ← q(b), q(a), at(b, T1), at(a, T2), T1 > T2.

p(b, b) ← q(b), q(b), at(b, T1), at(b, T2), T1 > T2.

To get the ground instantiation of Π1, we need to ground variables T1 and T2 in

r-ground(Π1). For instance, ground instantiation of last rule above is:

p(b, b) ← q(b), q(b), at(b, 0), at(b, 0), 0 > 0.

...

p(b, b) ← q(b), q(b), at(b, 100), at(b, 99), 100 > 99.

p(b, b) ← q(b), q(b), at(b, 100), at(b, 100), 100 > 100.

To give the semantics for ground(Π), we need to introduce some terminology. If S

is a set of ground literals, we say that S satis�es a ground literal l, S |= l, if l 2 S

and S satis�es not l, S |= not l, if l 62 S. If S satis�es a literal l then l is said to

be true in S.

A set of ground literals, S satis�es the head of a ground rule r of the form 3.1 if at

least one of the literals in the head of r is satis�ed by S. S satis�es the body of r if

literals l1, . . . , lm belong to S and literals lm+1, . . . , ln do not belong to S. S

satis�es rule r, if the head of r is satis�ed by S whenever the body of r is satis�ed

by S. (Note that if the head of a rule is empty, then S satis�es the rule when at

least one of the literals in the body is not satis�ed by S). S satis�es a program Π,

if it satis�es all of the rules of ground(Π).

46

Texas Tech University, Veena S.Mellarkod, December 2007

Without loss of generality, we will assume that in any m-literal, the c-term

parameters follow r-term parameters. We often write p(�tr,�tc), where �tr and �tc are

the lists of r-terms and c-terms respectively. Let X be a set of ground m-atoms

such that for every mixed predicate p 2 Pm and every list of ground r-terms �tr,

there is exactly one list of ground c-terms �tc such that p(�tr,�tc) 2 X. We call a set

of mixed atoms that satis�es this condition a candidate-mixed set.

Let Mc be the set of all ground c-atoms that are true in the intended

interpretation of corresponding predicate symbols in Pc. For instance, if a c-atom

represents < (less than) over non-negative integers, Mc includes

{0 < 1, 0 < 2, ..., 1 < 2, 1 < 3, ...}.

Given a set of literals S and a rule r of the form:

h1 or . . . or hk ← l1, . . . , lm, not lm+1, . . . , not ln (3.2)

The reduct of r with respect to S, rS, is de�ned as follows:

rS =

 ; if lm+1, . . . , ln \ S 6= ;,

h1 or . . . or hk ← l1, . . . , lm. otherwise.

We de�ne the reduct of a program Π with respect to a set of literals S, ΠS, as:

ΠS = {rS | r 2 Π}. (3.3)

Definition 3.2.1. [Deductive Closure] The deductive closure of Π is a

minimal consistent set of literals that satis�es Π.

Definition 3.2.2. [Answer Set] Let (Σ,Π) be a program and X be a

candidate-mixed set; a set S of ground literals over Σ is an answer set of Π if

S is a deductive closure of (ground(Π) [X [Mc)
S.

47

Texas Tech University, Veena S.Mellarkod, December 2007

Example 3.2.2. Let Π1 and Π2 be programs as in example 3.1.1. An answer

set for program Π1 is S = A [X [Mc, where A = {q(a), q(b)},

X = {at(a, 3), at(b, 3)} and Mc = {1 > 0, 2 > 1, 3 > 2, 3 > 1 . . . }. An answer set

for program Π2 is S = A [X [D [Mc, where A = {q(a), q(b), p(a, b), p(b, a)},

X = {at(a, 2), at(b, 2)}, Mc = {0 = 0, 1 = 1, 2 = 2, . . . }, and

D = {equal(0, 0), equal(1, 1), equal(2, 2), . . . }.

An alternative equivalent de�nition for answer sets of AC(C) programs which uses

the de�nition of ASP answer sets can be given as:

Definition 3.2.3. [Answer Set (using ASP)] Let (Σ,Π) be a program and X

be a candidate-mixed set; a set S of ground literals over Σ is an answer set of

Π if S is an asp answer set of ground(Π) [X [Mc.

48

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 4

PARTIAL GROUNDER Pground

The solver for computing answer sets of programs in AC(C) is called ACsolver . It

consists of three parts.

1. Pground

2. T ranslator

3. ACengine

Given a AC(C) program Π, ACsolver �rst calls Pground to ground r-terms of Π,

the resulting r-ground program, P(Π), is transformed by T ranslator into an

r-ground program T (Π). The ACengine combines answer set reasoning, a form of

abduction, resolution and constraint solving techniques to compute answer sets of

T (Π).

The algorithm works on a syntactically restricted class of programs of AC(C).

Later, we prove that given a program Π of AC(C) that satis�es the syntactic

restrictions, the answer sets of Π have one to one correspondence with answer sets

of P(Π) and T (Π). In this chapter, the �rst section describes the syntactic

restrictions and the next section describes Pground.

4.1 Syntax Restrictions

In this section, we describe the syntactic restrictions that a program should

satisfy. Before we enumerate the restrictions, we recall some de�nitions from [99].

The collection of rules of a program Π whose heads are formed by a predicate p, is

called the de�nition of p in Π. A predicate p is called a domain predicate with

respect to Π, if the de�nition of p in Π has no recursion through default negation.

49

Texas Tech University, Veena S.Mellarkod, December 2007

Also, recall that a AC(C) program Π is divided into regular, middle and de�ned

parts denoted by ΠR, ΠM and ΠD (see chapter 3).

We consider programs Π satisfying the following syntactic restrictions:

1. There is only one literal in the head (non-disjunctive programs). This

restriction allows for a simpler description of the algorithm.

2. Given a rule r 2 ΠM, every c-variable of r should occur in m-literals of

body(r). This restriction ensures the correctness of the algorithm ACengine .

3. Each r-variable occurring in r 2 ΠD, occurs in head(r). The consequences

of ΠD will be computed using constraint programming techniques. This

restriction will ensure that a r-variable of a rule r 2 ΠD will be ground at the

time of solving the head of r; thus allowing to perform lazy grounding.

4. The only extended m-literals, d-literals and c-literals allowed in Π are

atoms. This restriction simpli�es the description of the algorithm. It might

be di�cult to remove this restriction especially for negative mixed literals

and needs more investigation.

5. Mixed literals do not occur in rules of ΠD. This restriction simpli�es the

description of the algorithm. We can allow the positive mixed atoms in the

body of de�ned rules and the clp solver function derivation sequence (see

section 5.5.1.3) needs to be changed to include extra constraints. Allowing

negative mixed literals needs more investigation.

6. ΠR [ΠM is r-domain restricted in the sense that every r-variable in a

rule r 2 ΠR [ΠM, must appear in an r-atom formed by a domain

predicate in the body of r. This restriction is similar to domain restriction

50

Texas Tech University, Veena S.Mellarkod, December 2007

of the grounder lparse [99] and di�ers by restricting only r-variables. This

restriction allows Pground to use lparse to ground r-terms of ΠR [ΠM.

7. There are no cyclic de�nitions between d-literals and r-literals. This

restriction simpli�es the algorithm ACsolver and ensures the correctness of

the algorithm ACengine .

Example 4.1.1. Let

Σ = {Cr = {a, b}, Cc = [1, � � � , 100], Pr = {p(Cr, Cr), q(Cr), r(Cr)},

Pm = {at(Cr, Cc)}, Pc = {>}, Pd = {d(Cr, Cc, Cc)}} be a signature and the

programs Π1 and Π2 given below satisfy the syntax restrictions:

Program Π1:

q(a). q(b). r(a).

p(X, Y) ← q(X), q(Y), at(X, T1), at(Y, T2), d(X, T1, T2).

d(X, T1, T2) ← not r(X), T1 > T2.

Program Π2:

q(a)← not q(b).

q(b)← not q(a).

r(a). r(b).

p(X, Y) ← r(X), r(Y),not q(Y), at(X, T1), at(Y, T2), T1 > T2.

Example 4.1.2. Let

Σ = {Cr = {a, b}, Cc = [1, � � � , 100], Pr = {p(Cr, Cr), q(Cr), r(Cr)},

Pm = {at(Cr, Cc)}, Pc = {>}, Pd = {d(Cr, Cc, Cc), d2(Cr, Cc)}} be a signature and

the programs Π3 and Π4 given below do not satisfy the syntax restrictions:

Program Π3 does not satisfy restrictions (1), (2), (3) and (6):

q(a) or q(b). r(a).

51

Texas Tech University, Veena S.Mellarkod, December 2007

p(X, Y) ← q(X), at(X, T1), d(T1, T2).

d(T1, T2) ← not r(X), T1 > T2.

Program Π4 does not satisfy restrictions (4), (5), (6) and (7):

q(a)← not q(b).

q(b)← not q(a).

r(a). r(b).

p(X, Y) ← r(X), not q(Y), not at(X, T1), at(Y, T2), d(T1, T2).

d(T1, T2) ← r(X), d2(X, T1), not T1 > T2.

d2(X, T) ← p(X,X), ¬at(X, T), T > 50.

From now on, we assume that programs satisfy the given restrictions.

4.2 Pground

In this section we describe the partial grounding procedure, Pground. First, we

introduce some terminology. Let us denote the set of c-variables occurring in a

rule r by c-variables(r). Given a program Π and some signature Σ (not necessarily

that of Π), we de�ne a program tc(Σ,Π), by induction on the cardinality of Π.

Definition 4.2.1. [tc(Σ, Π)] Let Π be a program and Σ be an arbitrary

signature,

. tc(Σ, ;) = ;

. tc(Σ,Π [{r}) = tc(Σ,Π) [r 0, where r 0 is obtained as follows: for each

X 2 c-variables(r) , replace every occurrence of X in body(r) by new

constant x, not belonging to signatures Σ and Σtc(Σ,Π)[r. x will be called

a tc constant.

Example 4.2.1. Let Σ and ΠM be as in example 4.1.1. The program

tc(Σ,ΠM) is as follows:

52

Texas Tech University, Veena S.Mellarkod, December 2007

p(X, Y) ← q(X), q(Y), at(X, t1), at(Y, t2), d(X, t1, t2).

The operator tc replaces all c-variables in Π by tc constants. Let Tc be the set of

pairs hc, Vi where c is a tc constant which replaced variable V in tc construction.

Note that by de�nition of tc, for any tc constant c, there is only one pair hc, Vi

in Tc. The following construction performs the reverse of tc by replacing

tc constants by variables.

Definition 4.2.2. [reverse tc(Π,Tc)] Let Π be a program with tc constants and

Tc be as de�ned above. The program reverse tc(Π, Tc) is constructed as

follows:

. reverse tc(;, Tc) = ;

. reverse tc(Π [{r}, Tc) = reverse tc(Π, Tc) [r 0, where r 0 is obtained from r

by replacing each tc constant c in r by variable V such that hc, Vi 2 Tc.

Example 4.2.2. Let Π1 be tc(Σ,ΠM) as in example 4.2.1. From example

4.2.1, Tc = {ht1, T1i, ht2, T2i}. The program reverse tc(Π1, Tc) is as follows:

r4: p(X, Y) ← q(X), q(Y), at(X, T1), at(Y, T2), d(X, T1, T2).

To be able to use lparse for grounding regular terms, we will need to expand our

program by adding definitions for mixed and de�ned atoms. In order to do that,

we de�ne an operator addr (add rules) de�ned as follows:

Definition 4.2.3. [addr(Π)] Let Π be a program and P be the set of mixed and

de�ned predicate symbols of Π. We de�ne a program addr(Π) = addr(Π, P),

where addr(Π,X) for X � P is de�ned as follows:

. addr(Π, ;) = ;

53

Texas Tech University, Veena S.Mellarkod, December 2007

. addr(Π,X [{p}) = addr(Π,X) [

{p(�Vr, �Vc) ← not np(�Vr, �Vc)} [

{np(�Vr, �Vc) ← not p(�Vr, �Vc)}

where p 2 P \ X, np is a new predicate symbol not belonging to ΣΠ[addr(Π,X)

and �Vr, �Vc are variables of appropriate sorts.

Example 4.2.3. Let Σ and Π1 be as in example 4.1.1. The program addr(Π1)

is as follows:

at(X, T1) ← not n at(X, T1).

n at(X, T1) ← not at(X, T1).

d(X, T1, T2) ← not n d(X, T1, T2).

n d(X, T1, T2) ← not d(X, T1, T2).

Let Y be a set of m-atoms of ΣΠ such that for every mixed predicate p 2 Pm of ΣΠ

and every list of properly typed ground r-terms �tr, there is exactly one list of

distinct c-variables �Vc such that p(�tr, �Vc) 2 Y and variables in �Vc do not occur in

any other atom from Y. We call the set of mixed atoms that satisfy this condition

a r ground mixed set. Let f be the function which takes as input a mixed

predicate p, a sequence of ground r-terms �tr and a r ground mixed set Y of Π and

returns [X1, . . . , Xm], where p(�tr, X1, . . . , Xm) 2 Y. The function f is well de�ned

due to the de�nition of r ground mixed set.

Given an r-ground rule r and an r ground mixed set Y, we de�ne a rule

rename(r, Y) as follows:

Definition 4.2.4. [rename(r,Y)] Let r be a rule and Y be an r ground mixed

set. The rule r 0 = rename(r, Y) is obtained from r as follows:

54

Texas Tech University, Veena S.Mellarkod, December 2007

. for each m-literal, m = p(�tr, Y1, . . . Yn) in body(r), replace occurrences of

variables Y1, . . . , Yn in m by X1, . . . , Xn respectively, where

[X1, . . . , Xn] = f(p,�tr, Y).

. add constraints Y1 = X1, . . . , Yn = Xn to the body of r.

Example 4.2.4. Let r be a rule as shown below:

r : p(a, b) ← at(a, T1, T1), at(b, T1, T2), d(a, b, T1, T2).

such that Pm = {at}. Let Y = {at(a, V1, V2), at(b, V3, V4)} be a r ground mixed

set. Then r 0 = rename(r, Y) is:

r 0 : p(a, b) ← at(a, V1, V2), at(b, V3, V4), d(a, b, T1, T2),

T1 = V1, T1 = V2, T1 = V3, T2 = V4.

Definition 4.2.5. [β(r, C, Σ)] Let C be a set of c-literals, r be a rule and Σ be

an arbitrary signature. We de�ne β(r, C, Σ) as a rule r 0, where

. head(r 0) = head(r)

. If r consists only of predicates from Σ then

body(r 0) = body(r) [c lits(C, r), where c lits(C, r) is the set of all c lits

from C whose tc constants are exactly those in r

. If r contains some predicates not in Σ then body(r 0) = body(r)

Given a program Π, β(Π,C, Σ) = { β(r, C, Σ) | r 2 Π }

Example 4.2.5. Let Σ = {Pr = {p(Cr, Cr), q(Cr)}, Pm = {at}, Pc = {>}, Cr =

{a, b}, Cc = [1, � � � , 100], tc cons = {t1, t2}} be a signature, C = {t1 > t2} and Π

be a program with the following rules:

r1: q(a).

r2: p(a, b) ← q(a), q(b), at(a, t1), at(b, t2).

55

Texas Tech University, Veena S.Mellarkod, December 2007

r3: n at(b, t1) ← not at(b, t1).

β(Π,C, Σ) is the following set of rules:

β(r1, C, Σ): q(a).

β(r2, C, Σ): p(a, b) ← q(a), q(b), at(a, t1), at(b, t2), t1 > t2.

β(r3, C, Σ): n at(b, t1) ← not at(b, t1).

Given a program Πi, we denote the regular, middle and de�ned parts of Πi by ΠiR ,

ΠiM and ΠiD respectively. Now we describe the steps of Pground to obtain P(Π)

from Π.

Definition 4.2.6. [P(Π)] Given a program Π of AC(C), we construct an r-ground

program P(Π) as follows:

1. replace c-variables in ΠM by tc constants, Π1 = tc(ΣΠ, ΠM) [ΠR [ΠD

2. remove c-literals occurring in Π1M
and store them in a set C,

Π2 = ΠR [ΠD [(Π1M
\ c-lits(Π1M

))

3. compute addr(Π2) and get Π3 = Π2 [addr(Π2)

4. ground Π3R
[Π3M

to get Π4 = lparse(Π3R
[Π3M

[addr(Π2)) [Π3D

5. remove ground instantiations of addr(Π2) to get

Π5 = Π4 \ ground(addr(Π2))

6. (a) put back c-literals removed in step (2), to get Π6a = β(Π5, C, Σ2)

(b) put back c-variables removed in step (1),

Π6 = Π5R
[Π5D

[reverse tc(Π5M
, Tc)

7. compute rename(Π6M
,Y), to get Π7 = rename(Π6M

, Y) [Π6R
[Π6D

where Y

is a r ground mixed set of Π.

56

Texas Tech University, Veena S.Mellarkod, December 2007

The r ground mixed set Y used in step (7) of construction of P(Π) is called

mcv set(Π) and read as mixed candidate variable set of Π. Note that all the

c-variables in P(Π) occur in some mixed atom from mcv set(Π). This set will be

used by ACengine to construct a candidate mixed set while computing answer

sets of Π.

Also, note that the program obtained at step(3) after adding addr(Π2) contains

mixed atoms in the head of rules and hence is not an AC(C) program but an

arbitrary program of A-Prolog. The rules addr(Π2) are added to the program to

make sure that lparse's intelligent grounding does not remove rules with m-atoms

and d-atoms in the body; this would happen without such rules because m-atoms

and d-atoms do not occur in the heads of rules in Π3R
[Π3M

. The program P(Π)

is an r-ground program of AC(C). The following proposition makes sure Π and

P(Π) are equivalent, i.e., have the same answer sets.

Proposition 4.2.1. Given a program Π of AC(C) that satis�es the syntax

restrictions, S is an answer set of Π i� S is an answer set of P(Π).

The steps of P(Π) are illustrated using the following example.

Example 4.2.6. Let Σ be formed by Cr = {1, 2}, Cc = [0..100],

Pr = {p, q, r, s, <, 6=}, Pm = {at}, Pc = {�,=}, Pd = {d} and variables Vr = {X, Y}

and Vc = {T1, T2}. Π is as follows:

ra[1,2]
: q(1). q(2).

rb : p(X, Y) ← q(X), q(Y), r(X, Y), X < Y

rc : r(X, Y) ← q(X), q(Y), not s(X, Y), X 6= Y

rd : s(X, Y) ← q(X), q(Y), not r(X, Y), X 6= Y

re : p(X, Y) ← q(X), q(Y), at(X, T1), at(Y, T2),

T1 � T2, d(X, Y, T1, T2)

57

Texas Tech University, Veena S.Mellarkod, December 2007

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

Program Π is divided into ΠR = {ra, rb, rc, rd}; ΠM = {re}; ΠD = {rf}.

Now we show the changes to Π at each step of computation of P(Π). Performing

step (1) to example 4.2.6, we get, Π1 = tc(ΣΠ, ΠM) [ΠR [ΠD, where

tc(ΣΠ, ΠM) = {re1
} and

re1
: p(X, Y) ← q(X), q(Y), at(X, t1), at(Y, t2), t1 � t2, d(X, Y, t1, t2)

Step (2) removes c-literals from Π1M
and stores them in C, we get

Π2 = Π1R
[Π1C

[{re2
}, where re2

is obtained from re1
by removing c-literals in

body(re1
).

re2
: p(X, Y) ← q(X), q(Y), at(X, t1), at(Y, t2), d(X, Y, t1, t2)

and C = {t1 � t2}.

Step (3) adds rules from addr(Π2) to the program. addr(Π2) is as follows:

rm1
: at(X,Z) ← not n at(X,Z).

rm2
: n at(X,Z) ← not at(X,Z).

rm3
: d(X, Y, Z1, Z2) ← not n d(X, Y, Z1, Z2).

rm4
: n d(X, Y, Z1, Z2) ← not d(X, Y, Z1, Z2).

where, variables Z,Z1, Z2 range over tc constants {t1, t2} and variables X, Y range

over {1, 2}. Instead of addr(Π2), a choice rule equivalent [75] with mixed and

de�ned atoms will be added to improve e�ciency during implementation.

Step (4) is grounding regular terms in Π3R
[Π3M

[addr(Π2). Continuing the

example, the resulting program Π4 = lparse(Π3R
[Π3M

[addr(Π2)) [Π3D
is as

follows:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

58

Texas Tech University, Veena S.Mellarkod, December 2007

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rge1
: p(1, 1) ← q(1), q(1), at(1, t1), at(1, t2), d(1, 1, t1, t2)

rge2
: p(1, 2) ← q(1), q(2), at(1, t1), at(2, t2), d(1, 2, t1, t2)

rge3
: p(2, 1) ← q(2), q(1), at(2, t1), at(1, t2), d(2, 1, t1, t2)

rge4
: p(2, 2) ← q(2), q(2), at(2, t1), at(2, t2), d(2, 2, t1, t2)

rgm1
: at(1, t1) ← not n at(1, t1).

rgm2
: at(2, t1) ← not n at(2, t1).

� � �

rgm8
: n at(2, t2) ← not at(2, t2).

rgm9
: d(a, a, t1, t1) ← not n d(a, a, t1, t1).

rgm10
: d(a, b, t1, t1) ← not n d(a, a, t1, t1).

� � �

rgmn : n d(b, b, t2, t2) ← not n d(b, b, t2, t2).

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

Step (5) removes rground instances {rgm1
, . . . , rgmn} of addr(Π2), and we get Π5

as: rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rge1
: p(1, 1) ← q(1), q(1), at(1, t1), at(1, t2), d(1, 1, t1, t2)

rge2
: p(1, 2) ← q(1), q(2), at(1, t1), at(2, t2), d(1, 2, t1, t2)

rge3
: p(2, 1) ← q(2), q(1), at(2, t1), at(1, t2), d(2, 1, t1, t2)

rge4
: p(2, 2) ← q(2), q(2), at(2, t1), at(2, t2), d(2, 2, t1, t2)

59

Texas Tech University, Veena S.Mellarkod, December 2007

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

In step (6), c-literals removed in step (2) are replaced to the ground instances of

the original rule. We also restore c-variables changed to constants in step (1). The

resulting program Π6 is:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rge1 0
: p(1, 1) ← q(1), q(1), at(1, T1), at(1, T2), T1 � T2, d(1, 1, T1, T2)

rge2 0
: p(1, 2) ← q(1), q(2), at(1, T1), at(2, T2), T1 � T2, d(1, 2, T1, T2)

rge3 0
: p(2, 1) ← q(2), q(1), at(2, T1), at(1, T2), T1 � T2, d(2, 1, T1, T2)

rge4 0
: p(2, 2) ← q(2), q(2), at(2, T1), at(2, T2), T1 � T2, d(2, 2, T1, T2)

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

Step (7) performs renaming of c-variables. Let Y = {at(1, V1), at(2, V2)} be a

r ground mixed set and function f be as de�ned before. The program P(Π) is as

follows:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rgea : p(1, 1) ← q(1), q(1), at(1, V1), at(1, V1), V1 � V1, d(1, 1, V1, V1)

rgeb
: p(1, 2) ← q(1), q(2), at(1, V1), at(2, V2), V1 � V2, d(1, 2, V1, V2)

60

Texas Tech University, Veena S.Mellarkod, December 2007

rgec : p(2, 1) ← q(2), q(1), at(2, V2), at(1, V1), V2 � V1, d(2, 1, V2, V1)

rged
: p(2, 2) ← q(2), q(2), at(2, V2), at(2, V2), V2 � V2, d(2, 2, V2, V2)

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

Recall that Pground uses lparse for intelligent grounding of r-terms of a

program Π. The system lparse while grounding also transforms the program with

negative literals (¬p(�t)) to an equivalent program (with respect to answer sets)

without negative literals. Given a literal l and its negation ¬l, lparse does the

following transformation:

. replaces each occurrence of ¬l in Π by a new literal l 0

. adds the following rule to the program.

← l, l 0.

Therefore, to simplify the description of the solver, we assume that programs

with negated literals undergo the above transformation and P(Π) does not

contain any negative literals.

61

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 5

ALGORITHM

As described in chapter 4, Pground partially grounds an AC(C) program Π and

returns an r-ground program P(Π). The T ranslator transforms P(Π) into a new

r-ground program T (Π). We prove that the answer sets of P(Π) have one to one

correspondence with answer sets of T (Π). The solver ACengine then computes

answer sets of T (Π) using constraint programming techniques integrated with

ASP techniques. The program P(Π) is translated to T (Π) in order to eliminate

disjunctive queries to the CLP system (see section 5.5.2). In this chapter, the �rst

section describes the T ranslator and the next section describes the inference

engine ACengine to compute answer sets of T (Π).

5.1 T ranslator

Let us introduce some terminology. We de�ne the program tr1(Π) by induction on

cardinality of Π.

Definition 5.1.1. [tr1(Π)] Let r be a rule of the form:

h← l1, . . . , lm, not lm+1, . . . , not ln (5.1)

The program tr1(Π) is de�ned as follows:

. tr1(;) = ;

. tr1(Π [{r}) = tr1(Π) [{r1, r2}, where rule r1 is obtained from r by

replacing it's head by a new r-atom h 0 not belonging to Σtr1(Π)[{r} as

follows:

r1 : h 0 ← l1, . . . , lm,not lm+1, . . . ,not ln (5.2)

62

Texas Tech University, Veena S.Mellarkod, December 2007

and rule r2 is obtained by replacing r's body by h 0 as follows:

r2 : h← h 0 (5.3)

Example 5.1.1. Let Σ = {Cr = {a, b}, Cc = {C1 = [0 . . . 86400], C2 =

[0 . . . 1440]}, Pr = {q(Cr), p(Cr, Cr)}, Pm = {at(Cr, Cc}, Pc = {� (Cc, Cc)},

Pd = {d1(Cr, Cr, Cc, Cc)} } and Variables V1 and V2 range over sorts C1 and C2

respectively. Let r be as follows:

p(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d1(a, b, V1, V2), V1 � V2.

Then tr1(r) consists of the following rules:

p 0(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d1(a, b, V1, V2), V1 � V2.

p(a, b) ← p 0(a, b).

Note that the new atoms introduced in de�nition tr1 are regular atoms. Given a

rule r, recall that we denote the set of extended r-literals, c-literals, d-literals and

m-literals in body(r) as r lits(r), c lits(r), d lits(r) and m lits(r) respectively.

For any AC(C) program Π, we de�ne the program tr2(Π) by induction on the

cardinality of Π.

Definition 5.1.2. [tr2(Π)] Let rule r be:

h← r lits(r),m lits(r), c lits(r), d lits(r). (5.4)

We de�ne the program tr2(Π) as follows:

. tr2(;) = ;

. tr2(Π [{r}) = tr2(Π) [{ r1, r2 }, where r1 and r2 are obtained from r as

follows:

h← r lits(r),m lits(r), d(�tr,�tc) (5.5)

63

Texas Tech University, Veena S.Mellarkod, December 2007

d(�tr,�tc)← c lits(r), d lits(r) (5.6)

where d is a new d-predicate not belonging to Σtr2(Π)[{r} and �tr and �tc are the

set of r-variables and c-variables in c lits(r) [d lits(r).

Example 5.1.2. Let Σ = {Cr = {a, b}, Cc = {C1 = [0 . . . 86400], C2 =

[0 . . . 1440]}, Pr = {q(Cr), p(Cr, Cr)}, Pm = {at(Cr, Cc}, Pc = {� (Cc, Cc)},

Pd = {d1(Cr, Cr, Cc, Cc)}, } and Variables V1 and V2 range over sorts C1 and C2

respectively. Let r be as follows:

p(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d1(a, b, V1, V2), V1 � V2.

Then tr2(r) consists of the following rules:

p(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d(a, b, V1, V2).

d(a, b, V1, V2) ← d1(a, b, V1, V2), V1 � V2.

The new predicates introduced in de�nition tr2 are de�ned predicates. Therefore,

rules of the form 5.6 are de�ned rules. Note that the de�nition of tr2 refers to

r-variables even though P(Π) is r-ground. This is because applying tr2 before

grounding will be more e�cient and gives less number of rules of the form

5.6.

Definition 5.1.3. [T (Π)] Let Π be an AC(C) program and Π0 = P(Π), the

program T (Π) is obtained by:

1. applying tr1 to middle rules of Π0 to get Π1 = Π0R
[Π0D

[tr1(Π0M
)

2. applying tr2 to middle rules of Π1 to get T (Π) = Π1R
[Π1D

[tr2(Π1M
).

Note that we apply transformation tr1 only to middle rules of P(Π) and the new

atoms introduced by tr1 are r-atoms. Therefore, rules of the form 5.2 are middle

rules and rules of the form 5.3 are regular rules. We apply transformation tr2 to

64

Texas Tech University, Veena S.Mellarkod, December 2007

middle rules of program obtained from transformation tr1 and the new atoms

introduced are d-atoms. Therefore the rules of the form 5.5 are middle rules and

the rules of the form 5.6 are de�ned rules.

Lemma 5.1.1. Given an AC(C) program Π, answer sets of P(Π) have one to

one correspondence to answer sets of T (Π)

Example 5.1.3. Let us continue example 4.2.6 from chapter 4. The program

P(Π) as computed in example 4.2.6 is as follows:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rgea : p(1, 1) ← q(1), q(1), at(1, V1), at(1, V1), V1 � V1, d(1, 1, V1, V1)

rgeb
: p(1, 2) ← q(1), q(2), at(1, V1), at(2, V2), V1 � V2, d(1, 2, V1, V2)

rgec : p(2, 1) ← q(2), q(1), at(2, V2), at(1, V1), V2 � V1, d(2, 1, V2, V1)

rged
: p(2, 2) ← q(2), q(2), at(2, V2), at(2, V2), V2 � V2, d(2, 2, V2, V2)

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

First, we apply transformation tr1 to middle rules of P(Π). We get the

following rules:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

65

Texas Tech University, Veena S.Mellarkod, December 2007

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rgea1
: p 0(1, 1) ← q(1), q(1), at(1, V1), at(1, V1), V1 < V1, d(1, 1, V1, V1)

rgeb1
: p 0(1, 2) ← q(1), q(2), at(1, V1), at(2, V2), V1 < V2, d(1, 2, V1, V2)

rgec1
: p 0(2, 1) ← q(2), q(1), at(2, V2), at(1, V1), V2 < V1, d(2, 1, V2, V1)

rged1
: p 0(2, 2) ← q(2), q(2), at(2, V2), at(2, V2), V2 < V2, d(2, 2, V2, V2)

rgea2
: p(1, 1) ← p 0(1, 1)

rgeb2
: p(1, 2) ← p 0(1, 2)

rgec2
: p(2, 1) ← p 0(2, 1)

rged2
: p(2, 2) ← p 0(2, 2)

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

The middle rules of above program are {rgea1
, rgeb1

, rgec1
, rged1

}. Now let us

apply transformation tr2 to middle rules of above program. We get the

following rules:

rga[1,2]
: q(1). q(2).

rgb1
: p(1, 2) ← q(1), q(2), r(1, 2)

rgc1
: r(1, 2) ← q(1), q(2), not s(1, 2)

rgc2
: r(2, 1) ← q(2), q(1), not s(2, 1)

rgd1
: s(1, 2) ← q(1), q(2), not r(1, 2)

rgd2
: s(2, 1) ← q(2), q(1), not r(2, 1)

rgea1
: p 0(1, 1) ← q(1), q(1), at(1, V1), at(1, V1), d1(V1)

rgeb1
: p 0(1, 2) ← q(1), q(2), at(1, V1), at(2, V2), d2(V1, V2)

rgec1
: p 0(2, 1) ← q(2), q(1), at(2, V2), at(1, V1), d3(V2, V1)

rged1
: p 0(2, 2) ← q(2), q(2), at(2, V2), at(2, V2), d4(V2)

rgea3
: d1(V1) ← V1 < V1, d(1, 1, V1, V1)

rgeb3
: d2(V1, V2) ← V1 < V2, d(1, 2, V1, V2)

rgec3
: d3(V2, V1) ← V2 < V1, d(2, 1, V2, V1)

66

Texas Tech University, Veena S.Mellarkod, December 2007

rged3
: d4(V2) ← V2 < V2, d(2, 2, V2, V2)

rgea2
: p(1, 1) ← p 0(1, 1)

rgeb2
: p(1, 2) ← p 0(1, 2)

rgec2
: p(2, 1) ← p 0(2, 1)

rged2
: p(2, 2) ← p 0(2, 2)

rf : d(X, Y, T1, T2) ← s(X, Y), X < Y, T1 = T2 + 10

Recall that P(Π) does not contain any negative (¬) literals (see end of section

4.2). Therefore, T (Π) does not contain negative literals. Before we go to the next

section, let us look at the structure of program T (Π).

T (Π) is an r-ground program and consists of three parts:

. regular part, ΠR, is ground and consists of rules of the form:

h← a1, . . . , am, not bm+1, . . . , not bn

where h, a's and b's are r-atoms;

. middle part, ΠM, is r-ground and consists of rules of the form:

h← a1, . . . , am, not bm+1, . . . , not bn

where h and b's are r-atoms, a's are r-atoms or m-atoms and contains

exactly one d-atom;

. de�ned part, ΠD, is non-ground and consists of rules of the form:

h← a1, . . . , am, not bm+1, . . . , not bn

where h is a d-atom, b's are r-atoms, a's are r-atoms or d-atoms or c-atoms

67

Texas Tech University, Veena S.Mellarkod, December 2007

The next section describes the solver ACengine in detail.

5.2 ACengine

Before we describe the solver in detail, let us introduce some notation and

terminology. Let Π be a r-ground program with signature Σ and B be a set of

ground extended r-literals of Σ.

. We will identify an expression not (not a)) with a.

. pos(B) = {a 2 Atoms(Σ) | a 2 B},

neg(B) = {a 2 Atoms(Σ) | not a 2 B},

Atoms(B) = pos(B) [neg(B).

. A set, M, of atoms agrees with B if pos(B) � M and neg(B) \M = ;.

. B covers a set of atoms M, covers(B, M), if M � Atoms(B)

. B is inconsistent if pos(B) \ neg(B) 6= ;.

We consider the following rule throughout the chapter.

h← l1, . . . , lm, not lm+1, . . . , not ln (5.7)

where l's and h are atoms. Let r be a rule of Π and B be a set of extended literals

of Σ.

. Rule r is falsi�ed by a set of extended literals B, if there exists a literal

li 2 body(r) such that not li 2 B.

. Rule r is active w.r.t. B, if pos(r) \ neg(B) = ; and neg(r) \ pos(B) = ;.

68

Texas Tech University, Veena S.Mellarkod, December 2007

function ACengine(Π: r-ground program, B: set of r-literals)

[a] S := expand(ΠR [ΠM, B)

[b] if inconsistent(S) return false

[c] if covers(S, rAtoms(Π)) then

[d] V := c solve(ΠD, S, query(Π,S), A)

[e] if V = true return true fa-set: pos(S) [m atoms|Ag

[f] else return false

[g] else V := c solve(ΠD, S, pos(query(Π,S)), A)

[h] if V = false return false

[i] pick(l, �S)

[j] if ACengine(Π,S [{l}) then

[k] return true

[l] else return ACengine(Π,S [{not l})

Figure 5.1: ACengine : computation of answer sets of Π

Definition 5.2.1. [simplified answer set] Let M = A [X [D [Mc be an

answer set of a program Π, where A,X,D are sets of regular, mixed and

de�ned atoms respectively and Mc is the set of c-atoms representing the

intended interpretation of c-predicates in Pc. The set A [X is called a

simpli�ed answer set of Π.

5.2.1 Main Computation Cycle

The function ACengine shown in �gure 5.2.1, takes as inputs r-ground AC(C)

program Π and a set of ground extended r-literals B. The function returns true if

it �nds an answer set M of Π, such that B agrees with M. Otherwise, it returns

false. The solver uses functions expand, pick and c solve. The accurate

description of these functions will be given in the following sections.

69

Texas Tech University, Veena S.Mellarkod, December 2007

The function ACengine 5.2.1 executes the following steps:

(a) Function expand computes the set of consequences of ΠR [ΠM and B. This

set of ground extended r-literals is stored in S. The set S has the following

properties:

� B � S

� every answer set of Π that agrees with B agrees with S.

The computation of these consequences is de�ned by a set of closure rules

described in section 5.3.

(b) If S is inconsistent then inconsistent(S) returns true else it returns false. If

S is inconsistent then there exists no answer set of Π that agrees with B and

hence in step (b) ACengine returns false.

(c) If S covers the set of r-atoms in Π then covers(S, rAtoms(Π)) returns true,

else it returns false. If it returns true then steps (d) and (e) are executed

otherwise step (f) is executed.

(d) Function c solve uses a constraint logic programming solver (clp-solver) to

compute an answer to a query Q = query(Π, S), using program ΠD. The

query Q, which is a conjunction of r-ground d-literals, is constructed from

the program ΠM and the set S. The description on how the query is built is

given in section 5.5.2. If clp-solver fails to solve the query then c solve

returns false. If c solve returns false then

� there exists no answer set of Π agreeing with B.

If the clp-solver successfully solved query Q then c solve can return either

true or maybe. The conditions when maybe is returned instead of true are

70

Texas Tech University, Veena S.Mellarkod, December 2007

described in 5.5.2. At this step, when S covers the r-atoms of Π, c solve

returns true if clp-solver successfully solves Q. If c solve returns true then

it also outputs a set of answer constraints, A, consisting of constraints on

the variables from Q. The set A holds the property that for any solution θ

of A, we have ΠD [Mc [S |= d-lits(Q)|
vars(Q)
θ . Let X be a candidate mixed

set formed by substituting c-variables in mcv set(Π) (see section 4.2) by

values using substitution θ. At this step, after a successful return from

c solve, the set pos(S) [X has the following property:

� There exists a set of de�ned literals D such that

M = pos(S) [X [D [Mc is an answer set of Π agreeing with B.

(e) If c solve returns true then ACengine returns true and Mo = pos(S) [X

(where X = mcv set(Π)|
vars(Π)
θ) is the simpli�ed answer set of Π agreeing

with B.

(f) If c solve returns false then there exists no answer set agreeing with B;

hence step (f) returns false.

(g) Function c solve uses a clp-solver to compute an answer to query Q, using

program ΠD. At this step, only positive part of the query (built as described

in section 5.5.2) is sent as input to c solve. When the function terminates, it

returns true or false or maybe. If it returns false then there is no answer

set agreeing with B.

