
Modules and Signature Declarations for A-Prolog:
Progress Report

Marcello Balduccini

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
marcello.balduccini@ttu.edu

Abstract. It has been demonstrated that A-Prolog can be used effectively to
encode knowledge about complex domains. However, there is still a lack of
well-established software engineering inspired tools and methodologies aimed at
helping the programmer in this task. Rather than going through a substantial
redesign of the language, as in most approaches from the literature, our purpose
here is to propose alight-weightextension of the language, introducing only a
few simple constructs with straightforward semantics, and nonetheless providing
key support for simple modular design of programs. Drawing from our
experience of encoding knowledge in A-Prolog, we identify two main
requirements that, we believe, need to be satisfied by such a simple extension of
A-Prolog. Next, we design our extension of A-Prolog, calledRSig to satisfy
these requirements. A parser forRSighas been implemented, based onLPARSE,
and is available online. It is our belief thatRSigcan be quickly learned and used
by average A-Prolog users to both write new programs and restructure existing
programs. We also hope that the experience withRSigcan promote the transition
towards more sophisticated extensions of A-Prolog.

1 Introduction

As demonstrated by several authors in recent years (see for example [18, 17, 8, 3]), A-
Prolog [10, 11] is a powerful knowledge representation language that allows the encod-
ing of commonsense knowledge about the most diverse domains, and the definition of
reasoning modules capable of planning, diagnostics, and learning.

Although A-Prolog can be used effectively to encode knowledge about complex do-
mains, there is still a lack of well-established software engineering inspired tools and
methodologies aimed at helping the programmer in this task. Most existing approaches
[7, 6, 9, 4] involve a substantial language redesign, and need to tackle important issues
involved in the design of modular extensions of non-monotonic formalisms. Finalizing
the design of such a language, its implementation, and its spreading through the com-
munity, is still likely to require a considerable amount time.

In this paper, we propose alight-weightextension of A-Prolog, calledRSig, intro-
ducing only a few simple constructs with straightforward semantics, and nonetheless
providing key support for simple modular design of programs. It is our belief thatRSig
can be quickly learned and used by average A-Prolog users to both write new programs

and restructure existing programs, thus providing a first step towards the use of more
sophisticated extensions of A-Prolog.

Drawing from our experience of encoding knowledge in A-Prolog, we have iden-
tified two main requirements that, we believe, need to be satisfied by any extension of
A-Prolog aimed at simplifying the task of encoding complex knowledge bases:

1. It should be possible to develop portions of an A-Prolog program independently
from each other.

2. In the inference engines that require typing of variables, such asLPARSE, the ac-
tions needed to provide such typing should interfere as little as possible with the
programming task.

The first requirement involves the ability, frequently used in imperative programming,
to define modules. Ideally, a module should be viewed by the module’s users as a black-
box, with clearly specified input and output. The module’s users should be able to en-
tirely disregard the actual implementation of the module.

If we turn our attention to the goal of limiting the burden of variable typing as much
as possible, we see that, of the two most widely used inference engines, onlyDLV [5]
satisfies this second requirement, because it does notrequire the typing of variables.
However, if a programmer chooses to use variable typing for efficiency reasons, then
he is forced to do that explicitly. Moreover,DLV still lacks the ability to work with
function symbols, which substantially limits its applicability in the encoding of complex
domains.

The requirement is not satisfied byLPARSE+SMODELS1 [19, 16], as well as by the
inference engines that rely onLPARSE(e.g. [13, 1, 14, 15]). In fact, withLPARSE, a pro-
grammer either explicitly types every variable, or uses the implicit typing facility pro-
vided by the#domain directive. Unfortunately,#domain fails to satisfy the require-
ment on typing: first of all, it forces the programmer to adhere to strict, and often unnat-
ural, conventions on the use of variables; moreover, it forces the programmer to keep
in mind one extra piece of information: the association between variables and their do-
mains, with the consequence of interfering with the programming task; finally, it limits
the ability of dividing a program in independent modules, because of the global scope
of the#domain directive.

On the other hand, we believe thatRSigsatisfies both requirements above, and sim-
plifies the task of representing knowledge for complex domains, by introducing only a
small number of new constructs. The extension is based on the introduction ofsigna-
ture declarationsandmodule definitions.

