Modules and Signature Declarations for A-Prolog:
Progress Report

Marcello Balduccini

Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
marcello.balduccini@ttu.edu

Abstract. It has been demonstrated that A-Prolog can be used effectively to
encode knowledge about complex domains. However, there is still a lack of
well-established software engineering inspired tools and methodologies aimed at
helping the programmer in this task. Rather than going through a substantial
redesign of the language, as in most approaches from the literature, our purpose
here is to propose kght-weightextension of the language, introducing only a
few simple constructs with straightforward semantics, and nonetheless providing
key support for simple modular design of programs. Drawing from our
experience of encoding knowledge in A-Prolog, we identify two main
requirements that, we believe, need to be satisfied by such a simple extension of
A-Prolog. Next, we design our extension of A-Prolog, calR8igto satisfy

these requirements. A parser RSighas been implemented, based.®aRSE

and is available online. It is our belief thRSigcan be quickly learned and used

by average A-Prolog users to both write new programs and restructure existing
programs. We also hope that the experience Rifligcan promote the transition
towards more sophisticated extensions of A-Prolog.

1 Introduction

As demonstrated by several authors in recent years (see for example [18,17, 8, 3]), A-
Prolog [10, 11] is a powerful knowledge representation language that allows the encod-
ing of commonsense knowledge about the most diverse domains, and the definition of
reasoning modules capable of planning, diagnostics, and learning.

Although A-Prolog can be used effectively to encode knowledge about complex do-
mains, there is still a lack of well-established software engineering inspired tools and
methodologies aimed at helping the programmer in this task. Most existing approaches
[7,6,9, 4] involve a substantial language redesign, and need to tackle important issues
involved in the design of modular extensions of non-monotonic formalisms. Finalizing
the design of such a language, its implementation, and its spreading through the com-
munity, is still likely to require a considerable amount time.

In this paper, we proposelight-weightextension of A-Prolog, calleRSig intro-
ducing only a few simple constructs with straightforward semantics, and nonetheless
providing key support for simple modular design of programs. It is our belielRISég
can be quickly learned and used by average A-Prolog users to both write new programs

and restructure existing programs, thus providing a first step towards the use of more
sophisticated extensions of A-Prolog.

Drawing from our experience of encoding knowledge in A-Prolog, we have iden-
tified two main requirements that, we believe, need to be satisfied by any extension of
A-Prolog aimed at simplifying the task of encoding complex knowledge bases:

1. It should be possible to develop portions of an A-Prolog program independently
from each other.

2. In the inference engines that require typing of variables, sualParsE, the ac-
tions needed to provide such typing should interfere as little as possible with the
programming task.

The first requirement involves the ability, frequently used in imperative programming,
to define modules. Ideally, a module should be viewed by the module’s users as a black-
box, with clearly specified input and output. The module’s users should be able to en-
tirely disregard the actual implementation of the module.

If we turn our attention to the goal of limiting the burden of variable typing as much
as possible, we see that, of the two most widely used inference enginegLon[$]
satisfies this second requirement, because it doegenatre the typing of variables.
However, if a programmer chooses to use variable typing for efficiency reasons, then
he is forced to do that explicitly. MoreovepLv still lacks the ability to work with
function symbols, which substantially limits its applicability in the encoding of complex
domains.

The requirement is not satisfied bpARSE+SMODELS' [19, 16], as well as by the
inference engines that rely @RARSE(e.g. [13, 1, 14, 15]). In fact, witbPARSE, a pro-
grammer either explicitly types every variable, or uses the implicit typing facility pro-
vided by the#domain directive. Unfortunately#domain fails to satisfy the require-
ment on typing: first of all, it forces the programmer to adhere to strict, and often unnat-
ural, conventions on the use of variables; moreover, it forces the programmer to keep
in mind one extra piece of information: the association between variables and their do-
mains, with the consequence of interfering with the programming task; finally, it limits
the ability of dividing a program in independent modules, because of the global scope
of the #domain directive.

