
An Approximation of Action Theories of
���

and its
Application to Conformant Planning

Tran Cao Son � Phan Huy Tu � Michael Gelfond � A. Ricardo Morales �
�

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA�

tson � tphan � @cs.nmsu.edu	
Department of Computer Science

Texas Tech University
Lubbock, TX 79409, USA�

mgelfond � ricardo � @cs.ttu.edu

Abstract. In this paper we generalize the notion of approximation of action the-
ories introduced in [13, 26]. We introduce a logic programming based method
for constructing approximation of action theories of
�� and prove its sound-
ness. We describe an approximation based conformant planner and compare its
performance with other state-of-the-art conformant planners.

1 Introduction and Motivation

Static causal laws (a.k.a. state constraints or axioms) constitute an important part of
every dynamic domain. Unlike an effect of an action, a static causal law represents the
relationship between fluents. For example,
(a) In the travel domain, the static causal law “one person cannot be at A if he is at B”

states that
�������� is false if
�������� is true;
(b) In the block world domain, the static causal law “block A is above block B if A is

on B” says that
������ � �!�#"$��� is true if ��%&���'"$�(� is true;
Static causal laws can cause actions to have indirect effects. For example, the action of
putting the block � atop the block � , denoted by)+*+�����'",��� , causes ��%&���'",��� to be
true. The static causal law (b) implies that
������ � �!�'",��� is also true, i.e.,
�������� ���'"$�(�
is an indirect effect of)+*+�����'"$�(� . The problem of determining such indirect effects is
known as the ramification problem in reasoning about action and change (RAC).

In the last decade, several solutions to the ramification problem have been pro-
posed. Each of these solutions extends a framework for RAC to allow static causal laws
[2, 15, 17, 18, 20, 22, 23]. While being intensively studied by the RAC’s research com-
munity, static causal laws have rarely been directly considered by the planning commu-
nity. Although the original specification of the Planning Domain Description Language
(PDDL) – a language frequently used for the specification of planning problems by the
planning community – includes axioms (or static causal laws in our notation) [14], most
of the planning domains used in the recent planning competitions [1, 11, 19] do not in-
clude axioms. The main reason for this practice is that it is widely believed that axioms

can be compiled into actions’ effect propositions; thus, making the representation of
and reasoning about axioms become unnecessary in planning. This is partly true due
to the fact that PDDL only allows non-recursive axioms. In a recent paper [27], it is
proved that adding axioms to the planning language not only improves the readability
and elegance of the presentation but also increases the expressiveness of the language.
It is also shown that the addition of a component to handle axioms in a planner can
indeed improve the performance of the planner.

The main difficulty in planning in domains with static causal laws lies directly in
defining and computing the successor states. In general, domains with static causal laws
are nondeterministic; for example, in a theory with a single action
 and three fluents�

, � , and � with the property that execution of
 causes
�

to become true and the two
static causal laws
(i) if

�
is true and � is false then � must be true; and,

(ii) if
�

is true and � is false then � must be true.
Intuitively, the execution of
 in a state where

�
, � , and � are false will yield two

possible states. In one state,
�

and � are true and � is false. In the other one,
�

and �
are true and � is false. This nondeterminism leads to the fact that the execution of an
action sequence can generate different trajectories. Thus, exact planning1 is similar to
conformant planning, an approach to dealing with incomplete information in planning.
It is also worth noticing that the complexity of conformant planning (����) is much
higher than planning in deterministic domains (NP-complete) [3, 28]. It is also pointed
out in [3] that approximations of the transition function between states can help reduce
the complexity of the planning problem.

In this paper, we further investigate the notion of approximations of action theories
introduced in [13, 26]. We define an approximation for action theories of ��� . The key
difference between the newly developed approximation and those proposed in [13, 26]
is that it is applicable for action descriptions with arbitrary static causal laws: while
the approximation proposed in [13] is only for specific type of state constraints, the ap-
proximations in [26] are defined for action descriptions with sensing actions but without
state constraints. We use a logic program in defining the approximation.

The paper is organized as follows. In the next section, we review the basics of the
language ��� . Afterward, we define an approximation of ��� action theories. We then
proceed with the description of a logic programming based conformant planner which
makes use of the approximation. We then compare the performance of our planner with
some conformant planners which are closely related to our planner.

2 Syntax and semantics of 	�

We consider domains which can be represented by a transition diagram whose nodes are
possible states of the domain and whose arcs are actions that take the domain from one
state to another. Paths of the diagram correspond to possible trajectories of the system.

1 By exact planning we mean the problem of finding a polynomial-bounded length sequence of
actions that can achieve the goal at the end of every possible trajectory generated by the action
sequence.

