Towards an Integration of Answer Set and
Constraint Solving

S. Baselice, P.A. Bonatti, M. Gelfond
May 6, 2005

Abstract

Answer set programming (ASP for short) is a declarative problem solving
framework that has been recently attracting the attention of researchers for its ex-
pressiveness and for its well-engineered and optimized implementations. Still,
state-of-the-art answer set solvers have huge memory requirements, because the
ground instantiation of the input program must be computed before the actual rea-
soning starts. This prevents ASP to be effective on several classes of problems.
In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sottegic programs with cardinal-
ity constraints We prove some theoretical results, introduce a provably sound and
complete algorithm, and report experimental results showing that our approach can
solve problem instances with significantly larger domains.

1 Introduction

Nonmonotonic reasoning was initially introduced for commonsense reasoning and rea-
soning about action and change [14, 18, 15]. It was later applied to model a variety of
combinatorial problems, where nonmonotonic logics proved to be powerful represen-
tation formalisms [5]. One of the most promising results in this respect, is a declarative
problem solving framework calleghswer set programmin@\SP for short), with well-
engineered and optimized implementations [13, 16, 7]. The most popular ASP lan-
guages are basically extensions of function-free logic programs (a.k.a. Datalog) where
negation as failure is interpreted according tosteble model semanti¢8, 9]. From

the expressiveness point of view, ASP languages are able to encode efficiently and
uniformly all search problems within the first two levels of the polynomial hierarchy
[12, 3]. Moreover, answer set solvers are proving to be competitive with other reason-
ers on several benchmarks [19], and are being used successfully as planners and plan
verifiers in the RCS/USA Advisor system [1, 17], a decision support system for NASA
shuttle controllersHttp://krlab.cs.ttu.edu/"marcy/RCS/).

Still, state-of-the-art answer set solvers have a major limitation: they use huge
amounts of memory, because the ground instantiation of the input program must be
computed before the actual reasoning starts. This problem is mitigated to some extent
through intelligent grounding techniques that partially evaluate program rules when
possible, thereby deleting some rule instances that are surely not applicable. However,
this technique is not effective enough on some classes of programs, including several
programs for reasoning about actions and change.

In this paper we integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sot@gic programs with cardinality
constraints[19] whose signature can be partitioned into: (i) a set of so-cadigdlar
predicatesover domains whose size can be handled by a standard answer set solver;
(i) a set ofconstrainedpredicates that can be handled by a constraint solver in a way
that does not require grounding (so larger domains can be allowed here); (iii) a set
of predicates—callechixed predicates-that create a “bridge” between the above two
partitions.

Then reasoning can be implemented by having an answer set solver interact with a
constraint solver. A critical aspect is the form that the definitions of mixed predicates
may take. If they were completely general, then that part of the program would be
just as hard to reason with as unrestricted programs because mixed predicates may
range over arbitrary domains. Accordingly, the framework introduced in this paper
supports restricted definitions for mixed predicates, that can be either functions from
“regular” to “large” domains (strong semantics) or slightly weaker mappings where
each combination of “regular” values must be associated to at least one vector of values
from “large” domains (weak semantics).

We study the relationships between strong and weak semantics, and introduce an
algorithm for computing the strong semantics efficiently under the simplifying assump-
tion that mixed predicates do not occur in the scope of nhegation. Moreover, we report
experimental results providing preliminary evidence that our approach can solve prob-
lem instances with significantly larger domains. In this first paper we focus only on the
comparison with a standard answer set programming approach.

The paper is organized as follows. The next section is devoted to preliminaries.
Then, in Section 3, we introduce the class of programs we deal with, and prove some of
their theoretical properties. The algorithm for reasoning on these programs is described
and proved to be correct and complete in Section 4. Section 6 reports the experiments
and Section 7 concludes the paper with a final discussion and possible directions for
future work.

2 Preliminaries

We adopt a sorted first-order language based on a given sigriaturettersz, y, z
range over variables, b, c range over constant symbols, lettgrsy, h over function
symbols, and letters, ¢, » over predicate symbols. L& be a finite set osorts And
assume aort specifications given, that is, a functiosort mapping:

e each constantonto a setort(c) C S;
e each variable: onto a (single) sorort(z) € S;
e eachn-ary function symbolf onto a tuplesort(f) = (Si,...,Sp11) € S*;
e eachn-ary predicate symbgl onto a tuplesort(p) = (S1,...,S,) € S™.
Note that sorts may overlap because constants may be associated to two or more sorts.

Example 2.1 A sort steps modelling plan steps, may contain the integer constants in
the interval[0, 10], while a sorttime, modelling time points, may contain the integer
constants irf0, 600000].]