Although the main ideas behindRSig are substantially independent from a
particular inference engine, here we concentrate on extending the language of
LPARSE. The choice is motivated by the fact thatLPARSE already
allows function symbols, and that its sources are publicly available. An
implementation of a parser forRSig, based onLPARSE, is available online from
http://krlab.cs.ttu.edu/ ∼marcy/RSig/ .

1 As here we are mostly concerned with language issues, rather than with inference algorithms,
from now on we will refer to the pairLPARSE+SMODELSby the termLPARSE.

The paper is organized as follows. In the next section, we give an informal presenta-
tion of RSig. In Sections 3 and 4, we define the syntax and semantics of the language. In
Section 5 we show an example of use ofRSig. In the final sections, we discuss related
work and draw conclusions.

2 RSig: The General Idea

Before we give a precise definition ofRSig, let us describe the general idea behind the
language.

As we mentioned above,RSigintroduces signature declarations and module defi-
nitions. We callsignature declarationof a function or relation the specification of the
types of its arguments. The type of an argument is a sort – a unary predicate defined in
the program. For example, let us specify the signature of a relationsign(n, s) wheren
is an integer between given constantsmin andmax, ands is−1, 0, or 1.

We begin by defining suitable sorts:

num(min..max).

sign type(−1).
sign type(0).
sign type(1).

The signature ofsign is given by a statement:

#sig rel sign(num, sign type).

Its informal meaning is “relationsign takes one argument of typenum followed by
one of typesign type.” The keywordrel specifies that we are declaring the signature
of a relation.

Avoiding explicit typing has substantial advantages in terms of program readability
and writability, including the elimination of certain types of programming errors. As an
example, let us see how relationsign above can be defined with and without signature
declarations.2 Recall that, mathematically, the function “sign” can be defined as:

sign(n) =





1 if n > 0
0 if n = 0
−1 otherwise.

The definition can be encoded in A-Prolog as:

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

where the body of the last rule encodes “otherwise.” Unfortunately, these rules cannot
be used directly withLPARSE. In fact, the variables occurring in numerical expressions

2 In this part of the paper, we do not consider the#domain directive ofLPARSE. A discussion
on#domain can be found in Section 6.

such as “N > 0” need to be explicitly typed. VariableS needs to be explicitly typed,
too, because it occurs in the scope of default negation. The resultingLPARSE program
is:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

sign(N, 1)← num(N), N > 0.
sign(0, 0).
sign(N,−1)← num(N), sign type(S), not sign(N,S), S 6= −1.

For rules that contain several variables, explicit typing substantially reduces the read-
ability of the program, and increases the chances of errors due to mistakes in specifying
the types.

Using the signature declarations ofRSig, the definition ofsign becomes:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

#sig rel sign(num, sign type).

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

The resulting definition ofsign is arguably more natural and easier to read and the
chances of mistakes in writing the program are smaller.

The information from signature declarations also affects the special atoms of
LPARSE, i.e. those expressions of the form:

min{p(X, Y) : q(X) : r(Y)}max

and
min[p(X, Y) : q(X) : r(Y)]max

The typing information extracted from the signature declarations is usedfor the condi-
tion part of the special atom. Thus, the program:

q(0..3).

#sig rel p(q).

{p(X)}.
is as an abbreviation of:

q(0..3).

{p(X) : q(X)}.

Let us now focus on module definitions. A module definition inRSigis a collection
of import/export declarations, signature declarations, and statements from the language
of LPARSE. Unless overridden by an import/export declaration, the interpretation of
each relation and function in a module is independent from the interpretations used
outside the module. For example, the program:

p← ¬r.

#module m1.
¬r.
#end module.

does not entailp, while of course the program consisting of{p← ¬r. ¬r.} does. This
separation of interpretations allows to work on different parts of the program indepen-
dently, as each module can be viewed as a black-box, of which only the import/export
declarations need to be known. For example, relationr in modulem1 above could be
used as an auxiliary relation, whose meaning is independent from that of the relationr
used in the first rule of the program.

The import and export declarations allow to make the interpretations of some
relations and functions in a module coincide with those used outside the module. A
relation or function occurring in the scope of an import or export declaration is called
global. Intuitively, these statements specify respectively “input” and “output” relations
and functions of the module. The distinction between import and export declarations
has the purpose of improving the readability of the program: when a global relation or
function is intended to occur in the head of a module’s rules, it is be listed in an export
declaration. Similarly, when it occurs in the body of a module’s rules, it is to occur in
an import declaration.

