Chapter 14

Logic Programming and Reasoning
about Actions
[Chitta Baral & Michael Gelfond]

In this chapter we discuss how recent advances in logic programming can be used to represent and
reason about actions and its impact on a dynamic world, which are necessary components of intelli-
gent agents. Some of the specific issues that we consider are: the representation be tolerant to future
updates and not repeatative, there may be relationships between objects in the world, exogenous ac-
tions may occur, we may have incomplete information about the world, and we may need to construct
a plan for a given goal. In the process we introduce several action theories based on logic programs un-
der the stable model semantics and discuss their gradual (and correct) transformation into executable
programs.

14.1 Introduction

To perform nontrivial reasoning an intelligent agent situated in a changing domain needs the knowl-
edge of causal laws that describe effects of actions that change the domain, and the ability to observe
and record occurrences of these actions and the truth values of fluents at particular moments of time.
One of the central problems of knowledge representation is the discovery of methods of representing
this kind of information in a form allowing various types of reasoning about the dynamic world and
at the same time tolerant of future updates. The goal of this chapter is to demonstrate how recent
advances in logic programming can be used to address this problem. The early attempts on the use of
logic programming for representing knowledge about dynamic domains can be found in [Eshghi, 1988a;
Evans, 1989; Apt, 19901, among others. In these work the corresponding domains are described by gen-
eral logic programs - collections of rules of the form

lo«<1l1,....lm,n0t liy1,...,n0t 1y, (14.1)

where [;’s are atoms over some signature ¢ and not is a nonstandard logical connective called negation
as failure. Due to the presence of this connective, the entailment relation between literals of o and gen-
eral logic programs is nonmonotonic, i.e., a literal [ entailed by a program II; is not necessarily entailed
by a program II, when II; C II>. This property of the entailment makes logic programming a conve-
nient tool for representing defaults [Reiter, 1980c], i.e., statements of the form “normally, (typically, as
a rule) elements of a class a have property p.” There are several defaults which seem to be frequently
used in reasoning about dynamic domains. The most important one, known as the common-sense law
of inertia [McCarthy, 1959; McCarthy, 1963; McCarthy and Hayes, 19691, says that normally things
remain as they are. Any axiom describing the effect of an action on a state of the world represents
an exception to this default. An agent reasoning about possible effects of his actions on the current
state of the world uses these axioms to derive the changes that would occur in the current state after
the execution of a particular action. The law of inertia is used to derive what does not change. The

301



IVL uiliviad Daral & 1viitliacl Uclioila

problem of constructing a formal framework which would allow us to express and reason with the law
of inertia is called the frame problem. The use of negation as failure leads to a simple solution of the
frame problem for a broad class of dynamic domains. Unlike the initial attempts to solve the frame
problem using circumscription [Shanahan, 19971, the logic programming solution avoids the existence
of unintended models. Moreover, some of the reasoning about dynamic domains can be performed by
simply running the corresponding program under Prolog or one of its extensions, without developing
any additional algorithms for nonmonotonic reasoning.

In the last ten years we have witnessed several developments in the theory of logic programming
which substantially improved its applicability to the theory of actions. Extensions of “classical” logic
programming such as the use of abduction [Kakas et al., 1993], disjunction [Lobo et al., 1992; Gel-
fond and Lifschitz, 1991], and programs with two negation operators [Gelfond and Lifschitz, 1991]
allowed the removal of the closed world assumption [Reiter, 1978] implicit in its initial framework. As
a result logic programming became suitable for representing incomplete information [Gelfond, 1994;
Denecker and De Schreye, 1993; Dung, 1993]. Discovery of declarative semantics of logic programs
independent of the inference mechanism of Prolog allowed us to better understand the nature and
mathematical properties of new logical connectives. This led to advances in development and imple-
mentations of inference mechanisms [Niemeld and Simons, 1997; Chen et al., 1995; Eiter et al., 2000a;
Denecker and De Schreye, 1997] for enhanced logic programming languages. These and other ad-
vances facilitated a systematic development of formal theories of actions based on logic programming.
There is a considerable body of work devoted to this subject. It can be roughly classified by the ontol-
ogy of actions and time, by the type of semantics of logic programming, and by the type of the targeted
interpreter, used in a particular work.

Ontology based differences can be traced to differences between two basic calculi proposed for formal-
ization of actions: the Situation Calculus [McCarthy and Hayes, 1969; Reiter, 2001] and the Event
Calculus [Kowalski and Sergot, 1986]. Even though originally the Situation Calculus was formulated
in First-Order Logic, its logic programming counterparts appeared shortly after its introduction. The
Event Calculus was originally formulated using a logic programming language. The relationship be-
tween the two formalisms is by now well understood [Van Belleghem et al., 1995; Provetti, 1996a;
Kowalski and Sadri, 1997]. There is also some work on combining the most important features of both
approaches [Baral et al., 1997; Kakas and Miller, 19971.

The differences in semantics are related to slightly different views on the utility of various patterns
of default reasoning. Open logic programs [Denecker and De Schreye, 1993] seem to put particular
emphasis on abduction. Logic programs under well-founded semantics [Van Gelder et al., 1991; Alferes
and Pereira, 1996; Brass et al., 1998] are based on cautious approach to applying defaults which leads
to the intended model of a program in which truth values of some literals may be undefined. Stable
model semantics [Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1990] allows a form of reasoning
by cases and has an epistemic flavor. Declaratively, logic programs (without disjunctions in the head)
under stable model semantics can be viewed as subclasses of Reiter’s default theories. The situation is
not however as messy as it may appear to a reader not familiar with all these subtleties and fortunately,
the semantics coincide for very large classes of programs. When it is not the case the relationships
between different formalisms are rather well understood. For instance, for any program II consistent
from the standpoint of stable model semantics and any literal [, if [ is a consequence of IT under the
well-founded semantics then it is a consequence of IT under the stable model semantics.

Until recently, most formulations of reasoning about actions in logic programming were based on the
underlying idea of using a Prolog like interpreter where queries, possibly containing variables, are
asked with respect to a program and the answer substitution of the variables returned by the inter-
preter contained meaningful information such as a plan. Recently, the development of systems that
generate stable models of logic programs [Niemeld and Simons, 1997; Eiter et al., 2000a; Citrigno et
al., 1997] has led to formulations where meaningful information, such as a plan [Subrahmanian and
Zaniolo, 1995; Dimopoulos et al., 1997; Lifschitz, 1999; Son et al., 2001] or a diagnosis [Gelfond et al.,
20011, are encoded by the stable models themselves.



1.4, LIUTLU T IVUIUUIWALVLIVILIN GO IV

In this chapter we will not attempt to discuss all these differences and advantages and disadvantages
of different approaches. Instead we introduce several action theories based on logic programs under
the stable model semantics and its generalizations. The emphasis will be on the methodology of de-
velopment of these theories and on their gradual transformation into executable programs. Most of
the results in this chapter are from previously published work. The only new and previously unpub-
lished results in this chapter are Proposition 14.9.2 and Proposition 14.10.1. The rest of the paper is
organized as follows. In Section 14.2, we give a brief overview of the stable model semantics of logic
programs and notions such as ‘splitting’ and ‘signing’. In Section 14.3 we give the basic notions of
action languages and then progressively introduce action languages Ay (Section 14.4), and A; (Sec-
tion 14.10), query languages Qy(Section 14.5), and Q; (Section 14.7) and algorithms to answer queries
in £(Ag, Qo) (Section 14.6 and Section 14.9), £( Ao, Q1) (Section 14.8), and £L(A1, Q1) (Section 14.11).
Finally in Section 14.12, we show how logic programming can be used for planning in a model enumer-
ation style.

14.2 Logic Programming

In this section we review necessary definitions and results from the theory of declarative logic pro-
gramming. In addition to the negation as failure operator not [Clark, 1978al of “classical” logic
programming languages we consider two other connectives: classical (strong, explicit) negation ()
of [Gelfond and Lifschitz, 1990] and epistemic disjunction or of [Gelfond and Lifschitz, 1991]. Both
connectives are needed to allow representation of various forms of incomplete information. There is
no complete agreement on the nature and semantics of these connectives and their interrelation with
negation as failure. Several different proposals were discussed in the literature. (See, for instance,
Minker et al. [Lobo et al., 1992], Pereira et al. [Pereira et al., 19901, Dix [Dix, 1991], Przymusinski
[Przymusinski, 19901, and Gelfond and Lifschitz [Gelfond and Lifschitz, 1991]). We will follow the an-
swer set semantics* of [Gelfond and Lifschitz, 1991]. Applicability of this approach to representation
of incomplete information is discussed in [Baral and Gelfond, 1994; Gelfond, 1994].

A disjunctive logic program (DLP) is a collection of rules of the form
lpor ...orly < lgy1,...lym,not lyyy1,...,n0t 1, (14.2)

where each [; is a literal, i.e. an atom possibly preceded by —, and not is the negation as failure.
Expression on the left hand (right hand) side of + is called the head (the body) of the rule. Both, the
head and the body of (14.2) can be empty. DLPs whose rules have ¥ = 0, and whose [/;’s are positive
literals are referred to as general logic programs. When all the rules in a DLP have k¥ = 0 then it is
referred to as an extended logic program [Gelfond and Lifschitz, 1990; Pearce and Wagner, 19891].

Intuitively the rule 14.2 can be read as: if Iy 41, ..., ., are believed and it is not true that /,,,11, .. .,, are
believed then at least one of {lg,...,I;} is believed. For a rule r of the form (14.2) the sets {lo,...,l},
{lkt1,- -y lm} and {lpypy1,...,1n} are referred to as head(r), pos(r) and neg(r) respectively; lit(r) stands

for head(r) U pos(r) Uneg(r). For any DLP II, head(II) = |J,c;; head(r). For a set of predicates S, Lit(S)
denotes the set of literals with predicates from S. For a DLP IT, Lit(II) denotes the set of literals with
predicates from the language of IT. When it is clear from the context, we write Lit instead of Lit(II).
For sets of literals X and Y, we say Y is complete in X if for every literal [ € X, at least one of the
complementary literals [, belongs to Y.