We limit our attention to transition diagrams which can be defined by action descrip-
tions of the action language ��� from [4]. The signature � of an action description of
��� consists of two disjoint, non-empty sets of symbols: the set F of fluents, and the
set A of elementary actions. By action we mean a set
 of elementary actions. Infor-
mally we interpret an execution of
 as a simultaneous execution of its components.
For simplicity we identify an elementary action � with � ��� . By fluent literals we mean
fluents and their negations. By � we denote the fluent literal complementary to � . A set�

of fluent literals is called complete if, for any
�����

,
���	�

or
 ���	� . An action
description � of � � is a collection of statements of the form:

� causes � if) (1)

� if) (2)

impossible
 if) (3)

where � is an elementary action,
 is an action, � is a fluent literal, and) is a set of fluent
literals from the signature � of � . The set) is often referred to as the precondition
of the corresponding statement. If) is empty the “if” part of the statement can be
omitted. Statement (1), called a dynamic causal law, says that, if � is executed in a state
satisfying) then � will hold in any resulting state. Statement (2), often referred to as
a static causal law, says that any state satisfying) must satisfy � . Statement (3) is an
impossibility condition. It says that action
 cannot be performed in a state satisfying
) . We next define the transition diagram, �#�
� � specified by an action description � of
��� .

A set of literals
�

is closed under a static causal law (2) if � ��� whenever)�� �
.

By � %&� � � , we denote the smallest set of literals that contains
�

and is closed under the
static causal laws of � . A state � of �#�
� � is a complete, consistent set of literals closed
under the static causal laws of � . An action � is said to be prohibited in � if � contains
an impossibility condition (3) such that)���� and
�� � . � �!
 "�� � stands for the set of
all fluent literals � for which there is a causal law (1) in � such that)���� and � �
 .
Elements of � ��
+"�� � are called direct effects of the execution of
 in � .

Definition 1 ([21]). For an elementary action � and two states � � and � � , a transition� � � "$��"�� ���
� �#���(� iff � is not prohibited in � � and

� ��� � %&��� �!��"�� � �! �"� �$# � � �$� (4)

For an action
 and two states � � and � � , if
 is not prohibited in � � , we say that� � � "$
 "�� ���
� �#���(� if

� � � "$��"%� �&�
� �#���(� for every � �
 . An alternate sequence

of states and actions, ' �
� �)(�",
*("%� � "�+,+�+ "$
.-./ � "��0- � , is a path in a transition diagram�#�
�(� if

� �01$"$
.1$"%�)132 � �
� �#�
� � for 46587:9 % . ' is called a model of the chain of events; �

�
*(�",+,+�+ ",
*-</ � � ; �=((resp. �)-) is referred to as the initial state (resp. final state) of' ; ' entails a set of fluent literals > , written as '@? � > , if >A���B- . We sometime write� �=(�" ; "%�)- �
� �#�
� � to denote that there exists a model of ; whose initial state and final

state is � (and � - , respectively. An action description � is called deterministic if for
any state � � and action
 there is at most one successor state � � such that

� � � ",
 "%� �&�
�

�#�
�(� . Note that if � is deterministic there can be at most one model for ; given the
initial state � (and final state � - . We denote this model by � - � ; �"� (� . Notice that

in the presence of static laws, action theories can be nondeterministic. As an example,
the second theory in the introduction can be described by the action description � (
consisting of the following statements:

� (�
�� �
 causes

�
� if

� "�
 �
� if

� "�
 �
It is not difficult to see that the transition diagram of � (has the transitions� �
 � "
 � "
 �)��"$
 " � � " � "�
 �B� � and

� �
 � "�
 � "�
 �B��",
+",� � " � "
 � � � , and hence, �A(is non-
deterministic.

An elementary action � is executable in state � � if there is a state � � such that� � � "$��"�� ���
� �#�
� � ; a chain of events ; �

�
 � ",+�+,+�",
 -./ �,� is executable in a state �
if there exists a path

� � " ; "���� � in �#���(� for some ��� ; � is called consistent if for any
state � � and elementary action � which is not prohibited in � � there exists at least one
successor state � � such that

� � � "$��"�� � �
� �#���(� .

3 Approximating Action Theories of 	�

Normally an agent does not have complete information about its current state. Instead
its knowledge is limited to the current partial state — a consistent collection of flu-
ent literals closed under the static causal laws of the agent’s action description � . In
what follows partial states and states are denoted by (possibly indexed) letters > and �
respectively.

A state � containing a partial state > is called a completion of > . By �����() ��>�� we
denote the set of all completions of > . An action
 is safe in > if it is executable in every
completion of > . A chain of events ; �

�
 (",+,+�+ ",
 -</ � � is safe in > if (i)
 (is safe
in > ; and (ii) for every state � � such that

� � "$
 ("�� � � � �#���(� for some � � ������) ��>�� ,�
 � "�+,+,+ "$
.-./ � � is safe in �	� .
For many of its reasoning tasks the agent may need to know the effects of its actions

which are determined by the fluents from > (as opposed to the actual completion of >).
In [26] the authors suggest to model such knowledge by a transition function which
approximates the transition diagram �#���(� for deterministic action theories with sens-
ing actions. We will next generalize this notion to action theories in ��� . Even though
approximations can be non-deterministic, in this paper we will be interested only in
deterministic approximations.