Thus, if the interpretations of the two occurrences of relationr in the program above
are intended to coincide, we add an#export declaration to modulem1. The program:

p← ¬r.

#module m1.
#export rel r.
¬r.
#end module.

entailsp. As with any module-based approach, the relations declared in the import and
export statements should be carefully selected during the design phase, in order to avoid
conflicts. We say that a relationr is local to a modulem if literals formed byr occur in
the rules ofm, andr does not occur in an import/export declaration withinm.

To help the debugging of programs,RSigalso introduces a new variant of the#hide
directive ofLPARSE:

#hide ∗ .

The new directive can be usedonly inside modules. The intuitive meaning of such a
statement occurring in a modulem is thatall the literals formed by relations local tom

are hidden inSMODELS’ output, unless they are explicitly shown by a#show directive
in m. For example, given the program:

p← not r.

#module m1.
r.
#hide ∗ .
#end module.

SMODELSdisplays:
Answer 1
Stable Model:p

Notice that whenever relations local to a module are displayed bySMODELS, they are
prefixed by the name of the module. For example, given the program:

p← ¬r.

#module m1.
#import rel r.
#export rel r.
¬r.
q ← not r.
t← q.
#hide ∗ .
#show q.
#end module.

SMODELSdisplays:
Answer 1
Stable Model:p ¬r m1.q

As the reader may have noticed,t, although true, is not displayed because of the
#hide ∗ directive inm1.

3 Syntax

Let us begin the definition of the syntax ofRSigby summarizing the syntax of the
language ofLPARSE.3

In the language ofLPARSE, terms, atoms, and literals are defined as in A-Prolog. A
special atomis an expression of the form:

min{l1 : l2 : l3 : . . . : lk}max

3 For sake of simplicity, in this paper we consider a simplification of the language ofLPARSE.
However, our approach extends in a natural way to the full language.

or
min[l1 : l2 : l3 : . . . : lk]max

whereli’s are literals andmin, max are integers or variables.
An LPARSErule, orregular rule, is an expression of the form:

l0 ← e1, . . . , em, not l1, . . . , ln.

wherel0 andei’s are literals or special atoms, andli’s are literals.
LPARSEdirectives, orregular directives, are expressions of the form:

#show l1, . . . , ln.
#hide l1, . . . , ln.

whereli’s are literals (the list may be empty).
A program in the language ofLPARSE, or regular program, is a collection ofregu-

lar rulesandregular directives. Next, we describe the extensions of the language intro-
duced byRSig.

A relation signature declarationis a statement:

#sig rel r1(p1
1, p

1
2, . . . , p

1
k1

), . . . , rm(pm
1 , pm

2 , . . . , pm
km

).

whereri’s are relations of arityki andpi
j ’s are names of sorts. The informal meaning

of the statement (for everyi) is “the arguments of relationri are respectively of types
pi
1, pi

2, . . ., pi
ki

.” A function signature declarationis a statement:

#sig func f1(p1
1, p

1
2, . . . , p

1
k1

)→ p1
0, . . . , fm(pm

1 , pm
2 , . . . , pm

km
)→ pm

0 .

wherefi’s are functions of arityki andpi
j ’s are as above. The informal reading of the

statement is “the arguments of functionfi are respectively of typespi
1, pi

2, . . ., pi
ki

, and
terms formed by functionfi are of typepi

0.” The termsignature declarationidentifies
both relation and function signature declarations.

A relation import (resp., export) declarationis a statement:

#import rel r1(, , . . . ,), . . . , rm(, , . . . ,).

or, respectively:

#export rel r1(, , . . . ,), . . . , rm(, , . . . ,).

whereri’s are relation symbols, and the number of anonymous variables “” listed
matches the arity of eachri. The informal reading of the#import statement is
“symbol r1 denotes the same relation associated with symbolr1 outside the module,”
and similarly for allri’s and for the#export statement.