On the other hand, we believe tHRSigsatisfies both requirements above, and sim-
plifies the task of representing knowledge for complex domains, by introducing only a
small number of new constructs. The extension is based on the introductsignef
ture declarationandmodule definitions

Although the main ideas behin&Sig are substantially independent from a
particular inference engine, here we concentrate on extending the language of
LPARSE The choice is motivated by the fact thatPARSE already
allows function symbols, and that its sources are publicly available. An
implementation of a parser fdRSig based onLPARSE, is available online from
http://krlab.cs.ttu.edu/ ~marcy/RSig/

1 As here we are mostly concerned with language issues, rather than with inference algorithms,
from now on we will refer to the paitPARSE+SMODELSby the termLPARSE

The paper is organized as follows. In the next section, we give an informal presenta-
tion of RSig In Sections 3 and 4, we define the syntax and semantics of the language. In
Section 5 we show an example of useR8ig In the final sections, we discuss related
work and draw conclusions.

2 RSig The General Idea

Before we give a precise definition BfSig let us describe the general idea behind the
language.

As we mentioned abové&iSigintroduces signature declarations and module defi-
nitions. We callsignature declaratiorof a function or relation the specification of the
types of its arguments. The type of an argument is a sort — a unary predicate defined in
the program. For example, let us specify the signature of a relatipr(n, s) wheren
is an integer between given constantg: andmax, ands is —1, 0, or 1.

We begin by defining suitable sorts:

num(min..mazx).

sign_type(—1).
sign_type(0).
sign_type(1).

The signature ofign is given by a statement:
#sig rel sign(num, sign_type).

Its informal meaning is “relationign takes one argument of typeum followed by
one of typesign_type.” The keywordrel specifies that we are declaring the signature
of a relation.

Avoiding explicit typing has substantial advantages in terms of program readability
and writability, including the elimination of certain types of programming errors. As an
example, let us see how relatieiyn above can be defined with and without signature
declarationg. Recall that, mathematically, the function “sign” can be defined as:

1 ifn>0
sign(n) =< 0 ifn=0
—1 otherwise

The definition can be encoded in A-Prolog as:

sign(N,1) — N > 0.
sign (0, 0).
sign(N, —1) « not sign(N, S),S # —1.

where the body of the last rule encodes “otherwise.” Unfortunately, these rules cannot
be used directly with PARSE. In fact, the variables occurring in numerical expressions

2 |n this part of the paper, we do not consider #éomain directive ofLPARSE A discussion
on #domain can be found in Section 6.

such as N > 0" need to be explicitly typed. Variabl§ needs to be explicitly typed,
too, because it occurs in the scope of default negation. The resulRRSE program

IS:
num(min..max).

sign_type(—1).
sign_type(0).
sign_type(1).

sign(N,1) «— num(N), N > 0.
sign(0,0).
sign(N, —1) «— num(N), sign_type(S), not sign(N, S), S # —1.
For rules that contain several variables, explicit typing substantially reduces the read-
ability of the program, and increases the chances of errors due to mistakes in specifying
the types.
Using the signature declarations®$ig the definition ofsign becomes:

num(min..mazx).
sign_type(—1).
sign_type(0).
sign_type(1).

#sig rel sign(num, sign_type).

sign(N,1) «— N > 0.
sign (0, 0).
sign(N, —1) « not sign(N, S),S # —1.

The resulting definition okign is arguably more natural and easier to read and the
chances of mistakes in writing the program are smaller.

The information from signature declarations also affects the special atoms of
LPARSE, i.e. those expressions of the form:

min{p(X,Y) : ¢(X) : r(Y)}maz

and
min[p(X,Y) : ¢(X) : r(Y)]max

The typing information extracted from the signature declarations isfasd¢ke condi-
tion part of the special atonThus, the program:

q(0..3).

#sig rel p(q).

{p(X)}.

is as an abbreviation of:
¢(0..3).

{p(X) : ¢(X)}-

Let us now focus on module definitions. A module definitiofRigigis a collection
of import/export declarationssignature declarations, and statements from the language
of LPARSE Unless overridden by an import/export declaration, the interpretation of
each relation and function in a module is independent from the interpretations used
outside the module. For example, the program:

P .