All the other terms have a unique sort. Intuitively,sisrt(f), S; is the sort of the-th
argument off (1 < i < n)andsS,; is the sort of the output. Similarly, isort(p), S;
is the sort of the-th argument of predicate(1 < i < n).

Terms and atoms are defined accordingly. Each varialbiéth sort(z) = S and
each constantsuch thatS € sort(c) are terms of sor$. Each expressiofi(ti, ..., t,)
such thasort(f) = (S1, ..., S, S) and eacht; is a term of sortS; is a term of sorfS.
Nothing else is a term. We write: s to state that term belongs to sort.

All expressionsp(ty, . .., t,) such thatort(p) = (S1,...,S5,) and each; is a
term of sortS; are atoms. Literals are either atoms (positive literals) or expressions of
the formnot A whereA is an atom (negative literals).

A variable substitution ovefz,...,x,} is a function mapping each variahig
onto a term ofort(z;). The notions of instance and ground instantiation are defined as
usual from the above notion of (typed) substitution. The ground instantiation of a set
of expression€Z will be denoted byground(E).

Given a logic progranP consisting ofnormal rulesA «— L anddenials— L,
wherelL is a collection of literals, thetable modelsf P [8] are defined as follows.

We first need a notion of prograraduct P*, where! is a set of ground atoms. The
reductP! is obtained fronground(P) by removing:

¢ all the rules and constraints with a litetadt B in their body, s.t.B € I;
e all negative literals from the remaining rules and constraints.

Note thatP’ is a set of Horn clauses. Therefore[if is consistent, then it has a unique
minimal Herbrand model, that will be denoted lay(P1).

Now I is astable modebf P if and only if I = Im(PT).

The most popular answer set frameworks are based on the above notions of pro-
gram and semantics, and extensions thereof. Answer sets are identified with stable
models; each answer set represents a possible solution to the given problem instance
(programs may have no stable models, as well as multiple stable models). One impor-
tant extension consists oérdinality constraint§19], that in their simplest version are
expressions of the form

{A}u

whereA is an atom] andu are integers. Roughly speakirlg A}« forces the answer

sets of the given program to contain a numbef instances ofd, suchthat <n < u

(u may be omitted in case there is no upper bound). The complete framework is more
general. It allows for cardinality constraints in rule bodies areight constraints

that generalize cardinality constraints and allow programmers to express preferences
and optimization criteria on problem solutions. For a general and precise definition
of cardinality and weight constraints, the reader is referred to [19]. They are fully
supported by 80ODELS.

3 Constrained Programs

The sorts of constrained programs are partitioned lie¢ular and constrainedsorts.
Intuitively, regular sorts are small enough to be handled by standard answer set solvers,
while constrained sorts are large enough to require reasoners that do not instantiate the
corresponding variables.

Variables and constants are callegular or constrainedaccording to their sorts.
A function f is regular (resp. constrained) if all the sortsant(f) are regular (resp.

constrained). Functioyf is mixedif sort(f) comprises both regular and constrained
sorts. Predicate symbols are classified in a similar way.

In this paper we assume that the output sort of all functions is a constrained sort
The reason is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signatlres partitioned intoXx,., . and
Y, Wherer, ¢ andm stand fomregular, constrainedandmixedrespectively.

The atoms oveE,, Y., andX,, are referred to as-atoms,c-atoms, andn-atoms
respectively. Similarly for literals. The parameters of :aratom whose sorts are
constrained (regular) will be often referred tocagarametersrtparameters).

We assume that-predicates have a predefined interpretation, and that the equality
predicate is a-predicate. The intended interpretationpredicates will be repre-
sented by a set of ground atom. (the set of all true ground-atoms).

Regular predicates can be defined with normal programs, as in standard ASP. The
definitions of mixed predicates are restricted, instead. Let an atdined# its argu-
ments are all pairwise distinct variables. For all free atotnse write A(Z,., Z.) to
state that the-variables (respe-variables) ofA are those int’. (resp.Z.). We denote
with A(@, b) the instance oft such thatz, is replaced byi andz, with b.

In this paper we deal with two possible semantics of mixed prediéatasier the
weak semanticgor all free mixed atoms\(Z,., Z.) there is an implicit axiom

V2,37, A(Z,, 7.) 1)

that can be expressed by including into the program a cardinality constfai(@, Z.) }
for each sequence of ground argumehts the appropriate type and length.
Under thestrong semanticdor all free mixed atomsi(Z,, Z..) there is an implicit
axiom
vz, Az A(Z,, Z.), (2)

that can be encoded in a similar way with a suitable set of cardinality constraints like
1{A(a, Z.)}1.

Moreover, constrained programs may contain constraints that relate all kinds of
predicates (regular, constrained, and mixed).

Definition 3.1

1. Aregular rulgr-rule) is a rule of the formrd < B or < B whereA is anr-atom
and B is a collection ofr-literals.

2. A (proper)constraintis a rule of the form— B where B is a collection of
arbitrary literals, including at least one nonregular literal.