(h) If c solve returns false then there exists no answer set agreeing with B and

false is returned by ACengine .

(i) The function pick chooses a r-literal l undecided in S.

71

Texas Tech University, Veena S.Mellarkod, December 2007

(j) function ACengine recursively calls itself with program Π and S [{l} as

inputs and checks if it can �nd answer sets of Π agreeing with S [{l}.

(l) If it cannot �nd answer set agreeing with S [{l} then the function calls itself

recursively with program Π and S[{not l} as inputs and checks if it can �nd

answer sets of Π agreeing with S [{not l}.

Proposition 5.2.1. Let Π be a program and B be a set of ground extended

literals input to ACengine. If ACengine returns true and a set A then A is a

simpli�ed answer set of Π agreeing with B.

5.3 The expand Cycle

Function expand computes the set S of ground extended r-literals consisting of all

of consequences of r-ground program ΠR [ΠM and a set of ground extended

r-literals B. If S is consistent then it has the following properties:

. B � S

. every answer set that agrees with B also agrees with S

The �rst subsection introduces two auxillary functions atleast and atmost, used

by the main loop of expand, then the next subsection describes expand.

5.3.1 Functions atleast, atmost

5.3.1.1 Function atleast

Let us introduce some terminology. Let Π be an r-ground program and B be a set

of ground extended r-literals. We de�ne lc0(Π,B) as a set of ground extended

literals that is minimal (set theoretic) and satis�es the following conditions:

1. If r 2 ΠR, and body(r) � B, then head(r) 2 lc0(Π,B).

72

Texas Tech University, Veena S.Mellarkod, December 2007

2. If an r-atom h is not in the head of any active rule in ΠR [ΠM with respect

to B then not h 2 lc0(Π,B)

3. If r is the only active rule of ΠR [ΠM with respect to B such that

h = head(r) and h 2 B then r lits(r) � lc0(Π,B)

4. If r 2 ΠR, h = head(r), not h 2 B, and all literals in the body of r except li

belong to B, then not li 2 lc0(Π,B).

Proposition 5.3.1. If the set lc0(Π,B) [B is consistent then lc0(Π,B) is

unique.

Definition 5.3.1. Given a program Π and a set of ground extended r-literals

B, the lower closure of Π with respect to B, denoted by lc(Π,B), is the set of

ground extended r-literals de�ned as follows:

lc(Π,B) =

 lc0(Π,B) [B if lc0(Π,B) [B is consistent,

r-lits(Π) otherwise.

The de�nition of lc(Π,B) is similar to de�nition in [75, 72] and di�ers in

conditions (1) and (4) of the computation of lc0(Π,B), where the conditions are

applied only to rules of ΠR and not to ΠM.

Example 5.3.1. Let

Σ = {Cr = {a, b}, Cc = {C1 = [0 . . . 86400], C2 = [0 . . . 1440]}, Pr =

{q(Cr), r(Cr), p(Cr, Cr), s(Cr, Cr)}, Pm = {at(Cr, Cc}, Pc = {� (Cc, Cc)}, Pd =

{d1(Cr, Cr, Cc, Cc), d2(Cr, Cc, Cc)}, Fc = {min(Cc, Cc),max(Cc, Cc), �(Cc, Cc)}, }

and variables V1 and V2 range over sorts C1 and C2 respectively. Let Π be as

follows:

q(a). q(b).

73

Texas Tech University, Veena S.Mellarkod, December 2007

p(a, b) ← q(a), q(b), not s(a, b), at(a, V1), at(b, V2), d1(a, b, V1, V2).

s(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d2(a, V1, V2).

One can check from de�nition that

lc(Π, {p(a, b)}) = { p(a, b), q(a), q(b), not r(a), not r(b), not s(a, b) };

and lc(Π, {not p(a, b)}) = { not p(a, b), q(a), q(b),not r(a),not r(b) }

Proposition 5.3.2. Let Π be a program, and B be a set of extended r-literals.

. lc(Π,B) is monotonic with respect to its second argument.

. lc(Π,B) is unique.

. If M is an answer set of Π, then M agrees with B i� M agrees with

lc(Π,B).

To make our terminology compatible with that of Smodels [75], the function

computing the lower closure lc(Π,B) of a r-ground program Π and a set of ground

extended r-literals B will be called atleast. Note that the proposition 5.3.2

implies that if lc(Π,B) is inconsistent then there is no answer set of Π that agrees

with B; otherwise, every answer set of Π that agrees with B agrees with lc(Π,B).

5.3.1.2 Function atmost

Function expand uses a function called atmost to compute the atoms that can

possibly be true in an answer set of Π agreeing with B. Before we describe

function atmost, let us introduce some terminology.

By α(Π,B), we denote a program obtained from Π by

1. Removing all rules in Π whose bodies are falsi�ed by B.

2. Removing all rules r in Π where head(r) is false in B.

3. Removing all not-atoms from bodies of rules in ΠR [ΠM

74

Texas Tech University, Veena S.Mellarkod, December 2007

4. Removing all c-lits and d-lits from bodies of rules in ΠM

The de�nition of α(Π,B) has been modi�ed from [72] by adding step (4) to work

with middle rules.

Definition 5.3.2. The upper closure of a program Π with respect to B,

denoted as up(Π,B), is de�ned as the deductive closure of α(Π,B).

Example 5.3.2. Let

Σ = {Cr = {a, b}, Cc = {C1 = [0 . . . 86400], C2 = [0 . . . 1440]}, Pr =

{q(Cr), r(Cr), p(Cr, Cr), s(Cr, Cr)}, Pm = {at(Cr, Cc}, Pc = {� (Cc, Cc)},

Pd = {d1(Cr, Cr, Cc, Cc), d2(Cr, Cc, Cc)}, } and variables V1 and V2 range over

sorts C1 and C2 respectively. Let Π be as follows:

q(a). q(b).

p(a, b) ← q(a), q(b), not s(a, b), at(a, V1), at(b, V2), d1(a, b, V1, V2).

s(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d2(a, V1, V2).

One can check that α(Π, ;) is as follows:

q(a). q(b).

p(a, b) ← q(a), q(b).

s(a, b) ← q(a), q(b).

and up(Π, ;) = { p(a, b), q(a), q(b), s(a, b) }.

The program α(Π, {s(a, b)}) is as follows:

q(a). q(b).

s(a, b) ← q(a), q(b).

and up(Π, {s(a, b)}) = { q(a), q(b), s(a, b) }

Proposition 5.3.3. Let Π be a program and B be a set of extended r-literals.

75

Texas Tech University, Veena S.Mellarkod, December 2007

. up(Π,B) is unique

. If M is an answer set of Π agreeing with B then r-atoms(M) � up(Π,B)

To make our terminology compatible with Smodels, we call the function that

computes the upper closure, up(Π,B), of a program Π and a set of ground

extended r-literals B ,atmost.

5.3.2 The expand Function

The expand function computes the set of consequences of a r-ground program Π

with respect to a set of ground extended r-literals B. The inputs of the function

are the program ΠR [ΠM and set B. The function shown in �gure 5.2 has the

following main steps:

a. The variable S is initialized to B.

c. The variable S0 is initialized to S

d. atleast computes lc(ΠR [ΠM, S) and adds it to S.

e. atmost returns up(ΠR [ΠM, S). The set

{ not l | l 2 r-atoms(Π), l 62 atmost(Π, S)} is added to S.

(Since atoms which do not belong to up(ΠR [ΠM, S) cannot be

consequences of Π and S, expand adds the negation (not) of atoms not in

up(ΠR [ΠM, S) to S.)

f. The steps (c), (d) and (e) are executed until either (S = S0) or S becomes

inconsistent.

g. S is returned by expand.

76

Texas Tech University, Veena S.Mellarkod, December 2007

function expand (Π : r-ground program, B : set of r-literals)

% var S, S0 : set of r-literals

[a] S := B

[b] do

[c] S0 := S

[d] S := S [atleast(Π, S)

[e] S := S [{ not l | l 2 r-atoms(Π), l 62 atmost(Π, S)}

[f] while ((S 6= S0) and consistent(S))

[g] return S

Figure 5.2: Function expand

Proposition 5.3.4. Let S be the output of expand(Π,B). If S is consistent

then an answer set Y of Π agrees with B i� Y agrees with S. Otherwise, there

is no answer set of Π that agrees with B.

Example 5.3.3. Let Π be from example 4.2.6, and

B = {q(1), q(2), r(2, 1), p 0(1, 2)}, we get lc(ΠR [ΠM, B) = S = {q(1), q(2),

r(2, 1),not s(2, 1), p 0(1, 2), p(1, 2)}; α(ΠR [ΠM, S) and up(ΠR [ΠM, S) are given

below.

ua[1,2]
: q(1). q(2).

ub1
: p(1, 2) ← q(1), q(2), r(1, 2)

uc1
: r(1, 2) ← q(1), q(2)

uc2
: r(2, 1) ← q(2), q(1)

ud1
: s(1, 2) ← q(1), q(2)

ue11
: p(1, 1) ← p 0(1, 1)

ue21
: p(1, 2) ← p 0(1, 2)

ue31
: p(2, 1) ← p 0(2, 1)

ue41
: p(2, 2) ← p 0(2, 2)

77

Texas Tech University, Veena S.Mellarkod, December 2007

ue12
: p 0(1, 1) ← q(1), q(1)

ue22
: p 0(1, 2) ← q(1), q(2)

ue32
: p 0(2, 1) ← q(2), q(1)

ue42
: p 0(2, 2) ← q(2), q(2)

up(ΠR [ΠM, S) = {q(1), q(2), p 0(1, 1), p 0(1, 2), p 0(2, 1), p 0(2, 2), s(1, 2), r(1, 2),

r(2, 1), p(1, 1), p(1, 2), p(2, 1), p(2, 2)}.

Function expand returns S = {q(1), q(2), r(2, 1),not s(2, 1), p 0(1, 2), p(1, 2)}.

5.4 The Query: query(Π, S)

This section describes the construction of a formula, query(Π, S), used as an

input to function c solve. Let us introduce some terminology. Let V be a

c-variable of Π that ranges over an interval C = [lower . . . upper] where lower

and upper are numerical values. By c sort(V), we mean the constraint

(lower � V)
V

(V � upper). Given a set of variables Y,

c sort(Y) =
V

V2Y c sort(V).

Example 5.4.1. Let variables V1 and V2 range over the number of seconds

[0 . . . 86400] and minutes [0 . . . 1440] of a day respectively. We get,

c sort({V1, V2}) = (0 � V1) ∧ (V1 � 86400) ∧ (0 � V2) ∧ (V2 � 1440)

Definition 5.4.1. [pe(Π,S)] Given a r-ground rule r and a set of ground

extended r-literals S, we de�ne partial evaluation of r with respect to S,

pe(r, S), as a rule r 0 such that:

if head(r) is undecided with respect to S or r-lits(r) is falsi�ed by S then

r 0 is an empty rule. Otherwise,

78

Texas Tech University, Veena S.Mellarkod, December 2007

head(r 0) = head(r)

body(r 0) =

 c-lits(r) [d-lits(r) if c-lits(r) [d-lits(r) 6= ;,

{true} otherwise.

Given a program Π, we de�ne pe(Π, S) = {pe(r, S) | r 2 Π}.

Example 5.4.2. Let

Σ = {Cr = {a, b}, Cc = {C1 = [0 . . . 86400], C2 = [0 . . . 1440]}, Pr =

{q(Cr), r(Cr), p(Cr, Cr), s(Cr, Cr)}, Pm = {at(Cr, Cc}, Pc = {� (Cc, Cc)}, Pd =

{d1(Cr, Cr, Cc, Cc), d2(Cr, Cc, Cc)}, Fc = {min(Cc, Cc),max(Cc, Cc), �(Cc, Cc)}, }

and variables V1 and V2 range over sorts C1 and C2 respectively. Let Π be as

follows:

q(a). q(b).

p(a, b) ← q(a), q(b), not s(a, b), at(a, V1), at(b, V2), d1(a, b, V1, V2).

s(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d2(a, V1, V2).

d1(a, b, V1, V2) ← r(a), r(b), min(V1, V2 � 60) � 2000.

d2(a, V1, V2) ← not r(a), max(V1, V2 � 60) � 100.

If S1 = {q(a), q(b), p(a, b)} then pe(Π, S1) is as follows:

q(a) ← true.

q(b) ← true.

p(a, b) ← d1(a, b, V1, V2).

If S2 = {q(a), q(b), p(a, b),not s(a, b)} then pe(Π, S2) is as follows:

q(a) ← true.

q(b) ← true.

79

Texas Tech University, Veena S.Mellarkod, December 2007

p(a, b) ← d1(a, b, V1, V2).

s(a, b) ← d2(a, V1, V2).

Given a rule r, we denote the formula obtained by conjunction of the set of literals

in body of r by
V

body(r). For example,
V

body(r) = c ∧ d for the rule a← c, d.

We also assume that ¬(¬p) = p. Now we describe query(Π, S).

Definition 5.4.2. [query(Π,S)] The formula query(Π, S), is constructed via

two auxiliary formulas q0 and q de�ned as follows:

1. If h 2 S then q0(Π, S, h) =
W

r2pe(Π,S),h=head(r)

V
body(r).

2. If not h 2 S then q0(Π, S, h) =
V

r2pe(Π,S),h=head(r) ¬
V

body(r).

3. q(Π, S) =
V

h2A q0(Π, S, h), where

A= {h|h 2 Atoms(S), h 2 head(r), r 2 ΠM}.

Finally, query(Π, S) is constructed as follows:

query(Π, S) = q(Π, S)
V

c sort(Y), where Y is the set of c-variables from

mcv set(Π) (see section 4.2).

Example 5.4.3. Let Σ, Π, S1, S2, pe(Π, S1) and pe(Π, S2) be as in example

5.4.2. We construct query(Π, S1) as follows:

q0(Π, S1, q(a)) = true q0(Π, S1, q(b)) = true

q0(Π, S1, p(a, b)) = d1(a, b, V1, V2)

q(Π, S1) = d1(a, b, V1, V2)

query(Π, S1) = d1(a, b, V1, V2) ∧ (0 � V1) ∧ (V1 � 86400) ∧ (0 � V2) ∧ (V2 � 1440)

We construct query(Π, S2) as follows:

q0(Π, S2, q(a)) = true q0(Π, S1, q(b)) = true

q0(Π, S2, p(a, b)) = d1(a, b, V1, V2)

q0(Π, S2, s(a, b)) = ¬d2(a, V1, V2)

80

Texas Tech University, Veena S.Mellarkod, December 2007

q(Π, S2) = d1(a, b, V1, V2)

query(Π, S2) = d1(a, b, V1, V2) ∧ ¬d2(a, V1, V2) ∧ (0 � V1) ∧ (V1 � 86400) ∧ (0 �

V2) ∧ (V2 � 1440)

Note that if a rule r 2 pe(Π, S) has false in the head then rule (2) from de�niton

5.4.2 is used to build q0(Π, S, false). The application of transformation tr1 of

T ranslator ensures that for every rule r 2 ΠM, if h = head(r) then r is the only

rule in Π with h in the head. Therefore, for any r-atom h in the head of rules in

ΠM, there is no disjunction from step (1) of de�nition of q0(Π, S, h) above. Also

the application of transformation tr2 ensures that for every rule r 2 ΠM, there is

at most one d-literal in the body of r and no c-literals in body of r. Therefore, for

any r-atom h in the head of rules in ΠM, there is no disjunction from step (2) of

de�nition of q0(Π, S, h) above. These two transformations guarantee that

query(Π, S) does not contain disjunction. The following example shows how the

transformations remove disjunction from the query.

Example 5.4.4. Let Σ be signature as in example 5.4.2. Let Π be as follows:

q(a). q(b).

p(a, b) ← q(a), q(b), not s(a, b), at(a, V1), at(b, V2), d1(a, b, V1, V2), d3(V1).

p(a, b) ← q(a), q(b), at(a, V1), at(b, V2), d2(a, V1, V2), d3(V2).

d1(a, b, V1, V2) ← min(V1, V2 � 60) � 2000.

d2(a, V1, V2) ← not r(a), max(V1, V2 � 60) � 100.

d3(V) ← V � 60 � 100.

If S1 = {q(a), q(b), p(a, b)} then pe(Π, S1) is as follows:

q(a) ← true.

q(b) ← true.

p(a, b) ← d1(a, b, V1, V2), d3(V1).

81

Texas Tech University, Veena S.Mellarkod, December 2007

p(a, b) ← d2(a, V1, V2), d3(V2).

We construct query(Π, S1) as follows:

q0(Π, S1, q(a)) = true q0(Π, S1, q(b)) = true

q0(Π, S1, p(a, b)) = (d1(a, b, V1, V2) ∧ d3(V1)) ∨ (d2(a, V1, V2) ∧ d3(V2))

q(Π, S1) = (d1(a, b, V1, V2) ∧ d3(V1)) ∨ (d2(a, V1, V2) ∧ d3(V2))

Q1 = query(Π, S1) = ((d1(a, b, V1, V2) ∧ d3(V1)) ∨ (d2(a, V1, V2) ∧ d3(V2))) ∧ (0 �

V1) ∧ (V1 � 86400) ∧ (0 � V2) ∧ (V2 � 1440)

The disjunction in the query Q1 occurs because there are two rules with

p(a, b) in the head. This is removed by transformation tr1. Now consider

S2 = {q(a), q(b),not p(a, b)}, the query

Q2 = query(Π, S2) = ((¬d1(a, b, V1, V2) ∨ ¬d3(V1)) ∧ (¬d2(a, V1, V2) ∨

¬d3(V2))) ∧ (0 � V1) ∧ (V1 � 86400) ∧ (0 � V2) ∧ (V2 � 1440). Note that there is

disjunction in Q2 because there is more than one literal in body of pe(Π, S2)

rules with head p(a, b). This is removed by transformation tr2.

Hence, query(Π, S) is a conjunction of d-literals from Π and c-atoms of variable

sorts.

As described in section 5.2, the formula Q = query(Π, S) is used as an input to

the function c solve in ACengine . The function c solve uses constraint logic

programming techniques and attempts to solve Q. We can improve the e�ciency

of ACengine by using only a part of the query Q as input to c solve. That is we

delay solving the whole query and check whether only a part of the query is

satis�able. We now describe the part of the query Q that is sent as input to

c solve.

Let Q = query(Π, S) be the conjunction of literals d1, . . . dm,c1, . . . , cn,

represented by the set of literals {d1, . . . dm,c1, . . . , cn} where d1, . . . dm are

82

Texas Tech University, Veena S.Mellarkod, December 2007

d-literals and c1, . . . , cn are c-literals. Let us remove from Q all di's that do not

satisfy the following property called r-support: there exists a rule r 2 ΠM with

di 2 body(r) and r lits(r) � S. The remaining set of literals of Q is used as input

to c solve. It is not di�cult to show that the properties (see section 5.2.1) of the

algorithm ACengine are still satis�ed by using only a part of the query as

described above.

Example 5.4.5. Let Π, S1 and S2 be as in example 5.4.2. We get query(Π, S1)

and query(Π, S2) as constructed in example 5.4.3. Since d1(a, b, V1, V2) does

not satisfy the r-support property, the subset of query(Π, S1) that is input to

c solve is Q1 = (0 � V1) ∧ (V1 � 86400) ∧ (0 � V2) ∧ (V2 � 1440). The subset of

query(Π, S2) from example 5.4.3 that is used as input to c solve is

Q2 = query(Π, S2).

5.5 The c solve cycle

The c solve function takes as inputs non-ground program ΠD, a set of ground

extended r-literals S and a formula Q = query(Π, S), where program ΠD is the set

of de�ned rules of Π. Intuitively, S is the partial interpretation computed so far by

function expand (see section 5.2). The query Q is a formula formed by d-literals

and c-literals of Π (see section 5.4). The output of c solve can be true, false or

maybe. Before we describe the function, we describe an auxillary function called

clp-solver that is used by c solve.

5.5.1 The clp-solver of ACengine

The c solve function uses a constraint logic programming solver (clp-solver) to

�nd a consistent set of ground extended r-literals R and a set of constraints A

such that, for any solution θ of A, ΠD [R [Mc |= Q|
vars(Q)
θ , where Mc is the

83

Texas Tech University, Veena S.Mellarkod, December 2007

intended interpretation of c-atoms in ΠD [Q.

The clp-solver function is a modi�ed version of the standard constraint logic

programming solver [58, 56]. The modi�cation stems from the fact that rules of

program ΠD might contain extended r-literals in the body. The de�nitions of

r-literals belong to ΠR [ΠM and therefore the original solver clp cannot derive the

truth values of these literals. So we modify clp to work with r-literals. First we

brie
y describe clp [55], and then describe clp-solver of ACengine .

5.5.1.1 Function clp

The inputs of the clp are a non-ground constraint logic program Π and a query Q

which is a conjunction of literals. If clp terminates then the output is true, false

or maybe. If it returns true then it also returns a set of constraints. The output

constraints satisfy the following property: there exists at least one solution for

output constraints and any solution of the output constraints is a solution of

input query. If it returns false then there exists no solution for input query. If

it returns maybe then it also returns a set of constraints. The output constraints

satisfy the following property: if there is a solution to the output constraints

then it is a solution for the input query. Note however that such a solution

might not exist. More detailed description of clp requires some terminology from

[57].

Let C be a set of formulas constructed from c-atoms (primitive constraints)

referred to as a constraint store. The set of constraint formulas in C is divided

into two categories: solved and delayed. The delayed constraints are non-linear

constraints and maybe di�cult to check for solvability. The constraints in C are

solvable if the set of solved constraints in C is consistent i.e. has a solution.

Given a program Π, a query Q = l1, . . . , ln, and a constraint store C, there is a

84

Texas Tech University, Veena S.Mellarkod, December 2007

derivation step from a pair hQ,Ci to another pair hQ1, C1i if:

. Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a constraint formula and C1 is a

(possibly simpli�ed) set of constraints equivalent to C [{li}. Furthermore,

C1 is solvable;

. or Q1 = l1, . . . , li−1, x1 = t1, . . . , xk = tk, b1, . . . , bm, li+1, . . . , ln, where there

is a rule r 2 Π such that head of r, h, can be uni�ed with li, xi are term

parameters from li and ti are term parameters from h, and body(r) is

uni�ed with the set of literals {b1, . . . , bm}; and C1 = C.

A derivation sequence is a possibly in�nite sequence of pairs

hQ0, C0i, hQ1, C1i . . . , starting with an initial query Q0 and initial constraint store

C0, such that there is a derivation step to each pair hQi, Cii, i > 0, from the

preceding pair hQi−1, Ci−1i.

Example 5.5.1. Let Π be a program as follows:

d(X, Y) ← X2 � Y, e(X).

e(X) ← X � 4 � 20.

e(X) ← X = 2.

Let Q = d(X, Y) and let C = ;. Then the following is a derivation sequence:

hQ, Ci = h {d(X, Y)}, ; i

hQ1, C1i = h {X2 � Y, e(X)}, ; i

hQ2, C2i = h {e(X)}, {X2 � Y} i

hQ3, C3i = h {X � 4 � 20}, {X2 � Y} i

hQ4, C4i = h ;, {X2 � Y, X � 5} i

Note that when new constraints are added to the store, the old constraints maybe

reduced to simpler equivalent constraints. For instance, in example 5.5.1, when we

85

Texas Tech University, Veena S.Mellarkod, December 2007

add a new constraint X � 4 � 20 to C3, we get the new store as C4 which is

equivalent to {X2 >= Y, X � 4 � 20}. Similarly a non-linear constraint which is

delayed might be reduced to become a linear constraint. When a delayed

constraint becomes linear it becomes a solved constraint. The following example

shows a derivation sequence where a non-linear constraint becomes linear.

Example 5.5.2. Let Π be the program from example 5.5.1

Let Q = d(X, Y) and let C = ;. Then a derivation sequence (using second rule

of e(X)) is as follows:

hQ,Ci = h {d(X, Y)}, ; i

hQ1, C1i = h {X2 � Y, e(X)}, ; i

hQ2, C2i = h {e(X)}, {X2 � Y} i

hQ3, C3i = h {X = 2}, {X2 � Y} i

hQ4, C4i = h ;, {Y � 4, X = 2} i

Notice that C3 has non-linear constraints and C4 is linear.

A sequence is successful if it is �nite and its last element is h;, Cni, where Cn is

a set of solved constraints. A sequence is conditionally successful if it is �nite

and its last element is h;, Cni, where Cn consists of delayed and possibly some

solved constraints. A sequence is �nitely failed if it is �nite, neither successful nor

conditionally successful, and such that no derivation step is possible from its last

element. The derivation sequences in examples 5.5.1 and 5.5.2 are conditionally

successful and successful respectively.

There can be several derivation sequences for a query with respect to a program.

Each of these sequences can be successful, conditionally successful, �nitely failed

or in�nite.

Here is a brief description of clp. Given a program Π and a query Q, clp

86

Texas Tech University, Veena S.Mellarkod, December 2007

non-deterministically generates a derivation sequence D starting with hQ, ;i. If

the sequence D �nitely fails then clp backtracks to generate another derivation

sequence. If the sequence D is successful (conditionally successful) then it returns

true (maybe) and C, which is the set of c-atoms from the constraint store of the

last element in D. The constraints in C are called answer constraints. If all

derivation sequences are �nitely failed then clp returns false.

Proposition 5.5.1. Let Π be a constraint logic program and Q be a query

such that neither Π nor Q contains ¬ and not . Let VQ be the variables in Q

and Mc be the set of intended interpretations of c-atoms in Π. Then

. If clp returns true or maybe then gr(Π) [Mc |= Q|
VQ

θ(A), where θ(A) is

any solution of answer constraints A.

. If clp returns false then for any substitution θ of VQ,

gr(Π) [Mc 6|= Q|
VQ

θ .

The non-deterministic selection is implemented via depth �rst strategy. Hence,

there are cases when there is a successful derivation sequence and clp is unable to

�nd it. For instance, if D is in�nite then clp keeps building D and does not

terminate, but there might be other successful derivation sequences.

5.5.1.2 Constructive Negation

Note that a query Q = query(Π, S) as de�ned in section 5.4 contains negative (¬)

literals. The de�nition of derivative step in function clp does not give a derivation

for negative literals. So we need to modify the derivation step to allow negative

literals in the query. This section recalls the concept of constructive negation from

[96, 97, 34], that is used in clp-solver function.

87

Texas Tech University, Veena S.Mellarkod, December 2007

Let Π be a program and Q be a query. Suppose Q and Π do not contain (¬)

negative literals. Let D = {D1, . . . , Dk} be the set of all possible successful and

conditionally successful derivation sequences of the pair hQ, ;i as de�ned in

previous section (5.5.1.1).

The query Q is logically equivalent to:

Q � C1 ∨ � � �∨ Ck

where Ci is the conjunction of formulas in the constraint store of the last element

of sequence Di.

Example 5.5.3. Let Π be a program as follows:

d(X, Y) ← X � 3, Y > 4.

d(X, Y) ← X > 5, X + Y < 20.

p(X, Y) ← X2 < 4, d(X, Y).

p(X, Y) ← X2 − Y2 > 4.

There are two derivation sequences for hd(X, Y), ;i with answer constraints as:

C1 = X � 3 ∧ Y > 4 and C2 = X + Y < 20 ∧ X > 5. We get,

d(X, Y) � (X � 3 ∧ Y > 4) ∨ (X + Y < 20 ∧ X > 5)

There are three derivation sequences for hp(X, Y), ;i with answer constraints

as:

C1 = X2 < 4 ∧ X � 3 ∧ Y > 4; C2 = X2 < 4 ∧ X + Y < 20 ∧ X > 5 and

C3 = Y2 + 4 < X2. We get,

p(X, Y) � (X2 < 4 ∧ X � 3 ∧ Y > 4) ∨ (X2 < 4 ∧ X + Y < 20 ∧ X > 5) ∨ (Y2 + 4 < X2)

88

Texas Tech University, Veena S.Mellarkod, December 2007

Consider the negative goal, ¬Q. We can write it as

¬Q � ¬(C1 ∨ � � �∨ Ck)

¬Q � ¬C1 ∧ � � �∧ ¬Ck

where Q � C1 ∨ � � �∨ Ck.

Definition 5.5.1. [c-neg(Π,Q,C)] Given a program Π and a query Q, let

D = {D1, . . . , Dk} be the set of all possible successful and conditionally

successful derivation sequences of hQ,Ci. We de�ne

c-neg(Π,Q,C) = ¬(C1 ∨ � � �∨ Ck), where Ci is the answer constraint of

derivation sequence Di.

Example 5.5.4. Let Π be as in example 5.5.3. We get

¬d(X, Y) � ¬((X � 3 ∧ Y > 4) ∨ (X + Y < 20 ∧ X > 5)). Simplifying, we get,

¬d(X, Y) � (¬(X � 3) ∨ ¬(Y > 4)) ∧ (¬(X + Y < 20) ∨ ¬(X > 5)). Further

simplifying, we get, ¬d(X, Y) � ((X > 3) ∨ (Y � 4)) ∧ ((X + Y � 20) ∨ (X � 5)).

Likewise, we get

¬p(X, Y) � ¬((X2 < 4∧X � 3∧Y > 4)∨(X2 < 4∧X+Y < 20∧X > 5)∨(Y2+4 < X2)).

Simplifying we get,

¬p(X, Y) � (X2 � 4∨X > 3∨Y � 4)∧(X2 � 4∨X+Y � 20∨X � 5)∧(Y2+4 � X2).

5.5.1.3 Function clp-solver

The function clp-solver is obtained from clp function by two modi�cations. The

modi�cations are as follows:

. Apart from the constraint store C, clp-solver maintains a set of ground

extended r-literals referred to as a regular store denoted by R. This

89

Texas Tech University, Veena S.Mellarkod, December 2007

modi�cation stems from the fact that the de�nitions of r-literals are not in

the input of clp-solver.

. The derivation step is modi�ed to deal with r-literals and negative d-literals

(¬) in the query.

We give the de�nition of a derivation step in two steps. First, we give the

de�nition of a derivation step for programs and queries not containing ¬. Then we

give the de�nition for when the query contains (¬) negation.

Definition 5.5.2. [Derivation Step6¬] Let Π be a program and Q = l1, . . . , ln be

a query both not containing ¬. Let C be a constraint store and R be a regular

store. We say that there is a derivation step from a tuple hQ,C, Ri to another

tuple hQ1, C1, R1i if:

(1). Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a constraint formula; R1 = R and

C1 is a (possibly simpli�ed) set of constraints equivalent to C [{li}.

Furthermore, C1 is solvable;

(2). or Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a r-literal; C1 = C and

R1 = R [{li}. Furthermore, R1 is consistent;

(3). or Q1 = l1, . . . , li−1, x1 = t1, . . . , xk = tk, b1, . . . , bm, li+1, . . . , ln, where

li = d(x1, . . . , xk) is a positive d-literal and there is a rule r 2 Π such that

head of r, d(t1, . . . , tk), can be uni�ed with li and body(r) can be uni�ed

with set {b1, . . . , bm}; C1 = C; and R1 = R.

A derivation sequence is a possibly in�nite sequence of tuples hQ0, C0, R0i ,

hQ1, C1, R1i . . . , starting with an initial tuple hQ0, C0, R0i, such that there is a

derivation step to each element hQi, Ci, Rii, i > 0, from the preceding element

hQi−1, Ci−1, Ri−1i. A sequence is successful if it is �nite and its last element is

90

Texas Tech University, Veena S.Mellarkod, December 2007

h;, Cn, Rni, where Cn contains only solved constraints. A sequence is

conditionally successful if it is �nite and its last element is h;, Cn, Rni, where Cn

contains solvable and delayed constraints. A sequence is �nitely failed if it is

�nite, neither successful nor conditionally successful, and such that no derivation

step is possible from its last element.

Example 5.5.5. Let predicates d, e be de�ned predicates and p be a regular

predicate. Let Π be a program as follows:

d(X1, Y1) ← X3
1 � Y1, e(X1, Y1).

e(X2, Y2) ← X2 = 2, X2 + Y2 � 20.

e(X3, Y3) ← p(X3), Y3 � 4 � 20.

Variables X1, X2, X3 are regular in the above program. Let

Q = d(2, Z1), d(4, Z2); C = ; and R = ;. Then a derivation sequence is as

follows: (To follow the steps easily, the constraint store is not simpli�ed)

hQ, C, Ri = h {d(2, Z1), d(4, Z2)}, ;, ; i

hQ1, C1, R1i = h {X1 = 2, Z1 = Y1, X
3
1 � Y1, e(X1, Y1), d(4, Z2)}, ;, ; i

hQ2, C2, R2i = h {Z1 = Y1, X
3
1 � Y1, e(X1, Y1), d(4, Z2)}, {X1 = 2}, ; i

hQ3, C3, R3i = h {X3
1 � Y1, e(X1, Y1), d(4, Z2)}, {X1 = 2, Z1 = Y1}, ; i

91

Texas Tech University, Veena S.Mellarkod, December 2007

hQ4, C4, R4i = h {e(X1, Y1), d(4, Z2)}, {X1 = 2, Z1 = Y1, X
3
1 � Y1}, ; i

hQ5, C5, R5i = h {X1 = X2, Y1 = Y2, X2 = 2, X2 + Y2 � 20, d(4, Z2)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1}, ; i

hQ6, C6, R6i = h {Y1 = Y2, X2 = 2, X2 + Y2 � 20, d(4, Z2)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2}, ; i

hQ7, C7, R7i = h {X2 = 2, X2 + Y2 � 20, d(4, Z2)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2, Y1 = Y2}, ; i

hQ8, C8, R8i = h {X2 + Y2 � 20, d(4, Z2)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2, Y1 = Y2, X2 = 2}, ; i

hQ9, C9, R9i = h {d(4, Z2)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2, Y1 = Y2, X2 = 2, X2 + Y2 � 20}, ; i

hQ10, C10, R10i = h {X4 = 4, Y4 = Z2, X
3
4 � Y4, e(X4, Y4)},

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2, Y1 = Y2, X2 = 2, X2 + Y2 � 20}, ; i

hQ11, C11, R11i = h {Y4 = Z2, X
3
4 � Y4, e(X4, Y4)}, C10 [{X4 = 4}, ; i

hQ12, C12, R12i = h {X3
4 � Y4, e(X4, Y4)}, C10 [{X4 = 4, Y4 = Z2}, ; i

hQ13, C13, R13i = h {e(X4, Y4)}, C10 [{X4 = 4, Y4 = Z2, X
3
4 � Y4}, ; i

hQ14, C14, R14i = h {X4 = X5, Y4 = Y5, p(X5), Y5 � 4 � 20}, C13, ; i

hQ15, C15, R15i = h {Y4 = Y5, p(X5), Y5 � 4 � 20}, C13 [{X4 = X5}, ; i

hQ16, C16, R16i = h {p(X5), Y5 � 4 � 20}, C13 [{X4 = X5, Y4 = Y5}, ; i

hQ17, C17, R17i = h {Y5 � 4 � 20}, C13 [{X4 = X5, Y4 = Y5}, {p(4)} i

hQ18, C18, R18i = h ;, C13 [{X4 = X5, Y4 = Y5, Y5 � 4 � 20}, {p(4)} i

The �nal regular store R18 = {p(4)} and the constraint store is C18 =

{X1 = 2, Z1 = Y1, X
3
1 � Y1, X1 = X2, Y1 = Y2, X2 = 2, X2 + Y2 � 20, X4 = 4, Y4 =

Z2, X
3
4 � Y4, X4 = X5, Y4 = Y5, Y5 � 4 � 20}. Simplifying the constraint store in

terms of variables Z1 and Z2, we get, {Z1 � 8, Z1 � 16, Z2 � 64, Z2 � 5} which

is equivalent to {Z1 � 8, Z2 � 5}.

92

Texas Tech University, Veena S.Mellarkod, December 2007

Note that if the initial query Q is r-ground, then according to the syntactic

restriction (3) in chapter 4, when a r-literal l is uni�ed and added to Q using

derivation step (3), it is ground. Therefore, in derivation step (2) when a

regular literal is added to regular store it will be a ground r-literal.

Example 5.5.6. Let predicates d, e be de�ned predicates and p be a regular

predicate. Let Π be a program as follows:

d(X, Y) ← X2 � Y, e(X).

e(X) ← p(X, 3), X > 4.

e(X) ← not p(X, 2).

Let Q = d(6, Y) and C = ; and R = ;. Then (a slightly simpli�ed version of)

a derivation sequence maybe written as follows:

h {d(6, Y)}, ;, ; i

h {36 � Y, e(6)}, ;, ; i

h {e(6)}, {36 � Y}, ; i

h {p(6, 3), 6 > 4}, {36 � Y}, ; i

h {6 > 4}, {36 � Y}, {p(6, 3)} i

h ;, {36 � Y}, {p(6, 3)} i

Now we de�ne the derivation step for queries containing negative literals. First,

let us de�ne c-neg(Π,Q,C, R), which is a modi�cation of c-neg(Π,Q,C) from

section 5.5.1.2.

Definition 5.5.3. [c-neg(Π,¬Q,C, R)] Let Π be a program and Q be a query

both not containing ¬. Let C be a constraint store and R be a regular store.

Let D = {D1, . . . , Dk} be the set of all possible successful and conditionally

successful derivation sequences of hQ,C, Ri using derivation step as de�ned in

93

Texas Tech University, Veena S.Mellarkod, December 2007

5.5.2. We de�ne c-neg(Π,¬Q,C, R) = ¬(C1 ∨ � � �∨ Ck), where Ci is the

conjunction of answer constraints of derivation sequence Di. If all derivation

sequences are �nitely failed then if R is complete with respect to r-literals in

Π then c-neg(Π,¬Q,C, R) = false, otherwise c-neg(Π,¬Q,C, R) is an empty

formula.

Example 5.5.7. Let predicates d, e be de�ned predicates and p be a regular

predicate. Let Π be a program as follows: (same as in example 5.5.5)

d(X1, Y1) ← X3
1 � Y1, e(X1, Y1).

e(X2, Y2) ← X2 = 2, X2 + Y2 � 20.

e(X3, Y3) ← p(X3), Y3 � 4 � 20.

Let Q = d(2, Z) and C = ; and R = ;. There are two successful derivation

sequences D1 and D2 for hQ,C, Ri and no conditionally successful sequences.