#module m1.
-

#end module.

does not entajb, while of course the program consisting{gf — —r. —r.} does. This
separation of interpretations allows to work on different parts of the program indepen-
dently, as each module can be viewed as a black-box, of which only the import/export
declarations need to be known. For example, relationmodulem1 above could be
used as an auxiliary relation, whose meaning is independent from that of the relation
used in the first rule of the program.

The import and export declarations allow to make the interpretations of some
relations and functions in a module coincide with those used outside the module. A
relation or function occurring in the scope of an import or export declaration is called
global. Intuitively, these statements specify respectively “input” and “output” relations
and functions of the module. The distinction between import and export declarations
has the purpose of improving the readability of the program: when a global relation or
function is intended to occur in the head of a module’s rules, it is be listed in an export
declaration. Similarly, when it occurs in the body of a module’s rules, it is to occur in
an import declaration.

Thus, if the interpretations of the two occurrences of relationthe program above
are intended to coincide, we add #rexport declaration to module:1. The program:

P — T

#module m1.
H#export rel r.
-

#end module.

entailsp. As with any module-based approach, the relations declared in the import and
export statements should be carefully selected during the design phase, in order to avoid
conflicts. We say that a relationis local to a modulen if literals formed byr occur in
the rules ofm, andr does not occur in an import/export declaration within
To help the debugging of prograni®Sigalso introduces a new variant of théide
directive ofLPARSE
#hide *.

The new directive can be useanly inside modules. The intuitive meaning of such a
statement occurring in a modute is thatall the literals formed by relations local ta

are hidden insMODELS output, unless they are explicitly shown by#show directive
in m. For example, given the program:

p < not r.

#module m1.
T,
#hide * .

#end module.

SMODELSdisplays:
Answer 1
Stable Modelp

Notice that whenever relations local to a module are displayesMiyDELS, they are
prefixed by the name of the module. For example, given the program:

pHﬁT_

#module m1.
H#import rel r.
#export rel r.
-

q < not r.

t < q.

#hide * .
#show q.
#end module.

SMODELSdisplays:
Answer 1
Stable Modelp —r m1.q

As the reader may have noticet], although true, is not displayed because of the
#hide * directive inm1.

3 Syntax

Let us begin the definition of the syntax BSigby summarizing the syntax of the
language of PARSE®

In the language of PARSE, terms, atoms, and literals are defined as in A-Prolog. A
special atonis an expression of the form:

min{ly : 1o :l3: ... I }max

% For sake of simplicity, in this paper we consider a simplification of the languages{se
However, our approach extends in a natural way to the full language.

or
minlly 1 lo 13 :...: lg]max
wherel;’s are literals andnin, max are integers or variables.
An LPARSETruUle, orregular rule, is an expression of the form:

ZO “— €1,...,6Em,N0t l17...7ln.

wherel, ande;’s are literals or special atoms, af& are literals.
LPARSEdirectives, oregular directivesare expressions of the form:

#showly, ..., 1.
#hide ly, ... 1.

wherel;’s are literals (the list may be empty).

A program in the language @PARSE, or regular program is a collection ofregu-
lar rulesandregular directivesNext, we describe the extensions of the language intro-
duced byRSig

A relation signature declaratiors a statement:

#sig rel rl(p%,p%, o ,pil), o T (T PN ,pZZn).

wherer;’s are relations of arity:; andp;i’s are names of sorts. The informal meaning
of the statement (for every is “the arguments of relation; are respectively of types
pi, phy ... 1}, A function signature declaratiois a statement:

#sig func fi(p1, Dy, Ph,) = Dos- -+ fm (T D5 . DR) — Py

where f;'s are functions of arity; andpj- 's are as above. The informal reading of the
statement is “the arguments of functignare respectively of types, p5, ..., pj,,, and
terms formed by functiorf; are of typep.” The termsignature declaratiorndentifies
both relation and function signature declarations.

A relation import (resp., export) declaratiaa a statement:

#Himport rel r1(oy ooy)y ey oy oy e vy o).
or, respectively:
#Hexportrel ri(, .oy)y T ey).

wherer;'s are relation symbols, and the number of anonymous variahlelsted
matches the arity of each;. The informal reading of the#import statement is
“symbol r; denotes the same relation associated with sympolutside the module,”
and similarly for allr;'s and for the#texport statement.