3. Aconstrained progran®, is the union of a set of regular rule®(P), and a set
of constraintsC'(P).

Example 3.2 In our running example (a planning and scheduling problem) we have
two regular sortsistep (representing plan steps) andtion. We write step : 0..10 to
state that the constantswith step € sort(c) are those in the integer intervl, 10].
Analogously, we may writeiction : aq,...,a, to enumerate all possible actions.

1A more general approach is described in the final discussion.
2|In SMODELS this can be done with a single rule having a cardinality constraint in the head. A similar
remark applies to the encoding of (2). We refer the reader to [19] for more details.

The regular signaturg,. contains only one relation over action x step. Intuitively,

o(A, S) means that actiord occurs at stey. The regular parR(P) containsn rules

that force at least one action to be executed at each step and a denial that forbids con-
current actions. For=1,...,n:

o(a;, S) < noto(ay,S),...,noto(a;—1,5),not o(a;y1,95),...,noto(ay, S).
Moreover,R(P) contains a denial that forbids concurrent actions:

—o0(A,S1),0(A, S2),not eq(S1, 52).
eq(X, X).

The constraint signaturg. comprises the sortime : 0..600000 with the standard
arithmetic functionss+, —, | | etc., and relationss, >, etc.

The mixed signatur&,, comprises a relatioime(S,T) associating each plan
stepS to at least one time poirif’ under the weak semantics (exactly one under the
strong semantics).

The following constraint€’(P) ensure that time is assigned to steps monotonically
and that each step is associated to exactly one time point (the latter is needed only under
the weak semantics);

— time(S1,T1),time(S52,T2),51 < S2,T1 > T2.
— time(S,T1),time(S,T2),T1 # T2.
Moreover, one can specify a minimal duration for each action, e.g., 3 time units for
— o(ay, S1),time(S1,T1),0(A2,52), time(52,T2),|T2-T1| < 3. (3)
|

Formally, the semantics of constrained programs is a specialization of the stable
model semantics for logic programs with weight constraints, taking into account the
intended interpretatiof/, of . and the implicit semantics of mixed predicates.

We first need a generalization of the progreaduct P!, whereP is now a con-
strained program anbla set of ground atoms. The redutt is obtained fronground(P)
by removing:

¢ all the rules and constraints with a litetadt B in their body, s.t.B € I U M,;
e all rules and constraints with@atom A in their body, such thatl ¢ M_;
¢ all negative literals and-atoms from the remaining rules and constraints.

Note thatP! is a set of Horn clauses also under the generalized definition. Therefore,
if P! is consistent, then it has a unique minimal Herbrand madéP’). Like the
standard notion of reduck’ results from the evaluation of negative literals against
1. Moreover, the generalized notion evaluates all the constrained literals w.r.t. their
intended semantick/,. .

Definition 3.3 A weak answer seif a constrained prograifi is a set of ground atoms
M = M, U M, satisfying the following conditions:

AS1 M, is a set ofr-atoms and\/,,, is a set ofm-atoms;

AS2 R(P)M- is consistent and/, = Im(R(P)Mr);
AS3 each constraint— L) € ground(C(P)) contains a literal; false inM;

AS4 for each freen-atom A(Z,., Z..), and for each vector of-constantsi of the ap-
propriate length)M,,, contains at least one instancefa, z.).

A strong answer setf a constrained prograiR? is a weak answer sétf = M,. U
M, satisfying the following additional condition:

AS5 for each freen-atom A(Z,, Z..), and for each vector of-constants: of the ap-
propriate length)\Z,,, containsat mostone instance ofi(a, Z..).

Note that AS2 basically states thit. is a stable model of the regular part Bf

Remark 3.4 We might have alternatively specified the semantics of a constrained pro-
gram P as the stable models of the program obtained by extenBlimgth A/, and
with the cardinality constraints that encode (1) and (2). Then AS1-AS5 might have
been proved as theorems. This requires an extension gpthieng set theorenil1].
The details have been worked out in [2] and are omitted here due to space limitations.

Theorem 3.5 (Strong vs. Weak semantics).et P be a constrained program in which
m-atoms never occur in the scope of negation. For each weak answeér sstP,
there exists a strong answer set’ of P such thatM’ C M and M \ M’ is a set of
m-atoms.

Proof. Let M be a weak answer set &f. ThenM = M, U M,, is a set of ground
atoms andV/ satisfies the properties AS1, AS2, AS3, AS4.

Let K1 (M), Ko(M), ..., K, (M) be the subsets df s.t., for eachl < i < n,
Ki(M) = {A(@,b) : A(@,b) € M,, is aground instance of(@,#.)}. Note that no
K;(M) is empty becaus#/ satisfies the property AS4.