A function import (resp., export) declarationis a statement:

#import func f1(, , . . . ,), . . . , fm(, , . . . ,).

or, respectively:

#export func f1(, , . . . ,), . . . , fm(, , . . . ,).

wherefi’s are function symbols. The informal meaning is similar to that of relation
import and export declarations. Byimport declarationwe mean both relation import
and function import declaration. Similarly forexport declaration.

A module definition(or modulefor short) is the sequence of statements:

#module µ.
ι1
...
ιm
ρ1

...
ρn

#end module.

whereµ is a constant denoting the name of the module (the name of a module must
be unique),ιi’s are optional import and export declarations, andρi’s are regular rules,
regular directives (with the exception of directives#show. and#hide., which are not
allowed in modules), signature declarations, or the new directive#hide ∗. We denote
the setρ1, . . . , ρn by Γ (µ). The relations listed inι1, . . . , ιm are calledglobal relations
of µ, and are denoted byΘ(µ). The literals fromµ, formed by relations that are not in
Θ(µ), are calledlocal literals ofµ. The functions listed inι1, . . . , ιm are calledglobal
functions ofµ, and are denoted byΛ(µ). If global relations ofµ occur in the head of the
regular rules ofΓ (µ), they must be listed in an export declaration. If they occur in the
body of the regular rules ofΓ (µ), they must be listed in an import declaration. Similarly
for global functions. For simplicity, from now on we assume that each predicate and
function symbol is associated with a unique arity, and that the same symbol cannot
denote both a predicate and a function.4

An RSig programis a collection of regular rules, regular directives, signature dec-
larations, and module definitions.

4 Semantics

We give the semantics ofRSigprograms by defining a mapping fromRSigprograms
to programs in the language ofLPARSE. We proceed in two steps: first we eliminate
module definitions, and in the resulting program we introduce explicit typing for the
arguments of the functions and relations for which signature declarations are given.

Intuitively, the elimination of module definitions is based on the addition of suitable
prefixes to the occurrences of predicate and function symbols in a module.

Let µ be a module. The module-elimination of a function symbolf with respect to
µ (denoted byfµ) is f if f is a global function ofµ, andµ.f otherwise. The module-
elimination of a variable is the variable itself. The module-elimination of a termt =
f(t1, . . . , tk), denoted bytµ, is fµ(tµ1 , . . . , tµk).

4 Our approach applies beyond these restrictions, thanks to the use of the “rel” and “func” key-
words in signature and import/export declarations.

The module-elimination of a predicate symbolp with respect toµ (denoted bypµ)
is p if p is a global relation ofµ, andµ.p otherwise. The module-elimination of an atom
p(x1, . . . , xm) with respect toµ is: pµ(xµ

1 , . . . , xµ
m). Similarly, the module-elimination

of a literal¬p(x1, . . . , xm) is ¬pµ(xµ
1 , . . . , xµ

m). We denote the module-elimination of
a literall with respect toµ by lµ.

The module-elimination of a special atommin{l1 : l2 : . . . : lk}max is the special
atommin{lµ1 : lµ2 : . . . : lµk}max. The module-elimination of special atomc with
respect toµ is denoted bycµ.

The module-elimination of a regular rule, regular directive, or signature declaration
ρ is obtained by replacing all literals, special atoms, and terms inρ with their module-
eliminations. The resulting statement is denoted byρµ.

The module-elimination of a directive#hide ∗ with respect to a moduleµ is a
directive#hide l1, l2, . . . , lm, whereli’s are all those local literals ofµ, which do not
appear in any#show directive ofµ. For example, the module-elimination of#hide ∗
in the program:

p← ¬r.

#module m1.
#import rel r.
#export rel r.
¬r.
q ← not r.
t← q.
#hide ∗ .
#show q.
#end module.

is #hide t.
The module-elimination of a moduleµ is the set

Γ ′(µ) = {ρµ | ρ ∈ Γ (µ)}.

The module-elimination of a programΠ is obtained by replacing every definition
of a moduleµ by Γ ′(µ). The following proposition follows easily from the construction
of the module-elimination ofΠ:

Proposition 1. For every programΠ, the module-elimination ofΠ contains no module
definitions and no#hide ∗ directives.

The programs obtained by the module-elimination process are calledmodule-free pro-
grams.

The next step of the translation consists in providing typing for the arguments of the
functions and relations listed in the signature declarations.