Definition 2 (Approximation). �
���
�(� is an approximation of � if

1. States of �
�����(� are partial states of �#�
� � .
2. If

� >�"$��" >�� � � �����
�(� then for every � � �����() � >�� ,
(a) � is executable in � and,
(b) >��!����� for every ��� such that

� � "$��"���� � � �#�
�(� .
An approximation �
���
�(� is deterministic if for each partial state > and elementary ac-
tion � , there exists at most one >�� such that

� >�"$��"�>�� � � ��� �
�(� . The next observation
shows that an approximation must be sound.

Observation 1 Let �
���
�(� be an approximation of � . Then, for every chain of events; if
� > " ; " >�� � � �������(� then for every � � �����() � > � , (a) ; is executable in � ; and (b)

> � ��� � for every � � such that
� � " ; "%� � � � �#���(� .

In what follows we describe a method for constructing approximations of action
theories of ��� . In our approach, the transitions in � ���
�(� will be defined by the pro-
gram � �
�(� called the cautious encoding of � . The signature of � ���(� includes terms
corresponding to fluent literals and actions of � , as well as non-negative integers used
to represent time steps. For convenience, we often write � ��� " % � to denote the program� �
�(� where the time constants take values between 4 and % . Atoms of � ���(� are formed
by the following (sorted) predicate symbols:

– � ��� "$� � is true if literal � holds at time-step � ;
– ���!��" � � is true if action � occurs at time-step � ;
–
� � �"� "$� � is true if literal � is a direct effect of an action that occurs at time ����� ; and

–) � �"� " � � is true if literal � possibly holds at time � .
The program also contains a set of auxiliary predicates, including � 7 � � , � � * � % � , and

 ��� 7 ��% , for enumerating constants of sort time, fluent, and action respectively; ��7 � ���
*�
and ����% �	�

��� for defining literals and complementary literals, respectively2.

In our presentation, we also use some shorthands: if
 is a compound action then
���!
 " � � � � ������"$� ��
 � �
)� . For a set of fluent literals) , and � is either � , � � , or) � ,
� �) " � � � ��� ��� "$� ��
�� �)!� and % ����� �) "$� � � � % ����� ��� " � ��
�� �)!� . For a fluent

�
, by

� we mean
 � if � �
�

and
�

if � �
 � . Literals � and � are called contrary literals. For
a set of literal) ,) � � ��
 � �)!� . Finally, � and � (possibly with indexes) are variables
for fluent literals and time steps respectively. The set of rules of � �
� � consists of those
encoding the laws in � , those encoding the inertial axioms, and some auxiliary rules.
We next describe these subsets of rules:

1. For each dynamic causal law (1) in � , the rules

� ��� "%��������� ���!��"%����" � �) " � � (5)
� � �"� " ��������� ���!��"%����" � �) " � � (6)

belong to � �
� � . The first rule states that � holds at ����� if � occurs at � and the
condition) holds at � . The second rule indicates that � is true as the result of the
execution of � . Since the state at the time moment � might be incomplete, we add
to � �
� � the rule

) � �"� " ��������� ���!��" � ��" % ��� � �) "%��� (7)

which says that � might hold at ����� if � occurs at � and the precondition) possibly
holds.

2 Some adjustment to this syntax is needed if one wants to use some of the existing answer
set solvers. For instance, since Cmodels does not allow "!$#&%(')+* we may replace it with, say,
 "!-,/.102!$%3*4'5)+* . For simplicity, we also use choice rule, which is introduced in [24], in our rep-
resentation.

2. For each static causal law (2) in � , � �
�(� contains the two rules:

� �"� " ��� � � �) " ��� (8)

) � �"� " �����) � �) "%��� (9)

This basically states that if) holds (or possibly holds) at � then so does � .
3. For each impossibility condition (3) in � , we add to � �
�(� the following rule:

� ����
+"%����"$% ��� � �) " ��� (10)

This rule states that
 cannot occur if the condition) possibly holds.
4. The inertial rule is encoded as follows:

) � �$� " ��������� % ��� � � ��" � ��" % ��� � � � ��"%� � � � (11)

� �$��"%��� � % ���) � � ��"%����"%� �
� 4 (12)

which says that � holds at the time moment ����4 if its negation cannot possibly
hold at � .

5. Auxiliary rules: � �
�(� also contains the following rules:

� � ��� " ����" � ��
�� " � � (13)

�"7 � ���
.� ���'��� � � * � % �����'� (14)

��7 � ���
.� ��
��'��� � � * � % �����'� (15)����% �	�

��� ��� "
��'��� � � * � % �����'� (16)����% �	�

��� ��
�� "��'��� � � * � % �����'� (17)

The first rule, as a constraint, states that � � � " � � and � ��
 � "$� � cannot hold at the
same time. The last four rules are used to define fluent literals and complementary
literals.

We can use the program � �
�(� to define an approximation of � as follows.

Definition 3. Let �
	 �����(� be a transition diagram such that
� >�"$
 "�> � � � �
	 � ���(� iff >

is a partial state and >�� � �&� ? � ��� " � � � �A� where � is the answer set of � ��� " ���
� � > "�4�� � ����
 "%4�� � .
The next theorem shows that �
	 ���
�(� is indeed an approximation of � 3.

Theorem 1 (Soundness). If � is consistent then ��	 � �
� � is an approximation of � .