The �rst and last elements of D1 and D2 are as follows:

D1 = h d(2, Z), ;, ; i . . . h ;, {Z � 8}, ; i

D2 = h d(2, Z), ;, ; i . . . h ;, {Z � 5}, {p(2)} i

We get c-neg(Π,¬d(2, Z), ;, ;) = ¬((Z � 8) ∨ (Z � 5)).

Now we de�ne the derivation step for queries which contain negative literals. We

add an extra step to the previous de�nition.

Definition 5.5.4. [Derivation Step] Let Π be a program not containing ¬ and

Q = l1, . . . , ln be a query. Let C be a constraint store and R be a regular store.

We say that there is a derivation step from a tuple hQ,C, Ri to another tuple

hQ1, C1, R1i if:

(1). Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a constraint formula; R1 = R and

C1 is a (possibly simpli�ed) set of constraints equivalent to C [{li}.

94

Texas Tech University, Veena S.Mellarkod, December 2007

Furthermore, C1 is solvable;

(2). or Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a r-literal; C1 = C and

R1 = R [{li}. Furthermore, R1 is consistent;

(3). or Q1 = l1, . . . , li−1, x1 = t1, . . . , xk = tk, b1, . . . , bm, li+1, . . . , ln, where

li = d(x1, . . . , xk) is a positive d-literal and there is a rule r 2 Π such that

head of r, d(t1, . . . , tk), can be uni�ed with li and body(r) can be uni�ed

with set {b1, . . . , bm}; C1 = C; and R1 = R.

(4). or Q1 = l1, . . . , li−1, c-neg(Π, li, C, R), li+1, . . . , ln, where li = ¬d(x1, . . . , xk)

is a negative d-literal and c-neg(Π,¬d(x1, . . . , xk), C, R) is a formula from

de�nition 5.5.3; C1 = C; and R1 = R.

Example 5.5.8. Let predicates d, e be de�ned predicates and p be a regular

predicate. Let Π be a program as follows: (same as in example 5.5.5)

d(X1, Y1) ← X3
1 � Y1, e(X1, Y1).

e(X2, Y2) ← X2 = 2, X2 + Y2 � 20.

e(X3, Y3) ← p(X3), Y3 � 4 � 20.

Let Q = ¬d(2, Z1), d(4, Z2), C = ; and R = ;. A derivation sequence is as

follows:

hQ, C, Ri = h {¬d(2, Z1), d(4, Z2)}, ;, ; i

hQ1, C1, R1i = h {c-neg(Π,¬d(2, Z1), ;, ;), d(4, Z2)}, ;, ; i

We use example 5.5.7 to get

95

Texas Tech University, Veena S.Mellarkod, December 2007

c-neg(Π,¬d(2, Z1), ;, ;) = ¬((Z1 � 8) ∨ (Z1 � 5)). Hence,

hQ1, C1, R1i = h {¬((Z1 � 8) ∨ (Z1 � 5)), d(4, Z2)}, ;, ; i

hQ2, C2, R2i = h {d(4, Z2)}, {¬(Z1 � 8) ∧ ¬(Z1 � 5)}, ; i

hQ3, C3, R3i = h {X1 = 4, Y1 = Z2, X
3
1 � Y1, e(X1, Y1)}, {¬(Z1 � 8) ∧ ¬(Z1 � 5)}, ; i

hQ4, C4, R4i = h {Y1 = Z2, X
3
1 � Y1, e(X1, Y1)}, {¬(Z1 � 8) ∧ ¬(Z1 � 5), X1 = 4}, ; i

hQ5, C5, R5i = h {X3
1 � Y1, e(X1, Y1)}, {¬(Z1 � 8) ∧ ¬(Z1 � 5), X1 = 4, Y1 = Z2}, ; i

hQ6, C6, R6i = h {e(X1, Y1)}, {¬(Z1 � 8) ∧ ¬(Z1 � 5), X1 = 4, Y1 = Z2, X
3
1 � Y1}, ; i

hQ7, C7, R7i = h {X3 = X1, Y3 = Y1, p(X3), Y3 � 4 � 20}, C6, ; i

hQ8, C8, R8i = h {Y3 = Y1, p(X3), Y3 � 4 � 20}, C6 [{X3 = X1}, ; i

hQ9, C9, R9i = h {p(X3), Y3 � 4 � 20}, C6 [{X3 = X1, Y3 = Y1}, ; i

hQ10, C10, R10i = h {Y3 � 4 � 20}, C6 [{X3 = X1, Y3 = Y1}, {p(X3)} i

hQ11, C11, R11i = h ;, C6 [{X3 = X1, Y3 = Y1, Y3 � 4 � 20}, {p(X3)} i

Simplifying the constraint store, we get constraints on Z1 and Z2 as:

{Z1 > 5,Z2 � 5}.

The clp-solver takes 3 inputs:

. a program Π not containing ¬,

. an r-ground query Q which may possibly contain negative d-literals and

. a set of ground extended r-literals S.

Similar to clp, clp-solver returns true (maybe), when it �nds a successful

(conditionally successful) derivation sequence. If all derivation sequences are

�nitely failed then it returns false. The main loop of clp-solver di�ers from the

main loop of clp in the following ways:

. Unlike clp, clp-solver generates a derivation sequence starting with hQ, ;, Si,

96

Texas Tech University, Veena S.Mellarkod, December 2007

. when a successful or conditionally successful derivation sequence D is found

then clp-solver returns C and R, where C and R are respectively the set of

c-atoms from the constraint store and r-atoms from the regular store of the

last element in D

Similar to clp, there are cases when there is a successful derivation sequence and

clp-solver is unable to �nd it.

Recall that the de�nition of an r-literal l belongs to program ΠR [ΠM, hence

when clp-solver �nds a regular literal l in the query, it cannot derive the truth

value of l. Therefore, if l does not con
ict the set of r-literals in regular store then

it just adds l to the regular store. Intuitively, it assumes that l is successfully

derived and continues building the sequence.

Note that in computing constructive negation of a d-literal¬l, c-neg(Π,¬l, C, R),

it su�ces to use the de�nition of DerivativeStep6¬ since the input program Π

does not contain ¬ and l is positive.

It is also important to note a subtle di�erence in properties of c-neg(Π,¬li, C, R)

to the case when Π does not contain r-literals and to the case when Π contains

r-literals.

When Π does not contain r-literals, then every solution of c-neg(Π,¬l, C, R) is a

solution of ¬l. That is,

Π [R [Mc |= ¬l |
vars(l)
θ

where Mc is intended interpretation of c-atoms of Π and θ is any solution of

c-neg(Π,¬l, C, R).

When Π contains r-literals then if R is complete, (i.e. for every r-atom a in Π

either a 2 R or not a 2 R), then we get:

Π [R [Mc |= ¬l |
vars(l)
θ

97

Texas Tech University, Veena S.Mellarkod, December 2007

where Mc is intended interpretation of c-atoms of Π and θ is any solution of

c-neg(Π,¬l, C, R). For the case when R is not complete, the relationship of the

formula c-neg(Π,Q,C, R) with respect to ¬l is complex. The de�nition of

c-neg(Π,Q,C, R) can be changed to get soundness and completeness property

when R is not complete. This will be regarded in future work.

The intuitive reason for this di�erence is that while computing c-neg(Π,¬l, C, R),

the derivation sequences of hl, C, Ri change both constraint store and regular

store, but the �nal result returned by c-neg captures only the conclusions in

constraint store and ignores the regular store. This makes the de�nition of c-neg

simpler while still retaining the correctness for the case when R is complete.

Therefore, the query can contain negative literals only if R is complete. The

following example gives more details.

Example 5.5.9. Let predicates d, e be de�ned predicates and p be a regular

predicate with domain of regular variable X = {1, 2, 3, 4, 5}. Let Π be a program

as follows:

d(X, Y) ← not p(X), Y � 2.

d(X, Y) ← p(X), Y � 4, X + Y � 10.

e(X, Y) ← p(X), Y < 6.

e(X, Y) ← p(X + 2), Y > 4.

Let Q = ¬e(3, Z). Let C = ; and R = ;. The following is the derivation

sequence of hQ,C, Ri:

hQ, C, Ri = h {¬e(3, Z)}, ;, ; i

hQ1, C1, R1i = h {c-neg(Π,¬e(3, Z), ;, ;)}, ;, ; i

We compute c-neg(Π,¬e(3, Z), ;, ;) as follows: There are two successful

derivation sequences D1 and D2 for he(3, Z), ;, ;i: The �rst and last elements

98

Texas Tech University, Veena S.Mellarkod, December 2007

of D1 and D2 are as follows:

D1 = h e(3, Z), ;, ; i . . . h ;, {Z < 6}, {p(3)} i

D2 = h e(3, Z), ;, ; i . . . h ;, {Z > 4}, {p(5)} i

We get c-neg(Π,¬e(3, Z), ;, ;) = Cn = ¬(Z < 6 ∨ Z > 4). The formula

Cn � Z � 6 ∧ Z � 4 which does not have any solution. So ¬e(3, Z) does not

have a solution when R is not complete. Suppose

R1 = {p(1), p(2),not p(3), p(4),not p(5)}. We get c-neg(Π,¬e(3, Z), C, R1) = ; as

R is complete and all derivations of he(3, Z), C, R1i are �nitely failed.

Therefore, Π [R1 |= ¬e(3, Z),8real(Z).

Let Q = ¬d(2, Z). Let C = ; and R = ;. The following is a derivation

sequence of hQ,C, Ri:

hQ, C, Ri = h {¬d(2, Z)}, ;, ; i

hQ1, C1, R1i = h {c-neg(Π,¬d(2, Z), ;, ;)}, ;, ; i

We compute c-neg(Π,¬d(2, Z), ;, ;) as follows: There are two successful

derivation sequences D1 and D2 for hd(2, Z), ;, ;i: The �rst and last elements

of D1 and D2 are as follows:

D1 = h d(2, Z), ;, ; i . . . h ;, {Z � 2}, {not p(2)} i

D2 = h d(2, Z), ;, ; i . . . h ;, {Z � 4, Z � 8}, {p(2)} i

We get c-neg(Π,¬d(2, Z), ;, ;) = Cn = ¬((Z � 2) ∨ ((Z � 4) ∧ (Z � 8))). The

formula Cn is equivalent to (Z < 2) ∧ ((Z < 4) ∨ (Z > 8)). Further we get

Cn � (Z < 2 ∧ Z < 4) ∨ (Z < 2 ∧ Z > 8). Note that c-neg(Π,¬d(2, Z1) comprises

of only the constraint formula though the regular store of D1 and D2 are

non-empty. Consider Z = 10, Z does not satisfy the constraint formula Cn,

but Π [{p(2)} |= ¬d(2, 10).

Proposition 5.5.2. Let Π be a program, Q be a query and R be a set of

99

Texas Tech University, Veena S.Mellarkod, December 2007

ground extended r-literals such that

. Q is r-ground,

. Π satis�es syntax restriction (3) from section 4.1,

. if not l occurs in Π or Q then l is regular atom, and

. ¬ does not occur in Π and Q.

Let VQ be the variables in Q and Mc be the set of intended interpretation of

c-atoms in Π. Then,

. If clp-solver returns true or maybe then gr(Π) [R [Mc |= Q|
VQ

θ(A), where

θ(A) is any solution to answer constraints A.

. If clp-solver returns false then for any substitution θ of VQ,

gr(Π) [R [Mc 6|= Q|
VQ

θ .

Proposition 5.5.3. Let Π be a program, Q be a query and R be a set of

ground extended r-literals such that

. Q is r-ground,

. Π satis�es syntax restriction (3) from section 4.1,

. if not l occurs in Π or Q then l is regular atom,

. ¬ does not occur in Π,

. R is complete with respect to r-literals in Π.

Let VQ be the variables in Q and Mc be the set of intended interpretation of

c-atoms in Π. Then,

100

Texas Tech University, Veena S.Mellarkod, December 2007

. If clp-solver returns true or maybe then gr(Π) [R [Mc |= Q|
VQ

θ(A), where

θ(A) is any solution to answer constraints A.

. If clp-solver returns false then for any substitution θ of VQ,

gr(Π) [R [Mc 6|= Q|
VQ

θ .

5.5.2 The c solve Function

The c solve function has three input parameters, a program ΠD, a set of ground

extended r-literals S, and a query Q. It returns true, false or maybe. When it

returns true or maybe, it also returns a set of constraints A. The algorithm is

shown in Figure 5.3. First we introduce some terminology.

A solution of a set of constraints A, denoted by a solution(A), is a binding of

variables in A which satis�es constraints in A.

Let ΠD be the de�ned part of a program Π and S be a set of ground extended

r-literals. Let Q = query(Π, S), D be the set of d-literals in Q and VQ be the set

of variables in Q. Let A and R be the set of answer constraints and set of ground

extended r-literals returned by clp-solver(Π,Q,A,R). The following are the

properties of the return value of c solve:

. If c solve(ΠD, S, Q,A) returns true then every answer set of Π agreeing with

S contains D|
VQ

θ , where θ = a solution(A).

. If c solve(ΠD, S, Q,A) returns maybe then there maybe answer sets of Π

agreeing with S [R.

. If c solve(ΠD, S, Q,A) returns false then there is no answer set of Π

agreeing with S.

Recall from previous section that, when clp-solver returns true, it means that it

found a successful or conditionally successful derivation D. Since during the

101

Texas Tech University, Veena S.Mellarkod, December 2007

function c solve (Π : Program, S : Set of r-lits, Q : Query, var A : Set of constraints)

% var R : set of r-literals

% var found : boolean

[a] found := false

[c] R := S

[d] found := clp-solver(Π, Q, A, R)

[i] if covers(S, r-atoms(Π)) then return found

[i] else if Q is positive then

[i] if R � S then return found

[i] else if found = false then return false

[j] end if

[j] return maybe

Figure 5.3: Function c solve

derivation step, the set of literals in R were assumed to be true, D is a successful

derivation with the condition that R can be satis�ed with respect to S. The

derivation D is r-successful if the set of regular literals R [S is consistent.

Let VQ be the set of variables in Q. Let VM = vars(mcv set(Π)). Recall that by

construction of Q, VM � VQ. The answer constraints A returned by clp-solver

consists of constraints on VQ.

Let θ be a solution of A. We construct a candidate mixed set X from mcv set(Π)

by substituting variables in mcv set(Π) by values from binding θ written as

X = mcv set(Π)|VM
θ .

Proposition 5.5.4. Let Π be a program Π and S be a set of ground extended

r-literals. Let Q = query(Π, S), D be the set of d-literals in Q and �VQ be the

set of variables in Q.

. If c solve(ΠD, S,Q,A) returns true then every answer set of Π agreeing

102

Texas Tech University, Veena S.Mellarkod, December 2007

with S contains D|
�VQ

θ , where θ = a solution(A).

. If c solve(ΠD, S,Q,A) returns false then there is no answer set of Π

agreeing with S.

Proposition 5.5.5. Let Π be a program Π and S be a set of ground extended

r-literals. Let Q = query(Π, S) be a query, A be a set of answer constraints,

and θ be any solution of A. Let V be the set of variables in Q,

D = d-lits(Q)|
�V
θ be a set of d-literals and X = mcv set(Π)|

�V
θ be a

candidate mixed set. If c solve(ΠD, S,Q,A) returns true then if

S[D[X[Mc is an asp-answer set of ΠR [ΠM [D[X[Mc then there exists

an answer set M of Π such that S [X is the simpli�ed part of M.

Proposition 5.5.6. Let a program Π and a set of extended r-literals B be

inputs to AC(C) solver. Let

(s1) S = expand(ΠR [ΠM, B) is consistent and covers all r-atoms of Π

(s2) Q = query(Π, S), �V = vars(Q) and c solve(ΠD, S,Q,A) returns true at

step (d) of AC(C) solver

(s3) θ = a solution(A) , D = d-lits(Q)|
�V
θ , X = mcv set(Π)|

�V
θ and Mc is the

intended interpretation of c-atoms(Π).

Then pos(S) [D [X [Mc is an asp-answer set of ΠR [ΠM [D [X [Mc

agreeing with B.

5.6 The pick Function

Function pick takes as input the set of r-atoms, Y = r-atoms(Π) \ Atoms(S). It

returns an extended r-literal formed from an atom of Y. The choice of the picked

extended literal determines to a large degree the e�ciency of our algorithm. The

103

Texas Tech University, Veena S.Mellarkod, December 2007

selection is based on the heuristic function implemented in pick. Both Smodels

[75] and Surya [72] have similar heuristic functions. The solver ACengine uses the

same heuristic function as Surya.

104

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 6

LANGUAGE V(C)

Our work so far was in integrating four reasoning mechanisms: answer set

reasoning and abductive techniques from ASP paradigm and resolution and

constraint solving techniques from CLP paradigm. Towards this, we designed a

collection of languages AC(C) and developed an algorithm for computing answer

sets for a class of AC(C) programs. In the development of this algorithm,

resolution techniques proved to be the most di�cult to integrate with the others.

Hence, before we integrated the four techniques, we investigated whether we can

e�ectively integrate the other three techniques: answer set reasoning, abductive

techniques and constraint solving. We were interested in developing languages

which would allow us to integrate the three reasoning techniques to build a solver

to compute answer sets. We wanted to design such languages and investigate their

usefulness for knowledge representation.

Consider the subset of languages from AC(C) where signature of the languages do

not contain any de�ned predicates. A program in such language does not contain

any de�ned rules and the mixed part does not contain any de�ned atoms. This is

an interesting collection of languages called CASP introduced in [12]. More

information related to CASP can be found in chapter 9. We study an extension of

CASP in this chapter.

This chapter introduces a collection of knowledge representation languages, V(C),

parametrised over a class C of constraints. V(C) is an extension of both CR-Prolog

[3] and CASP [12] allowing the separation of a program into two parts: a regular

program of CR-Prolog and a collection of denials1 whose bodies contain

1By a denial we mean a logic programming rule with an empty head.

105

Texas Tech University, Veena S.Mellarkod, December 2007

constraints from C with variables ranging over large domains. We study an

instance AC0 from this family where C is a collection of constraints of the form

X − Y > k, where X and Y are variables and k is any real number.

We design and implement an algorithm computing the answer sets of programs of

AC0 which does not ground constraint variables and tightly couples the classical

ASP algorithm with an algorithm checking the consistency of di�erence

constraints. This makes it possible to declaratively solve problems which could

not be solved by pure ASP or by pure constraint solvers. The chapter is organized

as follows: In section 6.1 we de�ne the syntax and semantics of V(C) and AC0.

Section 6.2 contains a description of the algorithm for computing answer sets of

programs in AC0.

6.1 Syntax and Semantics of V(C)

6.1.1 Syntax

The language V(C) contains a sorted signature Σ, with sorts partitioned into two

classes: regular, sr, and constraint, sc. Intuitively, the former are comparatively

small but the latter are too large for the ASP grounders. Functions de�ned on

regular (constraint) classes are called r-functions (c-functions). Terms are built as

in �rst-order languages. Predicate symbols are divided into three disjoint sets

called regular, constrained and mixed and denoted by Pr, Pc and Pm respectively.

Constraint predicate symbols are determined by C. Parameters of regular and

constraint predicates are of sorts sr and sc respectively. Mixed predicates have

parameters from both classes with at least one from each. Atoms are de�ned as

usual. A literal is an atom a or its negation ¬a. An extended literal is a literal l

or not l, where not stands for default negation. Atoms formed from regular,

constraint, and mixed predicates are called r-atoms, c-atoms and m-atoms

106

Texas Tech University, Veena S.Mellarkod, December 2007

respectively. Similarly for literals. We assume that predicates of Pc have a

prede�ned interpretation, represented by the set Mc of all true ground c-atoms.

For instance, if 0> 02 Pc, and ranges over integers, Mc consists of

{...0 > −1, 1 > 0, 2 > 0, ..., 2 > 1, 3 > 1, ...}. The c-literals allowed in V(C) depend

on the class C. The V(C) rules over Σ are de�ned as follows.

Definition 6.1.1. [rules]

1. A regular rule (r-rule) ρ is a statement of the form:

h1 or � � � or hk ← l1, � � � , lm, not lm+1, � � � ,not ln

where k >= 0; hi's and li's are r-literals.

2. A constraint rule (c-rule) is a statement of the form:

← l1, � � � , lm, not lm+1, � � � ,not ln

where at least one li is non-regular.

3. A consistency restoring rule (cr-rule) is a statement of the form:

r : h1 or � � � or hk
+← l1, � � � , lm, not lm+1, � � � ,not ln

where k > 0, r is a term which uniquely denotes the name of the rule

and hi's and li's are r-literals.

head(r) = h0 or � � � or hk; body(r) = fl1, � � � , lm, not lm+1, � � � ,not lng; and

pos(r), neg(r) denote, respectively, {l1, � � � , lm} and {lm+1, � � � , ln}.

A regular rule and constraint rule have the same intuitive reading as standard

rules of ASP. The intuitive reading of a cr-rule is: if one believes in l1, . . . lm and

107

Texas Tech University, Veena S.Mellarkod, December 2007

have no reason to believe lm+1, . . . , ln, then one may possibly believe one of

h1, . . . , hk. The implicit assumption captured by the semantics of the language is

that this possibility is used as little as possible, and only to restore consistency of

the agent's beliefs.

Definition 6.1.2. [program] A V(C) program is a pair (Σ,Π), where Σ is a

sorted signature and Π is a set of V(C) rules over Σ.

Example 6.1.1. Let Σ = h Cr = {a, b}, Vr = {X, Y}, Pr = {p, q}, Cc =

{−1000..1000}, Vc = {T1, T2}, Fc = {−}, Pc = {>}, Pm = {at} i, variables in Vr

and Vc take values from Cr and Cc respectively. Let Π be:

q(a). q(b).

p(X, Y) or s(X, Y) ← q(X), q(Y).

← p(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 10.

← s(X, Y),not r(X, Y), at(X, T1), at(Y, T2), T1 − T2 > 50.

cr : r(X, Y)
+←

The �rst three rules are r-rules and next two are c-rules and last rule is a

cr-rule.

Example 6.1.2. To represent conditions: "John goes to work either by car

which takes 30 to 40 minutes, or by bus which takes at least 60 minutes", we

start by de�ning the signature

Σ = {Cr = {start, end}, Pr = {by car, by bus}, Cc = {Dc = [0..1439], Rc =

[−1439..1439]}, Vc = {Ts, Te}, Fc = {−}, Pc = {>}, Pm = {at}}. The sets Cr and Pr

contain regular constants and predicates; elements of Cc, Vc, Fc, and Pc are

constrained constants, variables, functions and predicate symbols. Pm is the

set of mixed predicates. Values in Dc represent time in minutes. Consider

one whole day from 12:00am to 11:59pm mapped to 0 to 1439 minutes.

108

Texas Tech University, Veena S.Mellarkod, December 2007

Regular atom \by car" says that \John travels by car"; mixed atom

at(start, T) says that \John starts from home at time T". Similarly for

\by bus" and \at(end, T)". Function \−" has the domain Dc and range Rc;

Ts, Te are variables for Dc. The rules below represent the information from

the story.

% 'John travels either by car or bus' is represented by an r-rule

ra : by car or by bus.

% Travelling by car takes between 30 to 40 minutes. This information is

encoded by two c-rules

rb : ← by car, at(start, Ts), at(end, Te), Te − Ts > 40.

rc : ← by car, at(start, Ts), at(end, Te), Ts − Te > −30.

% Travelling by bus takes at least 60 minutes

rd : ← by bus, at(start, Ts), at(end, Te), Ts − Te > −60.

Te − Ts > 40, Ts − Te > −30, and Ts − Te > −60 are c-atoms.

Example 6.1.3. Let us expand the story from example 6.1.2 by new

information: 'John prefers to come to work before 9am'. We add new

constant 0time0 0 to Cr of Σ which denotes the start time of the day, regular

atom 'late' which is true when John is late and constrained variable Tt for

Dc. Time 9am in our representation is mapped to 540th minute. We expand

example 6.1.2 by the following rules:

% Unless John is late, he comes to work before 9am

re : ← at(time0, Tt), at(end, Te), ¬late, Te − Tt > 540

% Normally, John is not late

rf : ¬late ← not late

% On some rare occasions he might be late, which is encoded by a cr-rule

rg : late
+←

109

Texas Tech University, Veena S.Mellarkod, December 2007

6.1.2 Semantics

We denote the sets of r-rules, cr-rules and c-rules in Π by Πr, Πcr and Πc

respectively. A rule r of (Π,Σ) will be called r-ground if regular terms in r are

ground. A program is called r-ground if all its rules are r-ground. A rule rg is

called a ground instance of a rule r if it is obtained from r by: (1). replacing

variables by ground terms of respective sorts; (2). replacing the remaining terms

by their values. For example, 3 + 4 will be replaced by 7. The program

ground(Π) with all ground instances of all rules in Π is called the ground

instance of Π. Obviously ground(Π) is an r-ground program.

We �rst de�ne semantics for programs without cr-rules. We believe that this

de�nition is slightly simpler than the equivalent de�nition from [12].

Definition 6.1.3. [answer set 1] Given a program (Σ,Π), where Π contains

no cr-rules, let X be a set of ground m-atoms such that for every predicate

p 2 Pm and every ground r-term tr, there is exactly one c-term tc such that

p(�tr,�tc) 2 X. A set S of ground atoms over Σ is an answer set of Π if S is an

asp answer set of ground(Π) [X [Mc.

Example 6.1.4. Consider example 6.1.2 and let X =

{at(start, 430), at(end, 465)}. The set S =

{by car, at(start, 430), at(end, 465)} [Mc is an asp answer set of

ground(Π) [X [Mc and therefore is an answer set of Π. According to S,

John starts to travel by car at 7:10am and reaches work at 7:45am. Of

course there are other answer sets where John travels by car and his start

and end times di�er but satisfy given constraints. There are also answer sets

where John travels by bus.

Now we give the semantics for programs with cr-rules. By α(r), we denote a

regular rule obtained from a cr-rule r by replacing
+← by ←; α is expanded in a

110

Texas Tech University, Veena S.Mellarkod, December 2007

standard way to a set R of cr-rules. Recall that according to [6], a minimal (with

respect to set theoretic inclusion) collection R of cr-rules of Π such that

Πr [Πc [α(R) is consistent (i.e. has an answer set) is called an abductive support

of Π. De�nition 6.1.4 is a simpli�cation of the original de�nition from [3], which

includes special preference rules.

Definition 6.1.4. [answer set 2] A set S is called an answer set of Π if it is

an asp answer set of program Πr [Πc [α(R) for some abductive support R of

Π.

Example 6.1.5. Consider example 6.1.3 and let

X = {at(start, 430), at(end, 465)}. The set S =

{by car,¬late, at(time0, 0), at(start, 430), at(end, 465)} [Mc is an answer

set of ground(Π) [X [Mc and therefore is an answer set of Π. According to

S, John starts by car at 7:10am and reaches work at 7:45am and is not late.

The cr-rule was not applied and α(;) = ;.

Example 6.1.6. Let us consider example 6.1.3, and add new information that

'John's car is not available and he could not start from home until 8:15am'.

% 'John's cannot use his car' is encoded by an r-rule with empty head.

rh : ← by car.

% 'John cannot start before 8:15am' is encoded as a c-rule:

ri : ← at(time0, Tt), at(start, Ts), Tt − Ts > −495.

Let X = {at(time0, 0), at(start, 495), at(end, 560)}. S = { by bus, late,

at(time0, 0), at(start, 495), at(end, 560) } [Mc is an answer set of the

program, where John arrives late by bus at 9:20am. The cr-rule rg was used

and α({rg}) = {late←}.

111

Texas Tech University, Veena S.Mellarkod, December 2007

6.2 ADsolver

In this section we describe the algorithm which takes a program (Σ,Π) of AC0 as

input and returns a simpli�ed answer set A [X (regular and mixed atoms) such

that M = A [X [Mc is an answer set of Π. The algorithm works for a class of

AC0 programs satisfying the following syntax restrictions:

. There are no disjunctions in the head of rules. This restriction simpli�es

the ADsolver algorithm.

. Every c-rule of the program contains exactly one c-literal in the body.

This restriction simpli�es the ADsolver algorithm.

From now, we consider only programs that satisfy the above syntax

restrictions. ADsolver consists of a partial grounder Pgroundd and an inference

engine ADengine . Similar to ACsolver , given a AC0 program Π, ADsolver �rst

calls Pgroundd to ground r-terms of Π, to get an r-ground program, Pd(Π). The

ADengine combines constraint solving techniques with answer set reasoning and

abduction techniques to compute answer sets of Pd(Π). The next sections

describe them in detail.

6.2.1 Pgroundd

Given a AC0 program Π, Pgroundd grounds the r-variables in Π and outputs a

r-ground program Pd(Π). The steps of Pgroundd follow the steps of Pground

(see section 4.2) but need not consider de�ned predicates as AC0 does not allow

de�ned predicates.

The implementation of Pgroundd uses intelligent grounder lparse [98]. Example

6.2.1 presents a AC0 program and the corresponding r-ground program output by

Pgroundd.

112

Texas Tech University, Veena S.Mellarkod, December 2007

Example 6.2.1. Let a1 and a2 be two actions. For representing the condition

"a1 should occur 30 minutes before a2", we begin by de�ning a signature. Σ

= {Cr = {{a1, a2}, {1, 2}}, Vr = {S}, Pr = {o}, Pm = {at}, Cc = {Dc = {0..1440}, Rc =

{−1440..1440}}, Vc = {T1, T2}, Fc = {−}, Pc = {>}} and Π be the following rules:

step(1..2).

% one action occurs at each step

o(a1, S) :- step(S), not o(a2, S).

o(a2, S) :- step(S), not o(a1, S).

% an action can occur at most once

:- step(S1), step(S2), o(a1, S1), o(a1, S2), S1 != S2.

:- step(S1), step(S2), o(a2, S1), o(a2, S2), S1 != S2.

% define ’time’ as a csort, and ’at’ as a mixed predicate

#csort time(0..1440).

#mixed at(step,time).

% time should be increasingly assigned to steps

:- step(S1), step(S2), at(S1, T1), at(S2, T2), S1 < S2, T1 - T2 > 0.

% a1 should occur 30 minutes before a2

:- step(S1), step(S2), o(a1, S1), o(a2, S2),

at(S1, T1), at(S2, T2), T1 - T2 > -30.

We get Pd(Π) as follows:

step(1). step(2).

o(a1, 1) :- not o(a2, 1).

o(a1, 2) :- not o(a2, 2).

o(a2, 1) :- not o(a1, 1).

o(a2, 2) :- not o(a1, 2).

113

Texas Tech University, Veena S.Mellarkod, December 2007

:- o(a1, 1), o(a1, 2).

:- o(a2, 1), o(a2, 2).

#csort time(0..1440).

:- at(1, V1), at(2, V2), V1 - V2 > 0.

:- o(a1, 1), o(a2, 2), at(1, V1), at(2, V2), V1 - V2 > -30.

:- o(a1, 2), o(a2, 1), at(2, V2), at(1, V1), V2 - V1 > -30.

6.2.2 ADengine

The ADengine integrates a standard CR-Prolog solver and a di�erence constraint

solver. CR-Prolog solver consists of a meta layer and computes answer sets by

using an underlying ASP inference engine. For ADengine , we use Surya [72] as

the underlying inference engine.

Suppose there are no c-rules in a program Π, then Π is a CR-Prolog program. A

typical CR-Prolog solvers available now, compute answer sets of Π as follows:

1. a meta-layer selects a minimal set R of cr-rules of Π called a candidate

abductive support of Π;

2. an ASP inference engine is used to check program Πr [α(R) for consistency

and compute an answer set.

3. if an answer set is found at step (2) then R is an abductive support with

respect to Π and the answer set computed is an answer set of Π and is

returned2; otherwise the solver loops back to step(1) to �nd another minimal

set R not tried so far.

A full description of the CR-Prolog solver is out of the scope of this work and can

be found at [4]. To compute answer sets of AC0 programs, we modify the solver to

2This algorithm is a simpli�cation of the actual algorithm [], which requires additional checking

due to special preference rules allowed in the language.

114

Texas Tech University, Veena S.Mellarkod, December 2007

accept c-rules; and then change step(2) of the algorithm. Given a AC0 program Π,

we modify the underlying inference engine Surya to compute answer sets of

Πr [Πc [α(R). Note that the program Πr [Πc [α(R) does not contain cr-rules

but only r-rules and c-rules.

ADengine integrates a form of abductive reasoning using the meta-layer with

answer set reasoning and constraint solving of the underlying inference engine.

Surya has been modi�ed to tightly couple with a di�erence constraint solver (for

constraint solving).

In this section, we just present the modi�cations of the ASP engine Surya. First,

we will describe the di�erence constraint solver Dsolver that was built to be

integrated with ASP engine.

6.2.2.1 Dsolver

Before, we describe the solver, we need to introduce some terminology. A

di�erence constraint is of the form X − Y � k, where X, Y are variables and k is a

real number. Given a set of di�erence constraints, D, a consistent solution of D

is de�ned as the assignment of values to the variables in the constraints such that

the constraints are satis�ed.

Example 6.2.2. Here is an example of a set of di�erence constraints and one

of its solution. Let D = {X − Y � 3, Y − Z � −4, X − Z � −3} be a set of

di�erence constraints. A consistent solution for D,

SD = {X = −3, Y = −4, Z = 0}.

A di�erence constraint solver takes as input a set of di�erence constraints (viewed

as conjunction of di�erence constraints) and outputs a consistent solution. The

set of di�erence constraints input to the solver is sometimes called a constraint

store to the solver.

115

Texas Tech University, Veena S.Mellarkod, December 2007

Dsolver is a di�erence constraint solver. Unlike a naive di�erence constraint

solver, Dsolver is an incremental solver and follows the algorithm from [85]. The

inputs to Dsolver are a constraint store D, a solution S to the constraint store

and a di�erence constraint c. The output of Dsolver is true if D [c has a

consistent solution and false otherwise. If the solver returns true then it also

returns a solution S 0 of D [c.

An important fact to note with an incremental solver is that given a constraint

store D, a solution S to D and a di�erence constraint c, the solver uses S to

compute a solution for D [c. This is di�erent from a naive di�erence constraint

solver which computes a solution for D [c from scratch. The complexity of

�nding a solution using an incremental solver is O(e + vlogv) where e and v are

the number of constraints and variables respectively. The complexity of a naive

di�erence constraint solver is O(ev).

6.2.2.2 Suryad

In this section, we describe the integration of an ASP inference engine Surya and

di�erence constraint solver Dsolver. We call this new solver Suryad. The solver

Suryad tightly couples an ASP engine and a di�erence constraint solver.

Algorithm of Suryad follows a standard asp algorithm [75, 72] and is shown in

Figure 6.1. The inputs of Suryad are a r-ground program Π, a set of r-literals B

and a set of di�erence constraints D. The output of Suryad is true if there exists

an answer set of Π agreeing with B; otherwise it returns false. If Suryad returns

true then it also returns a simpli�ed answer set of Π agreeing with B. The set of

constraints D is used as a constraint store to store the active constraints of Π with

respect to B and will be described in next section. The integration of constraint

solving in Suryad is built inside expand dc function. Next, we will describe

116

Texas Tech University, Veena S.Mellarkod, December 2007

function Suryad (Π: r-ground program, B: set of r-literals, D: set of constraints)

[a] S := expand dc(Π,B,D)

[b] if inconsistent(S) or inconsistent(D) return false

[c] if covers(S, rAtoms(Π)) then

[d] return true fanswer-set is pos(S) [m atoms(Π)|
vars(D)
solution(D)g

[e] pick(l, �S)

[f] if Suryad(Π,S [{l}, D) then

[g] return true

[h] else return Suryad(Π,S [{not l}, D)

Figure 6.1: Suryad: computation of answer sets of Π

function expand dc.

6.2.2.3 Function expand dc

Let us introduce some terminology. Recall that a r-ground program Π input to

expand dc consists of r-rules and c-rules. Let the set of r-rules be denoted by ΠR

and set of c-rules be denoted by ΠM. Further, recall that due to syntax

restrictions, there is only one c-literal in every c-rule of Π.

Definition 6.2.1. [active dc(Π,B)] Let Π be a r-ground AC0 program and B be

a set of extended literals. The set of constraints

D = {¬c | r 2 Π, c = c-lit(r), r-lits(r) � B} is called the set of active

constraints of Π with respect to B and denoted as active dc(Π,B).

Note that the constraints in active dc(Π,B) are all di�erence constraints because

AC0 programs contain only constraints of type X − Y > k and its negation

X − Y � k is a di�erence constraint.

Example 6.2.3. Consider the r-ground program Πg = Pd(Π) from example

117

Texas Tech University, Veena S.Mellarkod, December 2007

6.2.1. By de�nition, active dc(Πg, ;) = {V1 − V2 � 0}

active dc(Πg, {o(a1, 2), o(a2, 1)}) = {V1 − V2 � 0, V2 − V1 � −30}.

Function expand dc takes as input a r-ground program Π, a set of extended

r-literals B and a set of di�erence constraints D. The output of the function is the

set S of consequences of Π and B. Further, it expands D to consist of the set of

constraints of Π active with respect S. For clarity, we denote the input and output

values of the set of constraints D to expand dc as Di and Do respectively. If S

and Do are consistent then it has the following properties:

. B � S

. Di � Do

. every answer set that agrees with B also agrees with S

Function expand dc di�ers from function expand (see section 5.3) in the

following ways:

. Apart from using ASP reasoning techniques, expand dc uses constraint

solving techniques to compute consequences of Π, B and D.

. Apart from computing the set of consequences of Π with respect to B, the

function also computes the set of active constraints of Π with respect to S,

adds them to D and ensures Do is consistent.

Function expand dc uses two auxiliary functions atleast dc and atmost. We

describe these functions next.

Function atleast dc:

Let us introduce some terminology. Let Π be an r-ground program and B be a set

of ground extended r-literals and D be a set of di�erence constraints. We de�ne

118

Texas Tech University, Veena S.Mellarkod, December 2007

lc0(Π,B,D) as a set of ground extended literals that is minimal (set theoretic)

and satis�es the following conditions:

1. If r 2 ΠR, and body(r) � B, then head(r) 2 lc0(Π,B,D).

2. If r 2 ΠM, c = c-lits(r), and r-lits(r) � B, D [{¬c} is not consistent, then

head(r) 2 lc0(Π,B,D).