If there exists at least ong(1 < 7 < n) s.t. the sefK;(M) has cardinality greater
than one, then letna € M be a ground m-atom belonging 6;(M). Note that, by
constructionyna must belong to only one of the sek§, (M), Ko(M), ..., K, (M).
Becausena is not the unique element &; (M), thenM’ = M \ {ma} must satisfy
the property AS4.

Moreover M’ satisfies the property AS3. In fact, for each constréint L) €
ground(C(P)), eitherma doesn’t occur inL, and then the value of eadh is the
same inM’ than M, or ma occurs inL and so(«— L) contains one more literal false
in M’ than M because negative m-literals don't occudin

MoreoverM’ and M have the same r-literals and théff satisfies also the prop-
erties AS1 and AS2. Theh!’ is a weak answer set @ asM is.

By iterating the same process starting frafif we can obtain a set/* s.t. all sets
K1 (M*), Ko(M™), ..., K,(M*) contain only one element. For the same reasons of
M’, M* is still aweak answer set &f andM \ M * is a set of m-atoms by construction.
Note thatM * is a strong answer set &f because it satisfies also the property ASb.

Note that the assumption on negative m-atoms is satisfied by our running example.

Corollary 3.6 Under the hypothesis of Theorem 3.5, the strong answer sdtsaoé
the minimal weak answer sets Bf

Corollary 3.7 Under the hypothesis of Theorem 3.5, the strong and weak skeptical
semantics of (i.e., the intersection of the strong, resp. weak answer sets) coincide.

In the light of the above corollaries, we shall focus on the strong semantics, which is a
way of computing a “representative” class of answer sets.

4 Computing strong answer sets

In this section we introduce a nondeterministic algorithm for computing strong answer
sets. The actual implementation used in the experiments is derived from the nondeter-
ministic algorithm by adding backtracking. The algorithm we introduce can be applied
to constrained programs where mixed predicates have only positive occurrences. More
general approaches require further work (cf. Section 7).

Our algorithm computestrong kernelsthat is, compact representations of a (po-
tentially large) set of strong answer sets.

Definition 4.1
1. A strong completiorf a set of ground atomBis a set/ U J such that:

e J is a set of ground m-atoms;

e for each free m-atomA(Z,,Z.) and each vector of r-constanisof the
appropriate length] U J contains exactly one instance 4fa, z.).

2. A strong kernebf a constrained prograR is a set of ground atom&” with at
least one strong completion, and such that all the strong completioRsasé
strong answer sets @f.

In general K is the intersection of exponentially many strong answer seis &ince
all strong completions ok are strong answer sets, it is trivial to generate any particular
answer set including(, given K itself.

The algorithm that integrates answer set solving and constraint solving is formu-
lated in terms of a generic answer set solver and a generic constraint solver. The for-
mer, called ASGN, takes as input a regular prografhand a set of ground literals
S. Intuitively, ASGEN is an incremental solver, arflis the previous partial attempt
at constructing an answer set fBr The solver may either fail to further exteistto
an answer set aP, or it may return a refined attempt. So we assume that ASG
enjoys of following formal properties:

1. ASGEN(P,S) returns either NULL or a se$’ of ground r-literals consistent
with P.

2. If ASGEN(P, S) returns a se§’ thenS C 5.

3. IfFASGEN(P, S) returns a complete sst thenS’ is an answer set d¢(P); here,
by completewe mean that each ground r-literal occursSin either positively or
negatively.

4. ASCEN is nondeterministically complete, that is for each answerSsef P
there exists an integer > 0 s.t. at least one computation of A&G" () returns
S.

Note that this formulation is compatible with virtually any strategy for interleaving
the answer set construction and constraint solving. Note also that as a special case,
ASGEN may immediately return complete sets (upon success) hkergkLs.

The only requirements on the constraint solver are that it should be sound and non-
deterministically complete for each set of c-clauge$n other words, all substitutions
o returned by the constraint solver should be solutiong @fe., xo should be satisfi-
able), and for each solutianof x, there should be a computation that retuwns

The constraint solver is applied to a partially evaluated version of the constraints.
To specify the partial evaluation procedure we need some auxiliary notation.

For each constraint =— B, we denote byeg(c), con(c), andmix(c), respec-
tively, the collections of regular, constrained and mixed literals belongirg) to

We say that a substitution is r-groundingiff + replaces each-variable with a
groundr-term and leaves the other variables unchanged.

Definition 4.2 The partial r-evaluationof a set of constraint§’ w.r.t. a set of ground
literals S, denoted bYPE(C, S), is defined by

PE(C, S) = {(+— mix(c),con(c))y | ¢ € C, ~ r-grounding, andeg(c)y C S}.
|

Note that the members 8E(C, .S) contain na--atoms and ne-variables, because the
former have been simplified away and the latter have been replaced-aithstants.
Note also that in this process some constraints may disappeag,(asmay match no
literals inS. Intuitively, S is to be provided by the answer set solver.

