
Reasoning about Truthfulness of Agents Using Answer Set Programming

Tran Cao Son and Enrico Pontelli
Computer Science Department
New Mexico State University

Michael Gelfond
Computer Science Department

Texas Tech University

Marcello Balduccini
Computer Science Department

Drexel University

Abstract

This paper describes a declarative framework for representing
and reasoning about truthfulness of agents using Answer Set
Programming. The paper illustrates how, starting from obser-
vations, knowledge about the actions of the agents, and the
normal behavior of agents, one can evaluate the statements
made by agents against a set of observations over time. The
paper presents an ASP program for computing the truthful-
ness of statements of agents over time. It also introduces
the notions of a supporter (denial) of a statement and dis-
cusses possible ways for computing minimal supporter (de-
nial). The paper presents an application of the proposed
framework, specifically in detecting man-in-the-middle at-
tacks targeting computer and cyber-physical systems. Finally,
the paper briefly relates the proposed framework to works on
trust and reputation of agents and discusses possible exten-
sions.

Introduction
The recent developments in the field of AI enable the devel-
opment of agents that can replace humans in many tasks. In-
creasingly, organizations are using web-bots for interacting
with clients in various capacities, e.g., in providing informa-
tion about the company or making offers. It is reasonable
to believe that this trend will continue and grow, as long as
the Internet exists. Unfortunately, not every business on the
Internet is as honest as one would hope. Stories about busi-
nesses that cheat people of goods or services or wrongly ad-
vertise their services are not uncommon. This leads to the
development of businesses that allow people to rate com-
panies (e.g., expedia.com, yelp.com, or Angie’s List)
or defend the reputation of a company or an entity (e.g.,
reputation.com).

Example 1 The GIZMODO website carries the following
story1: A man named Tin Le from Australia managed to fool
the world’s media by posting his screenshot of a passport
with the name “Phuc Dat Bich” and claiming that he was
denied access to a social network because of his name. It
turned out to be a hoax. Yet, before he acknowledged that it

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1
http://gizmodo.com/phuc-dat-bich-is-a-massive-phucking-faker-

1744588099?utm_campaign=socialflow_gizmodo_facebook&utm_source=

gizmodo_facebook&utm_medium=socialflow

was a hoax, BBC and Sky News reported the story as true.
Observe that the story was reported as a true story even if
requests for interview had been denied.

The above example displays a typical situation in which
some pieces of information were disseminated as true and
was found later to be false. It would have been better if
the news outlets had verified the truthfulness of the state-
ment before disseminating it. In fact, if they had just applied
some common-sense by considering that “normally, a state-
ment cannot be considered as true if it is not verified”, then
they would not have reported the hoax. The example also
calls for the development of systems capable of determining
whether a given statement is truthful or not.

In this paper, we are interested in reasoning about the
truthfulness of agents. We will judge agents by what they
do or what we observe rather than by what they say. Our ob-
servations are made at different time instances along a linear
time line. We assume that whatever observed is true at the
time it is observed and will stay true until additional infor-
mation indicates otherwise. Furthermore, we will need to
judge agents even when we do not have complete informa-
tion about them. This means that reasoning about the truth-
fulness of agents is a non-monotonic task that is often done
under incomplete information. The next example illustrates
these issues.

Example 2 When we first met at an event, John said that
he comes from a poor family (t0). We later learn that John
attends the college in town that is famous for its high tuition
(t1). Much later, we learn that John attends the college be-
cause he obtained a full ride scholarship from the school due
to his financial hardship (t2).

This story spans over three time instances: t0, t1, and
t2. At each time instance, we learn (observe) some facts or
receive some statements and they affect our belief in John’s
statement as follows.

• t0: John says that his family is poor (poor). It is likely
that we would believe John when he says that his fam-
ily is poor. This is because we have nothing to conclude
otherwise.

• t1: We observe the fact that John attends an expensive
college (in college). Since students attending the college
are normally from rich families (default d1), this might
be a reason for us to conclude that John has lied to us.