3. If an r-atom h is not in the head of any active rule in ΠR [ΠM with respect

to B then not h 2 lc0(Π,B,D)

4. If r is the only active rule of ΠR [ΠM with respect to B such that

h = head(r) and h 2 B then r lits(r) � lc0(Π,B,D)

5. If r 2 ΠR, h = head(r), not h 2 B, and all literals in the body of r except li

belong to B, then not li 2 lc0(Π,B,D).

6. If r 2 ΠM, h = head(r), c = c-lits(r), not h 2 B, all literals in the body of r

except li belong to B and D [{¬c} is not consistent then

not li 2 lc0(Π,B,D).

Example 6.2.4. Consider r-ground program Πg = Pd(Π) from example 6.2.1.

We get, lc0(Πg, ;, ;) = {step(1), step(2)} and

lc0(Πg, {o(a1, 2)}, {V1 − V2 � 0}) = {step(1), step(2), o(a1, 2), not o(a1, 1),

o(a2, 1), not o(a2, 2), false}. The atom false is added by condition (2) in

de�nition of lc0, as D [{V2 − V1 � −30} is not consistent (does not have a

solution).

Proposition 6.2.1. If the set lc0(Π,B,D) [B is consistent then lc0(Π,B,D) is

unique.

119

Texas Tech University, Veena S.Mellarkod, December 2007

Definition 6.2.2. Given a program Π and a set of ground extended r-literals

B, the lower closure of Π with respect to B, denoted by lc(Π,B,D), is the set

of ground extended r-literals de�ned as follows:

lc(Π,B,D) =


lc0(Π,B,D) [B if lc0(Π,B,D) [B is consistent and

active dc(Π, lc0(Π,B,D) [B) [D is consistent,

r-lits(Π) otherwise.

Example 6.2.5. Let us use example 6.2.4. We get

lc(Πg, ;, ;) = {step(1), step(2)}, since lc0(Πg, ;, ;) [; is consistent and

active dc(Π, lc0(Πg, ;, ;)) [; = {V1 − V2 � 0} is consistent.

lc(Πg, {o(a1, 2)}, {V1 − V2 � 0}) = r-lits(Πg) as

lc0(Πg, {o(a1, 2)}, {V1 − V2 � 0}) [B is not consistent (we always assume atom

'true' belongs to B and is complementary to false). Note that

active dc(Π, lc0(Π,B,D)) [D is also not consistent.

The inputs of function atleast dc are a r-ground program Π, a set of extended

literals B and a set D of di�erence constraints. The function computes the lower

closure lc(Π,B,D) of Π with respect to B and D. Further, it updates D to contain

the constraints of Π active with respect to lc(Π,B,D). The following are the steps

in function atleast dc:

1. computes S := lc(Π,B,D)

2. if S is consistent then updates D := D [active dc(Π, S)

3. returns S

Example 6.2.6. Let us use the r-ground program Πg = Pd(Π) from example

6.2.1.

120

Texas Tech University, Veena S.Mellarkod, December 2007

1. The call atleast dc(Πg, ;, ;) returns S = {step(1), step(2)} and updates D

to {V1 − V2 � 0}.

2. The call atleast dc(Πg, {o(a1, 2)}, {V1 − V2 � 0}) returns an inconsistent

set S = r-lits(Πg) and leaves D = {V1 − V2 � 0}.

3. The call atleast dc(Πg, {not o(a1, 2)}, {V1 − V2 � 0}) returns S = {step(1),

step(2), not o(a1, 2), o(a1, 1), not o(a2, 1), o(a2, 2)} and updates

D = {V1 − V2 � 0, V1 − V2 � −30}. Both S and D are consistent.

Note that, to compute lc(Π,B,D), function atleast dc uses function Dsolver to

check consistency in steps (2) and (6) of computation of lc0(Π,B,D). For actual

implementation, Dsolver maintains its own constraint store D consisting of the

active constraints of Π with respect to B and a solution SD of D. Updating D

occurs at step (2) of computation of lc0(Π,B,D) and solution of updated

D := D [{¬c} is computed by Dsolver(D, SD,¬c) using the existing solution SD

of D

Proposition 6.2.2. Let Π be a program, B be a set of extended r-literals and

D be a set of constraints,

. lc(Π,B,D) is monotonic with respect to its second argument.

. lc(Π,B,D) is unique.

. If M is an answer set of Π, then M agrees with B i� M agrees with

lc(Π,B,D).

Note that the proposition 6.2.2 implies that if lc(Π,B,D) is inconsistent then

there is no answer set of Π that agrees with B; otherwise, every answer set of Π

that agrees with B agrees with lc(Π,B,D).

121

Texas Tech University, Veena S.Mellarkod, December 2007

Note that in the de�nition of lc0(Π,B,D), the conditions (2) and (6) are added to

integrate the constraint solving techniques and uses Dsolver. This de�nition

assumes that the number of constraint atoms in the body of middle rules is exactly

one. If we allow arbitrary number of constraint atoms in the body of middle rules

then the conditions (2) and (6) should be replaced by the following conditions:

(2) If r 2 ΠM and r-lits(r) � B, D [¬c-lits(r) is not consistent, then

head(r) 2 lc0(Π,B,D).

(6) If r 2 ΠM, h = head(r), not h 2 B, all literals in the body of r except li

belong to B and D [¬c-lits(r) is not consistent then not li 2 lc0(Π,B,D).

By c-lits(r), we mean the conjunction of all c-literals in r. The formula ¬c-lits(r)

is the disjunction of negated c-literals of r. The restriction of allowing only one

c-literal in the body of middle rules eliminates this disjunction, so we can use a

simple di�erence constraint solver. The Dsolver is a di�erence constraint solver

and does not allow disjunctions.

Function atmost:

Function atmost is same as described earlier (see section 5.3.1.2). Note that in a

AC0 program Π, the set of rules in ΠM are denials (with empty head) where the

head is assumed to be false. When computing α(Π,B) for computation of upper

closure (see section 5.3), the rules in ΠM are removed by step (2) of α(Π,B).

Therefore, the upper closure of Π with respect to B is same as upper closure of ΠR

with respect to B. Therefore, it is interesting to note that the upper closure

de�nition used in [75, 72] su�ces here.

Function expand dc:

Function expand dc shown in Figure 6.2 follows the algorithm of function

expand from section 5.3 but calls function atleast dc instead of function

122

Texas Tech University, Veena S.Mellarkod, December 2007

function expand dc (Π : r-ground program, B : set of r-literals, var D : set of constraints)

% var S, S0 : set of r-literals

[a] S := B

[b] do

[c] S0 := S

[d] S := atleast dc(Π, S, D)

[e] S := S [{ not l | l 2 r-atoms(Π), l 62 atmost(Π, S)}

[f] while ((S 6= S0) and consistent(S))

[g] return S

Figure 6.2: Function expand dc

atleast. The inputs of the function are an r-ground program Π, a set of extended

r-literals B and a set of di�erence constraints D. The output of the function is the

set of consequences S of Π, B and D.

Let Di and Do be respectively the input and output values of D to function

expand dc. Recall that the set D is updated by function atleast dc to contain

active constraints of Π with respect to lower closure S computed at step (d) in

Figure 6.2. The do loop of expand dc ensures the following lemma.

Lemma 6.2.1. Let Π be a r-ground AC0 program and B be a set of extended

r-literals, and D be a set of di�erence constraints input to expand dc. Let S

be the consistent set of consequences returned by expand dc. Let Di and Do

be the input and output values of D respectively. Then Do is consistent and

contains the set of active constraints of Π with respect to the set of

consequences S, that is, active dc(Π, S) � Do.

Further, the set of constraints in D is not changed in any other step of algorithm

Suryad in Figure 6.1 other than in expand dc. This can be used to easily prove

the lemma below.

123

Texas Tech University, Veena S.Mellarkod, December 2007

Lemma 6.2.2. Let Π be a r-ground program, Bi's be set of extended r-literals

and Di's be set of di�erence constraints. Let Suryad(Π,Bi, Di) be the ith

recursive call of Suryad for computing answer sets of Π. Then,

. for i > 1, active dc(Π,Bi \ {l,not l}) � Di, where l is the chosen literal

selected by pick function at i − 1th call.

Example 6.2.7. This example shows the computation of an answer set using

algorithm Suryad. Consider the r-ground program Πg = Pd(Π) from example

6.2.1. Since this program does not have any cr-rules, Πg is directly used to

compute answer sets. ADengine calls Suryad(Πg, ;, ;).

1. During initialization, a new variable V representing csort time is

introduced. The constraints 0 � Vi − V � 1440 for each time variable Vi

in the program is added to the constraint store. The program Πg

contains two time variables V1 and V2. Therefore the constraint store is

initialized to

D1 = {V1 − V � 1440, V − V1 � 0, V2 − V � 1440, V − V2 � 0}.

2. Suryad calls expand dc(Πg, ;, D1) and returns S2 = {step(1), step(2)} and

D2 = D1 [{V1 − V2 � 0} (see step (1) in example 6.2.6).

3. Since S2 is consistent and not complete, Suryad picks a literal l from

�S2. Suppose it picks atom o(a1, 2) (action a1 occurs at step 2).

Suryad(Πg, S3, D2) is called recursively, where S3 = S2 [{o(a1, 2)}.

4. Suryad calls expand dc(Πg, S3, D2). expand dc returns an inconsistent

set S4 = r-lits(Πg) and leaves D2 as is. (see step(2) in example 6.2.6).

5. Suryad backtracks and calls Suryad(Πg, S4, D2), where

S4 = S2 [{not o(a1, 2)} (negation of previously picked literal o(a1, 2) is

124

Texas Tech University, Veena S.Mellarkod, December 2007

tried).

6. Suryad calls expand dc(Πg, S4, D2). expand dc returns a consistent set

S5 = {step(1), step(2), not o(a1, 2), o(a1, 1), not o(a2, 1), o(a2, 2)} and

updates D5 = {V1 − V2 � 0, V1 − V2 � −30}. (see step(3) in example

6.2.6).

7. S5 is complete and covers all atoms of Πg and D5 is consistent.

Therefore, pos(S) [m-atoms(Πg)|
vars(Πg)
solution(D5) is a simpli�ed answer set

and is returned. A solution for the set of constraints D5 is

solution(D5) = {V1 = 0, V2 = 31}. The m-atoms in Πg are

{at(1, V1), at(2, V2)}. The substitution of variables in m-atoms of Πg

using solution(D5) yields {at(1, 0), at(2, 31)}. Therefore, the simpli�ed

answer set {step(1), step(2), o(a1, 1), o(a2, 2), at(1, 0), at(2, 31)} is

returned. In this answer set, action a1 occurs at step 1 which is

executed at 0th minute and a2 occurs at step 2 which is executed at 31st

minute.

Note that while checking for consistency, Dsolver computes and maintains a

solution for the current D, this is used as solution(D) to compute

m-atoms(Πg)|
vars(Πg)
solution(D).

125

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 7

KNOWLEDGE REPRESENTATION

In this chapter we look at representing some example problems1 in languages AC0

and AC(R) where R is a real domain. Then we present some execution times for

computing answer sets of the example problems using ADsolver and ACsolver .

For easy reference, we present a complete list of languages, their features and

solvers in Tables 7.1 and 7.2.

Languages Features

V(C) allows regular, mixed and constraint atoms

m-atoms and c-atoms occur only in denials

allows cr-rules

AC(C) allows regular, mixed, constraint and de�ned atoms

allows non-empty head rules with m-atoms and c-atoms in body

allows complex user-de�ned relations using de�ned predicates

V(C)cr extension of V(C) to allow preferences from CR-Prolog

syntax and semantics is a natural extension of CR-prolog

AC(C)cr extension of AC(C) to allow cr-rules and preferences from CR-Prolog

syntax and semantics is a natural extension of CR-prolog

Table 7.1: Languages and their Features

Languages Instance Solvers

AC0 Instance of V(C) with C = {X − Y > k} ADsolver

AC(R) Instance of AC(C) with C = R (real) ACsolver

AC0cr Instance of V(C)cr with C = {X − Y > k} ADsolver

AC(R)cr Instance of AC(C)cr with C = R (real) ACsolver

Table 7.2: Languages and Solvers

1To make it simpler, the syntax of mixed declarations and rules in the examples have been slightly

modi�ed from the real syntax accepted by the solvers, refer [74, 73] for the syntax accepted by the

solvers.

126

Texas Tech University, Veena S.Mellarkod, December 2007

7.1 Representing Knowledge in AC0 and AC0cr

This section discusses questions like, "How to select mixed predicates?", "What

types of knowledge can be represented using AC0?", "Can we successfully compute

answer sets for complex planning and scheduling problems using the new solver?".

Normally, a variable with a large domain is viewed as a constraint variable. Those

with small domains are regular variables. We select mixed predicates as those

which contain both these variables. A limitation to select mixed predicates is to

note that these predicates can be used only in body of denials. With respect to

AC0, only constraints of the form X − Y > k are allowed. Therefore knowledge

represented by constraint variables in mixed predicates are limited to these

constraints. Interestingly, these constraints are used widely in constraint

programming [83, 44, 43, 84].

AC0 is good for representing planning and scheduling problems. Given a task of

executing n actions and time restrictions on their executions, a scheduling

problem consists of �nding times T1, . . . , Tn such that action ai occurs at time Ti

and satis�es all the time restrictions. The timing restrictions can be temporal

distance constraints between any two actions. Such constraints can be represented

in AC0 as follows. Let a1, . . . , an be n actions and S1, . . . , Sn be variables in

domain [1..m]. The r-atom occurs(ai, Si) is read as, "action ai occurs at step Si".

The step Si denotes a time point Ti and is represented by an m-atom at(Si, Ti).

Atom at(S, T) is read as 'step S happens at time T '. The domain of a step S is

comparatively smaller than the domain of a time variable T . Hence S is a

r-variable and T is a c-variable used to write timing constraints.

Our approach allows a rather straightforward representation of actions with

durations. When actions have durations, the scheduling problem �nds the start

and end time points of actions such that all timing restrictions are satis�ed. One

127

Texas Tech University, Veena S.Mellarkod, December 2007

method of representing constraints on action durations in AC0 is as follows. Let

a1, . . . , an be actions and S1, . . . , Sn be variables from the domain [1..m]. The

r-atom occurs(ai, Si) is read as, "action ai occurs at step Si". The step Si denotes

a time interval [Tsi, Tei]. The time interval of step Si is represented by two

m-atoms at(Si, start, Tsi) and at(Si, end, Tei). Atom at(S, start, T) is read as 'step

S starts at T'. We can write temporal constraints using the c-variables Tsi and Tei.

Example 7.1.1. [84] [Breakfast problem] We have a scheduling problem,

"Prepare co�ee and toast. Have them ready within 2 minutes of each other.

Brew co�ee for 3-5 minutes; toast bread for 2-4 minutes." We start by

de�ning signature, Σ = {Cr = { start, end, brew, toast, Sc = [1..2]

}, Pr = {step, occurs}, Cc = {Dc = [0..1439], Rc = [−1439..1439]}, Vc = {T1, T2}, Fc =

{−}, Pc = {>}, Pm = {at}}. Constants "brew, toast" represents actions 'brewing

co�ee' and 'toasting bread'. To solve this, we �rst represent constraints and

then we have a small planning module to represent action ai occurs at some

time step Si. The constraints are as follows.

% Brew co�ee for 3 to 5 minutes is represented using two c-rules

← occurs(brew, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 5.

← occurs(brew, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −3.

% Toast bread for 2 to 4 minutes is represented by two c-rules

← occurs(toast, S), at(S, start, T1), at(S, end, T2), T2 − T1 > 4.

← occurs(toast, S), at(S, start, T1), at(S, end, T2), T1 − T2 > −2.

% Co�ee and bread should be ready between 2 minutes of each other

← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

at(S2, end, T2), T2 − T1 > 2.

← occurs(brew, S1), occurs(toast, S2), at(S1, end, T1),

128

Texas Tech University, Veena S.Mellarkod, December 2007

at(S2, end, T2), T1 − T2 > −2.

% Start time of step 1 is before step 2

← at(S1, start, T1), at(S2, start, T2), S1 < S2, T1 − T2 > −1.

% A simple planning module to represent occurrence of actions:

step(1..2).

occurs(brew, S) or occurs(toast, S) ← step(S).

← action(A), occurs(A, S1), occurs(A, S2), S1 6= S2.

The �rst c-rule is read as: 'If brewing co�ee occurs at step S, then duration

between start and end of S cannot be more than 5 minutes'. The second c-rule

says that 'start and end times for S cannot be less than 3 minutes. The c-atom is

written as T1 − T2 > −3 instead of T2 − T1 < 3 as the implementation allows only

constraints of the form X − Y > K. The disjunctions in the head of the rules of the

above program can be eliminated using non-disjunctive rules. A solution to the

above breakfast scheduling problem can be found by computing answer sets of the

program using ADsolver . A solution could be to start brewing co�ee at 0th

minute and end at 3rd minute; start toasting bread at 2nd minute and end at 4th

minute. This solution can be extracted from an answer set {occurs(brew, 1),

occurs(toast, 2), at(1, start, 0), at(1, end, 3), at(2, start, 2), at(2, end, 4)} [Mc.

Suppose we would like to schedule an action a such that it occurs either between

3am and 5am or between 7am and 8am. (Now, we assume that actions do not

have duration and are instantaneous). To represent this restriction, we would

require a constraint of the form, if action 'a' occurs at step S and step S occurs

at time T , then T cannot be outside intervals [3-5]am or [7-8]am. We cannot

represent this directly in AC0 because of the disjunction. Instead we introduce

two r-atoms int1 and int2 to represent intervals [3-5] and [7-8] respectively. The

r-atom int1 denotes that action a occurs in interval [3-5]. We write a disjunction

129

Texas Tech University, Veena S.Mellarkod, December 2007

on inti to choose the interval and then use inti to write the constraints. The

following example shows the representation of the constraint.

Example 7.1.2. "Action a should be performed in between intervals [3-5] am

or [7-8] am". Let r-atom int1 (int2) be true when action a occurs in interval

[3-5]am ([7-8]am). To keep it simple, let us suppose that action a occurs at

some step say 1. We need to assign time for this step. Atom at(0, T) denotes

time of step 0 and represents start time for our problem 12 am.

occurs(a, 1).

% action 'a' occurs in interval int1 or int2

int1 or int2.

% 'If a occurs at step S and int1 is true, then S should be between [3-5]', is

encoded using two c-rules

← int1, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −3

← int1, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 5

% 'If a occurs at step S and int2 is true, then S should be between [7-8]', is

encoded using two c-rules

← int2, occurs(a, S), at(0, T1), at(S, T2), T1 − T2 > −7

← int2, occurs(a, S), at(0, T1), at(S, T2), T2 − T1 > 8

An answer set for this program would be {occurs(a, 1), int2, at(0, 0),

at(1, 7)}[Mc, where a occurs at 7 am. The temporal constraints shown above are

examples of simple temporal constraints and disjunctive temporal constraints [28].

The following example is from [28]. We show that we can represent the problem

and answer some of the questions asked in the example. Though, syntax of AC0

does not allow choice rules and cardinality constraints [75], ADsolver built on top

of lparse and Surya allows these type of rules in its input language. For concise

representation, we use choice rules and cardinality constraints in the following

130

Texas Tech University, Veena S.Mellarkod, December 2007

example.

Example 7.1.3. [28] [Carpool] John goes to work either by car (30-40 mins),

or by bus (at least 60 mins). Fred goes to work either by car (20-30 mins),

or in a car pool (40-50 mins). Today John left home between 7:10 and 7:20,

and Fred arrived between 8:00 and 8:10. We also know that John arrived at

work about 10-20 mins after Fred left home. We wish to answer queries such

as: "Is the information in the story consistent?","Is it possible that John

took the bus, and Fred used the carpool?", "What are the possible times at

which Fred left home?".

%% John goes to work either by car or by bus. (We use a choice rule)

1{ j_by_car, j_by_bus }1.

%% Fred goes to work either in car or by car pool

1{ f_by_car, f_by_cpool }1.

%% define ’time’ as csort and ’at’ as a mixed predicate

#csort time(0..1440).

timepoint(start_time; start_john; end_john; start_fred; end_fred).

#mixed at(timepoint, time).

%% It takes John 30 to 40 minutes by car

:- j_by_car, at(start_john, T1), at(end_john, T2), T2 - T1 > 40.

:- j_by_car, at(start_john, T1), at(end_john, T2), T1 - T2 > -30.

%% "It takes John atleast 60 minutes by bus" is represented by a c-rule

:- j_by_bus, at(start_john, T1), at(end_john, T2), T1 - T2 > -60.

131

Texas Tech University, Veena S.Mellarkod, December 2007

%% "It takes Fred 20 to 30 minutes by car" is represented by two c-rules

:- f_by_car, at(start_fred, T1), at(end_fred, T2), T2 - T1 > 30.

:- f_by_car, at(start_fred, T1), at(end_fred, T2), T1 - T2 > -20.

%% It takes Fred 40 to 50 minutes by car pool

:- f_by_cpool, at(start_fred, T1), at(end_fred, T2), T2 - T1 > 50.

:- f_by_cpool, at(start_fred, T1), at(end_fred, T2), T1 - T2 > -40.

%% We view the start time as 7am, that is 0 minutes = 7am

%% Today John left home between 7:10 and 7:20

:- at(start_john, T), at(start_time, T0), T0 - T > -10.

:- at(start_john, T), at(start_time, T0), T - T0 > 20.

%% Fred arrived at work between 8:00 and 8:10

:- at(end_fred, T), at(start_time, T0), T0 - T > -60.

:- at(end_fred, T), at(start_time, T0), T - T0 > 70.

%% John arrived at work about 10-20 mins after fred left home

:- at(end_john, T1), at(start_fred, T2), T1 - T2 > 20.

:- at(end_john, T1), at(start_fred, T2), T2 - T1 > -10.

Now let us look at answering each of the questions in the problem.

Question (1) Is the information in story consistent ?

To answer this question, we find answer sets of the program.

Answer Set: j_by_car f_by_cpool at(start_time,0) at(start_john, 10)

at(end_john, 40) at(start_fred, 20) at(end_fred, 60)

The above answer set corresponds to John using the car and Fred using the

132

Texas Tech University, Veena S.Mellarkod, December 2007

car pool. John starts at 7:10 am and reaches at 7:40 am. Fred starts at 7:20

am and reaches at 8:00 am. The information is consistent since the program

has an answer set. The time taken by ADsolver was 0.065 seconds of which

0.018 seconds was used for grounding and loading.

Question(2) Is it possible that John took the bus and Fred used carpool?

To answer this question, we add the following knowledge to our program

and compute answer sets.

j_by_bus.

f_by_cpool.

There are no answer sets for this new program.

Therefore, according to the story, it is not possible for John to take a bus

and Fred to use a carpool and have the other timing information true. The

time taken by ADsolver was 0.029 seconds of which grounding and loading

took 0.018 seconds.

Question (3) What are the possible times that Fred left home?

To answer this question, we need to find the interval of time when Fred

can leave home and still have all the information in the story true.

This answer cannot be found using ADsolver, as the underlying constraint

solver Dsolver is a simple constraint solver and computes solutions for a set

of di�erence constraints and does not compute intervals (as needed in this

example). In [28], the authors use a more complex Floyd-Warshall algorithm

[26] to compute answer to this question. Further, such type of questions can

be answered by looking at all the answer sets and this is not possible with

ADsolver or ACsolver. ACsolver can answer interval questions like "If Fred

and John both used cars today, then what are the possible times that Fred left

133

Texas Tech University, Veena S.Mellarkod, December 2007

home". Notice that such interval questions are queried upon single answer

sets and need not look at all answer sets put together.

Using cr-rules in AC0 we can represent important information like, "an event e

may happen but it is very rare". Such information is very useful in default

reasoning. Combining such information together with c-rules allows us to

represent qualitative soft constraints [86, 87, 103, 60, 47] like, "an event e may

happen but it is very rare; if event e happens then ignore constraint c". The

following example is an extension of 7.1.3 and shows the representation of

qualitative soft temporal constraints.

Example 7.1.4. This example shows the use of cr-rules to express qualitative

soft temporal constraints. For this we use example 7.1.3. We remove

information that "John arrived at work about 10-20 mins after Fred left

home" and extend the story as follows: It is desirable for Fred to arrive

atleast 20 mins before John.

%% It is desirable for Fred to arrive atleast 20 mins before John.

:- at(end_fred, T1), at(end_john, T2), not is_late, T1 - T2 > -20.

%% CR-rule r1: We may possibly believe that Fred is late

r1: is_late +-.

For the newly added information, we get two models where Fred arrives

before John in each of them.

Answer set (1): j_by_bus f_by_car at(start_john,20) at(end_john,100)

at(start_fred,30) at(end_fred,60) at(start_time,0)

Answer set (2): j_by_bus f_by_carpool at(start_john,20) at(end_john,80)

at(start_fred,20) at(end_fred,60) at(start_time,0)

134

Texas Tech University, Veena S.Mellarkod, December 2007

To compute the two models, ADsolver took 0.064 seconds of which 0.019

seconds were used for grounding and loading. Now we would like to expand

our story, "We come to know that Fred's car is broken and therefore, he

cannot use it". We add the following rule to the program.

:- f_by_car.

For the new program, we get one model where John travels by bus and Fred

uses the carpool and still reaches before John.

Answer set: j_by_bus f_by_carpool at(start_john,20) at(end_john,80)

at(start_fred,20) at(end_fred,60) at(start_time,0)

ADsolver took 0.053 seconds to compute the model. Suppose we know that

John used his car today. Will Fred arrive atleast 20 mins before John as

desired? For this, we add the following rule to the program.

j_by_car.

There is no model where Fred arrives 20 minutes before John and the cr-rule

was �red to give the following answer set.

Answer set: j_by_car f_by_cpool is_late at(start_john,20) at(end_john,60)

at(start_fred,20) at(end_fred,60) at(start_time,0)

Fred is late and cannot arrive 20 minutes before John as desired. ADsolver

took 0.052 seconds to compute the model.

Simple temporal constraints, disjunctive temporal constraints and qualitative soft

constraints can be expressed in AC0. The implemented solver is faster than a

standard ASP solver when domains of constraint variables are large. The language

of CR-Prolog also allows preferences on the cr-rules [3]. Given two cr-rules r1 and

135

Texas Tech University, Veena S.Mellarkod, December 2007

r2, the statement prefer(r1, r2) allows preference to cr-rule r1 when compared to

cr-rule r2. CR-Prolog allows static and dynamic preferences. The language AC0

does not allow preferences but AC0 syntax can be easily extended to allow

CR-Prolog style preferences and the semantics would be a natural extension of

CR-Prolog. Though language AC0 does not allow preferences, the solver

ADsolver which is built using the meta layer of CR-Prolog solver, allows

preferences. So, we can express soft qualitative temporal constraints with

preferences which is used in constraint programming applications [86, 87].

Example 7.1.5. This example shows the representation of qualitative soft

temporal constraints with preferences. Let us use example 7.1.4. We remove

information that "John arrived at work about 10-20 mins after Fred left

home and Fred arrived between 8:00 and 8:10" and extend the story as

follows: It is desirable for Fred to arrive atleast 20 mins before John. If

possible, Fred desires to start from home after 7:30am. We also know that

Fred's car is broken and John used his car today.

%% If possible, Fred desires to leave after 7:30am

:- at(start_time, T1), at(start_fred,T2), not start_early, T1 - T2 > -30.

%% CR-rule r2: sometimes, Fred may need to start early.

r2: start_early +-.

The above rules along with other rules from examples 7.1.4 and 7.1.3

represent the information in the story. We get two answer sets where

cr-rules were used in both.

Answer set (1):

j_by_car f_by_cpool is_late at(start_john,20) at(end_john,60)

at(start_fred,30) at(end_fred,70) at(start_time,0)

136

Texas Tech University, Veena S.Mellarkod, December 2007

Answer set (2):

j_by_car f_by_cpool start_early at(start_john,20) at(end_john,60)

at(start_fred,0) at(end_fred,40) at(start_time,0)

Now we add new preference information that "Fred prefers coming before

John than starting late from home". we represent the preference as follows:

% Prefer starting early to reaching late

prefer(r2,r1).

Now, we get only one model:

Answer set:

j_by_car f_by_cpool start_early at(start_john,20) at(end_john,60)

at(start_fred,0) at(end_fred,40) at(start_time,0)

The other model is not preferred when compared to this one and therefore is

not returned. ADsolver computed the answer set in 0.13 seconds.

The above example clearly shows the use of preferences from CR-Prolog along

with c-rules gives a natural representation of qualitative soft constraints with

preferences. Similarly, we can use cr-rules, cr-preferences and c-rules together to

represent disjunctive soft temporal constraints and disjunctive soft temporal

constraints with preferences which are also useful for scheduling problems.

Another investigation we are concerned with is whether AC0 can be used for

complex planning and scheduling problems. Also, whether we can use the

implemented solver to compute answer sets in realistic time for these problems.

To test this, we have used the system USA-Advisor[7] , a decision support system

for the Reaction Control System (RCS) of the Space Shuttle.

137

Texas Tech University, Veena S.Mellarkod, December 2007

The RCS has primary responsibility for maneuvering the aircraft while it is in

space. It consists of fuel and oxidizer tanks, valves and other plumbing needed to

provide propellant to the maneuvering jets of the shuttle. It also includes

electronic circuitry: both to control the valves in the fuel lines and to prepare the

jets to receive �ring commands. Overall the system is rather complex, on that it

includes 12 tanks, 44 jets, 66 valves, 33 switches, and around 160 computer

commands (computer-generated signals). The RCS can be viewed, in a simpli�ed

form, as a directed graph whose nodes are tanks, jets and pipe junctions, and

whose arcs are labeled by valves. For a jet to be ready to �re, oxidizer and fuel

propellants need to
ow through the nodes (tanks, junctions) and valves which

are open and reach the jet. A node is pressurized when fuel or oxidizer reaches the

node.

USA-Advisor can be used for checking correctness of plans and for planning and

diagnosis. The system does not contain any timing restrictions or constraints. To

test our solver, we expand the system to allow explicit representation of time and

reason with time constraints. We use it to solve planning and scheduling tasks.

We will illustrate our extension by the following example.

Example 7.1.6. [Planning and scheduling in USA-Advisor] Assume that

after a node N gets pressurized it takes around 5 seconds for the oxidizer

propellant to get stabilized at N and 10 seconds for fuel propellant to get

stabilized. Further, we cannot open a valve V which links N1 to N2,

(link(N1,N2,V)), until N1 has been stabilized. We would like to assign real

times to the time steps given in the program such that this constraint is

satis�ed. Also, can we answer questions like: can the whole maneuver take

less than 30 secs?

Σ = Σold [{Pr = {otank, ftank, got opened, got pressurized},

138

Texas Tech University, Veena S.Mellarkod, December 2007

Pm = {at}, Cc = {Dc = [0..400], Rc = [−400..400]}, Fc = {−}, Pc = {>}}. Atoms

otank(X) and ftank(X) denote that X is a oxidizer tank and fuel tank

respectively. Fluent got opened(V, S) is true when valve V was closed at step

S − 1 and got opened at step S. Fluent got pressurized(N,X, S) is true when

node N is not pressurized at step S − 1 and is pressurized at step S by tank X.

Atom at(S, T) is read as 'step S is performed at time T ', where S is a regular

variable with domain 0 to plan length; T is a constraint variable with domain

[0..400] seconds. The new program contains all rules from original advisor,

and new rules describing the scheduling constraints. The �rst rule is from

USA-Advisor, followed by some new rules. The second rule shows the

connection between original program and new one.

% Tank node N1 is pressurized by tank X if it is connected by an open valve

to a node which is pressurized by tank X of sub-system R

h(pressurized by(N1, X), S)← step(S), tank of(N1, R),

h(in state(V, open), S), link(N2,N1, V),

tank of(X, R), h(pressurized by(N2, X), S).

% node gets pressurized when it was not pressurized at S and pressurized at

S+1.

got pressurized(N,X, S + 1) ← link(N1,N, V), tank of(X, R),

not h(pressurized by(N,X), S),

h(pressurized by(N,X), S + 1).

% A valve V linking N1 to N2 cannot be opened unless N1 is stabilized.

% If N1 is pressurized by oxidizer tank, N1 takes 5 seconds to stabilize.

← link(N1,N2, V), got pressurized(N1, X, S1), S1 < S2, otank(X),

got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −5

% If N1 is pressurized by fuel tank, N1 takes 10 seconds to stabilize.

139

Texas Tech University, Veena S.Mellarkod, December 2007

← link(N1,N2, V), got pressurized(N1, X, S1), S1 < S2, ftank(X),

got opened(V, S2), at(S1, T1), at(S2, T2), T1 − T2 > −10

% time should be increasingly assigned to steps

← S1 < S2, at(S1, T1), at(S2, T2), T1 − T2 > −1

% The jets of a system should be ready to �re by 30 seconds

← system(R), goal(S, R), at(0, T1), at(S, T2), T2 − T1 > 30

The USA-Advisor extension was used for testing e�ciency of ADsolver . About

900 test cases available at [9] were used. The USA-Advisor �les (old) used were

rcs1, heuristics, plan, problem-base available at [9]. Along with these �les, we

used a �le containing the scheduling constraints (example 7.1.6) and an instance

�le available at [9]. The instance �le speci�es the faults in the system (for

example, a leaky valve or a switch stuck at a position) and a goal (for example to

ready jets to accomplish a right manuever) for planning. ADsolver was used to

compute plans and an answer set would give the sequence of actions to be

performed in order to achieve the goal in a required number of steps. The answer

sets returned properly scheduled plans that satis�es the above contraints.

Experiments were run on a Mac OS X powerPC G4 with 1 GHz processor and 512

MB SDRAM. Timing results of ADsolver are shown in Figures 7.1, 7.2 and 7.3.

Timing results in Figure 7.1 correspond to 50 instances (instance001..instance050)

from folders 'instance-auto /ins' (left) and 'instance-auto /ins-4' (right). Timing

results in Figure 7.2 correspond to 50 instances (instance001..instance050) from

folders 'instance-auto /ins-8' (left) and 'instance-monica/ins-3-0' (right). Timing

results in Figure 7.3 correspond to 50 instances (instance001..instance050) from

folders 'instance-monica/ins-5-0' (left) and 'instance-monica/ins-8-0' (right). Each

instance was used in three di�erent runs to compute plans of length n = 3, n = 4

and n = 5. Therefore, each image shows timing results of 50 instances each at

140

Texas Tech University, Veena S.Mellarkod, December 2007

n = 3, n = 4 and n = 5 plan lengths (total 150 time points). The time results

shown correspond to the number of seconds taken by ADsolver to compute an

answer set giving the plan or to return false saying there exists no plan for the

given problem for speci�ed number of steps.

Figure 7.1: ADsolver Time Results (1) on Planning and Scheduling in USA-Advisor

Figure 7.2: ADsolver Time Results (2) on Planning and Scheduling in USA-Advisor

Timing results clearly show that for most of the instances, ADsolver took less

than 150 seconds. There were some instances for which ADsolver took longer

141

Texas Tech University, Veena S.Mellarkod, December 2007

Folder Instance Plan Length has Found Time (seconds)

ins-4 008 4 no 3359.59

ins-8 009 3 no 717.768

ins-8 009 5 yes 2111.38

ins-8 050 5 yes 2672.36

ins-3-0 011 4 yes 1370.32

ins-3-0 012 4 no 1784.36

ins-3-0 012 5 yes 17509.6

ins-3-0 013 5 yes 911.337

ins-3-0 016 5 yes 832.474

ins-3-0 020 5 yes 9358.20

ins-3-0 041 5 yes 2923.75

ins-3-0 044 5 yes 840.977

ins-5-0 011 4 yes 1540.06

ins-5-0 016 4 no 738.710

ins-5-0 013 5 yes 3067.71

ins-5-0 016 5 yes 4259.71

ins-5-0 017 5 yes 5482.55

ins-8-0 034 3 no 1115.15

ins-8-0 022 4 no 2030.4

ins-8-0 006 5 yes 7409.42

ins-8-0 015 5 yes 1052.09

ins-8-0 022 5 yes 1207.68

Table 7.3: ADsolver Time Results (4) on Planning and Scheduling in USA-Advisor

times and their timing results are shown in Table 7.3. These instances were

removed from the images so that the other timing results are seen better. For all

the instances �nding plans of length three, the number of partially ground rules in

P(Π) was approximately around 96000 rules. Similarly for plan length n = 4,

P(Π) was approximately 126000 rules and for n = 5, P(Π) was approximately

150000 rules.

Table 7.3 shows the timing of instances that took longer than 500 seconds. These

instances are not shown in the plots. The �rst and second columns of the table

142

Texas Tech University, Veena S.Mellarkod, December 2007

give the folder and instance number of the instance. The third column gives the

length of the plan n for which the instance was run. The fourth column shows

yes if ADsolver returned an answer set and shows no if ADsolver returned false

meaning there is no answer set.

Any AC0 program can be translated to a CR-Prolog program. To translate a AC0

program to CR − Prolog program, we need to follow these steps:

1. Remove rules of type #csort cpred(0..n)

and replace by rules cpred(0..n).

2. Remove rules of type #mixed mpred(�tr,�tc) and add a choice rule of the

form:

1 { mpred(�tr,�tc) : cpred(�tc) } 1 : − rpred(�tr)

where cpred and rpred are appropriate predicate symbols for the c-terms

and r-terms. Note that we can write regular rules equivalent of the above

choice rule.

The USA Advisor planning and scheduling example was translated to a

CR-Prolog program. The example was tested using Lparse as the grounder and

Surya and Smodels as the inference engines. The domain of the time variables

was set as time(0..400) seconds. The grounder lparse could not ground the

program and returned a malloc error denoting out of memory. When the domains

were reduced to time(0..31), lparse could ground the program giving a ground

instantiation of around 8 million rules. Surya and Smodels could not compute

answer sets in the alloted two hour time limit. The domain of the c-variables in a

program does not in
uence the e�ciency of ADsolver . The timing results would

be the same if we change the domain of time to time(0..31) or time(0..1440). The

results show that ADsolver performs well in cases where classical ASP solvers fail.