The constraint processing algorithm applies tooamalizedversion of PE(C, S),
denoted byPE"(C,), satisfying the following properties:

N1 Nom-literal occurring inPE™(C, S) contains two or more occurrences of the same
variable;

Moreover, for all freen-atomsA(Z,, Z.),
N2 If both A(a, 3.) and A(a, z..) occur iInPE™(C, S), theny, = Z..

N3 If both A(@, #7,) and A(b, Z.) occur inPE™(C, S) anda@ # b, theng, andZ, have
no variables in common.

Note that condition N2 is the opposite of the classic standardization apart approach. N2
and N3 together require the vectorsee¥ariables to be in one-to-one correspondence
with the vectors of regular arguments. Condition N1 can be fulfilled by introducing
equationse; = x; in con(c) when needed. Condition N2 and N3 can be fulfilled by
variable renaming.

Example 4.3 In the running example, whenevércontains the paiv(aq, 1), o(a;, 2),
constraint (3) yields the partially evaluated constraint

— time(1,T1),time(2,72),|T2 — T1| < 3.

After normalization, and assuming this particular constraint has not been modified, for
all the atomsime(1, x) occurring inPE™ (C'(P), S), we haver = T'1. In this way—
roughly speaking—any solution to the constraints is forced to fulfil the property (2) of
strong semantics. 1

Algorithm 1

CASPSOLVER (P)
1: Inputs: P = R(P) U C(P): a constrained program with no negatiweliterals.
2: Outputs: either a strong kernel aP or FAIL

3: begin

4. 8 :=0;

5: loop

6: S:=ASGEN(R(P),S5);

7. if § =NULL then

8: FAIL;

9: else

10: C :=PE"(C(P),S);

11: if A.cc —~con(c) has no solutiotthen
12: FAIL;

13: else if S is completeghen

14: choosea solutiono of A . —con(c);
15: Let M (C) be the set of mixed literals i@¥';
16: return S U M (C)o;

17: end

We are now ready to prove soundness and completeness for Algorithm 1.

Theorem 4.4 If a non-failed run of Algorithm 1 returns a set of literals, thenK is
a strong kernel of.

Proof. Let K be a set returned by a non-failed run of Algorithm 1.

In order to prove thal(is a strong kernel of?, we have to prove that for each set
of m-atoms/J, if KUJ is a strong completion ok thenK U J is a strong answer set of
P. That is, we need to prove that U J satisfies the properties AS1, AS2, AS3, AS4,
AS5, whenK U J satisfies the properties of the definition 4.1 of strong completion.

If a runr of the algorithm returns a sé&f thenK = SUM (C)o whereS is a stable
model of R(P) andM (C)o is a set of ground m-atoms. ThéhuJ = SUM (C)oUJ
satisfies the properties AS1 (becaug¢C)o U J is still a set of ground m-atoms) and
AS2.

Suppose thak' U J doesn'’t satisfy the property AS3. Then there exists a constraint
¢ = (« L) € ground(C(P)) s.t. all literalsL; in L are true inK UJ. If ¢ = («— L) €
ground(C(P)) then there exists a constraitite C'(P) and a ground substitution=
Y. Of ¢ S.t.c = ¢/~ andry, is r-grounding. IfL is true inK U J thenreg(c) C S and
then— (miz(c'))yr, (con(d))y, € PE(C(P),S). Becauseon(c) = (con(c))y =
(con()yrye andmiz(c) = (miz(d))y = (mix(c'))y7. are true inK U J, then
7. is not a solution of-=(con(c’))y,. Then the solutiorr of | J_. —~con(c) choosen
at the step 14 of the algorithm cannot be factorized s 01v.02 (Whereo; andos
are substitution possibly empty). Consequentlyz(c) = (miz(c¢’))v,v. cannot be
added toK at the step 16, whilémiz(c’))~,0 is added td<. Because, by hypotheses,
K U J is a strong completion ok then(miz(c¢’))~.v. cannot belong neither té. So
miz(c) is false inK U J and this is a contradiction. Thdd U J satisfies the property
AS3.

By the definition of strong completiods U J satisfies also the properties AS4 and
AS5. Consequentl) U J is a strong answer set &f. 1

Theorem 4.5 For each strong answer séf of P there exists a run of Algorithm 1 that
returns a strong kernek C M.