We indicate that the default d1 is the reason to draw the
conclusion.

• t2: We observe the fact that John has a full ride schol-
arship due to his financial hardship (has scholarship).
Since a student’s hardship is usually derived from the
family’s financial situation (default d2), this fact would
at least allow us to withdraw the conclusion made at the
time instance t1 that John is a liar. It is still insufficient
for us to conclude that John’s family is poor.
The situation might be different if, for example, we have
a preference among defaults. In this example, if we are
inclined to believe in the conclusion of d2 more than that
of d1, then we would believe that John’s family is poor
and thus restore our trust in John’s statement.

The main contribution of this paper is the formalization of
a model to represent and reason about truthfulness of agents
using Answer Set Programming. The paper illustrates how,
starting from
• a collection of observations about the (possibly evolving)

state of the world,
• observations about (some of) the actions performed by the

agent, and
• the observer’s own bias about the normal behavior of

agents
an observer can draw conclusions about the truthfulness of
statements made by the observed agent. We illustrate the
framework using examples and discuss possible extensions
that need to be considered. We also discuss a potential ap-
plication of the proposed framework.

Background: Answer Set Programming (ASP)
Answer Set Programming (ASP) (Baral 2003) is the lan-
guage of logic programs under the answer set semantics
(Gelfond and Lifschitz 1990). A logic program Π is a set
of rules of the form

c1 | . . . | ck ← a1, . . . , am, not am+1, . . . , not an (1)

where 0 ≤ m ≤ n, 0 ≤ k, each ai or cj is a literal of
a propositional language2 and not represents negation-as-
failure. A negation-as-failure literal (or naf-literal) is of the
form not a where a is a literal. For a rule of the form (1),
the left and right hand sides of the rule are called the head
and the body, respectively. Both the head and the body can
be empty. When the head is empty, the rule is called a con-
straint. When the body is empty, the rule is called a fact.

For a rule r of form (1), H(r) and B(r) denote the left
and right hand side of ←, respectively; head(r) denotes
{c1, . . . , ck}; and pos(r) and neg(r) denote {a1, . . . , am}
and {am+1, . . . , an}. For a program Π, lit(Π) denotes the
set of literals occurring in Π.

Consider a set of ground literals X . X is consistent if
there exists no atom a such that both a and ¬a belong to
X . The body of a rule r of the form (1) is satisfied by X
if neg(r) ∩ X = ∅ and pos(r) ⊆ X . A rule of form (1)
with nonempty head is satisfied by X if either its body is not

2Rules with variables are viewed as a shorthand for the set of
their ground instances.

satisfied by X or head(r)∩X 6= ∅. A constraint is satisfied
by X if its body is not satisfied by X .

For a consistent set of ground literals S and a program
Π, the reduct of Π w.r.t. S, denoted by ΠS , is the program
obtained from Π by deleting (i) each rule that has a naf-
literal not a in its body with a ∈ S, and ii all naf-literals in
the bodies of the remaining rules.

S is an answer set (or a stable model) of Π (Gelfond and
Lifschitz 1990) if it satisfies the following conditions: (i)
If Π does not contain any naf-literal (i.e., m = n in every
rule of Π) then S is a minimal consistent set of literals that
satisfies all the rules in Π; and (ii) If Π does contain some
naf-literal (m < n in some rules of Π), then S is an answer
set of Π if S is the answer set of ΠS . Note that ΠS does
not contain naf-literals; hence its answer set is defined in the
first item. A program Π is said to be consistent if it has an
answer set. Otherwise, it is inconsistent.

To increase the expressiveness of ASP and simplify its use
in applications, the language has been extended with several
constructs such as
• Weight constraint atoms (e.g., (Niemelä, Simons, and

Soininen 1999)) of the form:

l [a1 = w1, . . . , an = wn,
not bn+1 = wn+1, . . . , bn+k = wn+k] u

(2)

where ai and bj are literals and l, u, and wj’s are integers,
l ≤ u.