A program determines a collection of answer sets — sets of ground literals representing possible beliefs
of the program.

Definition 14.2.1 ([Gelfond and Lifschitz, 1991]1). Let IT be a disjunctive logic program without
variables. For any set S of literals, let IT° be the logic program obtained from IT by deleting

(i) each rule that has a formula not [ in its body with [ € S, and

*Recently, the language of logic programming with answer set semantics is referred to as A-Prolog or AnsProlog meaning
‘answer set programming in logic’.



IV uiliviad Daral & 1viitliacl Uclioila

(i1) all formulas of the form not | in the bodies of the remaining rules. O

Definition 14.2.2. An answer set of a disjunctive logic program IT not containing not is a minimal (in
a sense of set-theoretic inclusion) subset S of Lit such that

(i) foranyrulelpor ... orly < lpy1...ly from IT,if I q,..., L, € S, then for some i, 0 <i < k, l; € S;
(i1) if S contains a pair of complementary literals, then S = Lit.

A set S of literals is an answer set of an arbitrary disjunctive logic program IT if
S is an answer set of IT°. ]
A program* is consistent if it has an answer set not containing contradictory literals. As was shown in

[Gelfond, 1994] if a program is consistent then all of its answer sets are consistent. A ground literal [
is said to be entailed by a DLP II, written as IT |= [, if it belongs to all of its answer sets.

In our further discussion we will need the following proposition about DLPs:

Proposition 14.2.1 ([Baral and Gelfond, 1994]). For any answer set S of a disjunctive logic program
II:

(a) For any ground instance of a rule of the type (14.2) from II, if

{lk41...ln} C S and

then there exists an ¢, 0 <4 < k such that ; € S.

(b) If S is a consistent answer set of IT and I; € S for some 0 < ¢ < k then there exists a ground instance
of a rule from I such that

{lg41---lm} C S, and
{lmt1...1,} NS =0, and
{lo...lk}ﬂS: {lz} O

We now review the definitions of “splitting” and “signing” which we use to analyze properties of the
programs obtained by translating a domain description.

Definition 14.2.3 ([Turner, 1994]). Let IT be a DLP such that no rule in it has empty heads. Let
S be a set of literals in the language of IT such that no literals in head(IT) appears complemented in
head(IT). Let S denote Lit \ S. S is said to be a signing for IT if each rule r € IT satisfies the following
two conditions:

(i) head(r) U pos(r) C S and neg(r) C S, or
head(r) U pos(r) C S and neg(r) C S

(ii) If head(r) C S, then head(r) is a singleton.

If a program has a signing, we say that it is signed. i
Definition 14.2.4 ([Turner, 19941). Let IT be a program. If S is a signing for II, then

hs(IT) ={r € Il : head(r) C S},

hs(IT) = {r € IT : head(r) C S}. O

Proposition 14.2.2. Based on the restricted monotonicity theorem in [Turner, 19941
Let IT, and II, be programs in the same language, both with signing S. If hg(II;) C hg(Il;) and
hs(IIy) C hs(I11), then

if T, Eland !l € S then IT, = 1. o

*Henceforth by “program” we mean a disjunctive logic program.



1.4, LIUTLU T IVUIUUIWALVLIVILIN GO IVUJ

Definition 14.2.5. (Splitting set) [Lifschitz and Turner, 1994]

A splitting set for a program IT is any set U of literals such that for every rule r € II, if head(r)NU # 0
then lit(r) C U. If U is a splitting set for II, we also say that U splits P. The set of rules r € IT such
that lit(r) C U is called the bottom of II relative to the splitting set U and denoted by by (II). The
subprogram I7 \ by (II) is called the top of II relative to U. O

Definition 14.2.6. (Partial evaluation) [Lifschitz and Turner, 1994]
The partial evaluation of a program II with splitting set U w.r.t. a set of literals X is the program
ey (I, X) defined as follows. For each rule r € IT such that:

(pos(r)NU)C X A (neg(r)NU)NX =0
put in ey (II, X) all the rules r that satisfy the following property:

head(r') = head(r), pos(r') = pos(r) \ U, neg(r') = neg(r) \ U

O
Definition 14.2.7. (Solution) [Lifschitz and Turner, 1994/
Let U be a splitting set for a program II. A solution to I7 w.r.t. U is a pair (X,Y) of literals such that:
e X is an answer set for by (I1);
e Y is an answer set for ey (II \ by (IT), X);
e X UY is consistent.
O

Lemma 14.2.1. (Splitting Lemma) [Lifschitz and Turner, 1994]
Let U be a splitting set for a program I7. A set A of literals is a consistent answer set for IT if and only
if A= X UY for some solution (X,Y") to IT w.r.t. U. O

The concept of a well-moded program due to Dembinski and Maluszynski [Dembinski and Maluszyn-
ski, 1985] has proven to be useful for establishing various properties of logic programs. We will be
using it in this chapter and hence to be self-complete we will define it here. We first need the following
terminology:

By a mode for an n-ary predicate symbol p we mean a function d, from {1,...,n} to the set {+,—}. If
dp(i) = ‘+ the i is called an input position of p and if d,(¢) = -’ the ¢ is called an output position of p.
We write d,, in the form p(d,(1),...,d,(n)). Intuitively, queries formed by predicate p will be expected
to have input positions occupied by ground terms. To simplify the notation, when writing an atom as
p(u,v), we assume that u is the sequence of terms filling in the input positions of p and that v is the
sequence of terms filling in the output positions. By /(u,v) we denote expressions of the form p(u,v) or
not p(u,v); var(s) denotes the set of all variables occurring in s. Assignment of modes to the predicate
symbols of a program IT is called input-output specification.

A rule po(to, Sma1) < l1(s1,t1),- -+, lm(Sm, tm) is called well-moded w.r.t. its input output specification if

fori € [1,m + 1], var(s;) C U;.;B var(t;). In other words, a rule is well-moded if

i) every variable occurring in an input position of a body goal occurs either in an input position of
the head or in an output position of an earlier body goal;

ii) every variable occurring in an output position of the head occurs in an input position of the head,
or in an output position of a body goal.
A program is called well-moded w.r.t. its input-output specification if all its rules are.
In our analysis we will also be needing the following notion of acyclic programs [Apt, 19901.

Definition 14.2.8 ([Apt, 1990]). A general logic program IT is acyclic if there exists a mapping | | from
the Herbrand base of IT to the the set of natural numbers such that for every Ag < Ay,..., Ay, not Apta,...,not A,
in the ground version of I, and for every 1 <i < n: |Ag| > |4;|. O



IV uiliviad Daral & 1viitliacl Uclioila

14.2.1 Abductive logic programs

An alternative approach for reasoning with incomplete information is the formulation of abductive
logic programs [Kakas and Mancarella, 1990a; Denecker and De Schreye, 1993; Baral and Gelfond,
1994], where predicates about which incompleteness is allowed is referred to as the abducible predi-
cates or open predicates. An abductive logic program is a triple (I1, A, O), where A is the set of open
predicates, IT is a general logic program with atoms of non-open predicates in its heads and O is a set
of first order formulas. O is used to express observations and constraints in an abductive logic program.
Abductive logic programs are characterized as follows:

Definition 14.2.9. Let (II, A, O) be an abductive logic program. A set M of ground atoms is a general-
ized stable model of (II, A, O) if there is a set of ground atoms A made up of predicates in A, such that
M is a stable model of IT U A and M satisfies O.

For an atom f, we say (I1, A,O) Eaa f, if f belongs to all generalized stable models of (17, A, O). For
a negative literal —f, we say (IT, A,0) uq —f, if f does not belong to any of the generalized stable
models of (II, A, O). O

14.3 Action Languages: basic notions

Our description of dynamic domains will be based on the formalism of action languages. Such lan-
guages, first introduced in [Gelfond and Lifschitz, 19931, can be thought of as formal models of the
part of the natural language that are used for describing the behavior of dynamic domains. An action
language can be represented as the sum of two distinct parts: an “action description language”, and an
“action query language”.

A set of propositions in an action description language describes the effects of actions on states. Math-
ematically, it defines a transition system with nodes corresponding to possible states and arcs labeled
by actions from the given domain. An arc (o1, a,02) indicates that execution of an action a in state oy
may result in the domain moving to the state o5. By a path or history of a transition system 7' we mean
a sequence g, a1, 01, - -, 0y, 0y, Such that for any 1 < i < n, (0;,a;41,0:41) is an arc of T'. o¢ and o,, are
called initial and final states of the path (or history) respectively.

An action query language serves for expressing properties of paths in a given transition system. The
syntax of such a language is defined by two classes of syntactic expressions: axioms and queries. The
semantics of an action query language is defined by specifying, for every transition system 7', every set
I' of axioms, and every query (), whether @ is a consequence of I" in T'.

In the next three sections we define a simple action language £, which can be viewed as the sum of an
action description language Ay and a query description language Qy. We assume a fixed signature X,
which consists of two disjoint and nonempty sets of symbols, a set F of fluents, and a set A of actions.
Signatures of this kind will be called action signatures. By fluent literals we mean fluents and their
negations. Negation of f € F will be denoted by —f. A set S of fluent literals is called complete (w.r.t.
F) if for any f € F we have f € S or —f € S. A state is represented by a complete and consistent set of
fluent literals of Xy. A fluent literal [ is said to be true or said to hold in a state s, if | € s. A set S of
fluent literals is said to be true or said to hold in a state s, if all element of S hold in s.