143

Texas Tech University, Veena S.Mellarkod, December 2007

7.2 Representing Knowledge in AC(R) and AC(R)cr

Language AC(R) is language AC(C) with real constraint domain (C = R). In this

section we will look at methodology of representing knowledge in AC(R) and its

expressiveness.

Note that the syntax restrictions (see section 4.1) on ACsolver programs need to

be satis�ed to use the ACsolver built. Further, the current version of ACsolver

does not allow regular literals in the body of de�ned rules.

Language AC(R) can express all problems in language AC0 with the exception of

cr-rules. Let AC(R)cr be an extension of AC(R) whose syntax allows cr-rules and

preferences and the semantics is a natural extension for cr-rules like in AC0. The

implemented ACsolver is for language AC(R)cr and allows cr-rules and

preferences from language CR-Prolog, just like solver ADsolver does. Therefore,

all example problems in section 7.1 can be represented and answer sets can be

computed using ACsolver .

Some interesting things to note about ACsolver is that it allows more than one

constraint in the body of the rules and allows non-empty head for middle rules.

This allows a direct representation of interval problems.

Example 7.2.1. In example 7.1.1, the information: 'Brew co�ee for 3-5

minutes' can be represented using a mixed rule and a regular rule as follows:

proper_coffee :- brew_coffee, at(start_brew,T1), at(end_brew,T2),

3 <= T2 - T1, T2 - T1 <= 5.

:- not proper_coffee.

Note that proper coffee is a regular atom and is in the head of the �rst rule

which contains mixed and constraint atoms in the body. Such rules are not

allowed in language V(C).

144

Texas Tech University, Veena S.Mellarkod, December 2007

Recall that ACsolver computes the simpli�ed answer set of a program and uses a

CLP(R) solver to integrate resolution and constraint solving. Therefore, unlike

ADsolver which returns a value for the constraint variables in the program,

ACsolver returns answer constraints of the constraint variables in the program.

For instance, the example below shows the answer constraints returned by

ACsolver

Example 7.2.2. Consider the program in example 7.1.3. ACsolver can be

used to compute answer sets of the program. An answer set returned by

ACsolver is:

Answer set (1): f_by_car j_by_bus at(start_fred,V0) at(end_john,V1)

at(start_time,V2) at(end_fred,V3) at(start_john,V4)

Constraints: V1=V0+20 V2=V0-50 V3=V0+20 V4=V0-40

V0<=1420 50<=V0

The answer set shows that if Fred and John both travelled by car then for the

story to be consistent, Fred takes 20 minutes to reach (V3 = V0+20) the

o�ce and John started 40 minutes before Fred left home (V4= V0-40).

These constraints can be used to �nd a solution to the constraint variables. In

ADsolver the constraints allowed are always on two variables (representing

distance between two variables). Therefore we cannot set a variable directly to a

particular value. In AC(R), we can set a variable to a particular value.

Example 7.2.3. In example 7.1.3, to represent that John left home between

7:10 and 7:20 am, we introduced a new time variable representing the start

of time T0, and wrote the following rules:

%% We view the start time as 7am, that is 0 minutes = 7am

145

Texas Tech University, Veena S.Mellarkod, December 2007

%% Today John left home between 7:10 and 7:20

:- at(start_john, T), at(start_time, T0), T0 - T > -10.

:- at(start_john, T), at(start_time, T0), T - T0 > 20.

We do not set the variable T0 to 0. Given a solution S to a set of di�erence

constraints D and a constant d, the assignment obtained by adding d to

every variable in S is also a solution to D [26]. Using this lemma, ADsolver

sets the value of one variable and computes the solution. In AC(R), we can

directly set the value of T0 as follows:

% start time is 7am (= 0 minutes)

:- at(start_time,T0), T0 != 0.

ACsolver computes an answer set of the story along with the new

information:

Answer set (1): f_by_car j_by_bus at(start_time,V0) at(start_fred,V1)

at(end_john,V2) at(end_fred,V3) at(start_john,V4)

Constraints: V0=0 V1=50 V2=70 V3=70 V4=10

The constraints are simpli�ed with the new information. When John and

Fred both travel by car then for the story to be consistent, Fred starts at

7:50am and reaches at 8:10am; John starts at 7:10am and reaches o�ce at

8:10am.

In chapter 1, we saw an example of Ram visiting a dentist. Next we will see the

full representation of the problem in language AC0 and then we will extend the

example to show expressiveness of language AC(R).

Example 7.2.4. [Visit a dentist] Ram is at his o�ce and has a dentist

appointment in one hour. For the appointment, he needs his insurance card

146

Texas Tech University, Veena S.Mellarkod, December 2007

Locations Doctor Home O�ce Atm

Doctor 0 20 30 40

Home 20 0 15 15

O�ce 30 15 0 20

Atm 40 15 20 0

Table 7.4: Travel time (in minutes) between several locations in Example 7.2.4

which is at home and cash to pay the doctor. He can get cash from the

nearby atm. Table 1.1 shows the time in minutes needed to travel between

locations: Doctor, Home, O�ce and Atm. For example, the time needed to

travel between Ram's o�ce to the Atm is 20 minutes. If the available actions

are: moving from one location to another and picking items such as cash or

insurance card then,

(a) �nd a plan which takes Ram to the doctor on time, and

(b) �nd a plan which takes Ram to the doctor at least 15 minutes early.

% Objects

person(ram). item(icard). item(cash).

loc(dentist). loc(office). loc(home). loc(atm).

step(0..4).

% domain variables

#domain person(P). #domain item(I).

#domain step(S). #domain loc(L;L1;L2).

% Actions

% To make representation simple, we use only one action

action(go_to(P,L)) :- person(P), loc(L).

% Fluents

fluent(at_loc(P,L)) :- person(P), loc(L).

147

Texas Tech University, Veena S.Mellarkod, December 2007

fluent(at_loc(I,L)) :- item(I), loc(L).

fluent(has(P,I)) :- person(P), item(I).

% Effects of action go_to

% If a person goes to loc L then he is at L in next moment of time.

h(at_loc(P,L),S1) :- next(S0,S1), o(go_to(P,L),S0).

% If Ram is at loc L and item I is at loc L then he has item I

h(has(P,I),S) :- h(at_loc(P,L),S), h(at_loc(I,L),S).

% If a person has an item then it is at same loc as the person

h(at_loc(I,L),S) :- h(has(P,I),S), h(at_loc(P,L),S).

% A person cannot go to a loc he is already in

:- h(at_loc(P,L),S), o(go_to(P,L),S).

% Inertia

h(F,S1) :- fluent(F), next(S0,S1), h(F,S0), not -h(F,S1).

-h(at_loc(P,L),S) :- h(at_loc(P,L1),S), neq(L,L1).

-h(at_loc(I,L),S) :- h(at_loc(I,L1),S), neq(L,L1).

% next

next(S,S+1) :- step(S+1).

%% Timing Constraints

% csort time

#csort time(0..1440).

% mixed relation: step S is ’at’ time T

#mixed at(step,time).

% Assign times increasingly.

:- next(S1, S2), at(S1,T1), at(S2,T2), gt(T1 - T2, 0).

148

Texas Tech University, Veena S.Mellarkod, December 2007

% Time taken to travel between dentist and home is atleast 20 minutes

:- h(at_loc(P, home), S1), o(go_to(P, dentist),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -20).

% Time taken to travel between home and dentist is atleast 20 minutes

:- h(at_loc(P, dentist), S1), o(go_to(P, home),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -20).

% Time taken to travel between dentist and office is atleast 30 minutes

:- h(at_loc(P, office), S1), o(go_to(P, dentist),S1), next(S1,S2),

at_time(S1,T1), at_time(S2,T2), gt(T1 - T2, -30).

% Time taken to travel between office and dentist is atleast 30 minutes

:- h(at_loc(P, dentist), S1), o(go_to(P, office),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -30).

% Time taken to travel between dentist and atm is atleast 40 minutes

:- h(at_loc(P, atm), S1), o(go_to(P, dentist),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -40).

% Time taken to travel between atm and dentist is atleast 40 minutes

:- h(at_loc(P, dentist), S1), o(go_to(P, atm),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -40).

% Time taken to travel between home and office is atleast 15 minutes

:- h(at_loc(P, home), S1), o(go_to(P, office),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -15).

% Time taken to travel between office and home is atleast 15 minutes

:- h(at_loc(P, office), S1), o(go_to(P, home),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -15).

% Time taken to travel between home and atm is atleast 15 minutes

:- h(at_loc(P, home), S1), o(go_to(P, atm),S1), next(S1,S2),

149

Texas Tech University, Veena S.Mellarkod, December 2007

at(S1,T1), at(S2,T2), gt(T1 - T2, -15).

% Time taken to travel between atm and home is atleast 15 minutes

:- h(at_loc(P, atm), S1), o(go_to(P, home),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -15).

% Time taken to travel between office and atm is atleast 20 minutes

:- h(at_loc(P, office), S1), o(go_to(P, atm),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -20).

% Time taken to travel between atm and office is atleast 20 minutes

:- h(at_loc(P, atm), S1), o(go_to(P, office),S1), next(S1,S2),

at(S1,T1), at(S2,T2), gt(T1 - T2, -20).

%% Planning Module

1 { o(go_to(Px,Lx),S) : person(Px) : loc(Lx) } 1 :- step(S), not goal(S).

goal(S) :- h(at_loc(ram,dentist),S),

h(has(ram,icard),S),

h(has(ram,cash),S).

plan :- goal(S).

:- not plan.

%% Initial Situation

h(at_loc(ram,office),0).

h(at_loc(icard,home),0).

h(at_loc(cash,atm),0).

To answer the question (a), we add the following rule to the program:

% Problem (a). He should be at the dentist in 60 minutes

:- goal(S), at(0,T1), at(S,T2), gt(T2 - T1, 60).

% We can set step 0’s time to be at 0 minute

150

Texas Tech University, Veena S.Mellarkod, December 2007

:- at(0, T), T != 0.

An answer set computed by ACsolver is as follows:

Answer set:

o(go_to(ram,atm),0) o(go_to(ram,home),1) o(go_to(ram,dentist),2)

at(0,V0) at(1,V1) at(2,V2) at(3,V3) at(4,V4)

Constraints: V0=0 0<=V4 0<=V3 V3<=1440 0<=V2 V2<=1440

V1<=1440 V4<=60 V3<=V4 V2+20<=V3 V1+15<=V2 20<=V1

Note that the answer set contains constraints over the variables. Now if we

add the information that Ram needs to be at the dentist at least in 55

minutes, then we get an answer set that contains assignment of values to

variables because there exists only one solution:

% He should be at the dentist in 55 minutes

:- goal(S), at(0,T1), at(S,T2), gt(T2 - T1, 55).

Answer set:

o(go_to(ram,atm),0) o(go_to(ram,home),1) o(go_to(ram,dentist),2)

at(0,V0) at(1,V1) at(2,V2) at(3,V3) at(4,V4)

Constraints: V0=0 V1=20 V2=35 V3=55 V4=55

To answer the question (b), we remove previous question and add the

following rule.

% Problem (b). He should be at the dentist in 45 minutes

:- goal(S), at(0,T1), at(S,T2), gt(T2 - T1, 45).

There are no answer sets for this problem, hence there is no plan where Ram

can be at the dentist 15 minutes before his appointment.

151

Texas Tech University, Veena S.Mellarkod, December 2007

Language AC(R) allows literals in the head of mixed rules. This allows for writing

more expressive rules than language AC0 and take advantage of di�erent reasoning

mechanisms to compute answer sets. The type of constraints used in the programs

can be complex linear and non-linear equations. Functions abs, min, max, sin,

cos, tan, exp can also be used along with constraint variables in mixed and

de�ned rules. Further, we can use real numbers in mixed and de�ned rules. The

following example illustrates some of these features.

Example 7.2.5. We extend visiting dentist example 7.2.4 by asking following

questions.

. (c). If Ram takes a cab for all his trips and the cab rate is $2.45 per

minute. If the doctor's fees is $130 then how much money should Ram

withdraw from the atm to pay all his expenses.

. (d). If Ram's expenses are more than the amount in his bank account

then he needs to borrow. If Ram has $160 in his account then does he

need to borrow money to cover his expenses?

To express problem (c), we add the following rules to the program.

% (c). If the cab rate is $2.45 per minute and the doctor’s fees is $130,

% how much should Ram withdraw from the bank to pay his expenses.

doctor_expense(130).

#csort money(0..2000).

bank(atm).

% relation need_amount(bank,money)

#mixed need_amount(bank,money).

enough_money :- reached_goal(S), at(0,T1), at(S,T2), doctor_expense(X),

152

Texas Tech University, Veena S.Mellarkod, December 2007

total_expense(X,T1,T2,Y), need_amount(atm,Y).

:- not enough_money.

{: %start of defined part

total_expense(X,T1,T2,Y) <- Y = X + 2.45 * (T2 - T1).

:} % end of defined part

reached_goal(S) :- goal(S), not ngoal(S).

ngoal(S) :- step(S1), S1<S, goal(S1).

An answer set computed by ACsolver is as follows:

Answer set (1):

o(go_to(ram,atm),0) o(go_to(ram,home),1) o(go_to(ram,dentist),2)

enough_money at(0,V0) at(1,V1) at(2,V2) at(3,V3) at(4,V4)

need_amount(atm,V5)

Constraints: V0=0 V1=20 V2=35 V3=55 V4=55 V5=264.75

To express problem (d), we add the following rules to the program

% (d) If Ram has $160 in his account then does he need to

% borrow money to cover his expenses?

amount(atm,160).

borrow :- amount(atm,X), need_amt(atm,Y), Y > X.

An answer set computed by ACsolver shows that he needs to borrow money

to cover his expenses.

Answer set:

o(go_to(ram,atm),0) o(go_to(ram,home),1) o(go_to(ram,dentist),2)

enough_money borrow at(0,V0) at(1,V1) at(2,V2) at(3,V3) at(4,V4)

need_amount(atm,V5)

Constraints: V0=0 V1=20 V2=35 V3=55 V4=55 V5=264.75

153

Texas Tech University, Veena S.Mellarkod, December 2007

Consider a problem which uses defaults, real numbers and functions on real

numbers. ASP solvers can deal with defaults but not real numbers and functions

on real numbers. Likewise, CLP solvers can deal with real numbers and functions

on reals but not default statements. The following example shows the

representation of these features combined and the computation of answer sets

using ACsolver .

Example 7.2.6. We are given a database of students and their family relations

including profession and death records of their parents. For example,

student(jane). student(greg). student(adam).

father(john, jane). father(mike, greg). father(jack, adam).

mother(lily, jane). mother(lara, greg). mother(sara, adam).

police(jack). prof(mike). police(john).

dead(jack). dead(john). dead(sara).

The database assumes that police o�cers who are dead, died in the line of duty.

Exceptions are recorded by explicit statements,

-died_on_duty(john).

The second part of the database contains records with two �elds: students name

followed by a list of his or her grades in subjects. For example,

grades(greg, [42.5, 88.2, 56, 99, 70]).

grades(jane, [70.5, 75.5, 76.25, 67.3, 66]).

grades(adam, [95, 25, 89.9, 47, 92]).

154

Texas Tech University, Veena S.Mellarkod, December 2007

Our goal is to use this database to de�ne the following scholarship policy:

Normally scholarships are awarded to students who are orphans and children

of police o�cers. There are exceptions to giving this scholarship. First, there

should be money to award scholarship. Second, if a police o�cer did not die

in the line of duty then his or her child may or may not get the scholarship.

If there is no student satisfying this condition and there is money then the

scholarship goes to the student who gets the highest average score in his or

her subjects. If there is a tie, then the student who gets the lower standard

deviation is preferred.

The following regular rules de�ne the relations orphan and parent:

orphan(P) :- parents_dead(P).

parents_dead(P) :- father(F, P), mother(M, P), dead(F), dead(M).

-orphan(P) :- not orphan(P).

parent(X, P) :- father(X, P).

parent(X, P) :- mother(X, P).

Next we represent the default for the scholarship and the exceptions.

% scholarship is awarded to a student who is orphan and child

% of a police officer

award(S) :- student(S), orphan(S),

parent(P,S), police(P),

not ab(d(P)), not -award(S).

% a strong exception to awarding scholarship is lack of money.

-scholarship :- -money.

155

Texas Tech University, Veena S.Mellarkod, December 2007

-award(S) :- -scholarship.

% a child of a police officer who did not die in line of duty

% may or may not receive scholarship

ab(d(P)) :- police(P), dead(P), -died_on_service(P).

% Since a police officer always intervenes even while off duty, we

% assume that the officer was on service unless stated otherwise.

died_on_service(P) :- police(P), dead(P), not -died_on_service(P).

% Otherwise, the best student gets the scholarship

award(S) :- student(S), best_student(S),

not -best_award(S), not -scholarship.

-best_award(S1) :- best_student(S1), S1 != S2, award(S2).

Notice that all rules de�ned so far are regular rules. The relation best student is

de�ned next.

% csort score takes values between 0 and 100

#csort score(0..100).

% mixed relation: average score of student

#mixed avg_score(student, score).

% mixed relation: standard deviation of student

#mixed std_dev(student, score).

% best student

best_student(S) :- not -best_student(S).

-best_student(S1) :- S1 != S2, better_student(S2,S1).

156

Texas Tech University, Veena S.Mellarkod, December 2007

% Student S1 is better than S2 if his average score is higher

better_student(S1, S2) :- S1 != S2, avg_score(S1,A1),

avg_score(S2,A2), A1 > A2.

% In case the students have same average, a better student

% is determined by a lower standard deviation

better_student(S1, S2) :- avg_score(S1,A1), avg_score(S2,A2),

std_dev(S1, D1), std_dev(S2, D2),

S1 != S2, A1 = A2, D1 < D2.

% The next two rules ensure that correct average is calculated

% for student S. Note that average is a defined predicate.

correct_avg(S) :- avg_score(S,A), average(S,A).

:- student(S), not correct_avg(S).

% The next two rules ensure that correct standard deviation

% is calculated for student S. Note sdeviation is a defined predicate.

correct_std(S) :- std_dev(S,D), sdeviation(S, D).

:- student(S), not correct_std(S).

Note that all rules which contain mixed atoms formed by mixed predicates

avg score and std dev are middle rules. The rest are regular rules. Now, we

de�ne average and sdeviation by de�ned rules.

{: % start of defined part

% average of student X is A

average(X, A) <- grades(X, L), sum(L, S), count(L, N), A = (S / N).

157

Texas Tech University, Veena S.Mellarkod, December 2007

% standard deviation of student S is D

sdeviation(S, D) <- grades(S, L), average(S, M),

variance(L, M, V), D = pow(V, 0.5).

% variance calculation

variance(L, M, V) <- count(L, N), sumsqd(L, M, Ds), V = Ds / (N-1).

% definition of sum of a list of numbers

sum([], 0).

sum([H |T], H + S) <- sum(T, S).

% count of number of items in a list

count([], 0).

count([_ | T], 1 + N) <- count(T, N).

% sum of square of the difference of items in a list to their mean

sumsqd([], _, 0).

sumsqd([H | T], M, pow(H-M,2) + S) <- sumsqd(T, M, S).

:} % end of defined part

Now we can use ACsolver to compute answer sets of the above program given the

database information shown before. ACsolver computed the following answer set.

Answer set (1): orphan(adam) award(adam) best_student(jane)

avg_score(jane,V0) avg_score(greg,V1) avg_score(adam,V2)

std_dev(jane,V3) std_dev(greg,V4) std_dev(adam,V5)

Constraints: V0=71.11 V1=71.11 V2=69.78 V3=4.65543

V4=23.0575 V5=31.8542

158

Texas Tech University, Veena S.Mellarkod, December 2007

Duration: 0.110

Ground+Load Time: 0.031

Number of Rules: 141

Number of Atoms: 141

If we come to know that Jack died while he was not in the line of duty. The we

add the following statement to the database and compute answer sets.

-died_on_service(jack).

Answer set (1): orphan(adam) award(jane) best_student(jane)

avg_score(jane,V0) avg_score(greg,V1) avg_score(adam,V2)

std_dev(jane,V3) std_dev(greg,V4) std_dev(adam,V5)

Constraints: V0=71.11 V1=71.11 V2=69.78 V3=4.65543

V4=23.0575 V5=31.8542

Duration: 0.111

Ground+Load Time: 0.031

Number of Rules: 142

Number of Atoms: 141

Note that Greg received the same highest score as Jane but Jane's standard

deviation was lower, so she was awarded the scholarship.

This chapter describes methodologies for representing knowledge in languages AC0

and AC(R). Further, it also presents experimental results of an USA advisor

planning and scheduling problem. The results show that AC0 can be used for

complex planning and scheduling problems and ADsolver can be used to

compute answer sets in realistic time for these problems. We also presented

159

Texas Tech University, Veena S.Mellarkod, December 2007

examples where ACsolver could be used to compute answer sets where classical

ASP and pure CLP solvers cannot be used to solve the problem.

160

Texas Tech University, Veena S.Mellarkod, December 2007

Figure 7.3: ADsolver Time Results (3) on Planning and Scheduling in USA-Advisor

161

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 8

PROOFS

In this chapter we give proofs of several propositions we have seen so far. Next

section proves that the partial grounding procedure we describe in chapter 4 is

correct. Section 8.2 proves the propositions related to expand function. Section

8.3 proves the propositions related to c solve function. Finally section 8.4 proves

the correctness of AC(C) solver algorithm.

8.1 Partial Grounding

In this section we prove the correctness of Pground described in chapter 4. First

we introduce some terminology. Let m = p(�tr,�tc) be an r-ground m-atom and X

be a candidate mixed set. By construction of X, there exists exactly one m-atom

mi of the form p(�tr,�t
0
c) (such that the regular terms in m and mi are same). Let

us denote the m-atom mi as image(m,X), read as image of m in X.

Example 8.1.1. Let at(Cr, Cc) be a mixed predicate where regular sort Cr

ranges over {a, b, c} and constraint sort Cc ranges over [1 . . . 1000].

Set X = {at(a, 5), at(b, 3), at(c, 4) } is a candidate mixed set.

Image of r-ground atom p(a, T1) in X is image(p(a, T1), X) = p(a, 5).

and image(p(b, T2), X) = p(b, 3).

Let c be a tc constant and m = p(�tr, c1, . . . , cn) be an r-ground m-atom, where

c1, � � � , cn are tc constants with possibly some ci's equal to c. Let X be a

candidate mixed set and mv = p(�tr, v1, � � � , vn) be the image of m in X. We de�ne

the candidate values of c with respect to m and X as δ(c,m,X) = {vi | ci in m,

such that ci = c}. Given a rule r 2 Π, we de�ne the candidate values of c with

respect to r and X as δ(c, r, X) =
S

m2m atoms(r) δ(c,m,X).

162

Texas Tech University, Veena S.Mellarkod, December 2007

Let r be a rule and c1, . . . , cn be tc constants occurring in r. A value vector of r

with respect to X is de�ned as a vector hv1, � � � , vni where vi 2 δ(ci, r, X).

Example 8.1.2. Let at(Cr, Cc, Cc) be a mixed predicate where Cr = {a, b} and

Cc = [1 . . . 1000]. Let X = {at(a, 3, 50), at(b, 5, 40)} be a candidate mixed set.

Let r be a rule as shown below:

p(a, b)← at(a, c1, c1), at(b, c1, c2), d(a, b, c1, c2).

where c1 and c2 are tc constants.

δ(c1, at(a, c1, c1), X) = {3, 50}. δ(c2, at(a, c1, c1), X) = { }.

δ(c1, r, X) = {3, 50, 5}. δ(c2, r, X) = {40}.

value vectors of r with respect to X are h3, 40i, h50, 40i, h5, 40i.

Definition 8.1.1. [γ(Π,X)] Let Π be a program and X be a candidate mixed

set. Let c1, � � � , cn be the tc constants occurring in a rule r 2 Π and

�v = hv1, � � � , vni be a value vector of r with respect to X. γ0(r, X, �v) is de�ned

as the rule obtained as follows: for every i = 1 to n, replace all occurrences

of ci in r by vi. Further, γ(r, X) = {γ0(r, X, �v) | �v is a value vector of r w.r.t. X

} and γ(Π,X) = {γ(r, X) | r 2 Π}.

Example 8.1.3. Let Σ = {Pr = {p(Cr, Cr), q(Cr, Cr)}, Pm = {at(Cr, Cc)}, Pc = {>

}, Cr = {a, b}, Cc = [1, � � � , 100], tc cons = {t1, t2}} be the signature of program

Π containing a rule

r: p(a, b) ← q(a), q(b), at(a, t1), at(b, t2), t1 > t2.

Let X = { at(a, 3), at(b, 6) }, then γ(r, X) is:

p(a, b) ← q(a), q(b), at(a, 3), at(b, 6), 3 > 6.

The set γ(r, X) can contain more than one rule. For instance, the following

example shows γ(r, X) contains three rules.

163

Texas Tech University, Veena S.Mellarkod, December 2007

Example 8.1.4. Let rule r and candidate set X be as in example 8.1.2. In

example 8.1.2, we computed three value vectors of r with respect to X. The

value vectors are used to compute γ(r, X), which is as follows:

p(a, b)← at(a, 3, 3), at(b, 3, 40), d(a, b, 3, 40).

p(a, b)← at(a, 50, 50), at(b, 50, 40), d(a, b, 50, 40).

p(a, b)← at(a, 5, 5), at(b, 5, 40), d(a, b, 5, 40).

We recall de�nition of β(r, C, Σ) from chapter 4.

Definition 8.1.2. [β(r, C, Σ)] Let C be a set of c-literals, r be a rule and Σ be

an arbitrary signature. We de�ne β(r, C, Σ) as a rule r 0, where

. head(r 0) = head(r)

. If r consists only of predicates from Σ then

body(r 0) = body(r) [c lits(C, r), where c lits(C, r) is the set of all c lits

from C whose tc constants are exactly those in r

. If r contains some predicates not in Σ then body(r 0) = body(r)

Given a program Π, β(Π,C, Σ) = { β(r, C, Σ) | r 2 Π }

Example 8.1.5. Let Σ be signature from example 8.1.3 and C = {t1 > t2} and

Π 0 be a program with the following rules:

r1: q(a).

r2: p(a, b) ← q(a), q(b), at(a, t1), at(b, t2).

r3: n at(b, t1) ← not at(b, t1).

β(Π 0, C, Σ) is the following set of rules:

β(r1, C, Σ): q(a).

β(r2, C, Σ): p(a, b) ← q(a), q(b), at(a, t1), at(b, t2), t1 > t2.

β(r3, C, Σ): n at(b, t1) ← not at(b, t1).

164

Texas Tech University, Veena S.Mellarkod, December 2007

8.1.0.4 Splitting Sets

Splitting set theorem is used several times for the proofs. We brie
y recall some

de�nitions from [67]. Readers may skip this section and go directly to the proofs.

A splitting set of a program P is any set U of literals such that, for every rule

r 2 P, if head(r) \U 6= ; then lit(r) � U. The set of rules r 2 P such that

lit(r) � U is called the bottom of P relative to U denoted by bU(P). The set

P \ bU(P) is the top of P relative to U. Consider two sets of literals U, X and a

program P. For each rule r 2 P such that pos(r) \U is a part of X and neg(r) \ X

is disjoint from X, take the rule r 0 de�ned by

head(r 0) = head(r), pos(r 0) = pos(r) \ U, neg(r 0) = neg(r) \ U.

The program consisting of all the rules r 0 obtained from Π will be denoted by

evalU(Π,X). Let U be a splitting set of a program P. A solution to P (with

respect to U) is a pair hX, Yi of set of literals such that

. X is an answer set of bU(P),

. Y is an answer set of evalU(P \ bU(P), X),

. X [Y is consistent.

Splitting Set Theorem: Let U be a splitting set for a program P. A set A of

literals is a consistent answer set for P if and only if A = X [Y for some solution

hX, Yi to P with respect to U.

8.1.1 P(Π)

Note that, in the proofs, we denote the ground instantiation of a program Π,

ground(Π), as gr(Π). Throughout this section, we use X for a candidate mixed

set and Mc for the intended interpretation of c-atoms of a program.

165

Texas Tech University, Veena S.Mellarkod, December 2007

Proposition: Given a program Π of AC(C) satisfying the syntax restrictions,

S is an answer set of Π i� S is an answer set of P(Π).

Proof: First we give proof when there are no de�ned literals in Π. Therefore,

ΠD = ;. We look at each step (N) in the procedure P(Π) and present some

properties of the program resulting from step N. These properties are proved as

lemmas later in the section. Let Π be an AC(C) program without de�ned literals.

(a). By de�nition of AC(C) answer set, S is an answer set of Π, i� S is an asp

answer set of gr(Π) [X [Mc, where Mc is the intended interpretation of

c-atoms of Π and X is some candidate mixed set.

(b). By (a) and de�nition of gr, S is an answer set of Π i� S is an asp answer set

of Π [X [Mc, where X is some candidate mixed set. By de�nition of answer

set, X � S.

Next, we use the steps in P(Π) to prove that S is an asp answer set of

Π [X [Mc i� S is an asp answer set of P(Π) [X [Mc. The steps in P(Π)

and their properties are as follows:

1. Step (1) of P(Π), replaces all c-variables in ΠM by tc constants. Since

ΠD = ;, we get Π1 = tc(ΣΠ, ΠM) [ΠR. The following property holds after

step (1): S is an answer set of Π [X [Mc i� S is an answer set of

γ(gr(Π1), X) [X [Mc.

2. Step (2) removes all c-literals from Π1. Let us denote the resulting program

as Π2. Let the c-literals be stored in C. The program Π2 contains only

r-literals and m-literals. Let Σ2 be the signature of Π2. The following

property holds after step (2): S is an answer set of γ(gr(Π1), X) [X [Mc

i� S is an answer set of γ(β(gr(Π2), C, Σ2), X) [X [Mc.

166

Texas Tech University, Veena S.Mellarkod, December 2007

3. Step (3) adds rules to Π2 with m-atoms in the head. The resulting program

Π3 = Π2 [addr(Π2) is not an AC(C) program but an ASP program. Since

new predicates (np) are added by addr(Π2), the signature Σ3 of Π3 is

di�erent from Σ2. Let

~X = { np(�tr,�tc) | p(�tr,�tc) 62 X and p(�tr,�tc) 2 m atoms(Π)}, where �tr and �tc

are ground. The following property holds after step (3): S is an answer set

of γ(β(gr(Π2), C, Σ2), X) [X [Mc i� S [~X is an answer set of

γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc.

4. Step (4) grounds the regular and middle part of program Π3. The resulting

program Π4 = lparse(Π3R [Π3M [addr(Π2)). The following property holds

after step (4): S is an answer set of γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc i�

S is an answer set of γ(β(Π4, C, Σ2), X) [X [~X [Mc.

5. Step (5) removes the ground instantiations of addr(Π2). The resulting

program Π5 = Π4 \ ground(addr(Π2)). The following property holds after

step (5): S [~X is an answer set of γ(β(Π4, C, Σ2), X) [X [~X [Mc i� S is

an answer set of γ(β(Π5, C, Σ2), X) [X [Mc .

6. Step (6) consists of two sub-steps:

(a) Step (6a) adds the c-literals stored in C at step (2) to Π5 to obtain

Π6a = β(Π5, C, Σ2). The following property holds after step (6a): S is

an answer set of γ(β(Π5, C, Σ2), X) [X [Mc i� S is an answer set of

γ(Π6a, X) [X [Mc.

(b) Step (6b) replaces the tc constants by c-variables to get Π6. The

following property holds after step (6b): S is an answer set of

γ(Π6a, X) [X [Mc i� S is an answer set of Π6 [X [Mc.

167

Texas Tech University, Veena S.Mellarkod, December 2007

7. Step (7) renames c-variables to get Π7 = rename(Π6M
, Y)[Π6R

, where Y is a

r ground mixed set. The following property holds after step (7): S is an

answer set of Π6 [X [Mc i� S is an answer set of Π7 [X [Mc.

(c). Since Π7 = P(Π), by (1) to (7), we get that S is an answer set of Π [X [Mc

i� S is an answer set of P(Π) [X [Mc.

(d). By de�nition of answer sets of AC(C) programs, we get that S is an answer

set of Π i� S is an answer set of P(Π).

�

8.1.2 Step (1) of P(Π)

We now prove the properties used at each step in the previous proof. At step (1)

of P(Π), program Π1 is obtained by replacing c-variables in ΠM by tc constants.

Observe that Π1 = ΠR [tc(ΣΠ, ΠM). The regular part and middle part of Π1 are

denoted by Π1R and Π1M respectively. Before proving lemma 8.1.2, we prove an

auxiliary lemma 8.1.1. First we introduce some terminology.

Let rg 2 gr(r) be a rule obtained from r by substituting V1 = x1, � � � , Vn = xn of

variables in r. Let us denote ζ0(r, rg, Vi) to be equal to value xi and

ζ(r, rg, hV1, � � � , Vni) = hx1, � � � , xni such that ζ0(r, rg, Vi) = xi.

Lemma 8.1.1. Let Π be an AC(C) program, X be a candidate mixed set, and

U = m atoms(Π). We have evalU(gr(ΠM), X) = evalU(γ(gr(tc(ΣΠ, ΠM)), X), X).

Proof:

1. =⇒ Let re = l← B, E 2 evalU(gr(ΠM), X), such that B = r lits(re) and

E = c lits(re). Note that by de�nition of re, m-literals do not belong to the

body of re.

168

Texas Tech University, Veena S.Mellarkod, December 2007

We show that re 2 evalU(γ(gr(tc(ΣΠ, ΠM)), X), X).

2. By (1) and de�nition of eval, 9 ra 2 gr(ΠM) such that re = eval(ra, X). By

de�nition of eval, m-lits(ra) � X.

3. Now we show that ra 2 γ(gr(tc(ΣΠ, ΠM)), X).

4. For this, �rst we construct a rule r 2 gr(tc(ΣΠ, ΠM)) and then show that

ra 2 γ(r, X).

(a) By (2) and de�nition of gr, 9ru 2 Πm such that ra 2 gr(ru); Let ra be

obtained from ru by some substitution θ substituting variables

V1, � � � , Vn by constants x1, � � � , xn respectively. Let V1, � � � , Vk be

c-variables and Vk+1, � � � , Vn be r-variables.

(b) By de�nition of tc, there exists a rule rt such that rt = tc(ΣΠ, ru); Let

rt be obtained from ru by substituting c-variables V1, � � � , Vk of ru by

some tc constants c1, � � � , ck respectively. Now rt contains only

r-variables Vk+1, � � � , Vn.

(c) By de�nition of gr, 9 r 2 gr(rt), such that r is obtained from rt by

substitution θ substituting variables Vk+1, . . . , Vn by constants

xk+1, . . . , xn.

5. Now, we show that ra 2 γ(r, X).

(a) By construction of r and ra, we get ra 2 γ(r, X) i� the tc constants

c1, . . . , ck of r are substituted by constants x1, . . . xk.

(b) Hence by de�nition of γ, it is enough to show that �v = hx1, � � � , xki is a

value vector for r with respect to X.

(c) �v is a value vector of r with respect to X i� xi 2 δ(ci, r, X) for i = 1 to k

169

Texas Tech University, Veena S.Mellarkod, December 2007

(d) Consider an arbitrary tc constant ci from r. We show that

xi 2 δ(ci, r, X).

(e) By syntax restriction (2) on Π(see section 4.1), ci occurs in some

m-atom m 2 r.

(f) Let mv be the image of m in X. By (2) and construction of X,

mv 2 m-lits(ra).

(g) By construction of ra, we have ζ0(ru, ra, Vi) = xi. Hence δ(ci,m, X) = xi

(h) Therefore, we get xi 2 δ(ci, r, X) for all i = 1 to k

(i) Hence �v is a value vector of r with respect to X

(j) We get γ0(r, X, �v) = ra and hence ra 2 γ(r, X).

6. Since r 2 gr(tc(ΣΠ, ΠM), X), we get ra 2 γ(gr(tc(ΣΠ, ΠM)), X). By de�nition

of eval and (2), re 2 evalU(γ(gr(tc(ΠM)), X), X)

7. The proof from the other side is straightforward as

γ(gr(tc(ΠM)), X) � gr(ΠM).

�

Lemma 8.1.2. S is an answer set of Π [X [Mc i� S is an answer set of

γ(gr(Π1), X) [X [Mc.

Proof:

1. S is an answer set of Π [X [Mc i� S is an answer set of gr(Π) [X [Mc

[By de�nition of answer set]

2. (1) is true i� S is an answer set of gr(ΠR) [gr(ΠM) [X [Mc

[Since Π = ΠR [ΠM and gr(Π) = gr(ΠR) [gr(ΠM)

170

Texas Tech University, Veena S.Mellarkod, December 2007

3. (2) is true i� S is an answer set of evalU(gr(ΠR) [gr(ΠM) [Mc, X) [X

[as U = m-atoms(Π) splits gr(Π) [X [Mc and topU = gr(Π) [Mc]

4. (3) is true i� S is an answer set of gr(ΠR) [evalU(gr(ΠM), X) [X [Mc

[Since m-atoms(Π) do not appear in rules ΠR [Mc, we get

evalU(gr(ΠR) [Mc, X) = gr(ΠR) [Mc]

5. (4) is true i� S is an answer set of

gr(ΠR) [evalU(γ(gr(Π1M), X), X) [X [Mc

[By lemma (8.1.1), evalU(gr(ΠM), X) = evalU(γ(gr(tc(ΣΠ, ΠM)), X), X) and

by de�nition Π1M = tc(ΣΠ, ΠM)]

6. (5) is true i� S is an answer set of

evalU(gr(ΠR) [γ(gr(Π1M) [Mc, X), X) [X

[By de�nition of eval and fact that gr(ΠR) does not contain m-atoms(Π)]

7. (6) is true i� S is an answer set of evalU(γ(gr(ΠR [Π1M [Mc), X), X) [X

[By de�nition of γ and gr]

8. (7) is true i� S is an answer set of γ(gr(ΠR [Π1M), X) [X [Mc

[by splitting set theorem]

9. (8) is true i� S is an answer set of γ(gr(Π1), X) [X [Mc

[Since Π1 = ΠR [Π1M]

�

8.1.3 Step (2) of P(Π)

The program Π2 is obtained by removing c-literals from Π1. The c-literals are

stored in C and the signature of Π2 is Σ2.