• Aggregates atoms (e.g, (Faber, Leone, and Pfeifer 2004;
Pelov, Denecker, and Bruynooghe 2004; Son and Pontelli
2007)) of the form:

f(S) op v (3)

where S is a set-literal, f ∈ {SUM, COUNT, MAX, MIN},
op ∈ {>,<,≥,≤,=}, and v is a number; a set-literal
is of the form (i) { ~X | p(~W)} where ~X is a vector of
variables, ~W is vector of parameters and constants such
that each variable in ~X also occurs in ~W ; or (ii) {{ ~X |
~Y .p(~W)}} where ~X and ~Y are vectors of variables, ~W is
vector of parameters and constants such that each variable
in ~X or ~Y also occurs in ~W .

The semantics of logic programs with such atoms has been
defined (e.g., (Faber, Leone, and Pfeifer 2004; Niemelä, Si-
mons, and Soininen 1999; Pelov, Denecker, and Bruynooghe
2004; Son and Pontelli 2007). Standard syntax for these
types of atoms has been proposed and adopted in most state-
of-the-art ASP-solvers such as CLASP (Gebser et al. 2007)
and DLV (Citrigno et al. Sep 1997).

A Framework for Reasoning about
Truthfulness of Agents

In this section, we develop a framework for representing
and reasoning about the truthfulness of (statements made by)
agents. We assume that
• We can observe the occurrences of the agents’ actions and

the properties of the world over time (e.g., we observe that
John buys a car, John is a student, etc.);

• We have adequate knowledge about the agents’ actions
and their effects (e.g., the action of buying a car requires
that the agent has money and its execution will result in
the agent owning a car);

• We have a repertoire of common-sense knowledge about
normal behaviors (e.g., a person attending an expensive
school normally comes from a rich family, a person ob-
taining scholarship due to his parent financial status usu-
ally comes from a poor family); and

• We consider a statement asserting that a proposition p is
true (resp. false) to be truthful with respect to a logical
theory T , if T |= p (resp. T |= ¬p) where |= is the
entailment relation defined for T .

We will develop our framework in two steps. We start with
a framework that does not take into consideration action oc-
currences. Later, we will add observations about action oc-
currences.

No Observations about Action Occurrences
We assume that we are working with a propositional lan-
guage L, called a signature whose elements are called flu-
ents. Fluent literals (or literals) and formulae are defined as
usual. For a fluent literal l, l denotes its negation. We allow
agents to make statement about literals.

Definition 1 A statement about a fluent literal P is of the
form

statement(P, S) (4)

where S is a non-negative integer.

For example, John said that he is sick. This can be stated as

statement(sick, 0)

says that sick is true at time step 0.
Another example is that John said that he is poor. This

can be stated as

statement(poor, 0)

states that poor is true at time step 0.
We can make observations about fluent literals.

Definition 2 An observation about a fluent literal P is of
the form

observed(P, S) (5)

where S is a non-negative integer.

Note that observed is understood in a broad sense: it might
be that we learn some facts about the fluent literal, or we
actually observed it (via the execution of a sensing action),
etc.

For example, if we observe that John is not sick, we use

observed(¬sick, 0).

Our reasoning module consists of a collection of rules and
defaults, possibly with priorities among defaults.

• A rule is of the form

rule(r, head, body) (6)

where r is the name of the rule, head is a fluent literal,
and body is a collection of literals. A rule (6) says that
whenever body holds then head must also hold.

• A default is of the form

default(d, head, body) (7)

where d is the name of the default, head (or conclusion)
is a fluent literal, and body is a collection of literals. A
default (7) says that, normally, if body holds then head
also holds.

• A preference between two defaults is expressed by

prefer(d1, d2, body) (8)

where body is a set of fluent literals and d1 and d2 are
names of two defaults. This says that the default d1 is
preferred to d2 whenever body holds.

Definition 3 A knowledge base (about an agent) over a
propositional language L is a pair KB = 〈O,RD〉 where

• O is a set of observations.
• RD is a collection of rules, defaults, and preferences be-

tween defaults.