Proof. By the definition 3.3, ifA/ is a strong answer set éfthenM = M, U M,,, and

M satisfies the properties AS1, AS2, AS3, AS4, AS5. According to properties AS1
and AS2,M,. is a stable model oR(P). Then, by the properties olSGen, there
exists a set of runsR UN, of the algorithm that execute with success the test at the step
13 on the sef\,.. For eachr € RUN, if r doesn't return FAIL, then returns a set

K = M, U M(C)o that, by the soundness of the algorithm, is a strong kern#l. of

Now, we must only prove that there always existsrag RUN that at the step
14 chooses a solution of | . —con(c) s.t. K € M. FromM = M, U M, and
K = M, UM(C)o follows thatK C M iff M(C)o C M,,.

So it is needed to prove that there must always exists a solatih M (C)o C
M,,. If such a substitutionr exists therr can be nondeterministically chosen by a run
r € RUN.

Let M s, be a set of all r-grounded m-atoms ©fP). ThenM,,, = M;¢reey
where~ is a ground substitution af/,. ;.. such that for eachl(@,2’) and A(a@, =),
A(@,x")y = A(@,«")y. Immediately follows thad/(C') € M, ... We can always
factorizey in v = op whereos is a ground substitution a¥/(C). ThenM (C)o C
M_cgrecop, butitis also need that is a solution of J,. —con(c).

Suppose that is not a solution of J . —con(c). Then there exists a constraint
¢ € C st (con(c))o is true inM. Thenmiz(c) € M(C), because: € C, and
miz(c)o € M,,, becauseV (C') C M.f,... By construction ofC, there exists a
constraintc’ € ground(C(P)) s.t. reg(¢’) C S andmiz(¢’) = (miz(c))o and
con(c’) = (con(c))o. This implies that the constraint is not true inM because its
body is true inM, but this is a contradiction becausé is a strong answer set &f.

Then there exists a solutienof | J, . —con(c) s.t. M(C)o C Mp,.]

5 The CASP prototype

The CASP prototype is a simplified implementation of Algorithm 1, based on the an-
swer set solver BODELS [16]. CASP is meant to be an exploratory prototype, built
with off-the-shelf components. While this strategy accelerated prototype deployment,
it prevented us from exploiting the potential interleaving of answer set solving and con-
straint solving, supported by Algorithm 1. In this first prototype, the answer set solver
always returns a complete answer set, so the loop in Algorithm 1 makes always one
iteration.

Let P be the input program. WheR has a strong answer set, CASP returns a
strong kernel forP, plus auxiliary information useful for analyzing the behavior of
the system including the number of atoms, conjunctions, disjunctions, and variables
occurring in/\ .. =con(c).

CASP consists of a script ASPSCRIPT that first runs the answer set solver on
R(P). Then for each answer sstof R(P), CASPSCRIPT calls a GNU Prolog con-
straint logic program with finite domains, that implements steps 10-16 of Algorithm 1.
In case of failure (step 12),A3PScRriPTdoes not always fail; iiR(P) has more stable
models, @sPScRIPTfeeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the Con-
straint Logic Programming scheme introduced by Jaffar and Lassez in 1987 [10] and
is based on th€LP(F D) framework [6]. Constraints are defined on FD variables

10

and solved by means of arc-consistency (AC) techniques [20]. Arc consistency is not a
complete inference mechanism; it ensures only that all solutions (if any) are in the cur-
rent variable domains. In general, some variable assignments over the current domains
are not solutions. Therefore, a final solution generation and checking phase is needed.
In many cases, though, the domains produced by arc consistency are tight enough to
speed up significantly the computation of solutions.

6 Experimental Results

We experimented with a few variants of the constrained program illustrated in the ex-
amples. Of course, this can only be regarded as a preliminary evaluation. Still, the
example we choose is of significant interest. Programs similar to our running example
have been used in the USA Advisor project, related to NASA missions [1, 17], and
for protocol verification [4]. In both cases memory requirements happened to cause
problems.

We did not insist much on the performance of the answer set solver, because
there exists a rich body of literature on experimental evaluations and benchmarking of
SmoDELs. We focused on the performance of the constraint solvex as, —con(c)
and the number of disjunctions occurring in it grow.

The tests have been run on a Pentium(R) M processor 1.5GHz, with 1Mb cache
and 512Mb core memory.

Recall that the example has two regular sattionandstep and one constrained
sorttime. We started by encoding the planning and scheduling problem ag@ani.s
program with weight constraints [19]. In particular, the implicit semantics of mixed
predicates has been encoded with the weight constraint

1{time(S,T) : time(T)}1 : step(S). 4)

This constraint says that for all stefshere exists exactly one time poiftsatisfying
time(S,T).

Sorttimeis the interval of integerf) — 600000]. These values are determined by
the following requirement: scheduling should cover plans at least one week long with
the granularity of seconds.