4 Approximation based conformant planners

We will now turn our attention to the conformant planning problem in action theories
expressed in � � . We begin with the definition of a planning problem.

3 Proofs of theorems are omitted to save space.

Definition 4. A planning problem is a tuple
� � "�> ("�>�� � where > (and >�� are partial

states of � .

Partial states > (and >�� characterize possible initial situations and the goal respectively.

Definition 5. A chain of events ; �
�
 (",+,+�+ ",
 -</ � � is a solution to a planning problem� �

� � "�> (" >�� � if ; is safe in > (, and for every model ' of ; with a possible initial
state � (� � ����) ��> (� , ' ? � >�� .

We often refer to ; as a plan for >�� . If > (is a state and action description � is determin-
istic then ; is a “classical” plan, otherwise it is a conformant plan. We next illustrate
these definitions using the well-known bomb-in-the-toilet example.

Example 1 (Bomb in the toilet). There is a finite set of toilets and a finite set of pack-
ages. One of the packages contains a bomb. The bomb can be disarmed by dunking the
package that contains it in a toilet. Dunking a package clogs the toilet. Flushing a toilet
unclogs it. Packages can only be dunked in unclogged toilets, one package per toilet.
The objective is to find a plan to disarm the bomb. This domain can be modeled by the
following action description:

� � �

���������� ���������

� * %�� ��� "��#� causes

(��� � � ���'�� * %�� ��� "��#� causes �,�!� � � � � �"�#�� �!* > � �"�#� causes
 � �!� � ��� � �"���
impossible

� *+%�� �	� "%�#� if � ��� � ��� � ���#�
impossible � � * %�� ��� "��#��" � � * > � �"��� �
impossible � � * %�� ��� � "��#��" � * %�� �	� � "%�#� �
impossible � � * %�� ��� "�� � ��" � * %�� ��� "�� � � �

� and � are variables for toilets and packages respectively; � � and � � stand for dif-
ferent toilets and � � and � � stand for different packages. Note that the last three state-
ments specify physical impossibilities of some concurrent actions and the domain does
not have a static causal law.

Let % and � denote the number of packages and toilets respectively. A planning
problem in this domain, denoted by � ' ��� �!% " � � , is often given by

� � � " > ("�>�� �
where > (is a (possibly empty) collection of literals of the form

(��� � � �	�'� , where� denotes some package. The goal >
� contains �

(��� � � �+����",+�+,+ "�

(��� � � � % � � .

Consider the problem � ' ��� ����" ��� . We can easily check that if � is a state
containing
 � �!� � � � � �+��� then

� � " � *+%�� �+� " � ��"%� � � is a transition in �#��� � � where��� � ����
.��

��� � � � � ��"
 � �!� � ��� � �+��� � � �

(��� � � �+����" �,�!� � � � � �+� � � . Furthermore,

; �
� � � * > � �+����" � * %�� �+��" ����" � �!* > � �+����" � * %�� �	� " � � �

is safe in the partial state � and ; is a solution to the problem � ' ��� ����" � � . �
It is not difficult to show that there is a close relationship between conformant plans

and paths of an approximation � ���
�(� of � . Because of the soundness of an approxima-
tion, it follows from Observation 1 that if

� >�" ; " >�� � � �����
�(� , > � > (, and >�� � > � then; is a safe solution in > (of the planning problem
� � "�> ("�>�� � .

Since �
	 �����(� is an approximation of � , we can use the program � ���(� to com-
pute safe solutions of the planning problem

� �
� � " > (" > �*� . We will next describe the

program � � � � for this purpose. Like � �
� � , the signature of � � � � includes terms corre-
sponding to fluent literals and actions of � . We add to � � � � a constant, �!� % � � � , which
represents the plan length, i.e., time steps can take value in the interval � 4 "��!� % � � ��� . We
also write � � � " % � to denote the program � � � � with �!� % � � � equals % . � � � � consists of� �
�(� and the following rules:

1. Rules encoding the initial state: for each � � > (, we add to � � � � the rule:

� �"� "%4���� (18)

2. Goal encoding: � � � � contains the set of constraints

� � % ��� � ��� "%��� % ��� � ��
�� � > � ��+
This set of constraints makes sure that every literal in >
� is true in the final state.

3. Action generation rule: as in other ASP-planners, � � � � contains the rule for gen-
erating action occurrences:

� �����!�#" ���

 ��� 7 ��%&�!� � � � ��9 �!� % � � � (19)

which says that at each moment of time � , some actions must occur4.

With the help of Theorem 1, we can prove the correctness of the planner � � � � .
Theorem 2. Let

�
be an answer set of � � � " % � . It holds that

– for every 46587:9 % , there exists some action
<1 such that ���!
<1 "%7 � � � and
.1 is not
prohibited in >&1,� � � ; and

– ; �
�
 ("�+,+�+�"$
 -./ � � is safe in > (and is a solution of

�
where > 1 � � � � � � ? � ��� " 7 � � � � .