We will next define the notion of consistent knowledge
bases. We need some extra notations:
• A set of observations O is consistent if, for

each time step s and proposition p, we have that
{observed(p, s), observed(¬p, s)} 6⊆ O; and

• A set of rules and defaults RD is consistent if for any set
of literals X , the logic program

RDπ = {head← body | rule(r, head, body) ∈ RD}∪X

is consistent.

Definition 4 A KB = 〈O,RD〉 is consistent if O and RD
are consistent.

Our goal is to identify whether or not a particular state-
ment statement(p, s) is true at a time step t for t ≥ s given
a KB. We will develop a program Π(KB) to answer this
question. We assume a finite horizon of time steps, denoted
by step(0), . . . , steps(k). We use h(P, S) to encode that
literal P is true at step S. Furthermore, to simplify the use
of Π(KB) with current answer set solvers, we will encode a
rule of the form (6) by the atom rule(r, head, body name)
and the set of atoms {member(l, body name) | l ∈
body}; likewise, a default of the form (7) by the
atom default(r, head, body name) and the set of atoms
{member(l, body name) | l ∈ body}; and a preference of
the form (8) by the atom prefer(d1, d2, body name) and
the set of atoms {member(l, body name) | l ∈ body}. The
main difficulty lies in the interaction between observations,
defaults, etc. In doing so, we apply the following principles:

(O)ptimistic: The most recent observation reflects the true
state of the world.

(SK)eptical: When conflicting conclusions can be drawn
then believe in none!

Π(KB) contains the set of facts encoding O and RD as
described above. We next describe the rules in Π(KB).

• For reasoning about observations of the form (5), we have
the following rules:

h(P, S)← observed(P, S1), step(S), S1 ≤ S,
not not most recent(P, S1, S).

(9)

not most recent(P, S1, S)← step(S1),
observed(P , S2), step(S),
S1 < S2, S2 < S.

(10)

This rules encode the principle (O). Rule (10) states that
not most recent(P, S1) is true if there exists a more re-
cent observation of ¬P . Rule (9) indicates that an obser-
vation stays true if every conflicting observation is ‘older’.

• For reasoning about rules of the form (6), we have:

h(H,S)← step(S), rule(D,H,M),
NC = #count{L : member(M,L)},
#count{L : member(M,L), h(L, S)} == NC.

(11)
This rule is straightforward. It says that if the body of a
rule is satisfied then the head of the rule must be true.

• For reasoning about defaults of the form (7) we have the
following rules:

applicable(D,H, S)← step(S), (12)
default(D,H,M),

NC = #count{L : member(M,L)},
#count{L : member(M,L), h(L, T)} == NC.

ab(D,H, S)← step(S), (13)
applicable(D,H, S),

applicable(D1, H, S),

not defeated(D1, H, S).

defeated(D,H, S)← step(S), (14)
applicable(D,H, S),

h(H,S).

defeated(D,H, S)← step(S), (15)
applicable(D,H, S),

applicable(D1, H, S),

prefer(D1, D, S).

h(H,S)← applicable(D,H, S), (16)
not ab(D,H, S),

not defeated(D,H, S).

Rule (12) defines when a default is applicable, i.e., when
its body is satisfied. The interaction between defaults
and rules in the knowledge base are dealt with using
rules (13)—(15). (14) dismisses the applicability of (i.e.,
defeats) a default if the complement of its conclusion is

already established. On the other hand, rule (15) ex-
presses that a default is defeated if there is a more pre-
ferred default with conflicting conclusion that is applica-
ble. Rule (13) enforces the principle (SK). It states that
a default d should be blocked if there is another default
with the conflicting conclusion (h), which is not defeated.
Finally, rule (16) enforces the application of any default
that is applicable and not otherwise blocked.

• For reasoning about preferences of the form (8), we have
the following rule:

prefer(D1, D2, S)← step(S),
prefer(D1, D2,M),
NC = #count{L : member(M,L)},
#count{L : member(M,L), h(L, S)}==NC.