With 2 actions and 2 steps, the front-end o @ELS (Iparse), responsible of the
ground instantiation of the program and its simplification, did not terminate within
95 minutes and was killed (the main reasoning process was never reached). On the
same program (without weight constraints, which are implicit in the strong semantics)
CASP solves up to 10 steps in about 30 seconds. If the time domain is increased to
6 million points, theriparsecrashes (probably because of exceeding memory needs),
while CASP solves up to 10 steps in less than 2 minutes.

The details of the experiment with 6 million time points are given in Figure 1.
Columnsteprepresents the corresponding regular sort, the fegloisis var, conj, and
disj, respectively, show the number of atoms, variables, conjunctions and disjunctions
of the formula/\ ..~ ~con(c) fed to the constraint solver. Fielittemptss related to
the number of backtracks; it counts the number of stable models of the regular part fed
into the Prolog module before the first strong kernel is found. Finally, col8maodels
reports the time needed by Smodels to compute the stable models of the regular part,
and columrtime shows the overall time needed to produce the first strong kernel.

The results with600, 000 time points are reported in Figure 2. In this experiment
constraints are trivial. Basically, they only assign a minimal length to each action

11

Figure 1: test-1 results

step |atoms |var |conj |disj | atempts Smodels time 110
10.1) g 2| 5 2 1{0m0.0165 0m1.259s 100
10,...2} 19 3| 12| 6 1|0mo0.007s 0m1.363s 0
{0....3} 35| 4| 22| 12 1{0m0.007s 0m3.379s . jg
w
{0,....4} 56| 5| 35 20 1{0m0.012s 0m7.440s : 50
{0,...,5} 82| 6| S51f 30 1]0m0.092s 0m14.091s E 50
{0.....6} 13| 7| 70| 42 1{0mo.1125 0m24.253s 40
(0.7} | 1a9] 8| 92| s6 1| 0m0. 1655 Om38.430s 30
10....8} 190 9| 17| 72 1{0m0.3565 0m57.580s fz
{0....9} 236(10| 145 90 1{0mo0.758s 1m22.542s 04 7 T
10...,10}| 287| 11| 176|110 1{0m1.309s 1m54.056s 8 19 35 56 82 113 143 190 236 287
SORT: action={ 1.2} - time={0.....6.000.000} atoms
Figure 2: test-2 results
step atoms | var |conj | disj | attempts | Smodels | time
{0.1} 12| 2| 9| 2 1| 0.011s|0.306s =
325
{0...2} 28 3 21 6 1 0.0195 1 0.579s 30
27.5
10,....3} 51 4| 38| 12 1| 0.009s|1.157s 25
{04} 81 5|1 60 20 1 0.012s(1.654s | _ 223
) 20
{0....5} 18| 6| 87| 30 1| 0.020s(3.4165 2 173
{0.....6} 162 7| 119 42 1| 0.039s|6.184s | = 1%
125
{0,...7} 213| 8| 156| 56 1| 0.166s10.175s 10
{0....8] 271 9| 198 72 1| 0.364s[15.811s 7.3
5
{0.....9} 336| 10| 245| 90 1 0.461s[23.151s 25 :
7
{0.....10} 408 11| 297(110 1 1.308s [32.949s o T I
12 28 51 Bl 118 162 213 271 336 408
SORT: action={1.2} -- time={0....,600.000} atoms

execution, so they are always satisfiable, for all action sequences chosen by the answer
set solver, and without any backtracking.

Now, if we make constraints more difficult by posing upper bounds on the entire
plan execution (so that constraints cannot be trivially satisfied and some backtracking
is needed), we obtain the results illustrated in Figure 3. The time needed for constraint
solving significantly increases. In future work, it will be interesting to explore different
constraint solution strategies on a wider selection of examples.

7 Conclusions

Preliminary experimental results show that the integration of answer set programming
and constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated and

solved, while one of the most powerful state-of-the-art answer set solvers cannot even

12

Figure 3: test-3 results

step atoms | var |conj | disj | attempts | Smodels time
10,1} 0] 2 3 1 1| 0m0.097s| Om0.2 16s
{0....2} 22 3| 18 3 1| 0m0.053s | Om0.117s
{0,...3} 390 4| 32 6 1| 0m0.057s | 0m0.131s
10,4} 61 5[50 10 1| 0m0.070s| Om0.181s
10,...5} 88 6| 72| 15 1| 0m0.098s | 0m0.209s
10,...,.6} 120 7| 98| 21 110m0.203s | Om0.245s
10....7} 157| B| 128 28 2| 0m0.171s | Om45.349s
{0,...8} 199 9 162 36 3| 0m0.364s | 3m54.919s
10,....9} 246| 10| 200 45 8| 0m0.556s| 35m11.777s
SORT: action={ 1.2} -- time={0,...,600.000}

reach the main reasoning phase. Our method shares with constraint logic programming
frameworks the ability of returning answers that may be compact representations of
exponentially many distinct problem solutions, each of which can be easily extracted
from the answer.