14.4 Action description language A,

Consider a fixed action signature Xy. The syntax of A is characterized by the following definition.

Definition 14.4.1. In the language Ay,

1. A fluent literal is an expression of the form f or —f where f is a fluent name,



4.2, AULIVUIN DULOUIVD 11VIN LAINGTOUAUTOL AQ JU{

2. Propositions (called causal laws) are expressions of the form
impossible_if(a,[l1,...,1l5]) (14.3)

causes(a,lo, [l1,--.,1ln]) (14.4)

where a is an action name and [I’s are fluent literals. The former are called executability condi-
tions, and the latter are called dynamic causal laws. Intuitively, the proposition (14.3) means
that the action a is impossible to execute in a state s if the set of fluent literals {ly,...,l,} hold
in s. Similarly, the proposition (14.4) means that if an action a is executed in a state s such that
the set of fluent literals {l1,...,l,} hold in s then the fluent literal I, will hold in the subsequent
state.

3. An action description is a set of causal laws. |

Given an action description D, the semantics of .4, defines the transition system that is “described” by
D. More precisely

Definition 14.4.2. The transition system T = (S, R) described by D is defined as follows:
1. Sis the collection of all complete and consistent sets of fluent literals of Xy,

2. R is the set of all triples (o, a,c’'), where 0,0’ € S, such that D does not contain a proposition of
the form impossible_if(a,[l1,...,1,]) with [I1,...,l,] C o and

E(a,0) Co' C E(a,0)Uo (14.5)

where E(a, o) stands for the set of all fluent literals /o for which there is a dynamic causal law
causes(a,lo, [l1,...,1y]) in D such that [l4,...,l,] Co.

3. For any o € S, if there does not exist a proposition of the form impossible_if(a,[l1,...,I,]) with
[l1,...,1l,] C o then there exists a ¢’ such that (o, a,0’) € R. (Note that this (o, a, ') must satisfy
condition (2).)

We say that an action a is prohibited in a state o if there is no ¢’ such that (o, a, ') € R. The transition
system T described by D is called the causal model of D. A domain description with no causal model is
called inconsistent. O

Intuitively, (14.5) together with the requirement that o’ be complete and consistent says that the
immediate effects of action a in state ¢ must be in ¢’, and in addition (accounting for inertia) all other
fluents in o must remain unchanged in ¢’. Moreover, for Ag, ¢’ satisfying (14.5), if exists, is unique.
An example of a domain description that is inconsistent is {causes(a, f,[ ]),causes(a,—~f,[ ])}. That is
because for an arbitrary o there does not exist a ¢’ such that (¢, a, ') satisfies the condition (2). Thus
condition (3) is violated.

Example 14.4.1. Let us consider a collection of vehicles which can move between different locations.
The corresponding signature X consists of two sets of object constants, v1,...,v, and Il,...,[,,; the set
of fluents of the form at(v,!) which stands for “the vehicle v is located at location /”, and a set of actions
move(v,l1,l2) where [y and I, are different locations. The effects of these actions can be defined by the
following set Dq of causal laws:

causes(move(v,ly,12),at(v,l2),[ ]).

causes(move(v,ly,12), —at(v,l3),[ ])-

impossible_i f (move(v,ly,12), [~at(v,11)]).

where v’s are vehicles and /1,15, and I3 are locations and I3 # I5.

Dy



JUO uiliviad Daral & 1viitliacl Uclioila

To actually specify these causal laws to a computer program we will use a DLP. We assume the
existence of complete lists of vehicles and locations given by collection of atoms vehicle(vy),. ..

location(ly), . .., and define the causal laws by rules with variables:

( causes(move(V, Ly, La),at(V, Ls),[]) :— wehicle(V),
location(Ly),
location(Ls).

causes(move(V, L1, L2), —at(V, L3),[]) i— wehicle(V)

location(Ly),
IIp, location(Ls),
location(Ls),
Lg # L2.

impossible_i f (move(V, L1, Ly), [-at(V, L1)]) :— wvehicle(V)
location(L4),
location(Ls).

\

We say a causal law ¢ € Dy iff it is entailed by the above program.

The Figure 14.1 shows the transition system T, described by Dy. (For simplicity we assumed that the

signature of Dy contains names for one vehicle and two locations.)

at(v,11),~at(v,12)

move(v,12,11) move(v,11,12)

at(v,12),~at(v,|11)

Figure 14.1: Transition system Tj

It is worth noticing that according to our description there are states in which a vehicle can occupy
more than one location. Similarly, one location may contain more than one vehicle. Later we show how

these possibilities — if necessary — can be eliminated.



14x.d. QULIVI ULOUIVLD L1VUIN AN TGUAUL 2 IVUJI

14.5 Query description language O,

The query language Qg over an action signature Y, consists of two types of expressions: axioms and
queries. Axioms of Qg are of the form

initially(l) (14.6)

where [ is a fluent literal. A collection of axioms describes the set of fluents which are true in (the state
corresponding to) the initial situation*. A set of axioms of Qq is said to be initial state complete if for
all fluents f either initially(f) or initially(—f) is in the set.

A query of Qg is a statement of the form

holds_after(l, o) (14.7)

where [ is a fluent literal and « is a sequence of actions. The statement says that a is executable in the
initial situation and, if it were executed, then the fluent literal [ would be true afterwards. To give the
semantics of Q¢ we need the following definition.

Definition 14.5.1. Let T be a transition system over action signature Xy. We say that
(i) a history o9, a1,01, - -, an, o, satisfies an axiom initially(l) if I € oy,

(ii) a query @ = holds_after(l,[an, ..., a1]) is a consequence of a set I" of axioms with respect to T if, for
every history H of T of the form o¢,a1,04,...,a,,0, that satisfies all axioms in I', [ € 7,,. In this case
we say @ holds in H.

Let D be an action description and T be the transition system defined by D. We say that a query @ is
a consequence of a set I' of axioms in D (symbolically, I' =p @) if Q is a consequence of I" with respect
toT. O

To illustrate the definition let us consider the following example.

Example 14.5.1. Let D, be the action description from Example 14.4.1 and consider the set Iy of
axioms of the form

r (a) initially(at(vy, 1)), initially(at(ve, 2)), - - -
O\ (b) initially(—at(v;,1;)), where i # j.

Obviously, Iy gives a complete description of the initial situation. I.e., there is only one state in T,
which satisfies all the axioms from I. It can then be shown that

(1) Iy =p, holds_after(at(vy,ls), [move(v,l,l3)]),

(i9) I'v Ep, holds_after(—at(vy,l;),[move(vy,l,l3)]), for any location I; different from I3,

(i51) Iy =p, holds_after(at(vs,ls), [move(vy,ly,13)]), and

(iv) Iy Ep, holds_after(—at(va,l;), [move(vy,li,l3)]), for any location [; different from I5.

Similar to Example 14.4.1 the axioms of I'; can be more concisely defined by replacing facts of the form
(b) by the DLP below:

initially(at(vy, 1)).
initially(at(vs,ls)).

M, initially(—at(V, L)) :— wvehicle(V),

location(L),
not initially(at(V, L)).
O

In the next section we give additional DLP rules that are needed to compute |=p, with respect to Ip.

*By situation we mean an executable sequence of actions. The initial situation corresponds to the empty sequence.



J91VU uiliviad Daral & 1viitliacl Uclioila

14.6 Answering queries in £(A4), Q)

In this section we address the question of computing the consequences of axioms of Qy. We limit
ourselves to sets of axioms which are initial state complete. (We will lift this restriction in Section
14.9.) The consequences of an action description D and a set I" of axioms will be computed by a general

logic program I1y together with D and I" as a set of facts. ITyg consists of the following rules:

1. Executability of Actions:

( impossible([A]S])

impossible(S).
impossible([A|S])
I, impossible_if(A, P),
holds_a fter_list(P,S).

executable(S)

not impossible(S).

The atom holds-after_list(p,s) says that the sequence s of actions is executable in the initial
situation and, if it were to be executed, then all fluent literals from the list p would necessarily
be true afterwards. The statement impossible(s) (executable(s)) says that the sequence s of action
can not (can) be executed in the initial situation. Intuitively, the use of negation as failure in the
third rule is justified by the completeness of information about impossibility of actions and about
truth and falsity of fluents. Formal justification for these and other axioms will be provided by
Proposition 14.6.1 below.

2. The Effect Axioms:

holds_after(L,[]) —
initially(L).
72 holds_after(L,[A|S]) :—
00 ezecutable([A|S]),
causes(A,L,C),
holds_after list(C,S).

These axioms define the effects of actions on a state (corresponding to a situation) based on causal
laws and on truth and falsity of fluents.

3. The List Axioms:

holds_after list([],-).
holds_after_ list([L|Rest],S) :—
I3, holds_after(L,S),
holds_after_list(Rest, S).

The axioms in this group define the auxiliary relation holds_after list(p, c).

4. The Inertia Axiom:

holds_after(L,[A|S]) :—
executable([A|S]),
holds_after(L,S),
not ab(L, A, S).

4
HOO



120, AUINOVYV LIVLING U LIV LIN L\AQy X0) Igl1

This is the inertia axiom mentioned in the introduction. It has a form of default which says that
normally, things remain as they are. The atom ab(l, an, [an—1,-..,a1]) says that the inertia axiom
shall not be applied to establish the truth value of | after the execution of [ay, .. .,an_1,a,]. Thisis
a common way of representing defaults in a logic programming framework, where we represent
‘normally ps are ¢s’, but r’s are an exception to this rule, by writing:

q(X) «+ p(X),not ab(X)
ab(X) + r(X)
5. Cancellation Axioms
ab(L,A,S) —
contrary(L, NL),

15, causes(A,NL,C),
holds_after list(C,S)

The above axiom stops the application of the inertia axiom — that establishes the truth of a fluent
literal [ in situation [a|s], if there are causal laws which cause ! to become false in the situation
[als].