(17)
This rule defines when a preference among two defaults
can be applied.
In summary, for a KB = 〈O,RD〉, Π(KB) consists of

rules (9)–(17) and the set of facts encoding RD and O.
Example 3 The story in Example 2 can be represented by
the KB1 = 〈O1, RD1〉 where

O1 =

{
observed(in college, 1).
observed(has scholarship, 2).

}
, and

RD1 =

{
default(d1,¬poor, [in college]).
default(d2, poor, [has scholarship]).

}
The statement in Example 2 can be represented by

statement(poor, 0).

Consider the program Π(KB1) with different time steps:
• For k = 0: since there is no observation at this step, the

body of (9) is not true and thus no default is applicable.
The KB does not have any rule (of the form (6)). As such,
no answer set of Π(KB1) contains any atom of the form
h(l, 0) where l is a literal.

• For k = 1: given observed(in college, 1), it is easy to
see that (9) will result in h(in college, 1) being in ev-
ery answer set of Π(KB1). This will lead to the appli-
cability of default d1. d2 is not applicable. As such, ev-
ery answer set of Π(KB1) contains h(in college, 1) and
h(¬poor, 1).

• For k = 2: it is easy to see that (9) will re-
sult in h(in college, 1), h(in college, 2), and
h(has scholarship, 2) being in every answer set of
Π(KB1). This will lead to the applicability of default d1
at the steps 1 and 2. d2 is not applicable at step 1 but
it is applicable at step 2. As such, every answer set of
Π(KB1) contains also h(¬poor, 1). However, none of
the answer set would contain h(poor, 2) or h(¬poor, 2).

Given a KB = 〈O,RD〉 over L, an integer k, and a
statement(l, s), we are interested in determining the truth-
fulness of the statement is true at time steps s ≤ t ≤ k. This
is defined as follows.
Definition 5 Let KB = 〈O,RD〉 be a knowledge base
and a statement over a literal l at the time step s,
statement(l, s). We say that

• statement(l, s) is true w.r.t. KB at time step t ≥ s,
denoted KB |= +statement(l, s)@t, if for every answer
set A of KB, h(l, t) ∈ A.

• statement(l, s) is false w.r.t. KB at time step t ≥ s,
denoted KB |= −statement(l, s)@t, if for every answer
set A of KB, h(l, t) ∈ A.

• statement(l, s) is unknown w.r.t. KB at time step t ≥
s, denoted by KB 6|= ±statement(l, s)@t, if KB 6|=
+statement(l, t) and KB 6|= −statement(l, t).

Intuitively, KB |= +statement(l, s)@t (resp. KB |=
−statement(l, s)@t) says that at the time step t the state-
ment is true (resp. false). KB 6|= ±statement(l, s)@t
states that there is no information that supports or denies
the statement at the time step t. Observe that this entailment
can be computed in ASP by the following rules:

true(H,T)← statement(H,S), (18)
step(T), T ≥ S, h(H,T).

false(H,T)← statement(H,S), (19)

step(T), T ≥ S, h(H,T).

unknown(H,T)← statement(H,S), (20)
step(T), T ≥ S,

not h(H,T), not h(H,T).

Let ΠQ = Π(KB) ∪ {(18)−(20)}. It can be shown that
KB |= +statement(l, s)@t, KB |= −statement(l, s)@t,
and KB |= ±statement(l, s)@t correspond to ΠQ |=
true(l, t), ΠQ |= false(l, t), and ΠQ |= unknown(l, t),
respectively. This means that we can compute the truthful-
ness of a statement by making two calls to an ASP-solver.
For example, if the program

ΠQ ∪ {← not false(l, t), not unknown(l, t).}

does not have an answer set and the program

ΠQ ∪ {← not true(l, t)}

has an answer set then we can conclude that ΠQ |=
true((l, t). It is easy to see that the following holds for
KB1:

• KB1 6|= ±statement(poor, 0)@0;

• KB1 |= −statement(poor, 0)@1; and

• KB1 6|= ±statement(poor, 0)@2.