Given a module-free programΠ, ∆(Π) denotes the set of signature declarations
from Π. For every predicatep or function symbol f such that, respectively,
p(s1, s2, . . . , sm) or f(s1, s2, . . . , sk) → s0 occur in∆(Π), let δi

f denotesi (recall
thatsi’s are names of unary predicates).

Theexplicit-typing setof a constant or variable is the empty set. The explicit-typing
set of a termt = f(t1, . . . , tk) is denoted bytσ, and consists of the set of atoms:

{δ0
f (t), δ1

f (t1), δ2
f (t2), . . . , δk

f (tk)} ∪
⋃

1≤i≤k

tσi .

For example, given the declaration:

#sig func g(r, s)→ u, h(q)→ r.

the explicit-typing set of termg(X, Y) is {u(g(X, Y)), r(X), s(Y)}, and the explicit-
typing set ofg(X, h(Z)) is {u(g(X,h(Z))), r(X), s(h(Z)), r(h(Z)), q(Z)}.

The explicit-typing set of an atoma = p(t1, . . . , tk), denoted byaσ, is the set:

{δ1
a(t1), δ2

a(t2), . . . , δk
a(tk)} ∪

⋃

1≤i≤k

tσi .

The explicit-typing set of a literal¬a is aσ. For example, given the declarations:

#sig rel p(u, v).
#sig func g(r, s)→ u, h(q)→ r.

the explicit-typing set ofp(X, Y) is {u(X), v(Y)}; the explicit-typing set of
p(g(X,Y), Z) is {u(g(X, Y)), v(Z), r(X), s(Y)}; the explicit-typing set of
p(g(X,Y), h(Z)) is {u(g(X,Y)), v(h(Z)), r(X), s(Y), r(h(Z)), q(Z)}.

The explicit-typing set of a special atomc = min{l1 : l2 : . . . : lk}max is cσ = lσ1 .
For example, given1{p(g(X, Y), Z)}2 and the signature declarations from the previous
example, the explicit-typing set is:

{u(g(X,Y)), v(Z), r(X), s(Y)}.
We can finally define the explicit-typing set of a regular rule. Given a regular ruleρ,

let lit(ρ) denote the set of literals fromρ (only the special atoms fromρ do not belong
to lit(ρ)). The explicit-typing set of a regular ruleρ is the set

ρσ =
⋃

l∈lit(ρ)

lσ.

For example, the explicit-typing set of the rule in the program:

#sig rel p(u, v), w(r).
#sig func g(r, s)→ u, h(q)→ r.

1{p(g(X, Y), Z)}2← w(h(Z)).

is:
{r(h(Z)), q(Z)}.

Intuitively, the explicit-typing set provides the typing information for the arguments
of functions and relations. To complete the translation, we modify each rule by adding

to it the atoms from suitable explicit-typing sets. This operation is called explicit-typing,
and is defined more precisely as follows.

Theexplicit-typingof a special atomc = min{l1 : l2 : . . . : lk}max is the atom
cτ = min{l1 : l2 : . . . : lk : p1 : p2 : . . . : pm}max, wherecσ = {p1, p2, . . . , pm}.
For instance, the explicit-typing of special atom1{p(g(X,Y), Z)}2 from the example
above is:

1{p(g(X, Y), Z) : u(g(X, Y)) : v(Z) : r(X) : s(Y)}2.

The explicit-typing of a regular ruleρ is the ruleρτ , obtained fromρ by replacing
every special atomc with its explicit-typingcτ , and by addingρσ to the body ofρτ . For
example, the explicit-typing of the rule in:

#sig rel p(u, v), w(r).
#sig func g(r, s)→ u, h(q)→ r.

1{p(g(X, Y), Z)}2← w(h(Z)).

is:

1{p(g(X,Y), Z) : u(g(X, Y)) : v(Z) : r(X) : s(Y)}2← w(h(Z)), r(h(Z)), q(Z).

Finally, theexplicit-typing of a module-free programΠ is the programΠτ , consist-
ing of:

– The explicit-typing of every rule fromΠ;
– All the regular directives ofΠ.

The following proposition follows directly from the above construction.

Proposition 2. For every module-free programΠ, the explicit-typing ofΠ is a regular
program.