171

Texas Tech University, Veena S.Mellarkod, December 2007

Lemma 8.1.3. S is an answer set of γ(gr(Π1), X) [X [Mc i� S is an answer

set of γ(β(gr(Π2), C, Σ2), X) [X [Mc.

Proof:

1. To prove the lemma, we show that gr(Π1) = β(gr(Π2), C, Σ2)

2. =⇒ Let r 2 gr(Π1). We show that r 2 β(gr(Π2), C, Σ2).

3. By (2), 9 r1 2 Π1 with variables V1, � � �Vn, such that r 2 gr(r1) and r is

obtained from r1 by some substitution θ substituting V1 = x1, � � � , Vn = xn.

4. By (3) and de�nition of Π2, 9 r2 2 Π2, such that r2 is obtained by removing

c lits from r1. Hence, head(r2) = head(r1) and

body(r2) = body(r1) \ c lits(r1).

5. By (4) and de�nition of gr, 9 rg 2 gr(r2), such that rg is obtained from r2 by

same substitution θ (from(3)) substituting V1 = x1, � � � , Vn = xn.

6. By (3) and (5), head(rg) = head(r) and body(rg) = body(r) \ c lits(r).

7. Let r contain tc constants c1, � � � , cn. By construction of tc, c1, � � � , cn occur

in C only in c literals from c lits(r1).

8. By construction of rg (see (4) and (5)), c1, � � � , cn are the tc constants in rg.

9. By de�nition of β, β(rg, C, Σ2) = r 0, such that head(r 0) = head(rg) and

body(r 0) = body(rg) [c lits(C, rg).

10. By (7) and (8), c lits(C, rg) = c lits(r1) = c lits(r)

11. By (9) and (10), r 0 = r and therefore r 2 β(gr(Π2), C, Σ2)

12. ⇐= proof is similar

172

Texas Tech University, Veena S.Mellarkod, December 2007

13. Hence, gr(Π1) = β(gr(Π2), C, Σ2)

14. Therefore, γ(gr(Π1), X) [X [Mc = γ(β(gr(Π2), C, Σ2), X) [X [Mc

15. Therefore lemma 8.1.3 is true.

�

8.1.4 Step (3) of P(Π)

At step (3) of P(Π), we compute the ASP program Π3 = Π2 [addr(Π2). The

signature Σ3 of Π3 is di�erent from Σ2 and contains extra predicates np (added by

addr(Π2)). Let ~X = { np(�tr,�tc) | p(�tr,�tc) 62 X and p(�tr,�tc) 2 m-atoms(Π)}, where

�tr and �tc are ground.

Lemma 8.1.4. S is an answer set of γ(β(gr(Π2), C, Σ2), X) [X [Mc i� S [~X is

an answer set of γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc

Proof:

1. S[~X is an answer set of γ(β(gr(Π3), C, Σ2), X) [X [~X[Mc i� S[~X is an

answer set of

γ(β(gr(Π2), C, Σ2) [β(gr(addr(Π2)), C, Σ2), X) [X [~X [Mc.

[as Π3 = Π2 [addr(Π2)]

2. (1) is true i� S [~X is an answer set of

γ(β(gr(Π2), C, Σ2) [gr(addr(Π2)), X) [X [~X [Mc;

[as predicate np occurs in every rule of gr(addr(Π2)) and np is not in Σ2,

we get β(gr(addr(Π2)), C, Σ2) = gr(addr(Π2))]

3. (2) is true i� S [~X is an answer set of

γ(β(gr(Π2), C, Σ2), X) [γ(gr(addr(Π2)), X) [X [~X [Mc;

[by de�nition of γ]

173

Texas Tech University, Veena S.Mellarkod, December 2007

4. (3) is true i� S [~X is an answer set of

evalU(γ(β(gr(Π2), C, Σ2), X) [Mc, X [~X) [(X [~X);

[as U = m atoms(Π) [{np(�tr,�tc) | p(�tr,�tc) 2 m atoms(Π)} splits Π3 with

botU = γ(gr(addr(Π2)), X) [X [~X which has unique answer set X [~X]

5. (4) is true i� S[~X is an answer set of γ(β(gr(Π2), C, Σ2), X)[Mc [(X[~X);

[by splitting set theorem]

6. (5) is true i� S is an answer set of γ(β(gr(Π2), C, Σ2), X) [X [Mc;

[as U = ~X splits with botU = ~X and topU = γ(β(gr(Π2), C, Σ2), X) [X[Mc

]

�

8.1.5 Step (4) of P(Π)

After step (4), the program Π4 = lparse(Π3R [Π3M [addr(Π2)) [Π3C. Since

Π3C = ;, the program Π4 = lparse(Π3). Note that Π3 and Π4 are ASP programs.

We need some terminology. Let us call the set of all predicates in Σ3 \ Σ2,

n mixed predicates. Let us denote the atoms formed by n mixed predicates in

program Π3 by n matoms(Π3).

Recall from [99], the notion of dependency graph for an ASP program. The

dependency graph GΠ = (VΠ, EΠ) of program Π is a directed graph constructed as

follows:

. VΠ = {p | p is a predicate symbol in Π}.

. (p, q) 2 EΠ i� there exists a rule r 2 Π where p is a predicate symbol in head

and q is a predicate symbol in body.

A predicate p depends on a predicate q i� there exists a path from p to q in the

dependency graph. A predicate p is a domain predicate i� it holds that every

174

Texas Tech University, Veena S.Mellarkod, December 2007

path starting from nodes p 2 VΠ is negative cycle free. Atoms formed by domain

predicates are referred to as domain atoms. Let us denote the set of all ground

domain atoms in a program Π by Dom(Π). Given a ground rule r, let

dom(r) = body(r) \Dom(Π).

Given a ASP program Π, U = Dom(Π) splits the program into domain part Πd

and non-domain part Πn. Πd consists of all rules r such that head(r) 2 Dom(Π).

The rest is non-domain part. Since Πd is strati�ed [1], it has a unique answer set

A [50]. We base our proof on the following proposition about lparse.

Proposition 8.1.1. Let Πg = gr(Π) and Πl = lparse(Π). We can write

Πl = A [R, where A is a set of atoms and R is a set of rules such that,

(l1) A is the unique answer set of the domain part Πd.

(l2) If rl 2 R then 9 rg 2 Πg such that rl is obtained from rg by removing

literals in body(rg) that belong to A.

(l3) S is an answer set of Πg i� S is an answer set of Πl

The proof of lemma 8.1.7 depends on the following statements (which can be

easily proven):

(i1) mixed and n mixed predicates in Π3 and Π4 are non-domain predicates.

(i2) The set of predicates that depend on mixed predicates are non-domain

predicates.

(i3) U = Dom(Π) is a splitting set of Πi with botU(Πi) � ΠiR, for i = 3, 4.

We prove two auxiliary lemmas 8.1.5, 8.1.6 before lemma 8.1.7.

Lemma 8.1.5. Let program Tg = γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc and

program

Tl = γ(β(lparse(Π3), C, Σ2), X) [X [~X [Mc.

175

Texas Tech University, Veena S.Mellarkod, December 2007

1. U = Dom(Π3) is a splitting set of both Tl and Tg.

2. botU(Tl) and botU(Tg) have same unique answer set A.

Proof:

1. Let Πg = gr(Π3), Πl = lparse(Π3) and U = Dom(Π3).

2. We show that U splits Tg. Proof that U splits Tl is similar.

3. U is a splitting set of Πg.

[By (i3) and de�nition of gr]

4. (3) is true i� 8r 2 Πg, if head(r) 2 U then body(r) 2 U.

[By de�nition of splitting set]

5. (4) is true i� 8r 2 ΠgR, if head(r) 2 U then body(r) 2 U.

[By (i3) and de�nition of gr]

6. (5) is true i� 8r 2 TgR, if head(r) 2 U then body(r) 2 U.

[By de�nition of γ and β, Tg =

γ(β(Πg, C, Σ2), X)[X[~X[Mc = ΠgR [γ(β(Πg \ΠgR, C, Σ2), X)[X[~X[Mc]

7. (6) is true i� 8r 2 Tg, if head(r) 2 U then body(r) 2 U.

[By (i1), (i2) and construction of Tg, if r 2 Tg \ TgR, head(r) 62 U]

8. (7) is true i� U splits Tg.

9. By de�nition of domain atoms, botU(ΠgR) is strati�ed. Therefore,

botU(ΠgR) has a unique answer set A.

10. It is easy to see that botU(Tg) = botU(ΠgR). Therefore botU(Tg) has a

unique answer set A.

176

Texas Tech University, Veena S.Mellarkod, December 2007

�

Lemma 8.1.6. Let program Tg = γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc and

program

Tl = γ(β(lparse(Π3), C, Σ2), X) [X [~X [Mc. We can write Tl = A [R where A

is a set of r-atoms such that

1. A is the unique answer set of botU(Tl), where U = Dom(Tl).

2. If rl 2 R then 9 rg 2 Tg, such that rl is obtained from rg by removing

literals in A from body(rl).

Proof:

1. From lemma 8.1.5, we can see that A is a unique answer set of botU(Tl) as

Dom(Tl) = Dom(Π3).

2. Now we prove the second part of the lemma.

3. Let rl 2 R.

4. We construct rg 2 Tg such that rl is obtained from rg by removing literals

from body(rl) that belong to A.

5. To do that, we �rst construct r0 2 lparse(Π3) such that

rl 2 γ(β(r0, C, Σ2), X).

6. Next we construct ru 2 gr(Π3) such that rg 2 γ(β(ru, C, Σ2), X).

7. We construct r0 as follows: by (3), rl 2 Tl and therefore 9 r0 2 lparse(Π3)

such that rl 2 γ(β(r0, C, Σ2), X).

8. Let c1, � � � , cn be the tc constants in r0. This means that rl was obtained

from r0 by

177

Texas Tech University, Veena S.Mellarkod, December 2007

(a) adding c lits(C, r0) to body of r0,

(b) replacing c1, � � � , cn by some value vector say hv1, � � � , vni.

9. We construct ru as follows: since r0 2 lparse(Π3), by proposition (8.1.1), we

know that 9 ru 2 gr(Π3) such that r0 is obtained from ru by removing

literals in A from body(ru).

10. We construct rg as follows:

(a) adding to c lits(C, r0) to body of ru;

(b) replacing c1, � � � , cn by value vector hv1, � � � , vni.

11. Now we show that rg 2 γ(β(ru, C, Σ2), X).

(a) Let us refer rules obtained at steps (8a) and (10a) as r8 and r10

respectively.

(b) First we show that r10 = β(ru, C, Σ2).

(c) Notice that by construction of ru, the tc constants in ru are exactly the

same as tc constants in r0. Therefore, c1, � � � , cn are the only

tc constants in ru.

(d) Therefore, c lits(C, r0) = c lits(C, ru) and hence r10 = β(ru, C, Σ2).

(e) Now to show that rg 2 γ(β(ru, C, Σ2), X), it su�ces to show that

hv1, � � � , vni is a value vector of r10 with respect to X.

(f) In step (8b), we see that hv1, � � � , vni is a value vector of r8 with respect

X. By construction, we know that

m atoms(r0) = m atoms(ru) = m atoms(r10) and also that

m atoms(r0) = m atoms(r8). We get, m atoms(r10) = m atoms(r8)

and by de�nition of γ, hv1, � � � , vni is a value vector of r10.

178

Texas Tech University, Veena S.Mellarkod, December 2007

12. Now we show that rl can be obtained from rg by removing literals in A from

body of rg.

(a) By construction, head(rl) = head(r0) = head(ru) = head(rg)

(b) By construction, r atoms(rl) = r atoms(r0);

r atoms(ru) = r atoms(rg) and r atoms(r0) = r atoms(ru) \ A.

Hence, r atoms(rl) = r atoms(rg) \ A.

(c) By construction, m atoms(r8) = m atoms(r10), and

c atoms(r8) = c atoms(r10). Rules rl and rg are obtained from r8 and

r10 respectively by replacing the tc constants by the same value vector.

Hence, m atoms(rl) = m atoms(rg) and c atoms(rl) = c atoms(rg).

(d) Therefore, head(rl) = head(rg) and body(rl) = body(rg) \ A.

(e) rl can be obtained from rg by removing literals in A from body(rg).

�

Lemma 8.1.7. S is an answer set of γ(β(gr(Π3), C, Σ2), X) [X [~X [Mc i� S is

an answer set of γ(β(Π4, C, Σ2), X) [X [~X [Mc

Proof:

1. Let Πg = gr(Π3) and Πl = lparse(Π3). Let

Tg = γ(β(Πg, C, Σ2), X)[X[~X[Mc and Tl = γ(β(Πl, C, Σ2), X)[X[~X[Mc.

2. By lemma 8.1.5, U is a splitting set of Tg and Tl; and botU(Tl) and botU(Tg)

have same unique answer set A.

3. Let T t
g = topU(Tg) = Πg \ botU(Tg) and T t

l = topU(Tl) = Πl \ botU(Tl).

4. By splitting set theorem, Lemma 8.1.7 is true i� (5) is true

179

Texas Tech University, Veena S.Mellarkod, December 2007

5. S \ A is an answer set of evalU(T t
g, A) i� S \ A is an answer set of

evalU(T t
l , A).

6. We show (5) is true by showing that evalU(T t
g, A) = evalU(T t

l , A).

7. =⇒
8. Let re 2 evalU(T t

g, A).

9. We construct r 0 2 T t
l such that re = evalU(r 0, A).

10. To do that we �rst construct r0 2 Π3 and rg 2 γ(β(gr(r0), C, Σ2), X) such

that re = evalU(rg, A).

11. Next, we construct rl 2 lparse(r0) and r 0 2 γ(β(rl, C, Σ2), X) such that (9) is

satis�ed.

12. We construct r0 and rg as follows:

(a) By (8), 9rg such that re = eval(rg, A) and rg 2 T t
g.

(b) Since T t
g � Tg, rg 2 Tg and rg is obtained from some rule r0 2 Π3, such

that rg 2 γ(β(gr(r0), C, Σ2), X)

13. Let V1, � � � , Vn be the r-variables and c1, � � � , ck be the tc constants that

occur in r0. This means that rg is obtained from r0 by

(a) replacing V1, � � � , Vn by some constants say x1, � � � , xn

(b) adding c lits(C, r0) to body of rule obtained from (a);

(c) replacing c1, � � � , ck by constants from some value vector say

hv1, � � � , vki;

14. Let us construct rl as follows:

180

Texas Tech University, Veena S.Mellarkod, December 2007

(a) Let ru be the rule obtained in step (13a).

(b) Let rl be obtained from ru by removing literals in A from body(ru).

15. Now we show that rl 2 lparse(r0)

(a) By de�nition of lparse, rl 2 lparse(r0) if U \ r pos(ru) � A and

A \ r neg(ru) = ;.

(b) Since re = evalU(rg, A); by de�nition of eval, we know that

U \ r pos(rg) � A and A \ r neg(rg) = ;.

(c) By construction of ru, r atoms(ru) = r atoms(rg). Therefore, we get

U \ r pos(ru) � A and A \ r neg(ru) = ;.

(d) Therefore, rl 2 lparse(r0).

16. Now we construct the rule r 0 required by (9) as follows:

(a) add c lits(C, r0) to body of rl;

(b) replace tc constants c1, � � � , ck by constants from value vector

hv1, � � � , vki;

17. Now we show that r 0 2 γ(β(rl, C, Σ2), X).

(a) Let us refer to the rule obtained in (16a) by ra.

(b) First, we show that ra = β(rl, C, Σ2).

(c) Since rl 2 lparse(r0), the tc constants that occur in rl and r0 are same.

Therefore, c1, � � � , ck are the only tc constants in rl.

(d) Therefore, by de�nition of c lits, c lits(C, r0) = c lits(C, rl).

(e) Since β(rl, C, Σ2) adds c lits(C, rl) to rl; by construction of ra, we get

ra = β(rl, C, Σ2).

181

Texas Tech University, Veena S.Mellarkod, December 2007

(f) To show that r 0 2 γ(β(rl, C, Σ2), X), it su�ces to show that hv1, � � � , vki

is a value vector of ra with respect to X.

(g) Let us refer to the rule obtained in (13b) by rb. Notice that by

construction, ra and rb have the same m atoms. From (13c), we see

that hv1, � � � , vki is a value vector of rb with respect to X. Hence, by

de�nition of γ, hv1, � � � , vki is a value vector of ra with respect to X.

(h) Therefore, r 0 2 γ(β(rl, C, Σ2), X).

18. Now we show that re = evalU(r 0, A).

(a) By construction, head(r 0) = head(rl) = head(ru) = head(rg).

(b) By construction, r atoms(r 0) = r atoms(rl) = r atoms(ru) \ A and

r atoms(ru) = r atoms(rg). Hence, r atoms(r 0) = r atoms(rg) \ A.

(c) Rules r 0 and rg are obtained by using same value vector hv1, � � � , vki on

ra and rb respectively. By construction, m atoms(ra) = m atoms(rb)

and c atoms(ra) = c atoms(rb); therefore

m atoms(r 0) = m atoms(rg) and c atoms(r 0) = c atoms(rg).

(d) Therefore, head(r 0) = head(rg) and body(r 0) = body(rg) \ A.

(e) Since by (10), re = evalU(rg, A); by de�nition of eval, we get

re = evalU(r 0, A).

19. ⇐=

20. Let re 2 evalU(T t
l , A).

21. We construct rg 2 T t
g such that re = evalU(rg, A).

22. By (20), we know that 9 rl 2 T t
l , such that re = eval(rl, A). Since T t

l � Tl,

rl 2 Tl.

182

Texas Tech University, Veena S.Mellarkod, December 2007

23. By lemma 8.1.6, we know that 9 rg 2 Tg such that rl can be obtained from

rg by removing literals in A from body(rg).

24. Since rl 2 T t
l , we have rg 2 T t

g.

25. Now we have to show that re = evalU(rg, A)

26. We know that re = evalU(rl, A); head(rl) = head(rg) and

body(rl) = body(rg) \ A. From de�nition of eval, re = evalU(rg, A).

�

8.1.6 Step (5) of P(Π)

In step (5), we remove the ground instances of rules added in step 3. We get

Π5 = Π4 \ lparse(addr(Π2))

Lemma 8.1.8. S [~X is an answer set of γ(β(Π4, C, Σ2), X) [X [~X [Mc i� S is

an answer set of γ(β(Π5, C, Σ2), X) [X [Mc

Proof:

1. S [~X is an answer set of γ(β(Π4, C, Σ2), X) [X [~X [Mc i� S [~X is an

answer set of γ(β(Π5 [lparse(addr(Π2)), C, Σ2), X) [X [~X [Mc

[By de�nition Π5 = Π4 \ lparse(addr(Π2))]

2. (1) is true i� S [~X is an answer set of

γ(β(Π5, C, Σ2), X) [γ(β(lparse(addr(Π2)), C, Σ2), X) [X [~X [Mc

[By de�nition of γ]

3. (2) is true i� S [~X is an answer set of

γ(β(Π5, C, Σ2), X) [γ(lparse(addr(Π2)), X) [X [~X [Mc

[Since by de�nition of β, β(lparse(addr(Π2)), C, Σ2) = lparse(addr(Π2))]

183

Texas Tech University, Veena S.Mellarkod, December 2007

4. (3) is true i� S [~X is an answer set of

evalU(γ(β(Π5, C, Σ2), X) [Mc, X [~X) [X [~X

[as U = m atoms(Π) [{np(�tr,�tc) | p(�tr,�tc) 2 m atoms(Π)} splits the

program with botU = X [~X [γ(lparse(addr(Π2)), X)]

5. (4) is true i� S [~X is an answer set of γ(β(Π5, C, Σ2), X) [X [~X [Mc

[splitting set theorem]

6. (5) is true i� S is an answer set of γ(β(Π5, C, Σ2), X) [X [Mc

[as U = ~X splits with botU = ~X and topU = γ(β(Π5, C, Σ2), X) [X [Mc]

�

8.1.7 Step (6) of P(Π)

In step (6a), we add the stored c-literals to Π5; Π6a = β(Π5, C, Σ2).

Lemma 8.1.9. S is an answer set of γ(β(Π5, C, Σ2), X) [X [Mc i� S is an

answer set of γ(Π6a, X) [X [Mc

Proof:

1. S is an answer set of γ(β(Π5, C, Σ2), X) [X [Mc i� S is an answer set of

γ(Π6a, X) [X [Mc [by construction of Π6a]

�

In step (6b), we replace tc-constants in Π6a by c-variables to get Π6. Before we

prove lemma 8.1.11, we prove an auxiliary lemma 8.1.10.

Lemma 8.1.10. Let Π6a and Π6 be programs from steps (6a) and (6b) of

P(Π), X be a candidate mixed set and U = m-atoms(Π). We have

evalU(gr(Π6M), X) = evalU(γ(Π6aM, X), X).

184

Texas Tech University, Veena S.Mellarkod, December 2007

Proof:

1. ⇐= By de�nition of gr and γ, we have γ(Π6aM, X) � gr(Π6M). Hence, if

r 2 evalU(γ(Π6aM, X), X) then r 2 evalU(gr(Π6M), X).

2. =⇒ Let r 2 evalU(gr(Π6M), X). We show that r 2 evalU(γ(Π6aM, X), X).

3. By (2), 9 r1 2 gr(Π6M), such that r = evalU(r1, X) and m-lits(r1) � X.

4. By (3), 9 ru 2 Π6M, such that r1 is obtained from ru by substituting

c-variables V1, � � � , Vn in r1 by x1, � � � , xn respectively.

5. By (4) and de�nition of Π6aM, 9 r0 2 Π6aM, such that ru is obtained from r0

by replacing tc constants c1, � � � , cn by V1, � � � , Vn respectively.

6. We show that r1 2 γ(r0, X)

7. By (4), if �v = hx1, � � � , xni is a value vector of r0 with respect to X then

γ0(r0, X, �v) = r1.

8. �v is a value vector of r0 with respect to X i� xi 2 δ(ci, r0, X) for all i = 1 to n

9. Consider an arbitrary tc constant ci in r0, let ci occur in a m atom m in r0.

By construction of r1, 9 mv 2 r1, such that r-terms in m and mv are same.

By (3) and by construction of X, image(m,X) = mv.

10. By (5), tc constant ci in r0 was substituted by Vi. By (3), ζ0(ru, r, Vi) = xi

11. Since mv 2 X and ζ0(ru, r, Vi) = xi, we have xi 2 δ(ci,m, X)

12. Therefore, we get xi 2 δ(ci, r0, X) for all i = 1 to n

13. By (8), �v is a value vector of r0 with respect to X

14. By (7), γ0(r0, X, �v) = r1 and hence r1 2 γ(r0, X).

185

Texas Tech University, Veena S.Mellarkod, December 2007

15. Therefore r1 2 γ(Π6aM, X). By (3), r 2 evalU(γ(Π6aM, X), X).

�

Lemma 8.1.11. S is an answer set of γ(Π6a, X)[X[Mc i� S is an answer set

of Π6 [X [Mc

Proof:

1. S is an answer set of Π6 [X [Mc i� S is an answer set of gr(Π6) [X [Mc

2. (1) is true i� S \ X is an answer set of evalU(gr(Π6) [Mc, X)

[U = m-atoms(Π) splits gr(Π6) [X [Mc with topU = gr(Π6) [Mc]

3. (2) is true i� S \ X is an answer set of evalU(Π6R [gr(Π6M) [Mc, X)

[Since gr(Π6) = Π6R [gr(Π6M)]

4. (3) is true i� S \ X is an answer set of evalU(gr(Π6M), X) [Π6R [Mc

[Since evalU(Π6R [Mc, X) = gr(Π6R) [Mc]

5. (4) is true i� S \ X is an answer set of evalU(γ(Π6aM, X), X) [Π6R [Mc

[By lemma 8.1.10]

6. (5) is true i� S \ X is an answer set of evalU(γ(Π6aM [Π6R, X) [Mc, X)

[Since γ(Π6R, X) = Π6R]

7. (6) is true i� S \ X is an answer set of evalU(γ(Π6a, X) [Mc, X)

[Since Π6a = Π6R [Π6aM]

8. (7) is true i� S is an answer set of γ(Π6a, X) [Mc [X

[splitting set theorem]

�

186

Texas Tech University, Veena S.Mellarkod, December 2007

8.1.8 Step (7) of P(Π)

In step (7), we rename c-variables to get Π7 = rename(Π6M
, Y)[Π6R

, where Y is a

r ground mixed set.

Lemma 8.1.12. S is an answer set of Π6 [X i� S is an answer set of Π7 [X

Proof:

The proof easily follows from the fact that variables are just renamed in this

step.

�

The proof for P(Π) when de�ned literals are present is very similar.

8.2 Function expand

In this section, we prove properties of functions atleast, atmost and expand.

Lemma 8.2.1. lc(Π,B) is monotonic in its second argument.

Proof:

1. Let X � Y, we show that lc(Π,X) � lc(Π, Y).

Notice that when Y [lc0(Π, Y) is in-consistent then by de�nition of lc,

lc(Π, Y) = r-lits(Π). Therefore, the lemma is trivially true.

2. Now we look at the case when Y [lc0(Π, Y) is consistent. By de�nition of lc,

lc(Π, Y) = Y [lc0(Π, Y).

3. Let r-literal l 2 lc(Π,X), we show that l 2 lc(Π, Y).

We know that l was added by one of the four inference rules of lc0 or l 2 X.

If l 2 X then l 2 Y, we will look at the other cases now.

187

Texas Tech University, Veena S.Mellarkod, December 2007

4. Case(i): Let l be added by �rst inference rule.

(a) By inference rule (1), 9 r 2 ΠR such that l = head(r) and body(r) � X.

(b) Since X � Y, we get body(r) � Y.

(c) By inference rule (1), head(r) 2 lc0(Π, Y). Therefore, l 2 lc(Π, Y).

5. Case(ii): Let l be added by second inference rule.

(a) By inference rule (2), l = not h and atom h is not in the head of any

active rule in ΠR [ΠM with respect to X.

(b) By de�nition of active, 8r 2 ΠR [ΠM such that h = head(r), we have

pos(r) \ neg(X) 6= ; or neg(r) \ pos(X) 6= ;.

(c) Since X � Y, we get pos(r) \ neg(Y) 6= ; or neg(r) \ pos(Y) 6= ;.

(d) Therefore, 8r 2 ΠR [ΠM such that h = head(r), r is not active with

respect to Y.

(e) By inference rule (2), not h 2 lc0(Π, Y) and l 2 lc(Π, Y).

6. Case(iii): Let l be added by third inference rule.

(a) By inference rule (3), 9 h 2 X such that r 2 ΠR [ΠM is the only active

rule with h = head(r). So r-lits(r) are added to lc0(Π,X) and

l 2 r-lits(r).

(b) Since h 2 X, we have h 2 Y.

(c) Since r is the only active rule with respect to X such that h = head(r),

for any other rule r 0 2 ΠR [ΠM such that h = head(r 0), we have

pos(r 0) \ neg(X) 6= ; or neg(r 0) \ pos(X) 6= ;.

(d) Since X � Y, by de�nition of active, for any rule r 0 2 ΠR [ΠM other

than r such that h = head(r 0), we get r 0 is not active with respect to Y.

188

Texas Tech University, Veena S.Mellarkod, December 2007

(e) Rule r can be active or not active with respect to Y.

i. If r is active then r is the only rule with h in the head that is active

with respect to Y. By (6a) and inference rule (3),

r lits(r) � lc0(Π, Y) and l 2 lc(Π, Y).

ii. If r is not active then there is no rule with h in the head that is

active with respect to Y. By inference rule (2), not h 2 lc0(Π, Y).

Since by (2) Y [lc0(Π, Y) is consistent. By (6b) this case is not

possible, hence r is active with respect to Y.

7. Case(iv): Let l be added by fourth inference rule.

(a) By inference rule (4), l = not l 0 and 9 r 2 ΠR and h = head(r) and

not h 2 X and all literals in body(r) except l 0 belong to X. Then

l 2 lc0(Π,X).

(b) Since X � Y, we know that not h 2 Y and all literals in body(r) \ {l 0}

belong to Y.

(c) Case (i): If l 0 2 Y, then body(r) � Y, therefore, h 2 lc0(Π, Y). Since

not h 2 Y, Y [lc0(Π, Y) is in-consistent. This is not possible, so l 0 62 Y.

Therefore by inference rule (4), not l 0 2 lc0(Π, Y). Therefore,

l 2 lc(Π, Y).

8. By (4), (5), (6) and (7), we get lc is monotonic in its second argument.

Lemma: Let Π be a program and B be a ground set of extended r-literals. If

lc0(Π,B) is consistent then it is unique.

Proof:

1. Let lc0(Π,B) be consistent.

189

Texas Tech University, Veena S.Mellarkod, December 2007

We show that it is unique by proof of contradiction.

2. Suppose lc0(Π,B) is not unique and there are two sets X, Y such that

X = lc0(Π,B) and Y = lc0(Π,B).

3. Let Z = X \ Y. We show that Z = lc0(Π,B), by showing that Z is closed

under each of the four inference rules.

4. Let r be a rule in ΠR and body(r) � B. We show that head(r) 2 Z.

(a) Since X = lc0(Π,B) and Y = lc0(Π,B), by inference rule (1),

head(r) 2 X and head(r) 2 Y.

(b) Therefore by construction of Z, head(r) 2 Z. Hence Z is closed under

inference rule (1).

5. Z is closed under other inference rules and can be proven similarly.

6. Z is closed under all the inference rules, and Z = X \ Y. This is not possible

as X and Y are minimal sets closed under the inference rules. We reach a

contradiction.

7. lc0(Π,B) is unique.

The other propositions and lemmas of expand have similar proofs to the

corresponding propositions and lemmas in [75].

8.3 Function c solve

we prove two auxiliary lemmas before we prove the proposition 5.5.5.

Lemma 8.3.1. Let P and Q be two ASP programs and A and B be disjoint

sets of atoms such that:

190

Texas Tech University, Veena S.Mellarkod, December 2007

(a) Lit(P) � A [B and Lit(Q) � A [B.

(b) head(P) � A

(c) head(Q) � B

(d) if not l occurs in P or Q then l 2 A

(e) There are no loops in P [Q between predicates from A and B.

For any S � A and D � B, if S [D is an answer set of P [D and S [D is an

answer set of Q [S then S [D is an answer set of P [Q.

Proof:

1. Let S [D be an answer set of P [D

2. Let S [D be an answer set of Q [S

3. First we show that S [D is closed under the rules of (P [Q)(S[D) .

(a) If not l occurs in P then by properties (a), (d) and the fact that D � B,

we have l 2 S [D i� l 2 S. Therefore, we have (P [D)S[D = PS [D,

(Q [S)S[D = QS [S and (P [Q)S[D = (P [Q)S = PS [QS.

(b) By (1), S [D is closed under (P [D)S[D, and therefore under PS [D.

(c) By (2), S [D is closed under (Q [S)S[D, and therefore under QS [S.

(d) By (3a), (3b) and (3c), S [D is closed under (P [Q)S[D.

4. Now we show that S [D is minimally closed under rules of (P [Q)S.

5. Let S0 [D0 � S [D be minimally closed under rules of (P [Q)S. We show

that S0 [D0 = S [D.

191

Texas Tech University, Veena S.Mellarkod, December 2007

6. First, we show that for each l 2 S [D, there exists a rule r 2 (P [Q)S, such

that head(r) = l and S [D |= body(r).

. By (1), if l 2 S, then there exists a rule in PS such that head(r) = l and

S [D |= body(r).

. By (2), if l 2 D, then there exists a rule in QS such that head(r) = l

and S [D |= body(r).

7. Case(i): Suppose S0 = S and D0 � D.

. Since (P [Q)S = PS [QS, by (5), S0 [D0 is closed under

QS [S = (Q [S)(S[D).

. Since S0 [D0 � S [D, by (2), this is not possible.

8. Case(ii): Suppose D0 = D and S0 � S.

. Since (P [Q)S = PS [QS, by (5), S0 [D0 is closed under

PS [D = (P [D)(S[D).

. Since S0 [D0 � S [D, by (1), this is not possible.

9. Case(iii): Suppose S0 � S and D0 � D. We show that this case is not

possible.

10. First we show that if S0 � S and D0 � D then one of the following statement

holds:

(l1) There exists a cycle (loop) in PS such that the literals in the loop do

not depend on literals from D \ D0.

(l2) There exists a cycle in QS such that the literals in the loop do not

depend on literals from S \ S0.

192

Texas Tech University, Veena S.Mellarkod, December 2007

11. Next we construct a set X � S[D of literals and show that X is either closed

under (P [D)S or closed under (Q [S)S. By (1) and (2) this is not possible.

Now we show that (10) holds.

12. Let L = (S [D) \ (S0 [D0). Let R be the set of rules r 2 (P [Q)S such that

head of r is in L and body(r) � S [D. By (6), we know that, for every

l 2 L, there exists a rule r 2 R such that head(r) = l.

13. Therefore, for every r 2 R, since head(r) 62 S0, body(r) 6� S0 [D0. By

construction of R, body(r) � S [D.

14. By construction of L, and (13), body(r) \ L 6= ;. That is for every rule r in

R, there is a literal from L in body(r).

Now we show that there is a cycle in rules of R. For this we construct a

digraph as follows.

15. Let us construct a digraph G = hV, Ei as follows: The set of nodes V = L.

There is an edge from node a to node b in E if there is a rule r in R such

that a = head(r) and b 2 body(r).

16. By (13), for every node l 2 V , there is at least one edge starting from l and

ending at some other node in V . The out-degree of each node in V is greater

or equal to one. Therefore, there is at least one cycle in G.

17. By construction of R and (16), there is at least one cycle in R. Now we show

that one of the cycles from R satisfy statement (10).

18. Let L = Ls [Ld such that Ls = L \ S and Ld = L \D. According to property

(e), no cycle in G can contain both a literal from Ls and a literal from Ld.

193

Texas Tech University, Veena S.Mellarkod, December 2007

Let us color the nodes in G corresponding to literals Ls red and let us color

the nodes in G corresponding to literals in Ld green. All nodes of G are

either red or green. There is no cycle in G containing both a red node and a

green node.

19. Let r0, . . . , rk be the red cycles of G (containing only red nodes of literals in

Ls) and g0, . . . , gm be green cycles of G (containing only green nodes of

literals in Ld). Let rk+1, . . . , rx be the red nodes not in any cycle (literals in

Ls that are not part of any cycle). Let gm+1, . . . , gy be the green nodes not

in any cycle (literals in Ld that are not in any cycle).

20. A literal a depends on a literal b if there is a directed path from a to b in G.

A literal a depends on a cycle i if there is a node b 2 i such that there is a

directed path from a to b in G.

21. It is easy to show that each literal in rk+1, . . . , rx and gm+1, . . . , gy depends

on some cycle in r0, . . . , rk, g0, . . . , gm.

22. A cycle i depends on cycle j if there is a node a 2 i and a node b 2 j such

that there is a directed path from a to b in G. A cycle i depends on a

literal b, if there is a node a 2 i, such that there is a directed path from a to

b in G.

23. Let Gc = hVc, Eci be a directed graph such that Vc = {r0, . . . , rx, g0, . . . , gy}

be the nodes of Gc. The nodes r0, . . . , rk, g0, . . . , gm corresponds to cycles

r0, . . . , rk, g0, . . . , gm respectively. The nodes rk+1, . . . rx, gm+1, . . . , gy

correspond to literals rk+1, . . . , rx, gm+1, . . . , gy respectively. Let (a, b) be a

directed edge in Ec if a depends on b in G.

24. Now, we show that either there exists a red cycle ri such that ri does not

194

Texas Tech University, Veena S.Mellarkod, December 2007

depend on any green node gj in Gc or there exists a green cycle gi such that

gi does not depend on any red node rj in Gc.

. Consider a subgraph Gd of Gc, where Vd = Vc and Ed � Ec such that

for 0 � i � x and 0 � j � y, if (ri, gj) 2 Ec then (ri, gj) 2 Ed and if

(gj, ri) 2 Ec then (gj, ri) 2 Ed.

. By (18), a cycle in G cannot contain a red node and a green node. Since

graph Gd shows dependency of red nodes on green nodes and vice versa,

there cannot be a cycle in graph Gd, it should be acyclic. Therefore, the

out-degree of all nodes in Gd cannot be greater than or equal to one.

. Hence, there exists at least one node in Gd that has out-degree equal to

zero. Let n1, . . . , nn be nodes in Gd with out-degree equal to zero. we

show that at least one of them is a cycle node.

We prove by contradiction.

. Suppose n1, . . . , nn are all literal nodes. Consider an arbitrary node ni.

. Case(a): Let ni be a red node (ni 2 Ls). By (21), we know that ni

depends on some cycle in r0, . . . , rk, g0, . . . , gm. Since ni has out-degree

equal to zero in graph Gd, we can conclude that ni depends on some

red cycle from r0, . . . , rk. Suppose ni depends on rj. If red cycle rj

depends on some green node gl from g0, . . . , gy then ni depends on gl,

which means out-degree of ni will not be zero in Gd. Therefore we can

conclude that cycle rj does not depend on any node from g0, . . . gy. The

out-degree of rj in Gd is equal to zero and therefore n1, . . . , nn are all

not literal nodes.

. Case(b): Let ni be a green node (ni 2 Ld). By similar argument, there

is a cycle node gj in Gd with out-degree equal to zero and n1, . . . , nn

195

Texas Tech University, Veena S.Mellarkod, December 2007

are all not literal nodes.

. So there exists a red cycle node ri that does not depend on any green

node gj in Gc or there exists a green cycle node gi that does not depend

on any red node rj in Gc.

25. Consider a cycle corresponding to the node with out-degree equal to zero in

Gd. It can be either some red ri or green gi. If it is ri then literals from ri do

not depend on literals from Ld = D \ D0. If it is gi then literals from gi do

not depend on literals from Ls = S \ S0. Therefore, statement (10) holds true.

Now we show statement (11) is true.

26. Case(a): Suppose it is red cycle ri. Let H = L0 [L1 be the set of literals

where L0 is the set of literals from cycle ri and L1 is the set of literals b 2 L

such that there exists a 2 L0 and a depends on b in G.

27. Now, we show that H � Ls.

. From (25), we know that red cycle ri does not depend on any green

node in g0, . . . , gy. So literals corresponding to nodes g0, . . . , gy do not

belong to H.