Proposition 1 For each consistent KB, there exists no an-
swer set of Π(KB) that contains h(l, t) and h(l, t) for some
literal l and time step t.

For the sake of our discussion, let us consider KB2 =
〈O1, RD1∪{prefer(d2, d1, [])}〉. It is easy to see that every
answer set of Π(KB2) contains defeated(d1,¬poor, 2).
As such, we have that

• KB2 6|= ±statement(poor, 0)@0;

• KB2 |= −statement(poor, 0)@1; and

• KB2 |= +statement(poor, 0)@2.

With Observations about Action Occurrences
We will now extend our signature with a set of actionsA that
can be observed. We assume that each action is associated
with a set of literals, called its preconditions, and a set of
effects (Gelfond and Lifschitz 1998). This information is
encoded in statements of the following form:

executable(a, body) (21)

and a set of effects of the following form

causes(a, p, body) (22)

where a is an action, p is a literal, body is a set of literals. We
will represent an action occurrence observation (or action
occurrence) by a statement of the form

occurred(a, s) (23)

where a ∈ A and s is a non-negative integer. The notion
of a knowledge base is extended to allow action occurrence
observations in a straightforward way: a knowledge base is
a tuple KB = 〈O,RD〉 where O is a set of observations
and action occurrences and RD is a collection of rules, de-
faults, preferences, and action descriptions. To reason with
action occurrences, we add to the rules developed in the pre-
vious subsection the rules to deal with action occurrences in
O. We will also use the encoding of a set of literals used
for rules and defaults in the previous section. Intuitively, an
action occurrence can be viewed as a set of observations and
can be encoded easily as follows.

observed(L, S)← step(S), occurred(A,S),
executable(A,M),member(L,M).

(24)

observed(L, S + 1)← step(S), occurred(A,S),
causes(A,L,M),
NC = #count{L : member(M,L)},
#count{L : member(M,L), h(L, T)} == NC.

(25)
Abusing the notation, we will use Π(KB) to denote the

program consisting of the facts representing O and RD and
the rules developed in the previous section and (24)—(25).
The definition of entailment of a statement at a time step is
extended to knowledge bases with action occurrences in a
trivial way.

Supporters and Denials
The previous section shows that we can compute the truth-
fulness of a statement given a set of observations and a set of
defaults, preferences, and rules. In this section, we will de-
fine the notion of a supporter (resp. a denial) of a statement.
Intuitively, a supporter (denial) will help an observer in de-
termining the truthfulness of a given statement with respect
to her knowledge base by identifying the set of observations
that the observer needs to have. Given a KB = 〈O,RD〉,
we will use now to denote a specific time step such that for
every observed(l, t) or occurred(a, t) in O, now > t. For
a consistent set of literals L, let

OBS(L) = {observed(l, now) | l ∈ L}.

The notion of a supporter (denial) is defined next.

Definition 6 Let KB = 〈O,RD〉 be a knowledge base. Let
L be a consistent set of literals.

• L is said to be a supporter of a literal l with respect to
KB if KB ∪OBS(L) |= +statement(l, 0)@now; and

• L is said to be a denial of a literal l with respect to KB if
KB ∪OBS(L) |= −statement(l, 0)@now

where KB ∪OBS(L) = 〈O ∪OBS(L), RD〉.
L is a minimal supporter (or denial) of l with respect to

KB if it is a subset minimal supporter (or denial) of l with
respect to KB.

The intuition behinds the above definition is clear: a sup-
porter (denial) of a literal l is the set of literals whose truth
values need to be established before the truthfulness of a
statement about l can be determined. Of course, if an ob-
server can observe every literal in L then she would be able
to determine the truthfulness of a statement about l. How-
ever, it is desirable to consider minimal supporters (denials).
We next discuss possible way to compute minimal support-
ers (denials) of a literal l.

Computing Minimal Supporters/Denials
A minimal supporter/denial of a literal l with respect to KB
can be computed using Π(KB) and a few extra rules that
generate observations and evaluate the truth value of l at the
step now.