6. Auxiliary

contrary(neg(F), F) :—

176 fluent(F).
00 Y contrary(F,neg(F)) :—
fluent(F).

The following proposition gives conditions for soundness and completeness of IToo UD U I" with respect
to the entailment =p from a set of complete and consistent axioms I". Given a consistent (but possibly
incomplete) set of axioms I', by ¢(I") we denote the set {I"’ : such that I' C I and I" is complete }. In
the following proposition and through the rest of this paper, for a logic program I7, we will often denote
theset {Q:ITUI'UD =Q} by II(I"UD).

Proposition 14.6.1. For any consistent action description D and an initial state complete set of axioms
I', I l=p holds_after(l, s) iff holds_after(l,s) € Ioo(DUT"). O

sketch. The proof follows from the following two lemmas. In each of these two lemmas D is a consistent
action description and I" is an initial state complete set of axioms. O

Lemma 14.6.1 ([Apt, 19901). IToo(D U I) is acyclic. m|

Proof:
The following level mapping | | shows that the program ITooUI'UD satisfies the conditions for acyclicity.

Let ¢ be the number of fluent literals in the language plus 1; p be a list of fluent literal, f be a fluent
literal, and s be a sequence of actions.

For any action a, |a| = 1, |[]| = 1, and for any list [a|r] of actions |[a|r]| = |r| + 1.

Also, for any fluent literal f, |f| = 1, |[]| = 1, and for any list [f|p] of fluent literals |[f|p]| = |p| + 1.
|holds_after_list(p,s)| = 6¢c* |s| + |p| + 4

|holds_after(f,s)| = 6cx |s| + |f| + 4

|executable(s)| = 6c¢ * |s| + 3

|impossible(s)| = 6¢ * |s| + 2



[> B ) uiliviad Daral & 1viitliacl Uclioila

|ab(f,a,s)| = 6¢x* |s| + 5e+ |f| +1
|contrary(f,g)| = 1, and all other atoms are mapped to 0. O

From the properties of acyclic programs [Apt, 19901 it follows that IToo U D U I" has a unique answer
set.

Lemma 14.6.2. Let H = 0g,a1,01,...an,0, be a history of the transition system defined by D that
satisfy the axioms in I" and let M be the answer set of IToo U D U I'. Then,
foralli,0 <i <n, f € o; iff holds_ater(f, [ai,...,a1])* is true in M. |

Proposition 14.6.1 reduces the question of computing the consequence relation |=p to computing en-
tailment with respect to the logic program I7o0 U D U I'. Computation with respect to a logic program
depends on the interpreter used for making inferences. Since Prolog is the most popular logic program-
ming language to date, we now consider using the Prolog interpreter, and view the program ITooUDUTI
as a Prolog program with variables.

Proposition 14.6.2. The program Iy U I' U D is computable by the Prolog interpreter. I.e., The
inference due to the Prolog interpreter on ITog U I' U D viewed as a Prolog program is sound and
complete with respect to the answer set semantics of IToo U " U D. a

sketch. Let us start by listing the questions which need to be addressed to prove this proposition. First
it is well known that for some programs the Prolog interpreter may produce unsound results. This may
happen because of the absence of the occur-check which, in some cases, is necessary for soundness of the
SLDNF resolution, or because the interpreter may flounder, i.e. may select for resolution a goal of the
form not ¢ where ¢ contains an uninstantiated variable. Second, the interpreter may fail to terminate.
Even if we show that for any X € Ilyg and ground query g, the interpreter which takes IToo U X and ¢
as an input terminates, does not flounder, and does not require the occur-check, the soundness of our
result is guaranteed only with respect to the unsorted grounding of Iy, i.e. the grounding of IIyo by
terms of signature X, obtained from signature Xy by removing types and type information. In what
follows we briefly discuss how these questions can be addressed. In particular we give hints about why
(i) the program is occur-check free, (ii) it does not flounder, and (iii) it terminates. A proof based on our
hints will be similar to the proofs in Section 7 of [Baral et al., 1997]. O

e Occur-check free: To show that our program is occur-check free we use the result by Apt and
Pellegrini in [Apt and Pellegrini, 1994] where they showed that if IT is well-moded [Dembinski
and Maluszynski, 1985] for some input-output specification and there is no rule in IT whose head
contains more than one occurrence of the same variable in its output positions then IT is occur-
check free w.r.t. any ground query ¢. It can be shown that the following input-output specification,
where ‘+’ denotes input and ‘-’ denotes output, indeed satisfies the above property. (For further
details on this property please see [Dembinski and Maluszynski, 1985; Apt and Pellegrini, 1994;
Baral et al., 1997]. )

impossible(+)
executable(+)
holds_after(—,+)
holds_after_list(—,+)
ab(+, +,+)
contrary(+,—)
inatially(—)

causes(+, —, —)
impossible_i f(+, —)
fluent(+)

*When ¢ = 0, the list [a;, . .., a1] denotes the empty list [ ].



L4x./4. QULIVI LAINTGUAUL ] Il

e Does not flounder: To show this property we can use another theorem from [Apt and Pellegrini,
1994] which was also independently discovered by Stroetman [Stroetman, 1993]: if IT is well-
moded (for some input-output specification) and all predicate symbols occurring under not in IT
are moded completely by input then a ground query 7 (q) to IT does not flounder. The only two
predicate symbols occurring under not in Ilyo U I' U D are impossible and ab, and as required by
the above mentioned condition, they both are moded completely by input.

e Terminates: Since IIoo UD U I is acyclic (From Lemma 14.6.1), termination follows as a property
of acyclic programs [Apt, 1990]. O

To conclude the proof it suffices to apply the main result of [McCain and Turner, 1994] which reduces
entailment in typed groundings of programs to entailment in their untyped groundings. O

14.7 Query language Q;

In this section we expand query language Qg to be able to talk about the events that have actually
taken place and about hypothetical actions that may be part of a history. The letters tg,%;,... are
called actual situations and used to denote time points in the actual evolution of the system. If such
evolution is caused by consecutive actions a1, ..., a, then ty corresponds to the initial situation and t,
where k < n corresponds to the end of the execution of ay, ..., ax.

The domain’s past evolution is described by a set I" of axioms in the query language Q;, which are
expressions of the form

occurs_at(a, ty) (14.8)
holds_at(l, ty,) (14.9)

The axiom (14.8) says that the action a has been executed in actual situation t;; the axiom (14.9)
indicates that [ is true after a sequence of k& consecutive actions has been actually executed. The
proposition initially(l) will be often used as a shorthand for holds_at(l,t;). The axioms of I" can be
viewed as observations. Besides the actual situations, we have a special situation . that we refer
to as the current situation, or the current moment of time. If there is a situation ¢; with an axiom
occurs_at(a,ty), such that for every axiom in I with a situation #; in it, i < k, then ¢, is the situation
tg+1, otherwise ¢ is the situation ¢,,,,, where maz is the maximum j, such that there is an axiom
about t; in I'.

Queries of Q; are expressions of the form (14.9)

and of the form

currently(l) (14.10)

holds_after(l,[an,...,a1],t). (14.11)

The query (14.10) states that [ holds at the current moment of time. The query (14.11) is hypothetical
and is read as: “sequence aq, .- .,a, of actions is executable in the situation ¢, and if it were executed,
then fluent literal [ would be true afterwards. If ¢ is an actual situation that happened in the past and
the sequence ay,...,a, is different from the one that actually occurs at ¢ then the corresponding query
expresses a counterfactual. If ¢ = ¢, then the query expresses a hypothesis about the system’s future
behavior. The following definitions refines the intuition behind the meaning of propositions of Q.

Definition 14.7.1. Let T be a transition system, H = o¢,a1,01,...,a,,0, be a history of T', and X' be
a situation map, a mapping from situations to positive integers such that i < j implies X'(¢;) < X(¢;),
X(to) = 0 and for all ¢;, X (t;) < X(t.). We say that

e (H,X) satisfies an axiom occurs_at(a,tx) if a = ax )41,



Jl1lax vlllitta Daldl & 1viiliiacl UcClioilu
e (H,X) satisfies an axiom holds_at(l,ty) if | € o5,).

A pair (H, X)) of history H of T and a situation map X is called a model of a set of axioms I'" if (H, X)
satisfies all axioms from I" and there does not exist a proper prefix H' of H such that for some situation
map X', the pair (H', X') satisfies all axioms from I'. I" is called consistent if it has a model.

e a query holds_at(l,t)) is a consequence of a set I' of axioms with respect to T if, for every pair of
history 09, a1,01,...,a,,0, and situation map X' of T that is a model of I', | € ox4,);

e a query currently(l) is a consequence of a set I' of axioms with respect to T if, for every pair of
history 09, a1,01,...,a,,0, and situation map X of T that is a model of I', | € ox4.);

e a query holds_after(l,[al,,...,a}],tx) is a consequence of a set I" of axioms with respect to T if, for
every pair of history o¢,a1,01,...,an,0, and situation map X of T that is a model of I', af, ..., a},
is executable in o5 (;,) and for any history
00,01,01, -, 05 (1) =15 O (ty)> 00, A1, 015 - - -, Gy, Oy Of T such that o = 05,), [ € oy,.

As before, I' =p @ will mean that the query @) is the consequence of I" in the transition system T
described by the action description D. O

It can be shown that if a history H = 09, a1,01,...,an, 0, and situation map X of T is a model of I" then
X(t.) = n, as otherwise the part of the history after o5 ) can be eliminated from the history without
affecting the truth of the axioms, thus contradicting the conditions of being a model.