The semantics ofRSigassociates everyRSigprogramΠ with the program obtained by
applying module-elimination toΠ, followed by explicit-typing. The resulting program
is denoted byΠλ. The following corollary holds:

Corollary 1. For everyRSigprogramΠ, Πλ is a regular program.

5 Example of Use ofRSig

To demonstrate the use ofRSig, in this section we employ the new language to combine
existing programs from the literature. Suppose we want to combine theMilitary Exam-
ple from Section 4 of [12] with thetheory of intended actionsfrom [9]. ProgramΠM

from [12] consists of the declaration (refer to Section 6 for a discussion on#domain):

#domain step(T), agent(A), f luent(F), target(TAR), report id(R).

together with the set of rulesRM :

h(F, T)← report(R, T), content(R, F, t), not problematic(R).
problematic agent(A)← problematic(R), author(R, A).
h(destroyed(TAR), T + 1)← o(attack(TAR), T),¬failed(attack(TAR), T).
...

AxiomsΠI for intentions, on the other hand, include the declaration:

#domain step(I), action(A).

together with the set of rulesRI :

occurs(A, I)← intend(A, I), not ¬occurs(A, I).
intend(A, I1)← next(I1, I), intend(A, I),¬occurs(A, I), not ¬intend(A, I1).
...

CombiningΠM andΠI using only A-Prolog is non-trivial, because the programs
are written rather differently. Key issues are: (1) variableA is used for both actions and
agents; (2) relationso from ΠM andoccurs from ΠI must be connected; (3)ΠM and
ΠI have to be inspected to ensure that the same predicate and function names are not
used with different meanings. In general, the sets of rules being combined will need to
be modified by hand, which is a time-consuming and error-prone task.

On the other hand, usingRSig, the programs can be merged without changes to the
existing rules. All that is needed is removing the#domain declarations, and adding
suitable declarations of signatures and modules. The program combiningΠM andΠI ,
outlined below, consists of: (1) signature declarations for relations and functions of
global scope; (2) modulemilitary, containing RM together with appropriate
import/export declarations and signature declarations for local relations and functions;
(3) module intentions, containingRI together with import/export and signature
declarations.

#sig rel h(fluent, step), occurs(action, step).
#sig rel failed(action, step).
...

#module military.
#import rel occurs(,), failed(,).
...
#export rel problematic agent().
#export rel h(,).

#sig rel o(action, step).

o(A, T) : −occurs(A, T).

RM

#end module.

#module intentions.
#import rel occurs(,), intend(,), next(,).
#export rel occurs(,), intend(,).
...
RI

#end module.

6 Related Work

The language ofLPARSE includes a directive,#domain, which aims at allowing
implicit typing. Differently from the signature declarations presented here,#domain
specifies an association between eachvariableand a type. Thus, a declaration:

#domain r(X).

states that occurrences ofX denote an object of typer. For simple cases,#domain is
fairly effective. For example, it allows to write a definition of relationsign that is as
compact as the one inRSig:

num(min..max).
sign type(−1).
sign type(0).
sign type(1).

#domain num(N).
#domain sign type(S).

sign(N, 1)← N > 0.
sign(0, 0).
sign(N,−1)← not sign(N,S), S 6= −1.

However,#domain directives apply toall the occurrences of a variable in the program.
This substantially complicates the task of adding other rules, because the programmer
needs to keep in mind the typing of all the variables already declared. Suppose, for
example, that we were to use the above definition ofsign in a program that already
contains a formalization of sets. Such a program could contain rules defining when a
set is empty, similar to:

%% If O is a member of setS, thenS has at least one member.
at least one member(S)← member(O, S).

%% SetS is empty unless we know thatS has at least one member.
empty(S)← not at least one member(S).

Unfortunately, the two sets of rules cannot be combined directly, because the
#domain directive for variableS forces the domain ofS to be{−1, 0, 1} even in the
rules about sets: the programmer needs to carefully rename the variables in either set
of rules. If, instead, he is writingnewrules, the programmer has to select carefully the
variables, in order to match the intended argument types for the relations or functions
he is using. Additional difficulties arise when special atoms are used in the program, as
the occurrence, in these atoms, of variables from a#domain directive often yields
unintended results. On the other hand, when writing rules inRSig, one only needs
information about the argument types of relations and functions, different sets of rules
can be more easily combined, and the signature declarations do not interfere with
special atoms.