A function import (resp., export) declaratios a statement:

#Himport func f1(.oy)yevey frn(oyoyeney o).
or, respectively:

#export func f1(o ooy)yees fn(Goeans o).

where f;'s are function symbols. The informal meaning is similar to that of relation
import and export declarations. Bmport declarationwe mean both relation import
and function import declaration. Similarly fexport declaration

A module definitionfor modulefor short) is the sequence of statements:

#module p.
L1

lm

P1

Pn

#end module.
wherey is a constant denoting the name of the module (the name of a module must
be unique),;’s are optional import and export declarations, ad are regular rules,
regular directives (with the exception of directivéshow. and#hide., which are not
allowed in modules), signature declarations, or the new diregtivéle x. We denote
the sefpy,. .., p, by I'(1). The relations listed imy, . . ., ¢,,, are calledylobal relations
of i, and are denoted b® (). The literals fromy, formed by relations that are not in
O(u), are calledocal literals of u. The functions listed iny, .. ., ¢, are calledylobal
functions ofu, and are denoted b§(y.). If global relations of. occur in the head of the
regular rules of (1), they must be listed in an export declaration. If they occur in the
body of the regular rules df (1), they must be listed in an import declaration. Similarly
for global functions. For simplicity, from now on we assume that each predicate and
function symbol is associated with a unique arity, and that the same symbol cannot
denote both a predicate and a functibn.

An RSig progranis a collection of regular rules, regular directives, signature dec-

larations, and module definitions.

4 Semantics

We give the semantics &Sigprograms by defining a mapping froRSigprograms
to programs in the language oPARSE We proceed in two steps: first we eliminate
module definitions, and in the resulting program we introduce explicit typing for the
arguments of the functions and relations for which signature declarations are given.
Intuitively, the elimination of module definitions is based on the addition of suitable
prefixes to the occurrences of predicate and function symbols in a module.
Let 1 be a module. The module-elimination of a function sympalith respect to
1 (denoted byf#) is f if f is a global function ofs, andu. f otherwise. The module-
elimination of a variable is the variable itself. The module-elimination of a tern
f(t1,... tp), denoted by, is fr (¢4, ... t}).

4 Our approach applies beyond these restrictions, thanks to the use of the “rel” and “func” key-
words in signature and import/export declarations.

The module-elimination of a predicate symbolith respect tqu (denoted by*)
is p if pis a global relation ofi, andu.p otherwise. The module-elimination of an atom
p(x1,...,x,) with respect tqu is: p* (2, ..., 2%). Similarly, the module-elimination
of aliteral—p(z1,...,xy,) is —pH(zf, ..., x4). We denote the module-elimination of
a literall with respect tqu by I~.

The module-elimination of a special atomin{l; : I : ... : Iy }max is the special
atommin{lf : 15 : ... : I}'}max. The module-elimination of special atoewith
respect tqu is denoted by,

The module-elimination of a regular rule, regular directive, or signature declaration
p is obtained by replacing all literals, special atoms, and termsaith their module-
eliminations. The resulting statement is denotegby

The module-elimination of a directivgthide * with respect to a modulg is a
directive#hide I, 1o, . .., 1, Wherel;’s are all those local literals gf, which do not
appear in any#show directive ofu. For example, the module-elimination gfhide *
in the program:

P .

#module m1.
H#import rel r.
H#export rel r.
-,

q < not r.
t—q.

#hide * .
#show q.
#end module.

is #hide t.
The module-elimination of a moduleis the set

I'(p)={p"[pe (W}

The module-elimination of a prograifii is obtained by replacing every definition
of a moduleu by IV (11). The following proposition follows easily from the construction
of the module-elimination of:

Proposition 1. For every prograni/, the module-elimination aff contains no module
definitions and n@thide * directives.

The programs obtained by the module-elimination process are cabiedle-free pro-
grams

The next step of the translation consists in providing typing for the arguments of the
functions and relations listed in the signature declarations.

Given a module-free progratl, A(II) denotes the set of signature declarations
from II. For every predicatep or function symbol f such that, respectively,
(81,82, ., 8m) OF f(s1,82,...,8,) — So occur in A(IT), let (5} denotes; (recall
thats;’s are names of unary predicates).