Example 14.7.1. Let D, be the action description from Example 14.4.1 and consider the set I} of
axioms of the form

( initially(at(vy,11)).
initially(at(ve,ls)).

initially(—at(V,L)) :—
vehicle(V),
location(L),
not initially(at(V, L)).

In <

| occurs_at(move(vy,l1,l2),to).

It can be shown that

I =p, currently(at(vi,ls))

I E=p, currently(—at(vy, 1))

I =p, currently(at(va,ls))

I =p, holds_after(at(vi,l1),[move(vs,ls,13)], o)
I =p, holds_after(at(vs,l2), [move(vs,la,13)], to)
I =p, holds_after(at(vs,l2), [move(va,la,13)], 1)

The last two queries contain counterfactual and hypothetical statements respectively. Let us now
consider Iy = It U {holds_at(at(vs,13),t2)}. Clearly,

I Ep, currently(—at(ve,lz))

This demonstrates that the consequence relation of Q; is nonmonotonic with respect to I". This is of
course not surprising because the definition of the corresponding consequence relation incorporates
the closed world assumption which roughly says that no actions occur except those needed to explain



1.0, LAUNOVYV LIVLING ULV LIN L \AQy 1) IdlJd

observations of I'. Notice also that the only possible history which satisfies axioms from I'; starts at the
fully defined initial state oo and consists of the two actions move(v1, 1, l2) and move(vs, I3, 13). If we were
to allow queries of the form (14.8) we would be able to conclude that I'> entails occurs_at(move(vs, la, l3)).
O

In the rest of this paper, when using Q;, we will make some completeness assumptions.
e (i) I" specifies a complete initial situation, and
e (ii) for all models (H, X)) of I', with H = 09, a1,01,---,0n,0n

X (t;) =4 and
occurs_at(a;,t;) € I'iff X¥(¢;) =5 — 1.

In the above case we say that I" specifies a complete observation about the history with respect to
the transition system 7.

Thus if a set of axioms I" and a transition system T satisfy the above two assumptions then they have
exactly one model (H,Y), with H = 09,a1,01,...,a,,0,, Where oo = {l : initially(l) € I'}, and for
1 <i < n,occurs_at(a;,t;—1) € ' and X(t;) = i.

14.8 Answering queries in £(Ay, O,)

As in L(Ag, Qo) the queries in L(Ag, Q1) will be answered by computing a program IIy; — similar to
that of ITyy — together with action description D and axioms I".

The program I1); will consist of the following rules:

1. Executability of Actions:

( impossible([A|S],T)

impossible(S,T).

impossible([A|S],T)
I, impossible_if(A, P),
holds_after_ list(P,S,T).
executable(S,T) —
not impossible(S,T).

These axioms are similar to that of ITpg. The difference is the existence of the new parameter
T which stands for an actual situation. The statement impossible([an,...,a:1],t) says that the
sequence ay, ..., a, of actions cannot be executed in the actual situation . The meaning of possible
and hold_after are also similar.



J910

uiliviad Daral & 1viitliacl Uclioila

2. The Effect Axioms:

( holds_after(L,[],to) —
indtially(L).
holds_after(L,[A|S],T)

executable([A|S],T),
causes(A, L,C),
holds_after_list(C,S,T).

holds_after(L,[],T) —
holds_at(L,T).
holds_at(L,Ty) —
next(Ty, Tr—1),
occurs_at(A,Ti_1)

115, < b
olds_after(L,[A],Tk_1).
currently(L) —
current(T),
holds_at(L,T).
current(Ty) —

TLG.CL't(Tk, Tk—l)a

occeurs_at(A,Ty_1),

nothing_happend(Ty).
something_happend(T) :—

occurs_at(A,T).
nothing_happend(T) —

not something_happend(T).

\

The first axiom in this group is similar to the corresponding axiom in IIy9. The second and the
third axioms express the relationship between relations holds_after and holds_at. The last four
axioms define the current situation. The use of negation as failure is justified by our completeness
assumption and is responsible for the non-monotonicity of our program with respect to queries of
the form currently(L).

3. The List Axioms: (Similar to IT§,.)

holds_after list([],-,T).
holds_after list([L|Rest],S,T) :—
3 holds_after(L,S,T),
holds_after_list(Rest, S, T).

4. The Inertia Axiom: (Similar to IT3,.)

holds_after(L,[A|S],T) :—
executable([A|S]),
holds_after(L,S,T),
not ab(L, A, S, T).

4
HOI

5. Cancellation Axioms: (Similar to IT5;).)

ab(L,A,S,T) —
contrary(L,NL),
I3, causes(A,NL,C),
holds_after_list(C,S,T)



1.0, LAUNOVYV LIVLING ULV LIN L \AQy 1) (o8 By}

6. Auxiliary rules I1§,: Same as II§,.

The following proposition gives conditions for soundness and completeness of ITop; UD U T

Proposition 14.8.1. For any consistent action description D, a consistent set of axioms I" that specifies
a complete initial situation and also a complete observation of the history with respect to the transition
system of D, and a query Q of Q;, I' =p Q iff IIp; UDUT E Q. m|

The proof of the above proposition is similar to the proof in [Baral et al., 1997].

As in Section 14.6 we can show that the Prolog interpreter’s inferencing by viewing ITo; U D U I" as
a Prolog program is sound and complete with respect to its answer set semantics. The proof of this
results is similar to the proof of Proposition 14.6.2 and the proofs in Section 7 of [Baral et al., 19971. It
will require us to show the following:

e Occur-check free: It can be shown that the following input-output specification, where ‘+’ denotes
input and ‘-’ denotes output, satisfies the well-moded property that guarantees that the program
is occur-check free.

impossible(+, +)
executable(+,+)
holds_after(—,+,+)
holds_after list(—,+,+)
ab(+,+,+,+)
contrary(+,—)
indtially(—)

causes(+, —, —)
impossibleif(+,—)
holds_at(—, +)
currently(—)
current(—)
something_happened(+)
nothing_happened(+)
next(—,—)
occurs_at(—,—)
fluent(+)

e Does not flounder: To show this property, as in the proof sketch of Proposition 14.6.2 we can use
the theorems from [Apt and Pellegrini, 1994; Stroetman, 1993] which states: if IT is well-moded
(for some input-output specification) and all predicate symbols occurring under not in II are
moded completely by input then a ground query 7 (gq) to II does not flounder. The only predicate
symbols occurring under not in Ilg; U D U I' are impossible, ab, and something_happened and as
required by the above mentioned condition, they both are moded completely by input.

e Terminates: To prove termination, we can use the acyclicity condition of [Apt, 1990]. We can show
the acyclicity of IIp; U D U I' by defining the following level mapping | |.

Let ¢ be the number of fluent literals in the language plus 1; p be a list of fluent literal, f be a
fluent literal, s be a sequence of actions, ¢;’s be time points and t,,,,, be the current time plus 1.

For any action a, |a| = 1, |[ ]| = 1, and for any list [a|r] of actions |[a|r]| = |r| + 1.
For any fluent literal f, |f| = 1, |[]| = 1, and for any list [f|p] of fluent literals |[f|p]| = |p| + 1.
For any time point ¢;, |t;| = + 1.

|holds_a fter list(p,s,t)| = 10c * [t| + 4c * |s| + |p| + 4



J910 uiliviad Daral & 1viitliacl Uclioila

|holds_after(f,s,t)] = 10c* [t| + 4c* |s| + |f| + 4
lezecutable(s)| = 10c * [t| + 4c* |s| + 3
|impossible(s)| = 10c¢ x [¢| + 4c * |s| + 2
|ab(f,a, s, t)| = 10c* [t| + dex (|s| + 1) + |f] + 1
|holds_at(f,t)| = 10c* |t| + |f| + 3

|currently(L)| = 15¢tmaz

|current(t)| = |¢t| + 3

|nothing_happened| = |t| + 2
|something_happened(t)| = |t| + 1

|contrary(f,g)| = 1, and all other atoms are mapped to 0.

14.9 Incomplete axioms

In this section we discuss how to answer a query @ when the corresponding set I' of axioms is in-
complete. For simplicity we limit our discussion to the language £(Ag, Qo). First let us notice that
the program Iy, from Section 14.6 can not be used for this purpose. Indeed, consider the following
example:

Example 14.9.1. Let D; be the action description from Example 14.4.1 and consider the set I's of
axioms of the form

inatially(at(vy,ly)).
initially(—at(vy, l2))-
initially(at(va, l2)).
initially(—at(va,1)).

I3

Let us also assume that our domain contains exactly three vehicles, v1,vs and vs, and two locations [,
and /5. The axioms specify positions of v; and v» and say nothing about the position of v3. It can be
shown that IToo UDUI3) entails query @ = holds_after(at(vs,l1), move(vs,l2,l1)), and hence the answer
to @ is yes. The answer is incorrect, since I's has a model in which vs is initially located at position [;.
The action move(vs,l2,1;) is impossible in this position and hence IIoo U Dy U I's should entail neither

@ nor —Q).

O

14.9.1 A sound but (possibly) incomplete formulation

There are several possible ways to modify ITy, to make it sound. The first modification, ITyo1, is obtained
from 1Ty by replacing two groups of axioms as follows:

1. Executability of Actions:

(

may_be_impossible([A|S]) :—
may_be_impossible(S).
may_be_impossible([A|S]) :—
I < impossible_if(A, P),
not fail_after(P,S).
executable(S) —

not may_be_impossible(S).