. By construction of Gc, the literals corresponding to g0, . . . , gy are all

literals from Ld. Therefore, H \ Ld = ; and H � Ls.

28. By construction of H, R and (27), for every rule r in R such that

head(r) 2 H, there exists literal from H in the body of r.

29. Let S1 = S \ H. We show that S1 [D is closed under (P [D)S[D.

30. By properties (a), (d) and fact that D � B, we get S1 [D is closed under

(P [D)(S[D), if it is closed under PS [D

196

Texas Tech University, Veena S.Mellarkod, December 2007

31. S1 [D is trivially closed under rules of D. Now we show that S1 [D is

closed under PS.

32. Case(1): Let r 2 PS such that no literals in r belong to H.

. If S1 [D |= body(r) then S [D |= body(r). Since head(r) 2 S \ H and

S1 = S \ H. we get head(r) 2 S1 [D.

33. Case(2): Let r 2 PS such that head(r) 2 H.

. By construction of R, if r 62 R, then S [D 6|= body(r). Hence,

body(r) 6� S [D . Therefore, body(r) 6� S1 [D and S1 [D 6|= body(r).

. If r 2 R, then by (28), 9l 2 body(r), such that l 2 H. Therefore,

S1 [D 6|= body(r).

34. Case(3): Let r 2 PS such that 9l 2 body(r) and l 2 H. We know

S1 [D 6|= body(r).

35. From Case(1), Case(2) and Case(3), we get S1 [D is closed under PS [D.

Since S1 [D � S [D, by (1), this is not possible.

36. Therefore, if statement (l1) is true then we arrive at a contradiction.

37. Case(b): Suppose the cycle with property in (25) is green gi. Let H = L0 [L1

be the set of literals where L0 is the set of literals from cycle gi and L1 is the

set of literals b 2 L such that there exists a 2 L0 and a depends on b in G.

38. Now, we show that H � Ld.

. From (25), we know that green cycle gi does not depend on any red

node in r0, . . . , rx. So literals corresponding to red nodes r0, . . . , rx do

not belong to H.

197

Texas Tech University, Veena S.Mellarkod, December 2007

. By construction of Gc, the literals corresponding to r0, . . . , rx are all

literals from Lc. Therefore, H \ Lc = ; and H � Ld.

39. By construction of H, R and (38), for every rule r in R such that

head(r) 2 H, there exists literal from H in the body of r.

40. Let D1 = D \ H. We show that S [D1 is closed under (Q [S)S[D.

41. S [D1 is closed under (Q [S)(S[D), if it is closed under QS [S.

42. S[D1 is trivially closed under rules of S. Now we show that S[D1 is closed

under QS.

43. Case(1): Let r 2 QS such that no literals in r belong to H.

. If S [D1 |= body(r) then S [D |= body(r). Since head(r) 2 D \ H and

D1 = D \ H, we get head(r) 2 S [D1.

44. Case(2): Let r 2 QS such that head(r) 2 H.

. If r 62 R, then by construction of R, S [D 6|= body(r). Hence,

body(r) 6� S [D . Therefore, body(r) 6� S [D1 and S [D1 6|= body(r).

. If r 2 R, then by (39), 9l 2 body(r), such that l 2 H. Therefore,

S [D1 6|= body(r).

45. Case(3): Let r 2 QS such that 9l 2 body(r) and l 2 H. We know

S [D1 6|= body(r).

46. From Case(1), Case(2) and Case(3), we get S [D1 is closed under QS [S.

Since S [D1 � S [D, by (2), this is not possible.

47. Therefore, if statement (l2) is true then we arrive at a contradiction.

198

Texas Tech University, Veena S.Mellarkod, December 2007

48. By (36) and (47), we see that l1 and l2 cannot hold. If S0 � S and D0 � D,

then either l1 or l2 holds. Therefore, it is not possible that S0 � S and

D0 � D.

49. By (7), (8) and (48), we get S0 = S and D0 = D and S [D is a minimal set

closed under PS [QS.

50. Therefore, S [D is an answer set of P [Q.

�

Lemma 8.3.2. Let P be an ASP program and S be an answer set of P. Let T

be a set of atoms such that

(p1) head(P) \ T = ; and

(p2) if not l occurs in P then l 62 T .

For every rule r such that body(r) \ T 6= ;, if

(a) 9l 2 (pos(r) \ T) such that l 62 S or

(b) 9l 2 (neg(r) \ T) such that l 2 S or

(c) head(r) 2 S

then S [T is an answer set of P [T .

Proof:

1. Let S be an answer set of P.

2. First we show that S [T is closed under (P [T)(S[T).

(a) By (1), S is closed under PS.

199

Texas Tech University, Veena S.Mellarkod, December 2007

(b) Since T is a set of atoms, by property (p2), we have

(P [T)(S[T) = PS [T . Therefore, it su�ces to show that S [T is closed

under PS [T .

(c) Let r 2 PS such that body(r) � S [T . We show that head(r) 2 S [T .

(d) Case(i): Suppose body(r) \ T = ;. By (2c), body(r) � S. By (2a), we

get head(r) 2 S. Therefore, head(r) 2 (S [T).

(e) Case(ii): Suppose body(r) \ T 6= ;. By de�nition of reduct, 9r0 2 P

such that r = rS
0 and condition (b) is not satis�ed by r0. By (2c),

condition (a) is not satis�ed. Therefore, condition (c) is satis�ed by r0

and head(r0) 2 S. Since head(r0) = head(r) , head(r) 2 S.

(f) By cases (i) and (ii), and fact that S [T is trivially closed under rules

of T , we get S [T is closed under PS [T .

3. Now we show that S [T is minimally closed under PS [T .

4. Let V � S [T be minimally closed under PS [T .

5. Let V0 = V \ S. By (4), T � V . Therefore V = V0 [T .

6. Now we show that V0 is closed under PS.

(a) By (4), V = V0 [T is closed under PS [T .

(b) Case(i): Let r 2 PS such that body(r) \ T = ;. If body(r) � V0 then

body(r) � V . By (6a), head(r) 2 V . By property (p1),

head(r) \ T = ;, since V = V0 [T , we get head(r) 2 V0.

(c) Case(ii): Let r 2 PS such that body(r)\ T 6= ;. Then by construction of

V0, we get body(r) 6� V0.

(d) V0 is closed under PS.

200

Texas Tech University, Veena S.Mellarkod, December 2007

7. By (1), V0 = S and by de�nition of V , V = S [T .

8. By (4), S [T is answer set of P [T .

�

Now we prove proposition 5.5.5.

Proposition 5.5.5: Let Π be a program and S be a set of r-literals. Let

Q = query(Π, S) be a query, A be a set of answer constraints, and θ be any

solution of A. Let V be the set of variables in Q, D = d-lits(Q)|
�V
θ be a set of

d-literals and X = mcv set(Π)|
�V
θ be a candidate mixed set. If

c solve(ΠD, S, Q,A) returns true then if S [D [X [Mc is an asp-answer set

of ΠR [ΠM [D [X [Mc then there exists an answer set M of Π such that

S [X is the simpli�ed part of M.

Proof:

1. Let Y = S [D [X [Mc be an asp-answer set of ΠR [ΠM [D [X [Mc.

2. The program ΠD [S [X [Mc is strati�ed and therefore has a single answer

set. Let S [Dm [X [Mc be an answer set of ΠD [S [X [Mc, where Dm is

a set of d-literals.

3. We show that the set M = S [Dm [X [Mc is AC(C) answer set of Π.

4. Using lemma 8.3.2, �rst we show that M is an asp-answer set of

ΠR [ΠM [Dm [X [Mc.

5. Consider the set T = Dm \ D and the program

P = ground(ΠR [ΠM) [D [X [Mc. By (1), Y is the answer set of P.

6. First we show that P and T satisfy the properties in lemma 8.3.2.

201

Texas Tech University, Veena S.Mellarkod, December 2007

(a) By de�nition of P and T , we get head(P) \ T = ;. Therefore, property

(p1) from lemma 8.3.2 is satis�ed.

(b) By syntactic restriction in AC(C) programs, if not l occurs in rules of P

then l is a r-literal and therefore l 62 T . Property (p2) is satis�ed.

Now we show that for every rule r in P such that body(r) \ T 6= ;,

either condition (a) or (b) or (c) is satis�ed.

(c) Let Rg be the rules in P such that body(r) \ T 6= ;. By de�nition of P

and T , Rg � ground(ΠM).

(d) Let R � ΠM such that Rg � ground(R).

(e) Consider a rule rg 2 Rg, by de�nition of ground, 9r 2 R such that

rg 2 ground(r). Note that r is r-ground.

(f) Case(i): If Y 6|= r lits(r) then either r pos(r) 6� Y or r neg(r) \ Y 6= ;.

Therefore, we have pos(rg) 6� Y or neg(rg) \ Y 6= ;. In this case, rule rg

satis�es property (a) or (b) of lemma 8.3.2.

(g) Case(ii): If Y |= r lits(r) then

i. Suppose head(r) 2 Y. Since head(rg) = head(r), head(rg) 2 Y. In

this case, rule rg satis�es property (c) of lemma 8.3.2.

ii. Suppose head(r) 62 Y. We show that there exists an m-atom m in

body(rg), such that m 62 X.

iii. By transformation tr2, every r 2 ΠM, contains only one d-literal.

Let d = d-lit(r). Note that d is r-ground.

iv. By construction of query(Π, S), ¬d 2 Q. Since

c solve(ΠD, S,Q,A) returned true, we have ΠD [S [X [Mc |= Q.

The answer constraint A consists of constraints on �V such that

202

Texas Tech University, Veena S.Mellarkod, December 2007

ΠD [S [X [Mc |= d-lits(Q). Therefore, A consists of constraints

on �V such that ΠD [S [X [Mc |= ¬d.

v. Let the c-variables in r be �Vr. Let θr be the substitution for

variables in �Vr such that rg = ground(r)
�Vr
θr
. Let d0 = T \ body(rg).

By de�nition of ground, we get d0 = ground(d)
�Vr
θr
.

vi. Each c-variable in �Vr occurs in some m-atom m1, . . . , mk 2 body(r).

We get mig = ground(mi)
�Vr
θr

such that mig 2 body(rg).

vii. By de�nition of T and (2), ΠD [S [X [Mc |= d0. By (iv), for any

solution substitution θ of A, d0 6= d
�Vr
θ .

viii. By rename procedure in step (7) of P(Π), we get �Vr � �V . Let

θ(�Vr) be the substitution of variables in �Vr from solution θ.

ix. For any solution substitution θ of A, θr 6= θ(�Vr). Therefore, 8θ of

A, 9Vi 2 �Vr, such that (Vi = v) 2 θ and (Vi = u) 2 θr and v 6= u.

x. Let Vi occur in m-atom m 2 body(r). Let a = m
�Vr
θ and b = m

�Vr
θr
.

We know by de�nition of X, a 2 X and b 62 X. By de�nition of b,

b 2 body(rg).

xi. Therefore, by de�nition of X, for any solution θ of A,

9mi 2 body(rg) such that mi 62 X.

xii. Therefore, property (a) of lemma 8.3.2 is satis�ed by rg.

(h) Therefore, P [T satisfy the properties from lemma 8.3.2.

7. Since Y is an answer set of P, and P [T satis�es properties of lemma 8.3.2,

we get Y [T is an answer set of P [T .

8. Therefore, M is an asp-answer set of ΠR [ΠM [Dm [X [Mc.

9. Now we show that M is an asp-answer set of ΠR [ΠM [ΠD [X [Mc using

203

Texas Tech University, Veena S.Mellarkod, December 2007

lemma 8.3.1.

10. The set U = m-atoms(Π) [Mc splits W1 = ΠR [ΠM [Dm [X [Mc with

botU(W1) = X [Mc. The answer set of botU(W1) = X [Mc.

11. By (7) and splitting set theorem, S [Dm is an answer set of

evalU(ΠR [ΠM [Dm, X [Mc). Let P1 = evalU(ΠR [ΠM, X [Mc). By

de�nition of eval, evalU(ΠR [ΠM [Dm, X [Mc) = P1 [Dm. Therefore,

S [Dm is an answer set of P1 [Dm.

12. By (2), M is an answer set of W2 = ΠD [S [X [Mc. The set

U = m-atoms(Π)[Mc splits W2. Therefore by splitting set theorem, S[Dm

is an answer set of eval(ΠD [S, X[Mc). Let P2 = evalU(ΠD, X[Mc). Since

eval(ΠD [S, X [Mc) = P2 [S, we get S [Dm is an answer set of P2 [S.

13. The set U = m-atoms(Π) [Mc splits W3 = ΠR [ΠM [ΠD [X [Mc with

botU(W3) = X [Mc. The answer set of botU(W3) = X [Mc.

14. By splitting set theorem, M is an answer set of W3 i� S [Dm is an answer

set of evalU(ΠR [ΠM [ΠD, X [Mc). By de�nition of eval,

evalU(ΠR [ΠM [ΠD, X [Mc) = P1 [P2. Therefore, M is an answer set of

ΠR [ΠM [ΠD [X [Mc i� S [Dm is an answer set of P1 [P2.

15. We show that P1 = evalU(ΠR [ΠM, X [Mc) and P2 = evalU(ΠD, X [Mc)

satisfy the properties of lemma 8.3.1.

16. Let A = r-lits(Π) and B = d-lits(Π). By de�nition of signature, A \ B = ;.

17. By de�nition of A and B, Lit(P1) � A [B and Lit(P2) � A [B. Condition

(a) is satis�ed by P1 and P2.

204

Texas Tech University, Veena S.Mellarkod, December 2007

18. Since heads of rules from ΠR [ΠM are subset of r-lits(Π), head(P1) � A.

Similarly, head(P2) � B. Condition (b) and (c) are satis�ed by P1 and P2.

19. By syntactic restrictions on program Π, condition (d) and (e) are satis�ed by

P1 and P2. All conditions from lemma 8.3.1 are satis�ed by P1 and P2.

20. By de�nition of S and Dm, S � A and Dm � B.

21. By (10), S [Dm is an answer set of P1 [Dm. By (12), S [Dm is an answer

set of P2 [S.

22. Therefore by lemma 8.3.1, S [Dm is an answer set of P1 [P2.

23. By (14), M = S [Dm [X [Mc is an answer set of ΠR [ΠM [ΠD [X [Mc.

24. Therefore, M is an answer set of ground(Π) [X [Mc.

25. By de�nition of answer set, M is an AC(C) answer set of Π and S [X is the

simpli�ed part of M.

205

Texas Tech University, Veena S.Mellarkod, December 2007

8.4 AC(C) solver

To prove proposition, we use the following lemmas.

Lemma 8.4.1. Let Π be a program and B be a set of extended r-literals. Let

S = expand(ΠR [ΠM, B). If S is consistent and covers all r-atoms of Π then

pos(S) is closed under Π
pos(S)
R .

Proof:

1. Let r 2 Π
pos(S)
R such that body(r) � pos(S). We show that head(r) 2 pos(S).

2. By de�nition of reduct, 9 r0 2 ΠR such that r = r
pos(S)
0 and

r neg(r0) \ pos(S) = ;. Since S covers all r-atoms of Π, we get

r neg(r0) � neg(S).

3. By construction of r, body(r) = r pos(r0). By (1), r pos(r0) � pos(S).

4. By (2) and (3), S |= body(r0).

5. By construction of S and inference rule (1) of de�nition of lower closure, S is

closed under rules of ΠR. Therefore, 8r 2 ΠR, if body(r) � S then

head(r) 2 S.

6. By (4) and (5), head(r0) 2 S. Since head(r) = head(r0), we get

head(r) 2 pos(S).

7. Therefore, pos(S) is closed under Π
pos(S)
R .

Lemma 8.4.2. Let Π = T (Π0) be a program input to AC(C) solver and S be a

set of ground extended r-literals that covers all r-atoms from Π. Let

Q = query(Π, S) and �V = vars(Q). Let c solve(ΠD,S,Q,A) return true and θ

be a solution(A). Let D = d-lits(Q)|
�V
θ and X = mcv set(Π)|

�V
θ . Let

206

Texas Tech University, Veena S.Mellarkod, December 2007

r 2 ground(ΠM). If S |= r-lits(r), X |= m-lits(r) and D |= d-lits(r) then

head(r) 2 S.

Proof:

1. Consider the case when transformations tr1 and tr2 are performed after

computing P(Π).

2. By transformation tr2, for every rule r0 2 ΠM, there is only one d-literal in

the body of r0. Therefore, for every r 2 ground(ΠM), there is only one

d-literal in the body of r. (Note that ΠM is r-ground).

3. Let r0 2 ΠM and d = d-lits(r0). By tr2 and (1), the d-predicate dp of d is

unique in ΠM. Therefore, in ground(ΠM), dp occurs only in rules of

ground(r0).

4. Let r 2 ground(ΠM) such that S |= r-lits(r), X |= m-lits(r) and

D |= d-lits(r). By (2), there exists exactly one d-literal in d-lits(r). Let it be

l, we get l 2 D. Let dp be d-predicate of l.

5. By construction of l, we know 9 dp(�tr, �Vc) 2 d-lits(Q) such that

l = dp(�tr, �Vc)|
�V
θ .

6. By construction of Q, we know that dp(�tr, �Vc) 2 d-lits(Q) i� 9 r0 2 ΠM such

that S |= r-lits(r0) and head(r0) 2 S and dp(�tr, �Vc) 2 d-lits(r0).

7. Since l 2 body(r) and l is formed by d-predicate dp, by construction of r

and (3), we get that r 2 ground(r0). Therefore head(r) = head(r0).

8. By (6), head(r) 2 S.

The lemma 8.4.2 assumes the construction of T (Π0) as described in chapter 5. In

this construction, the transformations tr1 and tr2 are performed after computing

207

Texas Tech University, Veena S.Mellarkod, December 2007

P(Π0). However, for e�ciency during implementation, the transformations are

performed before computing P(Π0). Let us call this construction T 1. The next

lemma is proven for the implemented case.

Lemma 8.4.3. Let Π = T 1(Π0) be a program input to AC(C) solver and S be a

set of ground extended r-literals that is consistent and covers all r-atoms

from Π. Let Q = query(Π, S) and �V = vars(Q). Let c solve(ΠD,S,Q,A) return

true and θ = a solution(A). Let D = d-lits(Q)|
�V
θ and X = mcv set(Π)|

�V
θ . Let

r 2 ground(ΠM). If S |= r-lits(r), X |= m-lits(r) and D |= d-lits(r) then

head(r) 2 S.

Proof:

Consider the case when transformations tr1 and tr2 are performed before

computing P(Π).

1. By transformation tr2, for every rule r0 2 ΠM, there is only one d-literal in

the body of r0. Therefore, for every r 2 ground(ΠM), there is only one

d-literal in the body of r. (Note that ΠM is r-ground).

2. Let r 2 ground(ΠM) such that S |= r-lits(r), X |= m-lits(r) and

D |= d-lits(r).

We show that head(r) 2 S by proof of contradiction.

3. Suppose head(r) 62 S.

4. By (1), there exists exactly one d-literal l in d-lits(r).By (2), l 2 D. Let dp

be d-predicate of l.

5. By construction of r, 9 r0 2 ΠM such that r 2 ground(r0). Since r0 is

r-ground, we have head(r) = head(r0) and r-lits(r) = r-lits(r0). Therefore,

we get head(r0) 62 S and S |= r-lits(r0).

208

Texas Tech University, Veena S.Mellarkod, December 2007

6. By construction of Q and (5), there is a literal ¬dp(�tr, �V0) 2 d-lits(Q) such

that dp(�tr, �V0) = d-lits(r0).

7. By construction of l, there is a literal dp(�tr, �V1) 2 d-lits(Q) such that

l = dp(�tr, �V1)|
�V
θ .

8. Since c solve(ΠD,S,Q,A) returned true, the constraints in A on �V are such

that for any solution θ of A, we get ΠD [S [X [Mc |= d-lits(Q)|
�V
θ .

9. By (8), for any θ = a solution(A), we get that

ΠD [S [X [Mc |= ¬dp(�tr, �V0)|
�V
θ and ΠD [S [X [Mc |= dp(�tr, �V1)|

�V
θ .

10. By (7) and (9), we get for any θ, l 6= dp(�tr, �V0)|
�V
θ .

11. Let �C be the variables in r0. Let ζ be the substitution such that r = r0|
�C
ζ .

Hence, l = dp(�tr, �V0)|
�C
ζ .

12. By construction of Q, �C � �V . Let θ(�C) be the restriction of θ on �C. That is,

θ(�C) be the substitution such that it consists of only variable substitutions

from θ for variables in �C.

13. By (10) and (11), we get that for any θ, θ(�C) 6= ζ.

14. Therefore, 9 v 2 �C such that θ(�C) and ζ di�er in their substitutions for v.

By syntactic restrictions in chapter 4, variable v occurs in some m-atom m

in r0.

15. Let a = m
�C
θ(�C)

and b = m
�C
ζ . By de�nition of mcv set, we get

m 2 mcv set(Π), hence a 2 X. By construction of r, b 2 body(r). By

de�nition of X, b 62 X.

16. Therefore, X 6|= m-lits(r). We reach a contradiction.

209

Texas Tech University, Veena S.Mellarkod, December 2007

Lemma 8.4.4. Let Π be a program and B be a set of ground extended

r-literals. Let S = expand(ΠR [ΠM, B) be consistent and cover all r atoms of

Π. Then for every literal l 2 pos(S), there exists a rule r 2 ΠR [ΠM with

head(r) = l such that

. r pos(r) � pos(S).

. r neg(r) � neg(S).

Proof:

1. By de�nition of expand, we get

expand(ΠR [ΠM, B) = expand(ΠR [ΠM, S). So we use

expand(ΠR [ΠM, S) in this proof.

2. Since S is consistent, by de�nition of expand, we get

pos(S) � atmost(ΠR [ΠM, S).

3. Let l 2 pos(S). By (2), l 2 atmost(ΠR [ΠM, S).

4. By de�nition atmost(ΠR [ΠM, S) is the deductive closure of α(ΠR [ΠM, S).

5. By (3) and (4), there is a rule r 2 α(ΠR [ΠM, S) such that l = head(r) and

body(r) � atmost(ΠR [ΠM, S).

6. By construction of r, body(r) \ neg(S) = ;. Since S covers all r-atoms, we

get body(r) � pos(S).

7. By construction of r, we know 9 r0 2 ΠR [ΠM such that r = α(r0, S).

8. By construction of r, we get body(r) = r pos(r0). By (6),

r pos(r0) � pos(S).

210

Texas Tech University, Veena S.Mellarkod, December 2007

9. By construction of r, we also know that r0 is not falsi�ed by S. That is

r pos(r0) \ neg(S) = ; and r neg(r0) \ pos(S) = ;.

10. Since S covers all r-atoms, we get r neg(r0) � neg(S).

11. Therefore, r0 2 ΠR [ΠM with head(r0) = l such that r pos(r0) � pos(S)

and r neg(r0) � neg(S).

�

Lemma 8.4.5. Let Π be a program and B be a set of ground extended

r-literals. Let S = expand(ΠR [ΠM, B) be consistent and cover all r-atoms of

Π. Let Q = query(Π, S) and �V = vars(Q) and let c solve(ΠD,S,Q,A) return

true and θ be a solution(A). Let D = d-lits(Q)|
�V
θ and X = mcv set(Π)|

�V
θ .

Then for every literal l 2 pos(S) there exists a rule r 2 ΠR [ground(ΠM) such

that l 2 head(r) and pos(S) [X [D |= body(r).

Proof:

1. Let l 2 pos(S).

2. By Lemma (8.4.4), we know that 9r 2 ΠR [ΠM such that l 2 head(r) and

S |= r-lits(r). That is r neg(r) \ pos(S) = ;, r pos(r) \ neg(S) = ; and

r pos(r) � pos(S).

3. Case(a): If this r belongs to ΠR, then pos(S) [X [D |= body(r).

4. Case(b): If this r belongs to ΠM then we have to show that 9r0 2 ground(r)

such that pos(S) [X [D |= body(r0). (Note that ΠM is r-ground).

5. By tr2, there exists exactly one d-literal d 2 body(r). Since S |= r-lits(r)

and head(r) = l and l 2 pos(S), by construction of Q, d 2 d-lits(Q).

211

Texas Tech University, Veena S.Mellarkod, December 2007

6. By de�nition of mcv set(Π), m-lits(r) � mcv set(Π).

7. Let �C be the variables in r. we know that �C are all c-variables. Further by

construction of Q, we get �C � �V .

8. Let r0 = r|
�C
θ , where θ is a solution of A as de�ned above. We know

r0 2 ground(r).

9. By (6) and construction of r0 and X, we get m-lits(r0) � X.

10. By (5) and construction of r0 and D, we get d-lits(r0) � D.

11. By (2), (9) and (10), pos(S) [X [D |= body(r0).

�

Lemma 8.4.6. Let Π be a program input to AC(C) solver and B be a set of

ground extended r-literals. Let S = expand(ΠR [ΠM, B) be consistent. Let L

be a set of ground r-literals such that 8r 2 ΠR [ΠM with head(r) 2 L, if

(a) r pos(r) \ neg(S) 6= ; or

(b) r neg(r) \ pos(S) 6= ; or

(c) head(r) 2 neg(S) or

(d) r pos(r) \ L 6= ;

Then L \ atmost(ΠR [ΠM, S) = ;.

Proof:

Recall that atmost(ΠR [ΠM, S) is the deductive closure of the positive

program α(ΠR [ΠM, S).

212

Texas Tech University, Veena S.Mellarkod, December 2007

1. By construction of α, we get α(r, S) = ; for rules r 2 ΠR [ΠM which satisfy

conditions (a) or (b) or (c).

2. Let R be the set of rules r 2 α(ΠR [ΠM, S) with head(r) 2 L. By (1) and

conditions on L and construction of α, 8r 2 R, condition (d) is true.

The program P = α(ΠR [ΠM, S) is positive. We can compute the deductive

closure using iterated �x point approach [10]. Recall, TP ↑ ω is the deductive

closure of P where TP ↑ 0 = ;, TP ↑ k = TP(TP ↑ k − 1) and TP(I) = {l | P

contains a rule r such that head(r) = l and body(r) � I }.

3. Suppose L \ atmost(ΠR [ΠM, S) 6= ;. Therefore, there exists a literal l 2 L

which was �rst added in the computation of TP ↑ ω. Let us say it was added

at TP ↑ k.

4. Since l is the �rst literal from L added to TP ↑ ω, we have L \ TP ↑ k − 1 = ;.

5. By (3) and de�nition of TP ↑ k, 9r 2 P such that head(r) = l and

body(r) � TP ↑ k − 1.

6. By construction of R, the rule r is in R. By (2), condition (d) is satis�ed by

r. That is r pos(r) \ L 6= ;.

7. By (5) and (6), we get L \ TP ↑ k − 1 6= ;.

8. By (4), we reach a contradiction. Hence, L \ atmost(ΠR [ΠM, S) = ;.

�

Lemma 8.4.7. Let Π be a program input to AC(C) solver and B be a set of

ground extended r-literals. Let S = expand(ΠR [ΠM, B) be consistent and

cover all r-atoms of Π. Let Q = query(Π, S) and �V = vars(Q) and let

213

Texas Tech University, Veena S.Mellarkod, December 2007

c solve(ΠD,S,Q,A) return true and θ be a solution(A). Let D = d-lits(Q)|
�V
θ

and X = mcv set(Π)|
�V
θ . Let L be a set of ground r-literals such that

8r 2 ΠR [ground(ΠM) with head(r) 2 L, if

(a1) S [X [D [Mc 6|= body(r) or

(a2) r pos(r) \ L 6= ;

Then L \ atmost(ΠR [ΠM, S) = ;.

Proof:

We use lemma 8.4.6 to prove this lemma. It su�ces to show that the

conditions in lemma 8.4.6 for program ΠR [ΠM are satis�ed. We use the

conditions (a1) and (a2) satis�ed by program ΠR [ground(ΠM) to show

this.

1. Let r 2 ΠR with head(r) 2 L.

(a) Case(i): Let condition (a1) be satis�ed by r. Since r contains only

r-literals, we get S 6|= body(r). Hence, r pos(r) \ neg(S) 6= ; or

r neg(r) \ pos(S) 6= ;. Therefore condition (a) or (b) in lemma 8.4.6 is

satis�ed by r.

(b) Case(ii): Let condition (a2) be satis�ed by r. Condition (d) in lemma

8.4.6 is satis�ed by r.

2. Let r 2 ΠM with head(r) 2 L. Let R be the set of all groundings of r.

(a) Suppose rule r satis�es condition (d) from lemma 8.4.6, then we are

done.

(b) Suppose rule r does not satisfy condition (d) from lemma 8.4.6. we

show that (a) or (b) or (c) is satis�ed by r.

214

Texas Tech University, Veena S.Mellarkod, December 2007

(c) By (2b) we know 8r0 2 R, (a2) is not satis�ed. Since head(R) 2 L and

r0 2 ground(ΠM), 8r0 2 R, (a1) is satis�ed. That is

S [X [D [Mc 6|= r-lits(r0) [m-lits(r0) [d-lits(r0).

(d) Case(i): Let S 6|= r-lits(r). Since S covers all r-atoms of Π, we get

r pos(r) \ neg(S) 6= ; or r neg(r) \ pos(S) 6= ;. Therefore condition

(a) or (b) in lemma 8.4.6 is satis�ed by r.

(e) Case(ii): Let S |= r-lits(r). By de�nition of R, we get 8r0 2 R,

S |= r-lits(r0).

(f) By (2c) and (2e), we get 8r0 2 R, X [D [Mc 6|= m-lits(r0) [d-lits(r0).

(g) By construction of r and r0, conditions (a) or (b) or (d) of lemma 8.4.6

are not satis�ed by r. Now we show that condition (c) of lemma 8.4.6 is

satis�ed by r by a proof of contradiction.

(h) Suppose (c) of lemma 8.4.6 is not satis�ed. That is head(r) 62 neg(S).

We show that this case is not possible by constructing a rule r 0 in R

such that S [X [D [Mc |= body(r 0) thus reaching a contradiction

from (2c).

(i) By (2e) S |= r-lits(r). Since S covers all r-atoms, by (2h), we get

head(r) 2 pos(S).

(j) By construction of Q and tr2, since head(r) 2 S and S |= r-lits(r) then

9d 2 d-lits(Q) such that d = d-lits(r).

(k) Let �C be the variables in r. By construction �C � �V . Consider the rule

r 0 = r|
�C
θ .

(l) By construction of r 0 and D, we get d-lits(r 0) � D.

(m) Since m-lits(r) � mcv set(Π), by construction of r 0 and X, we get

m-lits(r 0) � X.

215

Texas Tech University, Veena S.Mellarkod, December 2007

(n) Since S |= r-lits(r), we get S |= r-lits(r 0).

(o) By (2l), (2m) and (2n), we get S [X [D [Mc |= body(r 0).

(p) Since r 0 2 R, by (2c) we reach a contradiction.

3. We showed that 8r 2 ΠR [ΠM, with head(r) 2 L, at least one of the

condition from (a) to (d) in lemma 8.4.6 is satis�ed.

4. By lemma 8.4.6, we get L \ atmost(ΠR [ΠM, S) = ;.

Proposition 5.5.6: Let a program Π and a set of extended r-literals B be

inputs to AC(C) solver. Let

(s1) S = expand(ΠR [ΠM, B) is consistent and covers all r-atoms of Π

(s2) Q = query(Π, S), �V = vars(Q) and c solve(ΠD, S,Q,A) returns true at

step (d) of AC(C) solver

(s3) θ = a solution(A) , D = d-lits(Q)|
�V
θ , X = mcv set(Π)|

�V
θ and Mc is the

intended interpretation of c-atoms(Π).

Then pos(S) [D [X [Mc is an asp-answer set of ΠR [ΠM [D [X [Mc

agreeing with B.

Proof:

1. Let Y = pos(S) [D [X [Mc.

2. By statement (s1), pos(S) agrees with B. By de�nition of Y, r-atoms(Y)

= pos(S). Therefore by de�nition of agrees, Y agrees with B.

3. Now we show that Y is an asp-answer set of ΠR [ΠM [D [X [Mc.

4. (3) is true i� Y is an asp-answer set of ground program

P = ΠR [ground(ΠM) [D [X [Mc.

216

Texas Tech University, Veena S.Mellarkod, December 2007

5. (4) is true i� Y is the minimal set closed under the rules of PY.

6. First, we show that Y is closed under PY.

(a) By de�nition of reduct, ΠR, ΠM and Y,

PY = Π
pos(S)
R [ground(ΠM)pos(S) [D [X [Mc.

(b) By de�nition of Y, we get Y is closed under rules of D [X [Mc.

(c) Since statement s1 is true, we use lemma 8.4.1 to conclude that pos(S)

is closed under rules of Π
pos(S)
R . By construction of Y and Π

pos(S)
R , Y is

closed under rules of Π
pos(S)
R .

(d) Now using lemma 8.4.2, we show that Y is closed under rules of

ground(ΠM)Y.

i. Let r 2 ground(ΠM)pos(S) such that body(r) � Y. We need to show

that head(r) 2 Y.

ii. By de�nition of reduct, 9r0 2 ground(ΠM) such that r = r
pos(S)
0

and r neg(r0) \ pos(S) = ;.

iii. Since S covers all r-atoms of Π, we get r neg(r0) � neg(S).

iv. Since body(r) = r pos(r0) [m-lits(r0) [d-lits(r0), by (i) we get

r pos(r0) � pos(S), m-lits(r0) � X and d-lits(r0) � D.

v. By (iii) and (iv), S |= r-lits(r0), X |= m-lits(r0) and D |= d-lits(r0).

vi. By lemma (8.4.2), head(r0) 2 S. Since head(r0) = head(r), by

construction of Y, we get head(r) 2 Y.

(e) Y is closed under PY.

7. Now we show that Y is minimally closed under PY.

8. Let Z � Y be minimally closed under PY.

217

Texas Tech University, Veena S.Mellarkod, December 2007

9. Since X [D [Mc are facts in PY and they do not appear as heads of any

other rule in PY, X [D [Mc � Z.

10. Therefore we can represent Z as Z = Z0 [X[D[Mc such that Z0 � pos(S).

11. Let L = pos(S) \ Z0. L is a set of ground r-literals.

12. Now we show that L satis�es conditions of lemma 8.4.7.

(a) Suppose r is a rule from ΠR [ground(ΠM) with head(r) 2 L.

(b) We show that r satis�es at least one of the conditions (a1) or (a2) of

lemma 8.4.7.

(c) Suppose rY = ;. By de�nition of reduct, r neg(r) \ pos(S) 6= ;.

Therefore, pos(S) [X [D [Mc 6|= body(r). Condition (a1) of lemma

8.4.7 is satis�ed by r.

(d) Suppose r0 = rY 6= ;. Then r0 2 PY.

(e) Case(i): Suppose body(r0) 6� Y. Then Y 6|= body(r). Therefore,

pos(S) [X [D [Mc 6|= body(r). Condition (a1) of lemma 8.4.7 is

satis�ed by r.

(f) Case(ii): Suppose body(r0) � Y. We will show that r satis�es condition

(a2) of lemma 8.4.7.

(g) Since head(r0) 2 L, we get head(r0) 62 Z. By (8), body(r0) 6� Z.

(h) Since body(r0) � Y, 9 l 2 Y \ Z such that l 2 body(r0). Since r0 is from

a reduct, l 2 pos(S).

(i) Since l 2 pos(S) and l 62 Z, by construction of L, l 2 L. Hence,

r pos(r0) \ L 6= ;. Therefore, r pos(r) \ L 6= ;. Hence, r satis�es

condition (a2) of lemma 8.4.7.

218

Texas Tech University, Veena S.Mellarkod, December 2007

(j) We can conclude from lemma 8.4.7 that L \ atmost(ΠR [ΠM, S) = ;.

13. By de�nition of expand, if l 62 atmost(ΠR [ΠM, S) then not l 2 S. Therefore

L � neg(S), but we know L � pos(S). By (s1), we reach a contradiction.

14. Therefore, Y is minimally closed under PY. BY (3), (4) and (5), Y is an

answer set of ΠR [ΠM [X [D [Mc.

�

Proposition 5.2.1: Let Π be a program and B be a set of ground extended

literals input to ACengine. If ACengine returns true and a set A then A is a

simpli�ed answer set of Π agreeing with B.

The proof of this proposition follows from Propositions 5.5.5 and 5.5.6.

�

219

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 9

RELATED WORK

In this chapter we are interested in describing related works that integrate

di�erent reasoning techniques to compute answer sets of programs in ASP

languages, in particular integration to CLP techniques.

9.1 Language ASP-CLP

In [37], the authors introduce a framework called ASP-CLP, which is an extension

of A-Prolog to generic constraint domains. The syntax and semantics are a

natural extension of A-Prolog. The main objective of their work was to address

the aggregation capabilities within ASP. Towards this, they develop and study an

instance of ASP-CLP called ASP-CLP(Agg) specialized to constraint theory of

aggregates.

An ASP-CLP clause (or rule) in ASP-CLP is of the form:

A :− C | B1, . . . , Bk (9.1)

where A is an asp atom (regular atom), B1, . . . , Bk are asp (regular) literals and

C is an arbitrary conjunction of primitive constraints and their negation (called

C-constraint) over a constraint domain C.

A program in ASP-CLP is a set of ASP-CLP clauses. The language ASP-CLP

over a constraint domain C does not classify predicates as in language AC(C).

ASP-CLP rules have syntactic similarities to the mixed rules of AC(C): the

C-constraints in the body of ASP-CLP rules are conjunction of primitive

constraints over a constraint domain and c-atoms of mixed rules of AC(C) are

conjunctions of primitive constraints over a constraint domain. The asp literals in

220

Texas Tech University, Veena S.Mellarkod, December 2007

the bodies of ASP-CLP rules are like regular literals in the body of mixed rules of

AC(C). The marked di�erence between the two is the presence of mixed atoms in

the body of AC(C) mixed rules. These mixed atoms act like connections of

relations between regular and constraint predicates. The C-constraints in the

body of ASP-CLP rule, directly connects with the asp literals in the body.

Therefore, for a generic constraint domain, this direct connection forces the

grounding of constraints along with the other asp literals in the body of the rules

(unless asp literals are also not ground).