Theexplicit-typing sebf a constant or variable is the empty set. The explicit-typing

setofaterm = f(¢1,...,t;) is denoted by?, and consists of the set of atoms:
{69(1), 3} (11), 03 (ta), ., 6F (te) U | %7
1<i<k

For example, given the declaration:

Ysig func g(r,s) — u, h(g) — 1.

the explicit-typing set of termg(X,Y) is {u(g9(X,Y)),r(X), s(Y)}, and the explicit-
typing set ofg(X, h(Z)) is {u(g(X,h(2))),7(X), s(h(Z)).r(h(Z)),q(Z)}.
The explicit-typing set of an atom = p(t1, .. ., tx), denoted by.?, is the set:

{63(t1), G5 (ta), -, okt YU | #7.
1<i<k
The explicit-typing set of a literaha is a”. For example, given the declarations:
#sig rel p(u,v).
#sig func g(r,s) — u,h(q) — r.

the explicit-typing set ofp(X,Y) is {u(X),v(Y)}; the explicit-typing set of
p(9(X,Y),Z) is {u(g(X,Y)),v(Z),r(X),s(Y)}; the explicit-typing set of
p(9(X,Y),h(Z))is {u(g(X,Y)),v(h(Z)),r(X),s(Y),r(h(Z)),q(Z)}.

The explicit-typing set of a special atam= min{ly : lo : ... : lx}maxisc” =15.
For example, givem{p(g(X,Y"), Z)}2 and the signature declarations from the previous
example, the explicit-typing set is:

{u(g(X,Y)),v(Z),7(X),s(Y)}.

We can finally define the explicit-typing set of a regular rule. Given a regulaprule
let lit(p) denote the set of literals from(only the special atoms fromdo not belong
to lit(p)). The explicit-typing set of a regular rufeis the set

p° = U .
lelit(p)

For example, the explicit-typing set of the rule in the program:

#sig rel p(u,v),w(r).
#sig func g(r,s) — u,h(q) — .

Hp(9(X,Y), 2)}2 — w(h(Z)).

{r(h(2)),q(2)}.
Intuitively, the explicit-typing set provides the typing information for the arguments
of functions and relations. To complete the translation, we modify each rule by adding

to it the atoms from suitable explicit-typing sets. This operation is called explicit-typing,
and is defined more precisely as follows.

The explicit-typingof a special atone = min{l; : ls : ... : I }max is the atom
" =min{ly :la: ...l :p1 P2 ... D tmaz, Wheree” = {py,p2,...,Dm}
For instance, the explicit-typing of special atdfp(g(X,Y"), Z)}2 from the example
above is:

T

Hp(g(X,Y),Z) : u(g(X,Y)) :v(Z) : 7(X) : s(Y)}2.

The explicit-typing of a regular rulg is the rulep™, obtained fromp by replacing
every special atomwith its explicit-typingc™, and by adding? to the body ofp”. For
example, the explicit-typing of the rule in:

#sig rel p(u,v),w(r).
#sig func g(r,s) — u, h(q) — r.
Kp(9(X,Y), 2)}2 — w(h(Z)).
is:
Hp(9(X,Y), Z) s u(g(X,Y)) s 0(Z) : 7(X) : s(Y)}2 — w(h(Z)),7(h(Z)), 4(Z).
Finally, theexplicit-typing of a module-free prografi is the program/™, consist-
ing of:

— The explicit-typing of every rule fronil;
— All the regular directives ofI.

The following proposition follows directly from the above construction.

Proposition 2. For every module-free prograifi, the explicit-typing of is a regular
program.

The semantics dRSigassociates eve@SigprogramII with the program obtained by
applying module-elimination té/, followed by explicit-typing. The resulting program
is denoted byi7*. The following corollary holds:

Corollary 1. For everyRSigprogramI1, IT* is a regular program.