1x.Jd. LUINUOULVILD L 1 1 ANTULVIO 9gl1lJ

2. Cancellation Axioms

ab(L,A,S) —
contrary(L,NL),
5, causes(A,NL,C),
not fail_after(C,S).

and adding the axiom

3. Falsification Axiom

fail_after(C,S) :—
member(L,C),
contrary(NL, L),
holds_after(NL,S).

7
HOOl

Thus, let Iy be the set of axioms II},; U I3, U I, U II§, U II5,, U II§, U II,;.

It can be checked that neither query @ from Example 14.9.1 nor its negation is entailed by IToo; UDqUI3
and hence the answer to @ is unknown. The correctness of this answer is not an accident as it can be
shown that ITg; is sound with respect to the consequence relation in £(Ag, Qo).

Proposition 14.9.1. For any consistent action description D, consistent set of axioms I, and a query
Qono,ifQ€H001(DUF) thenF|=p Q. O

sketch. From Definition 14.5.1 and Proposition 14.6.1 we have that to prove this proposition it suffices
to show that if

Q c H001(D U F) (14.12)
then
Qe () Ho(PUl) (14.13)
Iee(T)

Using the splitting set theorem we can simplify program IIyy; by removing all the occurrences of
literals formed by predicate symbols causes and contrary. It can be checked that the resulting program
is signed and therefore, according to Proposition 14.2.2, monotonic. To conclude the proof it suffices to
check that for a complete set of axioms I, ITpgy (D U I') = Ioo(D U I'). O o

The following example shows that for some action descriptions I1gg; is incomplete.

Example 14.9.2. Let D; be an action description
causes(a, f, [p]).

causes(a, f,[p]).

Then it can be checked that 0 |=p, holds_after(f,[a]) while holds_after(f,[a]) & Ioo1(D1) O



94V uiliviad Daral & 1viitliacl Uclioila

14.9.2 Soundness and completeness results for STRIPS action descriptions

Now let us consider STRIPS action descriptions, i.e. action descriptions consisting of causal laws of the
form causes(a, ly,[]) and impossible_if(a,[l1,...,1,]).* Notice that the action description from Example
14.9.1 belongs to this class.

Proposition 14.9.2. For any consistent STRIPS action description D, any consistent set of axioms I',
and a query @ of Qq, Q € Ioo1 (DU iff I Ep Q. O

sketch. It can be shown that for any I', ITyp1 (D U I') is categorical, i.e., it has a unique answer set. Let
us denote this set by A(I"). The if part of the program follows immediately from Proposition 14.9.1. To
prove the only if part we will first demonstrate that for any sequence « of actions

if ezecutable(a) € ﬂ A(I") then ezecutable(a) € A(I') (14.14)
Fee(n)

We use induction on the length |a| of a. The base, |a| = 0, follows immediately from the executability
axioms (IT}y,) of ITy:. Let a = [a|f],

executable(a) € ﬂ A(D) (14.15)
Iee(r)
and assume that (14.14) holds for 5. Suppose now that
ezecutable(a) ¢ A(I) (14.16)

From (14.15) and the Executability axioms of ITog; we can conclude that

executable(B) € ﬂ A(D) (14.17)
Fee(n)

By inductive hypotheses this implies that
executable(B) € A(I) (14.18)

From (14.16), (14.18), and the Executability axioms we conclude that there are fluent literals [4,...,[,
such that

impossible_if(a,[l1,...,ly]) € D (14.19)
and

fail_after([ly,...,1,],8) € A(I) (14.20)
From (14.20) and the Falsification axiom we conclude that for any I; (1 <4 < n)

holds_after(l;, ) & A(I") (14.21)
Let

M = {l; : | satisfies (14.21) and holds_after(l;, 8) ¢ A(I")} (14.22)

be the set of all fluent literals from the body of the causal law (14.19) whose truth values after the
execution of 8 are undetermined. Since D is the STRIPS action description we can check (using the
Effect, Inertia, and Cancellation axioms) that for any v = [a1|71] if

executable(y) € A(I') and holds_after(l,v1) € A(I)

*This is an extension of a standard STRIPS representation language [Poole et al., 1998]. Add and delete lists of this language
correspond to causal laws of the type causes(a, f,[ ]) and causes(a,—f,[ ]) respectively. The precondition statement of STRIPS
for an action a consists of a collection pi,...,p, of atomic fluents that need to be true for the action to be executable. In our
action description language this corresponds to n statements of the form impossible(—p;) for all 1 < ¢ < n. Unlike the original
STRIPS representation the STRIPS action descriptions allows to specify the effects of actions for incomplete descriptions of
states.



1x.Jd. LUINUOULVILD L 1 1 ANTULVIO g4l

then
holds_after(l,v) € A(I') or holds_after(l,) € A(I') (14.23)

i.e., once the value of a fluent literal becomes determined it stays determined. From this observation
and the construction of M we conclude that for any /; € M

initially(l;) ¢ T (14.24)
and for any action a; from

causes(ag,l;,[]) € D and causes(ay,l;,[]) € D (14.25)

Let us now consider an extension I}, of I' containing statements initially(l;) for any I; € M. From
(14.16) we have that the body of (14.19) contains no contrary literals. ThlS together with (14.24)
implies that I is consistent. From construction of Iy, (14.25), and the Inertia axiom we have that

holds_after(l;, 5) € A(Lp) (14.26)
for all [; € M and hence

executable(a) & A(ID) (14.27)
which contradicts our assumption (14.15). Hence

executable(a) € A(I) (14.28)

To complete the proof we again use induction on «. The base case is obvious. Consider

holds_after(l,[alf]) € (| A (14.29)
Iee(r)

This implies that

executable([a|F]) ﬂ Al (14.30)
Fee(In)

and hence, by (14.14),

executable(a) € A(I) (14.31)
To show that

holds_after(l,[a|B]) € A(I") (14.32)
we first consider the case when

causes(a,l,[]) € D (14.33)

Then (14.29) follows immediately from (14.31) and the effect axioms. If (14.33) does not hold then
(14.29) implies that

holds_after(l,8) € (| AL (14.34)

Fece(I)
and hence, by the inductive hypothesis,
holds_after(l,3) € A(I") (14.35)
Now (14.32) follows immediately from (14.31), (14.35), and the Inertia axioms. o O



Qa4 uiliviad Daral & 1viitliacl Uclioila

14.9.3 A general sound and complete formulation

The next modification of I1y; is obtained by adding to ITyo; the following Initial Situation Axioms.

initially(l) :—not initially (1) (14.36)

for every fluent literal I. Let us denote the resulting program by Ilyp:. Intuitively, the addition of
these axioms corresponds to forcing the program to consider possible values of all fluents in the ini-
tial situation and do reasoning by cases, if necessary. To better understand these rules let us go
back to action description D; from Example 14.9.2. It can be checked that the program ITyo2(D;) has
two answer sets, A; and As. Suppose that A; does not contain initially(p). Then by rule (14.36),
it must contain initially(—p). Using the second causal law from Example 14.9.2 and the effect ax-
ioms we can conclude that A; contains holds_after(f,[a]). Similarly we can show that A, contains
initially(p), holds_after(f,[a]), and therefore holds_after(f,[a]) € Ilgo2(D1). This informal argument
can easily be made precise. Moreover, the answer to a query holds_after(f,[a]) can be computed by an
extension of XSB, called SLG [Chen et al., 1995] which allows reasoning with multiple answer sets.
The following theorem shows that I7oo2 adequately represents entailment relation of £(Aq, Qo)-

Proposition 14.9.3. For any consistent action description D of Ay, any consistent set of axioms I,
and a query @ of Qg, Q € (DU ff I' Ep Q. a

Proof: Follows from using the splitting lemma (Lemma 14.2.1) and Proposition 14.6.1.

14.9.4 A sound and complete formulation using disjunction

Let us obtain ITyo3 from I1yg2 by replacing (14.36) by the following.
initially(f) or initially(neg(f)) < (14.37)

We can now show that the following holds.

Proposition 14.9.4. For any consistent action description D of Ay, any consistent set of axioms I,
and a query @ of Qg, Q € Hy3(DUIN)ff I' Ep Q. O

Proof: Follows from using splitting and Proposition 14.6.1.

An alternative approach is to use the formulation of abductive logic programs [Kakas and Mancarella,
1990a; Denecker and De Schreye, 19931 for which an interpreter [Denecker and De Schreye, 1997]
exists. Other alternatives were suggested in [Kartha, 1993; Dung, 1993].

14.9.5 A sound and complete formulation using abduction

( holds_after(L,[]) -
fluent(L),
initially(L).
holds_after(L,[A|S])  —
fluent(L),
executable([A|S]),
causes(A,L,C),
holds_after list(C,S).
holds_after(neg(L),S) :—
fluent(L),
executable(S),
not holds_after(L,S),

IER




1. 41U, AULIVUIN UDLOovIviD T1YVIN LAaiNaguUATgls Al [> 419

( holds_after(L,[A]S]) :—

fluent(L),

o4 4 executable([A]9)),
holds_after(L, S),
not ab(L, A, S).

([ ab(L,A,S) —

fluent(L),

I3, < contrary(L, NL),
causes(A,NL,C),
holds_after_list(C,S).

\

Let o4 be the general logic program consisting of I1,, 113,,, 113y, I3, 1154, and IIS,. Given a set

of axioms I', let I'* denote the conjunction of atoms in the following set: {initially(f) : initially(f) €

I' and f is a fluent } U {—initially(f) :initially(neg(f)) € I" and f is a fluent }. Let C be the following

formulaVf.—initially(neg(f)). Let us now consider the abductive logic program (IZoo4UD, {initially}, I'*A
C). Intuitively, the constraint I'* A C force A C atoms(initially) to be facts about positive fluents only,

and in such a way that it is consistent with I".