Now we study semantic relation between arbitrary ASP-CLP and AC(C)

languages de�ned over a same constraint domain. Let L1 be an AC(C) language

over a constraint domain C. Let L2 be a language of ASP-CLP over the same

constraint domain C. Let Π be an L1 program, and Πa be the translation of Π to

A-Prolog. Program Πa is a valid program of L2 (Πa contains choice rules but

authors in [37] allow such rules in their language and view them as short hand for

normal rules). Note that the program Πa contains constraint atoms from the

constraint domain C. Let Mc be the intended interpretation of the constraint

predicates in Π. For instance, if > is a constraint relation over a domain of

integers then Mc contains {1 < 2, 1 < 3, . . . 2 < 3, . . . }. The answer sets of

Πa [Mc with respect to asp semantics are in one to one correspondence with

answer sets of Πa in ASP-CLP semantics.

A particular instance that is studied in [37] is language ASP-CLP(Agg), an

extension of A-Prolog, where the constraint domain is for aggregates (like sum,

count, min, max functions over sets and multi-sets). Aggregates have been

shown to signi�cantly improve the compactness and clarity of programs in logic

programming and there is a lot of work in including aggregates in ASP

[29, 95, 102, 30, 48].

221

Texas Tech University, Veena S.Mellarkod, December 2007

A solver is implemented for computing ASP-CLP answer sets of ASP-CLP(Agg)

programs. The solver tightly integrates ASP reasoning techniques of ASP solver

Smodels [75] and �nite domain constraint solving techniques of CLP Solver

ECLiPSe [2]. The ASP-CLP(Agg) system consists of two levels of computation.

The �rst level is a preprocessor which uses lparse to ground all the literals in the

program except the aggregate literals. The aggregate literals are rewritten as

constraints understood by the language of ECLiPSe. The rewriting of aggregates

depends on the ground atoms involved with the aggregate. The second level is the

inference engine which computes ASP-CLP answer sets of the ground

ASP-CLP(Agg) program. For each ground atom a, the engine introduces a new

boolean domain variable Xa in ECLiPSe. For each aggregate literal, a new

boolean domain variable is introduced and is used to describe the aggregate as a

constraint in ECLiPSe. For instance, if extension of p is p(3), p(5), p(7), then an

aggregate count({ X : p(X) }) � 2 is written as:

X3 : 0..1, X5 : 0..1, X7 : 0..1, X3 + X5 + X7 � 2

where variables X3, X5 and X7 denote atoms p(3), p(5) and p(7) respectively.

The information exchange between Smodels and ECLiPSe is two ways. The

Smodels system is capable of posting constraints to the ECLiPSe system. The

ECLiPSe system communicates Smodels for either sending the truth values of a

posted completed aggregate constraint (truth values of the dependent atoms of

the aggregate literal are decided and therefore the truth value of aggregate literal

can be computed) or for sending back values of labeled variables appearing in a

constraint corresponding to non-completed aggregates.

Systems ADsolver and ASP-CLP(Agg) allow di�erent constraint domains

(di�erence constraints vs aggregates) and work with di�erent constraint solvers

222

Texas Tech University, Veena S.Mellarkod, December 2007

(Dsolver vs ECLiPSe) but the underlying inference engine of ADsolver and

system ASP-CLP(Agg) tightly couple ASP reasoning techniques with constraint

solving techniques. A higher level di�erence between the two implementations is

that ASP-CLP(Agg) system has the advantage of returning truth values for atoms

other than aggregate literals. This allows for computing more consequences at

each step. The disadvantage of this approach is that when there is a con
ict in

Smodels (ASP engine), then backtrack occurs in two places: (a) Smodels chosen

atoms's truth value or (b) ECLiPSe, the solver needs to �nd another solution. In

ADsolver , the expand dc function also uses Dsolver to compute consequences of

r-literals but Dsolver is not used to guess or return truth values of r-literals. This

method has the advantage that backtracking occurs only at one place: ASP

engine. During backtracking the constraint store is just relaxed, and there is no

need to �nd a di�erent answer as we know there exists a solution for the relaxed

constraint store. Another di�erence is that, the constraints in ASP-CLP(Agg) are

always on boolean variables but can be complex constraints. The constraints of

ADsolver are all di�erence constraints but on variables ranging over large

numerical domains. The solver ACsolver is more general and allows di�erent

types of constraints. Even in ACsolver backtracking occurs only on the ASP

reasoning side.

9.2 Language CASP

Consider an instance of AC(C) with the following properties:

. there are no de�ned predicates in the language and

. for any rule r, if mixed atoms or constraint atoms are in the body of r then

head of r is empty.

223

Texas Tech University, Veena S.Mellarkod, December 2007

This language is called CASP [12]. There are two di�erent semantics for CASP

called (a) strong semantics and (b) weak semantics. Strong semantics is similar to

our semantics for AC(C). Let Π be a program in language CASP. Let X be a

candidate mixed set and Mc be the intended interpretation of constraint

predicates in Π. The AC(C) answer sets of Π have one to one correspondence

with CASP strong semantic answer sets of Π.

An answer set under strong semantics of CASP is an answer set under weak

semantics of CASP. In strong semantics, the set of mixed atoms in any answer set

is a candidate mixed set, that is, for every r-ground mixed atom of Π, there exists

exactly one ground mixed atom in the answer set. In weak semantics, this

condition is relaxed and the set of mixed atoms in any answer set is a candidate

mixed set or its superset.

Both ADsolver and CASP algorithms integrate ASP reasoning techniques with

constraint solving techniques. The CASP algorithm for computing answer sets of

CASP programs uses constraint solving techniques to check for consistency of the

constraint store. The ADsolver algorithm for computing answer sets of AC0

programs uses constraint solving techniques to check for consistency of the

constraint store and also to compute new consequences (r-literals) in the

expand dc function. This allows for deciding on the truth values of some r-atoms

earlier in computation of an answer set.

Unlike the tightly coupled ADsolver , CASP solver loosely couples an o� the shelf

ASP inference engine Smodels [75] and �nite domain constraint solver GNU

Prolog [31]. Given a program Π, the CASP solver �rst computes all the answer

sets of regular part of Π using Smodels and then for each of the answer set, the

constraints are fed to the constraint solver to check for consistency and to generate

a solution. If there is no solution for the set of constraints then the system uses a

224

Texas Tech University, Veena S.Mellarkod, December 2007

di�erent answer set and feeds the constraint solver with a new set of constraints.

The advantage of CASP solver is that it allows more general constraints unlike

ADsolver which only allows di�erence constraints. Further, ADsolver has the

advantage of using incremental constraint solving techniques. A new CASP solver

is now being built by tightly coupling ASP and constraint solving engines.

9.3 ASP and SAT solvers

ASP took a new turn with work in developing algorithms and building solvers

that use an underlying satis�ability (SAT) solver to compute answer sets for

A-Prolog programs. There are two solvers that compute answer sets of A-Prolog

programs using SAT solvers: ASSAT [68] and Cmodels [66].

Given a A-Prolog program Π, these solvers ground Π using an intelligent

grounder like lparse, then ground(Π) is transformed to a satis�ability problem

whose solutions have one to one correspondence with answer sets of Π. The

solutions to the satis�ability problem are computed using SAT solvers. Since SAT

solvers have been studied well, this method of computing answer sets for

A-Prolog programs is quite e�cient [66].

This approach has the disadvantage that A-Prolog programs need to be fully

grounded before computing answer sets. Therefore, for programs containing

variables ranging over large numerical domains, the solvers might behave the same

way traditional ASP solvers do.

Towards building complex applications, SAT solvers have been integrated with

other theorem solvers to handle arithmetic (constraint solving) and other

decidable theories. Such solvers built are called Satis�ability Modulo Theorem

(SMT) solvers.

225

Texas Tech University, Veena S.Mellarkod, December 2007

9.3.1 Satis�ability Modulo Theories

Satis�ability modulo theories (SMT) can be seen as an extended form of

propositional satis�ability, where propositions are either simple boolean

propositions or constraints in a speci�c theory [15]. SMT is a decision problem for

logical formulas with respect to combination of background theories and �nding

whether such formulas are satis�able. For instance, an example of SMT formula

is: X ∨ Y ∧ 3 �A + 4 � B � 7 where X and Y are boolean variables and A,B are

variables ranging in real domain.

An SMT solver based on theory T would tightly integrate a SAT solver with a

theory-based solver for T . For instance, a SMT solver based on di�erence logic

would tightly integrate a SAT solver with a di�erence constraint solver. The SAT

solver interacts with the theory solver through a well de�ned interface. The SAT

solver sends conjunctions of atoms and the theorem solver checks for feasibility

(consistency) of these atoms put together. The theorem solver then returns true

or false to the SAT solver. If the conjunction of the predicates is satis�able then

the theorem solver also returns a valid solution for the set of variables in the

predicates. The SAT solver continues searching for a solution or backtracks

depending on the return value of theorem solver. For SMT solvers to be e�cient,

the underlying theorem solver should be incremental and backtrackable.

Some current SMT solvers are MathSAT [15] and Ario [89]. MathSAT is a

DPLL-based decision procedure for the SMT problem for various theories,

including those of Equality and Uninterpreted Function (EUF), Separation Logic

(SEP), Linear Arithmetic over the Reals (LA(R)) and Linear Arithmetic over the

Integers (LA(Z)).

We believe SMT solvers can be used to compute answer sets of V(C) programs by

integrating answer set reasoning techniques of ASP with satis�ability and

226

Texas Tech University, Veena S.Mellarkod, December 2007

constraint solving techniques of a SMT solver.

227

Texas Tech University, Veena S.Mellarkod, December 2007

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

This dissertation work investigates the integration of di�erent reasoning

techniques to compute the answer sets of programs in ASP paradigm. In

particular, we investigate the integration of answer set reasoning from A-Prolog

solvers [75, 72], a form of abduction from CR − Prolog solvers [4], resolution

from CLP [58] and constraint solving techniques from CLP. Our work is a

signi�cant step to declaratively solve problems that cannot be solved by pure ASP

or CLP solvers for example the USA-Advisor extension with time constraints. To

our knowledge, the solvers built are the �rst to tightly integrate di�erent

reasoning techniques to compute answer sets from partially ground programs.

The CASP solver [12] loosely couples a ASP reasoning system with a constraint

solver. The ASP-CLP(Agg) system [37] tightly couples ASP reasoning with

constraint reasoning but needs to compute the whole ground instantiation of

atoms in the program.

The contribution of this work is enumerated as follows:

1. We developed a collection of languages AC(C) parameterized over C.

. Syntax of AC(C) is an extension to syntax of A-Prolog.

. Semantics of AC(C) is a natural extension of semantics of A-Prolog.

2. We designed an algorithm ACsolver , to compute answer sets of a class of

programs in AC(C) and prove its correctness. The algorithm computes

answer sets of programs from their partial ground instantiations.

. Partial grounder uses intelligent grounding mechanisms from Lparse

[99].

228

Texas Tech University, Veena S.Mellarkod, December 2007

. The algorithm tightly couples answer set reasoning, a form of abduction

and CLP's resolution and constraint solving techniques.

3. We implemented ACsolver for the constraint domain of real numbers.

. We used a CLP(R) solver to tightly integrate resolution and constraint

solving techniques.

4. We designed a collection of languages V(C) parameterized over C. These

languages allow consistency restoring capabilities of CR-Prolog [3].

5. We study an instance of V(C) called AC0 and an instance of AC(C), AC(R).

The study concentrates on knowledge representation methodologies and

reasoning capabilities of AC0 and AC(R).

6. We designed an algorithm ADsolver , to compute answer sets of programs in

AC0 and prove correctness. The algorithm computes answer sets of AC0

programs from their partial ground instantiations.

. The partial grounder uses intelligent grounding mechanisms from

Lparse.

. The algorithm tightly couples answer set reasoning, a form of abduction

and di�erence constraint solving techniques.

. The implemented di�erence constraint solver Dsolver is incremental.

7. We implemented ADsolver to tightly integrate answer set reasoning

mechanisms and constraint solving techniques.

8. We showed e�ciency of ADsolver over classical ASP and CR-Prolog

solvers for planning with temporal constraints using an extension of system

USA-Advisor.

229

Texas Tech University, Veena S.Mellarkod, December 2007

10.1 Future Work

There are several directions the current work can be expanded. Some of these

future works are implementation related, some are research related and some are

experimental studies. We discuss and enumerate these accordingly.

Some of the implementation related future works are as follows:

1. ACsolver can be improved by changing the underlying CLP solver to be

incremental. Though the implementation is tight, the current solver queries

a set of goals every time from scratch. The time needed to search for a

successful derivation sequence starting from the beginning will be much

greater when compared to searching only for new goals added to the query

by using a previous solution, especially when resolution techniques are used

in the sequence.

2. An improvement of ACsolver would be to send or input the answer

constraints to a constraint solver and get solutions. As the underlying CLP

engine in ACsolver returns only answer constraints (primitive constraints on

c-variables), ACsolver outputs these constraints. Though the answer

constraints ensure that there is a solution, it would be nice to see some

solution substitutions to these variables. This can be done by simply

forwarding the output answer constraints to any constraint solver and

getting a result.

3. ADsolver and ACsolver use Surya as an underlying inference engine. Surya

was built to support Extended Evaluation Rule (EER), which is an

inference mechanism [72] to deduct inconsistencies. EER e�ciently retrieves

information spread across several rules of a program. For the current version

of the solvers the EER mechanism is switched o� since it needs some

230

Texas Tech University, Veena S.Mellarkod, December 2007

additional implementation to include it. Adding EER would improve the

e�ciency of ADsolver and ACsolver whenever EER is used and would

perform well otherwise too.

4. ACsolver can be modi�ed to allow r-literals in the body of de�ned rules.

This increases the expressiveness allowed by de�ned rules. For instance, the

continuous time problem in TAG [46] can be naturally represented using

AC(R) but ACsolver needs to be extended to allow r-literals in the body of

de�ned rules to be able to compute answer sets. This requires more

modi�cation of the underlying CLP system of ACsolver .

5. Currently, ACsolver allows only variables as arguments in the place of

c-terms in mixed atoms. This restriction can be removed by allowing

c-terms.

Some of the research related future works are as follows:

1. ACsolver algorithm does not allow a cycle between de�nition of a de�ned

literal and a regular literal. In a standard algorithm [75, 72] to compute

answer sets of A-Prolog programs, cycles between r-literals are reasoned

using function atmost. Function atmost computes the upper closure of the

program with respect to the partial answer set built so far. If two r-literals

are in a cycle and get support from each other, then such r-literals do not

belong to the upper closure and therefore their negations are added to the

partial answer set. If there is a cycle between de�nitions of d-literals then

the CLP operational semantics goes into an in�nite loop. If there are cycles

between d-literals and r-literals in a program, then neither the atmost

function detects it or the function csolve detects its. This requires constant

check whether the d-literals and r-literals are supporting each other through

231

Texas Tech University, Veena S.Mellarkod, December 2007

cycles. For this, there needs to be an e�cient mechanism. Consider the

following example:

Example 10.1.1. Let q and r be regular predicates, at be a mixed

predicate and d be a de�ned predicate. Let Π be a program as follows:

q(a). q(b).

#csort time(0..1000).

r(X) :- q(X), at(X, T), d(X, T).

d(X,T) :- r(X), 3 * T < 1000.

Notice that there is a cycle between de�nitions of r and d.

The current algorithm would return four simpli�ed answer sets:

(a) {q(a), q(b), at(a, V1), at(b, V2), 0 � V1 � 1000, 0 � V2 � 1000}

(b) {q(a), q(b), at(a, V1), at(b, V2), r(a), 0 � V1 < 333.333, 333.333 � V2 �

1000}

(c) {q(a), q(b), at(a, V1), at(b, V2), r(b), 333.333 � V1 � 1000, 0 � V2 <

333.333}

(d) {q(a), q(b), at(a, V1), at(b, V2), r(a), r(b), 0 � V1 < 333.333, 0 � V2 <

333.333}

The only simpli�ed answer set of the above program is (a). The others are

supported but not minimal. The wrong answer sets are returned because of

the cycle between regular and de�ned rules. One trivial way to check for

these cycles and a literal's support is by using function atmost also on

de�ned rules. This requires grounding the de�ned rules and is not what we

would like to have. Alternate method is to use a dependency graph to �nd

232

Texas Tech University, Veena S.Mellarkod, December 2007

such supportedness. Notice that a dependency graph for predicates in the

program is not enough. For instance, if we add r(a) to the above program as

a fact then just a dependency graph on predicates is not enough anymore.

we need a dependency graph for the whole ground program which is not

feasible when constraint variables have a large domain. It seems like we need

something in the middle, a dependency graph between predicate symbols

and then a further check to ensure literal support. We are not sure where

such type of rules will be required for knowledge representation. More

investigation is required.

2. Consider a collection of languages L(C) obtained from V(C) by removing

cr-rules. Recently ASP solvers have been built which use SAT solvers to

compute answer sets. The underlying SAT solver can be replaced with an

SMT solver that has constraint solving techniques built into it. Such solvers

can be used to compute answer sets of L(C) programs. In ADsolver ,

changing the underlying constraint solver for a di�erent constraint domain

would give rise to a new solver for a language in V(C). This is true for such

SMT based answer set solvers too. The partial grounder Pgroundd can be

directly used for getting the input language for such solvers. SAT based

solvers for computing answer sets add loop formulas [68] to the programs in

order to compute minimal supported models. Though these loop formulas

do not add extra variables to the program, sometimes the number of loop

formulas to be added can grow exponential. In L(C) programs, the

constraint atoms are in the body of denials, therefore they do not give rise to

new loop formulas as these c-rules will not form a loop. For an SMT based

answer set solver for computing answer sets of L(C) programs, the loop

formulas are only for the regular part of the program. This gives rise to the

233

Texas Tech University, Veena S.Mellarkod, December 2007

reasoning that this work might just require replacing the underlying SAT

solver by an SMT solver but more investigation is needed. Consider AC(C)

languages where there are no de�ned predicates. Such languages can contain

r-literals in the head of mixed rules. These SMT based solvers can be easily

extended to such languages but new kind of loop formulas for the middle

rules will be required. Building solvers for AC(C) languages might be more

challenging because there is no resolution involved with SMT solvers and

grounding the de�ned rules would give rise to a large ground instantiation.

3. Abductive reasoning techniques integrated from CR-Prolog solvers, act as a

meta layer for the computation of answer sets. For a class of CR-Prolog

languages, this reasoning can be tightly coupled with ASP reasoning

techniques. This might dramatically improve the e�ciency of the solvers for

programs containing cr-rules. Further study is needed to build such

techniques.

4. The csolve function in ACsolver algorithm can be improved by modifying

the cneg derivation. The current de�nition can be extended to capture the

r-literal consequences in the derivation for partial answer sets. This would

allow us to query negative literals even when the set of r-literals computed

so far is just partial (does not cover all atoms in the program).

5. Notice that the current ACsolver algorithm developed does not allow mixed

atoms in the head of rules. This makes it impossible to write inertia for

mixed atoms. This is okay for programs where we view mixed atoms as

functions. We can look at a syntactically restricted class where we can allow

mixed atoms in the head. For instance we can write a rule as

% John takes half hour to eat.

234

Texas Tech University, Veena S.Mellarkod, December 2007

at(S, end, T2) :- o(eat(john),S), at(S, start, T1), T2 = T1+30.

This would require the inference system to send the constraint T2 = T1+30,

to the underlying constraint solver. Though, this can look simple, some of

our proofs use the fact that mixed atoms do not occur in the head of rules.

They need to be studied and proven again to be sure the algorithm works

�ne.

Some of the experimental studies that need to be done are as follows:

1. ADsolver does not use constraint solving techniques during execution of

lookahead function [75]. Lookahead function is used for �nding immediate

inconsistencies and thus saving a lot of wasted computation time. Though

lookahead is exhaustive, most times it is very helpful and gives good

e�ciency. ADsolver does not use constraint solving mechanisms during the

execution of lookahead because these techniques might be slower and would

thereby decrease the e�ciency of the solver. This might not be true. We

need to investigate more by running examples and studying the e�ects of

running lookahead with and without constraint solving.

2. A di�erent kind of lookahead is possible for the constraint atoms in

ADsolver . Just like lookahead for regular atoms which �nds immediate

inconsistencies, we can add a new lookahead for c-atoms which deduct

immediate inconsistencies of c-atoms. Given a set of constraints C in a store,

we can include a new constraint c to the store and check for feasibility. If

the store C [{c} is not feasible then we can conclude ¬c. This conclusion

would trigger new consequences on regular literals. This approach may work

very well just like lookahead for regular literals, but more experimental

study should be done.

235

Texas Tech University, Veena S.Mellarkod, December 2007

3. Using a new lookahead for c-atoms allows us to backjump on the c-atoms

when inconsistency is found. This can dramatically increase the e�ciency of

the solver. More experimental study should be done to see when such

backjumping helps e�ciency.

236

Texas Tech University, Veena S.Mellarkod, December 2007

BIBLIOGRAPHY

[1] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.

In J. Minker, editor, Foundations of Deductive Databases and Logic

Programming, pages 89{148, 1988.

[2] Krzysztof Apt and Mark Wallace. Constraint Logic Programming Using

ECLiPSe. Cambridge University Press, 2006.

[3] Marcello Balduccini. Answer Set Based Design of Highly Autonomous,

Rational Agents. PhD thesis, Texas Tech University, Dec 2005.

[4] Marcello Balduccini. CR-models: An inference engine for CR-prolog. In

Logic Programming and Nonmonotonic Reasoning, May 2007.

[5] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. A-prolog as a

tool for declarative programming. In Proceedings of the 12th International

Conference on Software Engineering and Knowledge Engineering

(SEKE'2000), pages 63{72, 2000.

[6] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer set

based design of knowledge systems. Annals of Mathematics and Arti�cial

Intelligence, 2006.

[7] Marcello Balduccini, Michael Gelfond, Monica Nogueira, and Richard

Watson. The usa-advisor: A case study in answer set planning. In

Proceedings of the 6th International Conference on Logic Programming

and Nonmonotonic Reasoning, pages 439{442, Sep 2001.

[8] Marcello Balduccini, Michael Gelfond, Monica Nogueira, and Richard

Watson. Planning with the usa-advisor. In David Kortenkamp, editor, 3rd

237

Texas Tech University, Veena S.Mellarkod, December 2007

NASA International workshop on Planning and Scheduling for Space,

Oct 2002.

[9] Marcello Balduccini and Monica Nogueira. Usa-advisor source code.

http://www.krlab.cs.ttu.edu/Software/Download/rcs/, Dec 2007.

[10] Chitta Baral. Knowledge Representation, Reasoning, and Declarative

Problem Solving. Cambridge University Press, Jan 2003.

[11] Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains.

In Workshop on Logic-Based Arti�cial Intelligence. Kluwer Academic

Publishers, Jun 2000.

[12] S. Baselice, P. A. Bonatti, and Michael Gelfond. Towards an integration of

answer set and constraint solving. In In Proceedings of ICLP, pages 52{66,

2005.

[13] J. Bellone, A. Chamard, and C. Pradelles. Plane - an evolutive planning

system for aircraft production. In Proc. First International Conference

on Practical Applications of Prolog, 1992.

[14] F. Benhamou and W. Older. Applying interval arithmetic to real, integer

and boolean constraints. Journal of Logic Programmiing, 1995.

[15] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila,

Peter Rossum, Stephan Schulz, and Roberto Sebastiani. MathSAT: Tight

Integration of SAT and Mathematical Decision Procedures. Journal of

Automated Reasoning, 35(1-3):265{293, 2005.

238

Texas Tech University, Veena S.Mellarkod, December 2007

[16] Daniel R. Brooks, Esra Erdem, Selim T. Erdogan, James W. Minett, and

Don Ringe. Inferring phylogenetic trees using answer set programming.

Journal of Automated Reasoning, 2007.

[17] Daniel R. Brooks, Esra Erdem, James W. Minett, and Don Ringe.

Character-based cladistics and answer set programming. Practical Aspects

of Declarative Languages, pages 37{51, 2005.

[18] Holzbaur C. Ofai clp(q,r) manual. Edition 1.3.3, Austrian Research

Institute for Arti�cial Intelligence, Vienna, TR-95-09, 1995.

[19] Francesco Calimeri, Tina Dell'Armi, Thomas Eiter, Wolfgang Faber, Georg

Gottlob, Giovanbattista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola

Leone, Simona Perri, Gerard Pfeifer, and Axel Polleres. The dlv system. In

Sergio Flesca and Giovanbattista Ianni, editors, Proceedings of the 8th

European Conference on Arti�cial Intelligence (JELIA 2002), Sep 2002.

[20] Carlson B. Carlsson M., Ottosson G. An open-ended �nite domain

constraint solver. Proc. Programming Languages: Implementations,

Logics, and Programs, 1997.

[21] Pawel Cholewinski, V. Wiktor Marek, and Miroslaw Truszczynski. Default

reasoning system deres. In International Conference on Principles of

Knowledge Representation and Reasoning, pages 518{528. Morgan

Kaufmann, 1996.

[22] K. P. Chow and M. Perrett. Airport counter allocation using constraint

logic programming. In Proc. PACT97, 1997.

[23] P. Codognet and D. Diaz. Compiling constraints in clp(fd). Journal of

Logic Programming, 27(3), 1996.

239

Texas Tech University, Veena S.Mellarkod, December 2007

[24] C. Collignon. Gestion optimisee de resources humaines pour l'audiovisuel.

In Proc. CHIP users' club, 1996.

[25] Alain Colmerauer and Philippe Roussel. The birth of prolog. History of

Programming Languages. The second ACM SIGPLAN conference on

History of programming languages, pages 37{52, 1993.

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to Algorithms. MIT Press, 1993.

[27] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem proving. Communications of the ACM, 5 (7):394{397, 1962.

[28] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial

Intelligence, 49:61{95, 1991.

[29] Tina DellArmi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, Simona

Perri, and Gerald Pfeifer. System description: Dlv with aggregates. Logic

Programming and Nonmonotonic Reasoning, 2923:326{330, 2004.

[30] Tina DellArmi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald

Pfeifer. Aggregate functions in dlv. Answer Set Programming, 2003.

[31] Daniel Diaz. The GNU Prolog website. http://www.gprolog.org, 2007.

[32] Y. Dimopoulos, J. Koehler, and B. Nebel. Encoding planning problems in

nonmonotonic logic programs. In Proceedings of the 4th European

Conference on Planning, volume 1348 of Lecture Notes in Arti�cial

Intelligence (LNCS), pages 169{181, 1997.

240

Texas Tech University, Veena S.Mellarkod, December 2007

[33] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and

F. Berthier. The constraint logic programming language chip. In proc.

International Conference on Fifth Generation Computer Systems, 1988.

[34] K. J. Dryllerakis. Residual sldnf in clp languages. Technical Report, 1995.

[35] Yu. Lierler E. Giunchiglia and M. Maratea. Cmodels-2: Sat-based answer

set programming. In Proc. of AAAI, 2004.

[36] D. East and M. Truszczynski. More on wire routing with asp. Technical

Report in Answer Set Programming: Towards E�cient and Scalable

Knowledge Representation and Reasoning 2001 AAAI Spring

Symposium, pages 39{44, 2001.

[37] Islam Elkabani, Enrico Pontelli, , and Tran Cao Son. Smodels with clp and

its applications: A simple and e�ective approach to aggregates in asp.

ICLP-04, pages 73{89, 2004.

[38] E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe. Reconstructing the

evolutionary history of indo-european languages using answer set

programming. Proceedings of the 5th International Symposium on

Practical Aspects of Declarative Languages (PADL 03), 2003.

[39] E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic networks and

logic programming. Theory and Practice of Logic Programming,

6(5):539{558, 2006.

[40] E. Erdem, V. Lifschitz, and M. Wong. Wire routing and satis�ability

planning. Proceedings of CL-2000, pages 822{836, 2000.

241

Texas Tech University, Veena S.Mellarkod, December 2007

[41] Esra Erdem. Application of logic programming to planning: Computational

experiments. In Proceedings of LPNMR-99, Lecture Notes in Arti�cial

Intelligence (LNCS). Springer Verlag, Berlin, 1999.

[42] Esra Erdem. Theory and applications of answer set programming. PhD

thesis, University of Texas at Austin, 2002.

[43] Pollack Martha E. et. al. Pearl: A mobile robotic assistant for the elderly.

AAAI Workshop on Automation as Eldercare, Aug 2002.

[44] Pollack Martha E. et. al. Autominder: An intelligent cognitive orthotic

system for people with memory impairment. Robotics and Autonomous

Systems, 44(3-4):273{282, 2003.

[45] Thomas Eiter et. al. Working group on answer set programming WASP,

TUWIEN node. http://www.kr.tuwien.ac.at/, Dec 2007.

[46] V. Lifschitz et. al. TAG Discussion. http://www.cs.utexas.edu/

users/vl/tag/discussions.html, Dec 2007.

[47] Boi Faltings and Marc Torrens. Using soft csps for approximating

pareto-optimal solution sets. In Ulrich Junker, editor, Preferences in AI

and CP: Symbolic Approaches, AAAI 2002 Spring Symposium Series,

pages 99{106, 2002.

[48] Michael Gelfond. Representing knowledge in a-prolog. In Antonis C. Kakas

and Fariba Sadri, editors, Computational Logic: Logic Programming and

Beyond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408,

pages 413{451. Springer Verlag, Berlin, 2002.

242

Texas Tech University, Veena S.Mellarkod, December 2007

[49] Michael Gelfond and Nicola Leone. Knowledge representation and logic

programming. Arti�cial Intelligence, 138(1{2), 2002.

[50] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for

logic programming. In Proceedings of ICLP-88, pages 1070{1080, 1988.

[51] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic

programs and disjunctive databases. New Generation Computing, pages

365{385, 1991.

[52] Nevin C. Heintze, Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and

Roland H. C. Yap. The clp(r) programmer's manual, 1992.

[53] ILOG CP. ILOG Constraint Programming. http://www.ilog.fr/products/cp,

2000.

[54] J. Ja�ar and J. Lassez. Constraint logic programming. Proceedings of the

Principles of Programming Languages Conference, pages 111{119, Jan

1987.

[55] Joxan Ja�ar and Michael J. Maher. Constraint logic programming: A

survey. Journal of Logic Programming, 19/20:503{581, 1994.

[56] Joxan Ja�ar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. The

semantics of constraint logic programs. Journal of Logic Programming,

37(1-3):1{46, 1998.

[57] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The

clp(r) language and system: an overview. Compcon, pages 376{381, 1991.

243

Texas Tech University, Veena S.Mellarkod, December 2007

[58] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The

clp(r) language and system. ACM Transactions on Programming

Languages and Systems, 14(3):339{395, 1992.

[59] Gabriele Kern-Isberner, Christoph Beierle, and Oliver Dusso. Modelling and

implementing a knowledge base for checking medical invoices with dlv. In

Gerhard Brewka, Ilkka Niemel�a, Torsten Schaub, and Miroslaw

Truszczynski, editors, Nonmonotonic Reasoning, Answer Set

Programming and Constraints, number 05171 in Dagstuhl Seminar

Proceedings. Internationales Begegnungs- und Forschungszentrum fuer

Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

<http://drops.dagstuhl.de/opus/volltexte/2005/261> [date of citation:

2005-01-01].

[60] L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal reasoning about

preferences, 2001.

[61] F. Kokkoras and S. Gregory. D-wms: Distributed workforce management

using clp. In Proc. PACT98, 1998.

[62] Loveleen Kolvekar. Developing an inference engine for cr-prolog with

preferences. Master's thesis, Texas Tech University, Dec 2004.

[63] Robert A. Kowalski. Predicate logic as programming language. IFIP

Congress, pages 569{574, 1974.

[64] Robert A. Kowalski. Logic for Problem Solving. Prentice Hall PTR, 1979.

[65] Nicola Leone, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob,

Luigi Granata, Gianluigi Greco, Edyta Ka?ka, Giovambattista Ianni,

244

Texas Tech University, Veena S.Mellarkod, December 2007

Domenico Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki,

Riccardo Rosati, Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina.

Data integration: a challenging asp application. In Logic Programming and

Nonmonotonic Reasoning, volume 3662 of Lecture Notes in Computer

Science, pages 379{383, 2005.

[66] Yu. Lierler and M. Maratea. Cmodels-2: Sat-based answer sets solver

enhanced to non-tight programs. In Proc. of LPNMR-7, 2004.

[67] V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van

Hentenryck, editor, Proc. of Eleventh Int'l Conf. on Logic

Programming, pages 23{38, 1994.

[68] Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic

program by sat solvers. In Proceedings of AAAI-02, 2002.

[69] V. Wiktor Marek and Miroslaw Truszczynski. Stable models and an

alternative logic programming paradigm. The Logic Programming

Paradigm: a 25-Year Perspective, pages 375{398, 1999.

[70] Kim Marriott and Peter J. Stuckey. Programming with Constraints: an

Introduction. MIT Press, 1998.

[71] John McCarthy. Elaboration tolerance, 1998.

[72] Veena S. Mellarkod. Optimizing the computation of stable models using

merged rules. Master's thesis, Texas Tech University, May 2002.

[73] Veena S. Mellarkod. Acsolver. http://www.krlab.cs.ttu.edu///software/,

Dec 2007.

245

Texas Tech University, Veena S.Mellarkod, December 2007

[74] Veena S. Mellarkod. Adsolver. http://www.krlab.cs.ttu.edu///software/,

Dec 2007.

[75] Ilkka Niemela and Patrik Simons. Extending the Smodels System with

Cardinality and Weight Constraints, pages 491{521. Logic-Based

Arti�cial Intelligence. Kluwer Academic Publishers, 2000.

[76] Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and

implementing the stable model semantics. Arti�cial Intelligence,

138(1{2):181{234, Jun 2002.

[77] Monica Nogueira. Building Knowledge Systems in A-Prolog. PhD thesis,

University of Texas at El Paso, May 2003.

[78] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson,

and Matthew Barry. An a-prolog decision support system for the space

shuttle. In Alessandro Provetti and Son Cao Tran, editors, Answer Set

Programming: Towards E�cient and Scalable Knowledge

Representation and Reasoning, AAAI 2001 Spring Symposium Series, Mar

2001.

[79] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson,

and Matthew Barry. An a-prolog decision support system for the space

shuttle. In PADL 2001, pages 169{183, 2001.

[80] V. Orekov. On glivenko's classes of formulas. Trudy Mat. Inst. Steklov,

98:131{154, 1968.

[81] K. Heus P. Chan and G. Veil. Nurse scheduling with global constraints in

chip: Gymnaste. In Proc. PACT98, 1998.

246

Texas Tech University, Veena S.Mellarkod, December 2007

[82] M. Perrett. Using constraint logic programming techniques in container port

planning. ICL Technical Journal, pages 537{545, 1991.

[83] Martha E. Pollack, Colleen E. McCarthy, Sailesh Ramakrishnan, Ioannis

Tsamardinos, Laura Brown, Steven Carrion, Dirk Colbry, Cheryl Orosz, and

Bart Peintner. Autominder: A planning, monitoring, and reminding

assistive agent. 7th International Conf. on Intelligent Autonomous

Systems, 2002.

[84] Martha E. Pollack and Nicola Muscettola. Temporal and resource reasoning

for planning, scheduling and execution. Tutorial Forum Notes, AAAI06,

Jul 2006.

[85] G. Ramalingam, J. Song, L. Joscovicz, and R. Miller. Solving di�erence

constraints incrementally. Algorithmica, 23:261{275, 1999.

[86] F. Rossi, A. Sperduti, K. Venable, L. Khatib, P. Morris, and R. Morris.

Learning and solving soft temporal constraints: An experimental study,

2002.

[87] F. Rossi, K. Venable, and L. Khatib. Two solvers for tractable temporal

constraints with preferences, 2002.

[88] Francesca Rossi. Constraint (logic) programming: A survey on research and

applications. K.R. Apt et al. (Eds.): New Trends in Constraints, LNAI

1865, pages 40{74, 2000.

[89] Hossein M. Sheini and Karem A. Sakallah. A sat-based decision procedure

for mixed logical/integer linear problems. CPAIOR, pages 320{335, 2005.

247

Texas Tech University, Veena S.Mellarkod, December 2007

[90] H. Simonis and P. Charlier. Cobra - a system for train crew scheduling.

Proc. DIMACS workshop on constraint programming and large scale

combinatorial optimization, 1998.

[91] H. Simonis and T. Cornelissens. Modeling producer consumer constraints.

In Proc. First International Conference on Principles and Practice of

Constraint Programming, 1995.

[92] Patrik Simons. Extending and Implementing the Stable Model

Semantics. PhD thesis, Helsinki University of Technology, Helsinki, Apr

2000. Research Report 58.

[93] Barbara M. Smith. Modelling. In F. Rossi, P. van Beek, and T. Walsh,

editors, Handbook of Constraint Programming, pages 378{406. Elsevier,

2006.

[94] Timo Soininen and Ilkka Niemela. Developing a declarative rule language

for applications in product con�guration. In Proceedings of the First

International Workshop on Practical Aspects of Declarative Languages,

May 1999.

[95] Tran Cao Son and Enrico Pontelli. A constructive semantic characterization

of aggregates in answer set programming. Theory and Practice of Logic

Programming, pages 355{375, 2007.

[96] Peter J. Stuckey. Constructive negation for constraint logic programming.

Logic in Computer Science, LICS 91., Proceedings of Sixth Annual

IEEE Symposium, pages 328{339, 1991.

[97] Peter J. Stuckey. Negation and constraint logic programming. Information

and Computation, 118(1):12{33, 1995.

248

Texas Tech University, Veena S.Mellarkod, December 2007

[98] Tommi Syrjanen. Implementation of logical grounding for logic programs

with stable model semantics. Technical Report 18, Digital Systems

Laboratory, Helsinki University of Technology, 1998.

[99] Tommi Syrjanen. Lparse user's manual, 2000.

[100] M. van Emden and R. Kowalski. The semantics of predicate logic as a

programming language. Journal of ACM, 23(4):722{742, 1976.

[101] WASP. Working Group on Answer Set Programming.

http://wasp.unime.it/, Dec 2007.

[102] Gerald Pfeifer Wolfgang Faber, Nicola Leone. Recursive aggregates in

disjunctive logic programs: Semantics and complexity. JELIA 2004, pages

200{212, 2004.

[103] N. Yorke-Smith, K. B. Venable, and Rossi F. Temporal reasoning with

preferences and uncertainty, 2003.

249