5 Example of Use ofRSig

To demonstrate the use BSig in this section we employ the new language to combine
existing programs from the literature. Suppose we want to combindithiary Exam-
ple from Section 4 of [12] with theheory of intended actionfsom [9]. Programll,,
from [12] consists of the declaration (refer to Section 6 for a discussigdamain):

#domain step(T), agent(A), fluent(F), target(T AR), report_id(R).
together with the set of ruleR,,;:

h(F,T) < report(R,T), content(R, F,t), not problematic(R).
problematic_agent(A) «— problematic(R), author(R, A).
h(destroyed(TAR),T + 1) < o(attack(T'AR),T), ~failed(attack(TAR),T).

Axioms II; for intentions, on the other hand, include the declaration:
#domain step(I), action(A).
together with the set of ruleB;:

occurs(A, I) « intend(A, I), not —occurs(A,I).
intend(A, I1) «— next(I1,1),intend(A, I), —occurs(A,I),not —intend(A, I1).

CombininglIT,; andII; using only A-Prolog is non-trivial, because the programs
are written rather differently. Key issues are: (1) variabls used for both actions and
agents; (2) relations from 11, andoccurs from I1; must be connected; (3),; and
I1; have to be inspected to ensure that the same predicate and function names are not
used with different meanings. In general, the sets of rules being combined will need to
be modified by hand, which is a time-consuming and error-prone task.

On the other hand, usir@Sig the programs can be merged without changes to the
existing rules. All that is needed is removing thelomain declarations, and adding
suitable declarations of signatures and modules. The program combbiRingndI1;,
outlined below, consists of: (1) signature declarations for relations and functions of
global scope; (2) modulenilitary, containing Ry, together with appropriate
import/export declarations and signature declarations for local relations and functions;
(3) moduleintentions, containing R; together with import/export and signature

declarations.
#sig rel h(fluent, step), occurs(action, step).
#sig rel failed(action, step).

#module military.
#import rel occurs(-,), failed(_,).

#export rel problematic_agent(-).
#export rel h(_,).
#sig rel o(action, step).

o(A,T) : —occurs(A,T).

Ry
#end module.

#module intentions.
#import rel occurs(.,), intend(_, _), next(_,).
#export rel occurs(-, -), intend(-, -).

Ry
#end module.

6 Related Work

The language ofPARSE includes a directive#domain, which aims at allowing
implicit typing. Differently from the signature declarations presented hétlmain
specifies an association between egatiableand a type. Thus, a declaration:

#Hdomain r(X).

states that occurrences &fdenote an object of type For simple casestdomain is
fairly effective. For example, it allows to write a definition of relatisiyn that is as
compact as the one RSig

num(min..mazx).
sign_type(—1).
sign_type(0).
sign_type(1).

#domain num(N).
#domain sign_type(S).

sign(N,1) «— N > 0.
sign(0,0).
sign(N, —1) « not sign(N, S),S # —1.

However#domain directives apply tall the occurrences of a variable in the program.
This substantially complicates the task of adding other rules, because the programmer
needs to keep in mind the typing of all the variables already declared. Suppose, for
example, that we were to use the above definitiosigf. in a program that already
contains a formalization of sets. Such a program could contain rules defining when a
set is empty, similar to:

%% If O is a member of sef, thenS has at least one member.
at_least_one_member(S) «— member(O, S).

%% SetS is empty unless we know thathas at least one member.
empty(S) « not at_least_one_member(S).

Unfortunately, the two sets of rules cannot be combined directly, because the
#domain directive for variableS forces the domain aof to be{—1,0,1} even in the

rules about sets: the programmer needs to carefully rename the variables in either set
of rules. If, instead, he is writingewrules, the programmer has to select carefully the
variables, in order to match the intended argument types for the relations or functions
he is using. Additional difficulties arise when special atoms are used in the program, as
the occurrence, in these atoms, of variables frogtdamain directive often yields
unintended results. On the other hand, when writing ruleR$ig one only needs
information about the argument types of relations and functions, different sets of rules
can be more easily combined, and the signature declarations do not interfere with
special atoms.

Various languages for the modular encoding of knowledge have been proposed in
[7,6,9,4]. All of these efforts are far more ambitious tH®ig in that they allows so-
phisticated definitions of classes or templates, including various degrees of the specifi-
cation of object-oriented style inheritance and parametrization. We believe that learning
and mastering these extensions requires a substantial effort. The goal of our work was
to provide a simpler extension of A-Prolog that can be easily learned, mastered, and
used for both new and existing programs.