This theorem allows us to use � � � � for computing minimal plans of
�

. This is
done by sequentially running � � � "%4���" � � � " � ��",+�+,+ until one returns an answer set. In
the next section, we will describe our experiments with � � � � . From now on, we will
refer to � � � � as CPASP5. Before going on, we would like to present an example which
shows that � � � � is not complete.

Example 2. Consider the action description � �
� � �

�
 causes
�
 causes � if � � if

� " �
� if

� "�
 � � if
�) if � "��

Let > � �
 � "
 � "
) "�
��*� . The program � �
� � " � � � ��>�"%4��! � ����
+"�4�� � has the unique
answer set that contains � � � " ����" � �
) " ����" � �
�� " � ��" � �	� " � � . Thus,

� > ",
 "�>�� � � � 	 � �
� � �
where >�� � � � "
) "
�� " �B� .

Now, consider the planning problem
�
� �

� � � " >�" ��� "�
 �B� � . Obviously,
 is a solu-
tion to this problem. Yet, � � � � " � � will return no answer set, which means that no plan
of length 1 can be found. �

4 If we wish to find a sequential plan, the only thing needed to do is to change the left side of
the rule to � �	� !�
 '
� *������)�� � ,�!�
�* ��� .

5 CPASP stands for Conformant Planning using Answer Set Programming.

5 Experiments

We ran CPASP on both SMODELS and Cmodels [16]. In most of our experiments,
Cmodels yields better performance. The results reported in this paper are the time ob-
tained using Cmodels. Since most answer set solvers do not scale up well to programs
that require large grounded representation, we also implemented the approximation in a
C++ planner, called CPA ��� . CPA ��� employs a best-first search strategy with the num-
ber of fulfilled subgoals as its heuristic function. Unlike CPASP, the current version of
CPA ��� does not compute concurrent plans.

We compare CPASP (and CPA ���) with three other conformant planners CMBP[9],
DLV

�
[12], and

�
-PLAN[8] because these planners do allow static causal laws and are

similar in spirit of CPASP (that is, a planning problem is translated into an equivalent
problem in a more general setting which can be solved by an off-the-shelf software
system). While the latter two allow concurrent planning, the former does not. A com-
parison between ���	��
 and other planners like SGP [25] and GPT [5] can be found in
[12]. The comparison between CPASP and other state-of-the-art conformant planners
like Conformant-FF [6], KACMBP [10], and POND [7] is being investigated.

We prepared two test suites: one contains sequential, conformant planning bench-
marks and the other contains concurrent, conformant planning benchmarks.

The first test suite includes two typical planning domains, the well-known Bomb-
in-the-toilet and the � 7 % � domains [10]. In the former, we consider two variants,
� ' �#�!% "!) � and � ' � � � % "!) � , where % and) are the numbers of packages and toi-
lets respectively. The first one is without clogging and the second one is with clogging.
The uncertainty in the initial state is that we do not know whether or not packages
are disarmed. In the Ring domain, one can move in a cyclic fashion (either forward or
backward) around a % -room building to lock windows. Each room has a window and
the window can be locked only if it is closed. Initially, the robot is in the first room and
it does not know the state (open/closed) of the windows. The goal is to have all windows
locked. A possible conformant plan is to perform a sequence of actions forward, close,
lock repeatedly. In this domain, we tested with % � 2,4,6,8, and 10.

These domains, however, do not contain many static causal laws. Therefore, we
introduce two new domains, called
 ��� 7 % � and �
<>$)07)+� . The former is very simple.
We have % dominos standing on a line in such a way that if one of them falls then the
domino on its right also falls. There is a ball hanging close to the leftmost one. Touching
the ball causes the first domino to fall. Initially, the ball stays still and every domino is
up. The goal is to have the rightmost one to fall. The solution is obviously to touch
the ball. In this domain, we tested with % � 100,200,500,100, 2000, 5000, and 10000,
where % is the number of dominos.

The �
<>$)07)+� domain is a little more complicated. We need to start a flame in a
burner, which is connected to a gas tank through a pipe line. The gas tank is on the
left-most of the pipeline and the burner is on the right-most. The pipe line contains
sections that connect with each other by valves. The state of pipe sections can be either
pressured or unpressured. Opening a valve causes the section on its right side to be
pressured if the section on its left is pressured. Moreover, to be safe, a valve can be
opened only if the next valve on the line is closed. Closing a valve causes the pipe
section on its right side to be unpressured. There are two kinds of static causal laws.

The first one is that if a valve is open and the section on its left is pressured then the
section on its right will pressured. Otherwise (either the valve is closed or the section
on the left is unpressured), the pipe on the right side is unpressured. The burner will
start a flame if the pipe connecting to it is pressured. The gas tank is always pressured.
The uncertainty we introduce with the initial situation is that the states of valves are
unknown. A possible conformant plan will be closing all valves but the first one (that
is, the one that connects to the gas tank), in the right-to-left order and then opening
them in the reverse order. We tested the domain with five problems corresponding to
% � 3,5,7,9, and 11.