This work can be extended along several directions. First of all we are looking for
more classes of examples of practical interest to extend our experimentation.

A second line of research concerns the interplay of the two solvers. A tighter
integration of answer set generation and constraint solving may anticipate inconsis-
tency detection, thereby improving failure handling. It would be interesting to ex-
plore dependency-directed forms of backtracking. Such a refined system should be
compared through benchmarking to planners and schedulers based on different logics
and reasoning methods (for a collection of pointers to such approachedsitsee
Iliwww.aaai.org/AlTopics/html/planning.html).

We mentioned that constrained programs are basically a subclass of weight con-
straint programs. It may be possible to extend the class of weight constraints supported
by our approach, e.g., by using different bounds (e.g., mixing weak and strong seman-
tics), and by dropping the requirement that for all fraeatomsA and all vector of
r-constantsi, answer sets must contain at least one instancé(afz.). Many of
our results can be adapted under the assumption that for all distinct weight constraints
[1{A1 }u; andlz{As}us in @ programA; and A, are not unifiable.

Moreover, it would be nice to support negative mixed literals. Unfortunately, our
approach cannot be easily adapted; the solutions we have explored so far require blind
grounding over constrained domains, which is exactly what should be avoided.

Acknowledgments

Work partially supported by the EU working group WASP (5FP), IST-2001-37004.

References

[1] M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The USA-Advisor:
A case study in answer set planning.Uogic Programming and Nonmonotonic

13

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Reasoning, 6th International Conference, LPNMR 20@lume 2173 of_ecture
Notes in Computer Sciengeages 439-442. Springer, 2001.

S. Baselice. Integrazione di tecniche di Answer Set Programming e Constraint
Solving. Tesi di laurea, Universitdegli studi di Napoli Federico Il, Naples, Italy,
October 2004.

M. Cadoli, F.M. Donini, and M. Schaerf. Is intractability of nonmonotonic rea-
soning a real drawbackArtificial Intelligence 88(1-2):215-251, 1996.

L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in
logic programming ACM Trans. Comput. Logj@(4):542-580, 2001.

P. Cholewnski, V. Marek, A. Mikitiuk, and M. Truszczyski. Experimenting with
nonmonotonic reasoning. Proceedings of the 12th International Conference on
Logic Programming, ICLP 199%ages 267—281. MIT Press, 1995.

P. Codognet and D. Diaz. Compiling constraints in clp(FDpurnal of Logic
Programming 27(3):185-226, 1996.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for
non-monotonic reasoning. lrogic Programming and Nonmonotonic Reasoning,
4th International Conference, LPNMR’97, Proceedingslume 1265 ol NCS
pages 364-375. Springer, 1997.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of the 5th ICLPpages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databasedNew Generation Computing(3-4):365-386, 1991.

J. Jaffar and M. J. Maher. Constraint logic programming: A sundeyrnal of
Logic Programming19/20:503-582, May/July 1994.

V. Lifschitz and H. Turner. Splitting a Logic Program. Rtoceedings of the 12th
International Conference on Logic Programming, Kanagawa 195l Press
Series Logic Program, pages 581-595. MIT Press, 1995.

V.W. Marek and J.B. Remmel. On the expressibility of stable logic programming.
In Logic Programming and Nonmonotonic Reasoning, 6th International Confer-
ence, LPNMR 20Q¥olume 2173 of NCS pages 107-120. Springer, 2001.

W. Marek and M. Truszc#yski. Stable models and an alternative logic program-
ming paradigm. InThe Logic Programming Paradigm: a 25-Year Perspegtive
pages 375-398. Springer-Verlag, 1999.

J. McCarthy. Circumscription: a form of nonmonotonic reasoningtificial
Intelligence 13:27-39, 1980.

R. C. Moore. Semantical considerations on nonmonotonic logidgicial Intel-
ligence 25:75-94, 1985.

I. Niemek and P. Simons. Smodels — an implementation of the stable model and
well-founded semantics for normal Ip. Lmgic Programming and Nonmonotonic
Reasoning, 4th International Conference, LPNMR’97, Proceedirgsme 1265

of LNCS pages 421-430. Springer, 1997.

14

[17] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog
decision support system for the Space Shuttl®rhctical Aspects of Declarative
Languages, Third International Symposium, PADL 20@ilume 1990 of ecture
Notes in Computer Scienggages 169-183. Springer, 2001.

[18] R. Reiter. A logic for default reasonindrtificial Intelligence 13:81-132, 1980.

[19] P. Simons, I. Niemél, and T. Soininen. Extending and implementing the stable
model semanticsArtif. Intell., 138(1-2):181-234, 2002.

[20] C. Teng, P. Van Hentenryck, and Y. Deville. A generic arc-consistency algorithm
and its specializations, June 11 1992.

15