7 Conclusions and Future Work

In this paper, we have presented an extension of A-Prolog satisfying the two main re-
quirements for the simplification of the task of encoding complex knowledge bases.
We believe that the resulting langua&Sig is simple to learn for average A-Prolog
users, and yet effective in satisfying those requirements.
An implementation of RSig based on LPARSE is available from
http://krlab.cs.ttu.edu/ ~marcy/RSig/ . With respect to the language
described here, the implementation has the following limitations:

— The types used in signature declarations mustdreain predicates

— The parser does not check for duplicated module names.

— The parser does not check for directivshow. and #hide. occurring inside
module definitions.

— Import and export declarations are allowed to occur anywhere inside a module def-
inition.

— No error checking is done for improper import/export declarations, for example
when a global relation is used in the head of a module’s rules, but is not listed in an
export directive.

In the future, we expect to assess the effectiveness and ease of RS@bly en-
coding various complex knowledge bases. In this respect, we have already begun using
RSigfor a sophisticated intelligent system (partially covered in [2]) that applies deep
reasoning to question answering in the context of natural language understanding.

8 Acknowledgments

The author would like to thank Michael Gelfond and Yana Maximova Todorova for
their suggestions, and the anonymous reviewers for drawing attention to related works.
This work was partially supported by NASA contract NASA-NNG05GP48G and by
ATEE/DTO contract ASU-06-C-0143.

References

1. Marcello Balduccini. CR-MODELS: An Inference Engine for CR-PrologLRNMR 2007
May 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Marcello Balduccini and Chitta BaraKnowledge Representation and Question Answering

chapter 21. Handbook of Knowledge Representation. Elsevier, 2006.

. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving

Cambridge University Press, Jan 2003.

. Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, Macro Calls and Use of Ensembles

in Modular Answer Set Programming. Rroceedings of ICLP-Qfages 376-390, 2006.

. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-

battista lanni, Giuseppe lelpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The DLV System. In Sergio Flesca and Giovanbattista lanni, editors,
Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 26@)
2002.

. Francesco Calimeri, Giovanbattista lanni, Giuseppe lelpa, Adriana Pietramala, and

Maria Carmela Santoro. A System with Template Answer Set Program3ELRA 2004
2004.

. Thomas Eiter, Georg Gottlob, and Helmuth Veith. Modular Logic Programming and Gen-

eralized Quantifiers. IRroceedings of the 4th International Conference on Logic Program-
ming and Non-Monotonic Reasoning (LPNMR’97)lume 1265 ot ecture Notes in Artifi-
cial Intelligence (LNCS)pages 290-309, 1997.

. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba

Sadri, editorsComputational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part |lvolume 2408, pages 413-451. Springer Verlag, Berlin, 2002.

. Michael Gelfond. Going places - notes on a modular development of knowledge about travel.

In AAAI Spring 2006 Symposium on Knowledge Repositd2E6.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP-8&ages 1070-1080, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databasedNew Generation Computingages 365-385, 1991.

Nicholas Gianoutsos. Detecting Suspicious Input in Intelligent Systems using Answer Set
Programming. Master’s thesis, Texas Tech University, May 2005.

Yulia Lierler and Marco Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced to
Non-tight Programs. IProceedings of LPNMR;dan 2004.

Veena S. Mellarkod. Optimizing the Computation of Stable Models using Merged Rules.
Master’s thesis, Texas Tech University, May 2002.

Veena S. Mellarkod and Michael Gelfond. Enhancing ASP Systems for Planning with Tem-
poral Constraints. IhPNMR 2007 pages 309-314, May 2007.

llkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semanticsArtificial Intelligence 138(1-2):181-234, Jun 2002.

Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space ShuttleRAIDL 2001 pages
169-183, 2001.

Timo Soininen and llkka Niemela. Developing a declarative rule language for applications
in product configuration. IfProceedings of the First International Workshop on Practical
Aspects of Declarative Languagégay 1999.

Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model
semantics. Technical Report 18, Digital Systems Laboratory, Helsinki University of Tech-
nology, 1998.