The last domain in the first test suite is the � ���
�% ��� domain. It is a modified version
of the Ring domain. The difference is that instead of locking the window, the robot has
to clean objects. Each room has) objects to be cleaned. Initially, the robot is at the
first room and does not know whether or not objects are cleaned. The goal is to have
all objects cleaned. While the Domino and Gaspipe domains expose a richness in static
causal laws, the Cleaner domain provides a high degree of uncertainty in the initial state.
We tested the domain with 6 problems corresponding to % � ��"�� and) � �&4 "�� 4 " ��4 4
respectively.

The second test suite includes benchmarks for concurrent, conformant planning. It
contains four domains. The � ' � � and � ' ����� domains are variants of � ' � and
� ' ��� in the first test suite in which dunking different packages into different toilets
at the same time is allowed. The �
<>$)07) � � is a modification of �
<>$)07)+� in which
closing multiple valves at the time are allowed. In addition, one can open a valve while
closing other valves. However, it is not allowed to open and close the same valve or
open two different valves at the same time. The � �!��
�% � � domain is relaxed to allow for
concurrent actions by allowing cleaning multiple objects in the same room at the same
time. The relaxed version is denoted by � �!��
�% � � � . The testing problems in the second
test suite are the same as those in the first test suite.

All experiments were made on a 2.4 GHz CPU, 768MB RAM machine, running
Slackware 10.0 operating system. Time limit is set to half an hour. The testing results
for two test suites are shown in Tables 1.a) and 1.b) respectively. We did not test

�
-

PLAN in the sequential planning benchmarks since it is supposed to run on concurrent
planning 6. Times are shown in seconds; “PL”, “TO”, “MEM”, “NA” indicate the length
of the plan found by the planner, that the planner ran out of time, that the planner ran out
of memory, and that the planner returns message indicating that no plan can be found7,
respectively. Since both � �	�
 and CPASP require as an input parameter the length of
a plan to search for, we ran them by incrementally increasing the plan length, starting
from 18, until a plan is found.

As can be seen in Table 1.a), in the � ' � and �6' ��� domains, CMBP outper-
forms both ���	��
 and CPASP in most problems. However, its performance is not com-
petitive with CPA ��� which can solve the �6' ��� �+�&4 "���� with only less than one tenth

6 The authors told us that � -PLAN was not intended for searching sequential plans.
7 We did contact the authors’ of the planner for help and are waiting for a response. We suspect

that there might be some options that need to be turned on/off or the encoding of the problem
needs to be changed to work with the planner.

8 We did not start from 0 because none of the benchmarks has a plan of length 0

seconds (In fact, CPA ��� can scale up to larger problems, e.g., 100 packages and 100 toi-
lets, within the time limit). CPASP in general has better performance than ���	�
 in these
domains. As an example, �����
 took more than three minutes to solve the � ' �#��� " ��� ,
while it took only 0.775 seconds for CPASP to solve the same problem. The number of
problems solvable by CPASP within the time limit is larger than that of ���	�
 .

CPASP seems to work well with domains rich in static causal laws like
 ��� 7 % �
and �
<>$)07) � . In the
 ��� 7 % � domain, CPASP outperforms all the other planners in
most of instances. It took only 2.414 seconds to solve
 ��� 7 % ����� 4 4�4�� , while both ���	��

and CMBP took more than one minute. Although CPA ��� can solve all the instances in
this domain, its performance is in general worse than CPASP’s. In the �
.>$))7) � domain,
CPASP and CPA ��� are competitive with each other and outperform the other two.

Domains CMBP ������� CPASP CPA �
	 Domains � -PLAN ������� CPASP

Problems PL Time PL Time PL Time PL Time Problems PL Time PL Time PL Time��
������������
2 0.03 2 0.046 2 0.209 2 0.000

��
�� � ��������� 1 0.078 1 0.074 1 0.116��
������������
4 0.167 4 0.555 4 0.418 4 0.002

��
�� � � ������� 2 0.052 2 0.094 2 0.268��
������������
6 0.206 6 216.557 6 0.775 6 0.005

��
 � � ��������� 3 1.812 3 3.065 3 0.346��
�����!��"�#�
8 0.633 TO 8 6.734 8 0.021

��
�� � ��!��"��� 2 4.32 2 10.529 2 0.248��
����%$"&��"�#�
10 1.5 TO 10 890.064 10 0.038

��
�� � ��$�&��"�#� TO TO 3 1.911��
��('����������
2 0.166 2 0.121 2 0.222 2 0.001

��
��)' � ��������� 1 0.057 1 0.059 1 0.13��
��('����������
6 0.269 6 72.442 6 0.712 6 0.004