Proposition 14.9.5. For any consistent action description D of Ag, any consistent set of axioms I,
and a query @ of Qo,

(Ioos U D, {initially}, I'* A C) Eaa Q iff I' =p Q. O

sketch. The proof follows from the following three lemmas. In each of these lemmas D is a consistent
action description and I" is a consistent (but possibly incomplete) set of axioms. O

Lemma 14.9.1. Let H = 0¢,a1,01,...an,0, be a history of the transition system of D that satisfy
the axioms in I" and let M be a generalized stable model of (IIgo4 U D, {initially}, ['* A C) such that
oo = {f rinitially(f) € M} U {~f : initially(f) ¢ M}. Let [ag, . . ., a1] denote the list [ ]. Then,

Foralli,0 <i<m, f € oy iff holds_ater(f,[a;, ..., a1]) is true in M. O

The above lemma can be proved by induction on 4.

Lemma 14.9.2. For every history H = 09, a1,01,...a,,0, of the transition system of D that satisfy
the axioms in I" there exists a generalized stable model My of (IIpos U D, {initially}, I'™* A C) such that
oo = {f :initially(f) € My} U {~f : initially(f) ¢ Mu}. |

Lemma 14.9.3. For every generalized stable model M of (ITogs U D, {initially}, I'* A C) there exists a
history Hys = 0¢,a1,01,...ay, 0, of the transition system of D that satisfy the axioms in I" such that
oo ={f rinitially(f) € M} U {~f : initially(f) ¢ M} a

14.10 Action description language A,

In this section we consider an extension .4; of action description language A from Section 14.4. As
before we consider a fixed action signature Y. Propositions of .4; are expressions of the form

impossible_if(a,[l1,...,1l.]) (14.38)
causes(a,lo, [l1,--.,1n]) (14.39)
causes(lo, [l1,---,1n]) (14.40)

The first two propositions are exactly those allowed in 4. The last proposition says that, in the action
domain being described, whenever [;,...,[, are caused, Iy is caused. Propositions of this form are



[ P uiliviad Daral & 1viitliacl Uclioila

called static causal laws* To better understand the use of these laws for representing knowledge about
effects of actions let us go back to Example 14.4.1. The transition diagram of the domain description
Dy from this example contains states in which the same vehicle occupies more than one location. This
possibility can be eliminated if we assume that a vehicle in our domain can not be in two locations at
the same time. This information can be represented in A; by static causal laws of the form

causes(—at(v,l1), [at(v,12)])

where v is a vehicle and /; and [, are different locations. As before, this can be written as a logic
programming rule

causes(—at(V, L), [at(v, La)]) :—
vehicle(V)
location(Ly)
location(Ls)

dif (L1, La).
Inclusion of this law makes the dynamic causal law
causes(move(v,ly,12), nat(v,l3),[ ])-

of Dy redundant and therefore it can be removed. Let us consider an action description D, of A; given
below:

causes(move(v,ly,12), at(v,l2),[ ]).

causes(—at(v, 1), [at(v,12)])

impossible_i f (move(v,ly,12), [~at(v,11)]).

where v’s are vehicles and I1, andls are locations and I; # Is.

Dy

Intuitively, D, describes the same transition diagram as in Figure 14.1, if we assume a single vehicle
v and two locations /; and 5.

We are now ready to define the semantics of A; (based on the characterization in [McCain and Turner,
1995]) that uses the following terminology and notations. A set s of literals is closed under a set Z of
static causal laws if s includes the head, Iy, of every static causal law (14.40) such that {l;,...,l,} C S.
The set Cnz(s) of consequences of s under Z is the set of all literals that contain s and is closed under
Z. Let D be an action description in A;. The transition system T' = (S, R) described by D is defined as
follows.

1. Sis the collection of all complete and consistent sets of fluent literals of ¥y closed under the static
laws of D,

2. R isthe set of all triples (o, a,¢') such that D does not contain a proposition of the form impossible_if (a,[l1, . . . ,1s])
such that [l4,...,l,] C o and

o' =Cnz(E(a,0) U(cNd')) (14.41)

where Z is the set of all static causal laws of D, and E(a, o) is the set of the heads [/ of dynamic
causal laws causes(a,ly,[l1,...,l,] of D such that {l;,...,l,} C s. The argument of Cn(Z) in
(14.41) is the union of the set E(a, s) of the “direct effects” of a with the set s N s’ of facts that are
“preserved by inertia”. The application of Cn(Z) adds the “indirect effects” to this union.

The following example shows that addition of static causal laws substantially increases expressive
power of our language.

*The paper [Marek and Truszczynski, 1994] was perhaps the first work that inspired later logic programming and default
logic based formulations of static causal laws [Baral, August 1994; Baral, 1997; Baral, 1995; McCain and Turner, 1995; McCain
and Turner, 1997a; Turner, 1997]. Alternative formulations of causality while reasoning about actions were suggested in [Lin,
1995; Thielscher, 1997a; Lifschitz, 1997al.



1. 41U, AULIVUIN UDLOovIviD T1YVIN LAaiNaguUATgls Al (> F419)

Example 14.10.1. Let D3 be an action description
causes(a, f,[])-
causes(—g1, [f, g2])-
causes(—gs, [f7 91])-

The transition system T3 described by Djs is represented by Figure 14.2.

Figure 14.2: Transition Diagram

The diagram is nondeterministic and therefore cannot be described by a domain description of Ay. O

We now give some conditions which guarantee that an action description D of A; is deterministic, i.e.,
describes a deterministic transition system. Let R be a collection of static causal laws of D. For any
action a and a state o, by E*(a, o) we will denote the closure of direct effects, E(a, o), of executing a in
o with respect to R. We will say that D is separable if for any a and ¢ such that a is executable in o, if
r € R and body(r) N E*(a,c) # 0 then body(r) C E*(a,o).

Proposition 14.10.1. Any separable action description D of A; is deterministic. O

Proof. Let T = (S, R) be a transition system described by D. We need to show that for any action a and
states o,0',0% € S if

1. (0,a,0') € R and (0,a,0?) € R then
2. ol =2

From definition (14.41) of R and the assumption (1) we have
3.0 =Cnz(E(a,0) U (cNat))

which is equivalent to

4. o' =Cnz(E*(a,0)U (e Nat)).

By separability of D (4) is equivalent to



940 uiliviad Daral & 1viitliacl Uclioila

5. 0! = E*(a,0) UCnz(o Naotl).

Since o and o, are states they are closed under the rules of Z and hence (5) is equivalent to
6. o' = E*(a,0) U (c Nat).

Similarly, we can show that

7. 0% = E*(a,0) U (0 Na?).

To prove (2) let us assume that [ € ¢!. By (6) we have that

8.1 € E*(a,0) or

9.l€o0.
If (8) holds then from (7) we have that | € g4. If (8) does not hold then we have (9). Since states are
complete and consistent sets of literals this implies that I € o2. This completes the proof. m|

14.11 Answering queries in £(A;, Qy) and £L(A;, Q1)

In this section we illustrate the use of logic programming for computing consequences of domain de-
scriptions of £(A1, Qo) and L£(A;,Q;). As in Section 14.6 we assume that D is consistent and make
some completeness assumptions about I". The corresponding programs I7,¢ and II;; are obtained from
ITy and ITy; respectively by adding the following rules:

e [I1g is Ilyo plus the following two rules.

holds_after(L,S) :—
executable(S),
causes(L,C),
holds_after_list(C,S).

ab(L,A,S) —
contrary(L,NL),
causes(NL,C),
holds_after_list(C,[A|S])

e [I1; is Ily; plus the following two rules.

holds_after(L,S,T) :—
ezecutable(S,T),
causes(L,C),
holds_after_list(C,S,T).

ab(L, A, 8,T)
contrary(L,NL),
causes(NL,C),
holds_after list(C,[A|S],T)

Proposition 14.11.1. For any consistent action description D of A;, any consistent set of axioms I"
that specifies a complete initial situation, and a query @ of Qo, Q € IIl( (DU iff I" =p Q. |

Proposition 14.11.2. For any consistent action description D of A;, a consistent set of axioms I" that
specifies a complete initial situation and also a complete observation of the history with respect to the
transition system of D, and a query @ of Q1, Q € II;; (DU ) iff I =p Q. m|



1. la, D LAININLIING UOLING IV DD AN ULAVEIVA L LULN [ P<y

The proofs of Propositions 14.11.1 and 14.11.2 are similar to that of Propositions 14.6.1 and 14.8.1
respectively.

As before this does not work if I' is not complete. The complete initial situation assumption can be
removed by expanding I7;; by the rules:

initially(l) :—
contrary(l,1),
not initially(l)

where contrary(l,1) holds iff I and [ are contrary fluent literals. The resulting program will be denoted
by I 110-

Proposition 14.11.3. For any consistent action description D of A;, a consistent set of axioms I" that
specifies a complete observation of the history with respect to the transition system of D, and a query
QOle,QEHuo(DUF) iff ':7_) Q O

Proof: Follows from using splitting and Proposition 14.11.2.

The difficulty of the computation of I7;; UDU I and IT11 U DU I' is dependent on whether D describes
a deterministic transition diagram. If it does then there will be a single stable model of the program
and we can use the XSB interpreter. Otherwise, there may be multiple stable models of the program
and we would have to use interpreters such as the Smodels and DLV systems.

14.12 Planning using model enumeration

The DLPs in the previous sections are most appropriate for verifying if a particular fluent literal is
true after the execution of a sequence of actions. They can be used for planning by using interpreters
that do answer extraction. In this section we show how the DLPs can be adapted so that planning can
be done through model enumeration.