Various languages for the modular encoding of knowledge have been proposed in
[7, 6, 9, 4]. All of these efforts are far more ambitious thanRSig, in that they allows so-
phisticated definitions of classes or templates, including various degrees of the specifi-
cation of object-oriented style inheritance and parametrization. We believe that learning
and mastering these extensions requires a substantial effort. The goal of our work was
to provide a simpler extension of A-Prolog that can be easily learned, mastered, and
used for both new and existing programs.

7 Conclusions and Future Work

In this paper, we have presented an extension of A-Prolog satisfying the two main re-
quirements for the simplification of the task of encoding complex knowledge bases.

We believe that the resulting language,RSig, is simple to learn for average A-Prolog
users, and yet effective in satisfying those requirements.

An implementation of RSig, based on LPARSE, is available from
http://krlab.cs.ttu.edu/ ∼marcy/RSig/ . With respect to the language
described here, the implementation has the following limitations:

– The types used in signature declarations must bedomain predicates.
– The parser does not check for duplicated module names.
– The parser does not check for directives#show. and #hide. occurring inside

module definitions.
– Import and export declarations are allowed to occur anywhere inside a module def-

inition.
– No error checking is done for improper import/export declarations, for example

when a global relation is used in the head of a module’s rules, but is not listed in an
export directive.

In the future, we expect to assess the effectiveness and ease of use ofRSigby en-
coding various complex knowledge bases. In this respect, we have already begun using
RSigfor a sophisticated intelligent system (partially covered in [2]) that applies deep
reasoning to question answering in the context of natural language understanding.

8 Acknowledgments

The author would like to thank Michael Gelfond and Yana Maximova Todorova for
their suggestions, and the anonymous reviewers for drawing attention to related works.
This work was partially supported by NASA contract NASA-NNG05GP48G and by
ATEE/DTO contract ASU-06-C-0143.

References

1. Marcello Balduccini. CR-MODELS: An Inference Engine for CR-Prolog. InLPNMR 2007,
May 2007.

2. Marcello Balduccini and Chitta Baral.Knowledge Representation and Question Answering,
chapter 21. Handbook of Knowledge Representation. Elsevier, 2006.

3. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

4. Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, Macro Calls and Use of Ensembles
in Modular Answer Set Programming. InProceedings of ICLP-06, pages 376–390, 2006.

5. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-
battista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The DLV System. In Sergio Flesca and Giovanbattista Ianni, editors,
Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), Sep
2002.

6. Francesco Calimeri, Giovanbattista Ianni, Giuseppe Ielpa, Adriana Pietramala, and
Maria Carmela Santoro. A System with Template Answer Set Programs. InJELIA 2004,
2004.

7. Thomas Eiter, Georg Gottlob, and Helmuth Veith. Modular Logic Programming and Gen-
eralized Quantifiers. InProceedings of the 4th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR’97), volume 1265 ofLecture Notes in Artifi-
cial Intelligence (LNCS), pages 290–309, 1997.

8. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors,Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

9. Michael Gelfond. Going places - notes on a modular development of knowledge about travel.
In AAAI Spring 2006 Symposium on Knowledge Repositories, 2006.

10. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP-88, pages 1070–1080, 1988.

11. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases.New Generation Computing, pages 365–385, 1991.

12. Nicholas Gianoutsos. Detecting Suspicious Input in Intelligent Systems using Answer Set
Programming. Master’s thesis, Texas Tech University, May 2005.

13. Yulia Lierler and Marco Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced to
Non-tight Programs. InProceedings of LPNMR-7, Jan 2004.

14. Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged Rules.
Master’s thesis, Texas Tech University, May 2002.

15. Veena S. Mellarkod and Michael Gelfond. Enhancing ASP Systems for Planning with Tem-
poral Constraints. InLPNMR 2007, pages 309–314, May 2007.

16. Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semantics.Artificial Intelligence, 138(1–2):181–234, Jun 2002.

17. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. InPADL 2001, pages
169–183, 2001.

18. Timo Soininen and Ilkka Niemela. Developing a declarative rule language for applications
in product configuration. InProceedings of the First International Workshop on Practical
Aspects of Declarative Languages, May 1999.

19. Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model
semantics. Technical Report 18, Digital Systems Laboratory, Helsinki University of Tech-
nology, 1998.