��
 �(' � � ������� 3 0.076 3 0.908 3 0.3��
��('����������
10 0.749 TO 8 2.728 10 0.010

��
��)' � ��������� 5 7.519 5 333.278 5 0.672��
��('���!��"�#�
TO TO TO 12 0.031

��
 �)' � ��!��"��� TO TO 3 0.508��
��('��%$"&��"���
TO TO TO 16 0.054

��
 �)' � ��$�&��"�#� TO TO 5 1192.458*,+�- ��.��
/ ��0�� NA 5 0.132 5 1.349 7 0.026
*,+�- ��.��
/ � ��0�� TO 4 0.088 4 0.402*,+�- ��.��
/ ��1�� NA 9 0.425 9 2.226 22 0.481
,+�- ��.��2/ � ��1�� TO 6 0.173 6 0.759,+�- ��.��
/ ��3�� NA 13 42.625 13 6.186 86 8.464
,+�- ��.��2/ � ��3�� TO 8 0.441 8 1.221,+�- ��.��
/ ��4�� NA TO 17 39.323 261 45.910
*,+�- ��.��
/ � ��4�� TO 10 17.449 10 3.175*,+�- ��.��
/ ��$�$�� NA TO 21 868.102 1327 529.469
*,+�- ��.��2/ � ��$�$�� TO TO 12 8.832',5 / +�6 /�7 ��������� 5 0.1 5 0.104 5 0.496 5 0.002
',5 / +�6 /�7 � ��������� 3 0.052 3 0.076 3 0.265',5 / +�6 /�7 ������1�� 11 0.617 11 214.696 11 3.88 11 0.012
',5 / +�6 /�7 � ������1�� 3 0.121 3 0.066 3 0.3',5 / +�6 /�7 ������$�&�� TO TO TO 21 0.060
'85 / +�6 /�7 � ������$"&�� 3 0.06 3 0.076 3 0.309',5 / +�6 /�7 � ������� 11 0.13 11 14.82 11 2.094 11 0.014
',5 / +�6 /�7 � � ������� 7 0.068 7 0.196 7 0.773',5 / +�6 /�7 � ����1�� TO TO TO 23 0.082
'85 / +�6 /�7 � � ����1�� 7 0.09 7 0.809 7 0.931',5 / +�6 /�7 � ����$�&�� TO TO TO 43 0.434
'85 / +�6 /�7 � � ����$"&�� 7 0.131 7 237.637 7 1.164',5 / +�6 /�7 ��������� 17 4.1 TO 17 224.391 17 0.054
',5 / +�6 /�7 � ��������� 11 0.116 11 4.475 11 1.982',5 / +�6 /�7 ������1�� TO TO TO 35 0.311
'85 / +�6 /�7 � ������1�� 11 0.195 11 986.731 11 2.947',5 / +�6 /�7 ������$�&�� TO TO TO 65 1.623
'85 / +�6 /�7 � ������$"&�� 11 0.357 TO 11 3.7379 . 6;: ����� 5 0.01 0.201 5 0.911 5 0.0039 . 6;: � �#� 11 0.116 0.638 11 2.738 12 0.025 b)9 . 6;: ����� 17 0.5 TO 17 18.852 18 0.0889 . 6;: ��!�� TO TO 23 669.321 24 0.2429 . 6;: ��$�&�� TO TO TO 30 0.542<>=�? . 6 =��%$"&�&�� 1 0.26 1 0.1 1 0.216 1 0.026 Table 1:<>=�? . 6 =�����&�&�� 1 1.79 1 0.352 1 0.285 1 0.099 Comparison between CPASP, CPA �
	 , CMBP<>=�? . 6 =���1�&�&�� 1 7.92 1 2.401 1 0.747 1 0.568 �%��� � , and � -PLAN in sequential<>=�? . 6 =��%$"&�&�&�� 1 13.2 1 13.104 1 1.236 1 2.313 and concurrent planning benchmarks<>=�? . 6 =�����&�&�&�� 1 66.6 1 62.421 1 2.414 1 9.209<>=�? . 6 =���1�&�&�&�� 1 559.467 MEM 1 6.076 1 67.619 a) Sequential Benchmarks<>=�? . 6 =��%$"&�&�&�&�� TO MEM 1 12.584 1 350.129 b) Concurrent Benchmarks

a)

The � �!��
�% ��� domain turns out to be quite hard for the tested planners except CPA ��� .
CPA ��� seems to behave well with domains that have a high degree of uncertainty in
the initial state like � �!��
�% � � since it only needs to consider a partial state instead of a
set of possible states. We believe that the poor performance of CPASP in this domain is
because of the way Cmodels computes answer sets.

CPASP is outperformed by both CMBP and ���	��
 in some small instances in the
��7 % � domain. However, it can solve the � 7 % � ��@�� , while CMBP and ���	�
 cannot.
Again, CPA ��� is the best. This shows that CPASP can be competitive with the tested
conformant planners in some sequential planning benchmarks.

Table 1.b) shows that CPASP also has a fairly good performance in concurrent plan-
ning problems. CPASP outperforms both ���	��
 and

�
-PLAN in the � ' � � , � ' ���
� ,

and �
<>$)07) � � domains in most instances. ���	�	
 is better than
�

-PLAN in the �
.>$))7) � �
domain. On the contrary,

�
-PLAN is very good at the � ���
�% ��� � domain. To solve

� �!��
�% � ����� " �&4�� , � -PLAN took only 0.357 seconds , whereas ���	�
 ran out of time and
CPASP needs 3.737 seconds.

As stated, �
	 � ���(� is sound but not complete, i.e., theoretically speaking, CPASP and
CPA ��� cannot solve some planning problems, even when the initial state is complete.
To make sure that our approach can cover a broader spectrum of practical planning
problems, we tested our planners with five instances of the famous Blocks World do-
main described in [12]. It turns out that they can solve all these problems.