In the model enumeration approach [Subrahmanian and Zaniolo, 1995] each stable model of our pro-
gram corresponds to a particular hypothetical evolution of the world. We guess a minimal plan length
for a given goal and that information is part of the program. The stable models where the goal is
not true at the guessed plan length are eliminated by adding appropriate constraints to the program.
The stable models that are not weeded out give us plans that achieve the given goals at the guessed
plan length. To make sure that each stable model of our program corresponds to a possible evolu-
tion of the world we have executability axioms, effect axioms, inertia axioms, etc., with the modifi-
cation that instead of situations we use plan length or time as the basis of how the world evolves.
This approach to planning has recently been called as answer-set planning [Lifschitz, 1999], where
answer-sets is a more general term for stable models. Answer-set planning is a particular instance
of the more general notion of answer set programming where queries with respect to a logic pro-
gram are answered through the bottom-up approach of generating answer sets and evaluating the
query with respect to them rather than through the top down approach of unification and resolu-
tion. One advantage of the answer set programming [Marek and Truszczynski, 1999; Niemeld, 1999;
Eiter et al., 2000b] approach is that it takes advantage of multiplicity of answer sets by treating them
as a solution space, and allows us to implement the brave semantics (i.e., entailment with respect to
some answer set rather than all answer sets) of logic programs.

We now give an example of how planning is done with respect to our vehicle example. In Section 14.12.1
we describe a downtown with one-way streets and do planning to go from one location to another. In
Section 14.12.2 we allow observations, and do planning from the current situation.



940 uiliviad Daral & 1viitliacl Uclioila

14.12.1 Navigating a downtown with one-way streets

Consider the one-way streets in Anymetro USA given in Figure 14.3. The driver of vehicle v would
like to go from the point /3 to point />. Following are the domain dependent and domain independent
axioms that the driver has.

Figure 14.3: One-way streets in downtown Anymetro, USA

1. The domain dependent part

(a) The initial street description:
mitially(edge(ly, o
initially(edge(la,l3
initially(edge(ls, 4
initially(edge(ly, g

initially(edge(ls, l;

initially(edge(lg, 5
initially(edge(ls, 1
mitially(edge(ls, lg
nitially(edge(ly,l3

(edge(ly, 1)
(edge(l2, 13)
(edge(l3, 14)
(edge(ls, 1)
(edge(ls, I7)
initially(edge(l7,lg)
(edge(ls, I5)
(edge(ls, 11)
(edge(ls, 1)
(edge(lr, 1)
initially(edge(l,lg)
(edge(

)
)
)
)
).
).
)
)
)
)
)
)

initially(edge(ly, l10)).



1. la, D LAININLIING UOLING IV DD AN ULAVEIVA L LULN

initially(edge(l10,111))

)

(edge( )
initially(edge(l11,112)).
initially(edge(li2,12))
initially(edge(l12,1y)).

(b) The initial position of the vehicle
inatially(at(v,l3)).

(c) The goal state
finally(at(v,l2)).

(d) When actions are not executable
impossible_i f (move(V, L1, L2),neg(at(V, L1))).
impossible_i f (move(V, L1, L2),neg(edge(L1, L2))).

(e) The effect of actions
causes(move(V, L1, L2), at(V, L2)).
causes(move(V, L1, L2), neg(at(V, L1))).

2. The domain independent part

(a) Defining goal(T'): The goal is true in time T'.

not_goal(T) :— time(T),
finally(X),
not holds(X,T).
goal(T) :— time(T),
not not_goal (T).

(b) Eliminating models which do not have a plan of the given length.

:— not goal(length).
(¢) Defining contrary
contrary(F,neg(F)).
contrary(neg(F), F).
(d) What holds in time point 1.
holds(F,1) :— initially(F).
holds(neg(F),1) :— not holds(F,1).
(e) Effect axiom
holds(F,T + 1) :— T < length,
executable(A,T),

occurs(A,T),
causes(A, F).

(f) Inertia
holds(F,T + 1) :— contrary(F,G),
T < length,
holds(F,T),

not holds(G,T + 1).

v4ad



JJIVU uiliviad Daral & 1viitliacl Uclioila

(g) We need rules that define executability in terms of the impossible i f conditions given in the
domain dependent part. These rules are:

not_executable(A,T) :— impossibleif(A, B),
holds(B,T)
executable(A,T) :— not not_executable(A,T).

(h) What actions are possible at each time point? A simple formulation of this could be to encode
that at any time point all executable actions are possible if the goal is not reached.

possible(A,T) :— action(A),
executable(A,T),
not goal(T).

(1) Occurrences of actions

occurs(A,T) :— action(A),
possible(A,T),
not not_occurs(A,T).
not_occurs(A,T) :— action(A),
action(AA),
occurs(AA,T),
A# AA.

When the above program is given to the interpreter Smodels [Niemelid and Simons, 1997] one of the
stable models that is generated has the following literals describing a plan.

occurs(move(v,ls,l4),1).
occurs(move(v,ly,lg), 2).
occurs(move(v, g, l7), 3).
occurs(move(v,lr,lg),4).
occurs(move(v, lg, l5), 5)
occurs(move(v,ls,11),6)
occurs(move(v,ly,12),7).

We refer to the domain independent part of the above program as IToo.pianning. The following propo-
sition states the correctness of the program Iy pianning for planning when we are given a consistent
domain description and an initial state complete set of axioms.

Proposition 14.12.1. Let D be a consistent domain description in Ag and I" be an initial state com-
plete set of axioms in Qy. Let length be a positive integer and G be a set of fluent literals that we want
to be true in the goal state.

(i) If there is a sequence of actions a1, . . . , iengtn, Such that for each literal [ in G, I' =p holds_after(l, [aiength, - - - »01]),
then IToo pranning U D U I' U { finally(l) : | € G} has an answer set with {occurs(a1,1),...,0ccurs(aiengn,length)}
as the set of facts about occurs in it.

(ii) If oo pianning Y D U I' U {finally(l) : | € G} has an answer set with
{occurs(ay,1),...,occurs(aiengtn,length)} as the set of facts about occurs in it then for each literal / in
G, I’ =p holds_after(l, [aiength, - - -, a1]). O

A specific instance of the above proposition is the case where I" consists of the rules in part 1(a) and
1(b) above and D consists of the rules in part 1(d) and 1(e) above.

14.12.2 Downtown navigation: planning while driving

Consider the case that an agent uses the planner in the previous section and makes a plan. It now
executes part of the plan, where it moves from I3 to I, and I4 to I, and then hears in the radio that an
accident occurred between point lyand l; and that section of the street is blocked. The agent now has



1. 1. UUINUL/UULING IVAVIATVIND JI 1l

to make a new plan from where it is to its destination. To be able to encode observations and make
plans from the current situation we need to add the following to our program in the previous section.

1. The domain dependent part

(a) The observations
occurs_at(move(v, l3,14),1).
occurs_at(move(v,ly,lg),2).

occurs_at(acc(ly,l2), 3).

(b) Exogenous actions
causes(acc(X,Y),neg(edge(X,Y))).
2. The domain independent part

(a) Relating occurs_at and occurs
occurs(A,T) :— occurs_at(A,T).

With these additions one of the plans generated by Smodels is as follows:

occurs(move(v,lg,l7),4).
occurs(move(v,
occurs(move(
occurs(move(v,
occurs(move(v,ly,lg
occurs(move(v,
(move(v,
(move(

occurs(move(v,l11,112),
occurs(move(v,l12,12),1

Although it does not matter in the particular example described above, we should separate the set of
actions to agent_actions and exogenous_actions, and in the planning module require that while planning
we only use agent_actions. This can be achieved by replacing the two rules about occurs by the following
rules.

occurs(A,T) :— occurs_at(A,T).
occurs(A,T) :— agent_action(A),
possible(A,T),
not not_occurs(A,T).
not_occurs(A,T) :— not occurs(A,T).
i—  occurs(A,T),occurs(AA,T), A+ AA.

14.13 Concluding Remarks

In this chapter we presented a series of logic programming (with stable model semantics and its gen-
eralizations) based action theories with increasing expressibility, and with special emphasis on (i)
using an independent automata based semantics for defining correctness, (ii) developing executable
programs, and (iii) dealing with incompleteness. These aspects have been among our main inter-
ests in the last 8-9 years. Some of the other aspects of logic programming based reasoning about
actions that we and other researchers worked on but which we did not discuss here are: reasoning
about concurrent actions [Baral and Gelfond, 19971, reasoning with narratives [Baral et al., 1997;
Pinto and R.Reiter, 1993], using action theories to develop an agent architecture [Baral et al., 19971,
and reasoning about resources [Holldobler and Thielscher, 1993]. An important work which we would



JIL uiliviad Daral & 1viitliacl Uclioila

like mention here is [Lin, 1997] where Lin gives semantics of the cut operator of Prolog using an action
theory.

Amongst the emerging areas, one of the most important is the area of model based planning using
logic programming. Starting with the development of the S-models [Niemel4 and Simons, 1997] and
the work by Dimopolous et al. [Dimopoulos et al., 19971, there has been a lot of recent research [McCain
and Turner, 1998; Lifschitz, 1999; Erdem and Lifschitz, 1999; Baral and Gelfond, 2000] in this area.
In Section 14.12 we gave a quick introduction to this.

In terms of related future and ongoing work, some of the questions that are being currently addressed
and not elaborated in this chapter are: (i) using domain knowledgelSon et al., 2001] and heuristics
[Balduccini et al., 2000; Gelfond, 2001] in model based planning using logic programming. (ii) using
action theories to develop a notion of diagnosis [Baral and Gelfond, 2000; Gelfond et al., 2001], (iii) us-
ing interpreters that can accommodate disjunctive logic programs (such as the DLV interpreter [Eiter
et al., 2000al) to develop planners that generate plans with sensing actions, and (iv) developing more
general results about when a transition function is deterministic.