6 Conclusion and Future Works

We present a logic programming based approximation for � � action descriptions and
apply it to conformant planning. We describe two conformant planners, CPASP and
CPA ��� , whose key reasoning part is for computing the approximation. Our initial ex-
periments show that with an appropriate approximation, logic programming based con-
formant planners can be built to deal with problems rich in static causal laws and incom-
plete information about the initial state. In other words, a careful study in approximated
reasoning may pay off well in the development of practical planners. As an approxima-
tion can only guarantee soundness, it will be interesting to characterize situations when
an approximation (e.g. �
	 � �
� �) can yield completeness. This will be our main concern
in the near future.

References

1. F. Bacchus. The AIPS’00 Planning Competition. AI Magazine, 22(3), 2001.
2. C. Baral. Reasoning about Actions : Non-deterministic effects, Constraints and Qualification.

In IJCAI’95, 2017–2023.
3. C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning and approxi-

mate planning in the presence of incompleteness. Artificial Intelligence, 122:241–267, 2000.
4. C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In J. Minker, editor,

Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic Publishers, 2000.
5. B. Bonet and H. Geffner. GPT: a tool for planning with uncertainty and partial information.

In IJCAI-01 Workshop on Planning with Uncertainty and Partial Information, pages 82–87,
Seattle, WA, 2001.

6. R. Brafman and J. Hoffmann. Conformant planning via heuristic forward search: A new
approach. In (ICAPS-04), 355–364.

7. D. Bryce and S. Kambhampati. Heuristic Guidance Measures for Conformant Planning. In
(ICAPS-04), 365–375, 2004.

8. C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based Planning in Complex Domains:
Concurrency, Constraints and Nondeterminism. Artificial Intelligence, 147:85–117, July
2003.

9. A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking. Journal of
Artificial Intelligence Research, 13:305–338, 2000.

10. A. Cimatti, M. Roveri, and P. Bertoli. Conformant Planning via Symbolic Model Checking
and Heuristic Search. Artificial Intelligence Journal, 159:127–206, 2004.

11. S. Edelkamp, J. Hoffmann, M. Littman, and H. Younes. The IPC-2004 Planning Competi-
tion, 2004. http://ls5-www.cs.uni-dortmund.de/˜edelkamp/ipc-4/.

12. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming Approach to
Knowledge State Planning, II: The DLV � System. Artificial Intelligence, 144(1-2):157–211,
2003.

13. M. Gelfond and R. Morales. Encoding conformant planning in a-prolog. In Proceedings of
DRT’04, Lecture Notes in Computer Science. Springer, 2004.

14. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL — the Planning Domain Definition Language. Version 1.2. Technical
Report CVC TR98003/DCS TR1165, Yale Center for Comp, Vis and Ctrl, 1998.

15. E. Giunchiglia, G. Kartha, and V. Lifschitz. Representing action: indeterminacy and ramifi-
cations. Artificial Intelligence, 95:409–443, 1997.

16. Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-
tight Programs. In Vladimir Lifschitz and Ilkka Niemelä, editors, Proceedings of the 7th
International Conference on Logic Programming and NonMonotonic Reasoning Conference
(LPNMR’04), volume 2923, pages 346–350. Springer Verlag, LNCS 2923, 2004.

17. V. Lifschitz. On the Logic of Causal Explanation (Research Note). Artif. Intell., 96(2):451–
465, 1997.

18. F. Lin. Embracing causality in specifying the indirect effects of actions. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence, pages 1985–1993. Morgan
Kaufmann Publishers, San Mateo, CA, 95.

19. D. Long and M. Fox. The 3rd International Planning Competition: Results and Analysis.
Journal of Artificial Intelligence Research (JAIR), 20:1–59, 2003.

20. N. McCain and H. Turner. A causal theory of ramifications and qualifications. In Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence, pages 1978–1984.
Morgan Kaufmann Publishers, San Mateo, CA, 95.

21. N. McCain and M. Turner. Causal theories of action and change. In Proceedings of the 14th
National Conference on Artificial Intelligence, pages 460–467. AAAI Press, 1997.

22. S. McIlraith. Intergrating actions and state constraints: A closed-form solution to the ramifi-
cation problem (sometimes). Artificial Intelligence, 116:87–121, 2000.

23. M. Shanahan. The ramification problem in the event calculus. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July
31 - August 6, 1999. 2 Volumes, 1450 pages, pages 140–146, 1999.

24. P. Simons, N. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

25. D. Smith and D. Weld. Conformant graphplan. In Proceedings of AAAI 98, 1998.
26. T.C. Son and C. Baral. Formalizing sensing actions - a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, January 2001.
27. S. Thiebaux, J. Hoffmann, and B. Nebel. In Defense of PDDL Axioms. In Proceedings of

the 18th International Joint Conference on Artificial Intelligence (IJCAI’03), 2003.
28. H. Turner. Polynomial-length planning spans the polynomial hierarchy. In Proc. of Eighth

European Conf. on Logics in Artificial Intelligence (JELIA’02), pages 111–124, 2002.