{observed(P, now); observed(¬P, now)}1←
fluent(P).

(26)

nr observed(NC)←
NC = #count{L : observed(L, now)}.

(27)
#minimize{NC : nc observed(NC)}. (28)

Let P (l) be the program consisting of Π(KB), the
rules (26)-(28), and the following rule:

← not h(l, now). (29)

Let N(l) be the program consisting of Π(KB), the
rules (26)-(28), and the following rule:

← not h(l, now). (30)

It is easy to see that the following holds:

Proposition 2 For a KB = 〈O,RD〉 and a literal l,

• For every answer set A of P (l), the set L = {l |
observed(l, now) ∈ A} is a minimal supporter of l with
respect to KB.

• For every answer set A of N(l), the set L = {l |
observed(l, now) ∈ A} is a minimal denial of l with re-
spect to KB.

Observe that P (l) (resp. N(l)) computes cardinality min-
imal supporters (resp. denials) of l with respect to KB.
Since minimal cardinality implies subset minimality, the
proposed approach is sound, but not vice versa. As such,
P (l) (resp.N(l)) does not compute all minimal supporters
(resp. denials).

A CR-Prolog Based Encoding
We explore the use of CR-Prolog to address the issue of
completeness in the computation of the minimal supporters
and denials. CR-Prolog extends ASP by introducing an ad-
ditional type of rules, called consistency restoring rules (or
cr-rules), of the form

r : c
+← a1, . . . , am, not am+1, . . . , not an (31)

where r is the name of the rule and c and aj’s are literals as in
the rule (1). Observe that a cr-rule can be viewed as a normal
rule by dropping its name and replacing the connective +←
with←. As such, we refer to head(r), pos(r), and neg(r)
for a cr-rule r in the same way we refer to different elements
of a normal rule.

A CR-program P is given by a pair (P r, P c) where P r is
a set of rules of the form (1) and P c is a set of rules of the
form (31). Let C be a subset of P c. By P r ∪ C we denote
the program consisting of rules in P r and the cr-rules in C
viewed as normal rules.

Answer sets of a CR-program P are defined as follows.
If P r is consistent, then any answer set of P r is an answer
set of P . Otherwise, an answer set of P is an answer set
of P r ∪ C where C is a minimal subset of P c such that
P r ∪ {c← body(r) | c +← body(r) ∈ C} is consistent.

Let Π+(KB) (resp. Π−(KB)) be the program consisting
of Π(KB), the rule (29) (resp. the rule (30)). Let ΠC be the
set of cr-rules

observed(P, now)
+← fluent(P). (32)

observed(¬P, now)
+← fluent(P). (33)

We can show the following
Proposition 3 For a KB = 〈O,RD〉 and a literal l,
• A set of literals L is a minimal supporter of l with respect

to KB iff there exists an answer set A of (Π+(KB),ΠC)
such that L = {l | observed(l, now) ∈ A}.

• A set of literals L is a minimal denial of l with respect to
KB iff there exists an answer set A of (Π−(KB),ΠC)
such that L = {l | observed(l, now) ∈ A}.

Applications
One interesting application of our framework is the detec-
tion of Man-in-the-Middle (MITM) attacks targeting com-
puter and cyber-physical systems. In a MITM attack, the at-
tacker secretly places itself as an intermediary between two
communicating parties, relaying the information between
them. By intercepting the communications, the attacker may
steal valuable information, or even alter the information ex-
changed between the parties and fool them into performing
unintended or undesirable actions.

For example, a MITM attack was used in Stuxnet3, a so-
phisticated malicious software (malware) that targeted cer-
tain models of industrial Programmable Logic Controllers
(PLCs). Stuxnet is remarkable in that it is reported to have
been successful in impacting industrial systems involved in
Iran’s nuclear enrichment program. Obviously, its success
has major implications on the security and safety of indus-
trial systems world-wide.

3
https://en.wikipedia.org/wiki/Stuxnet

Centrifuge PLCPLC

Stuxnet

Figure 1: Outline of the MITM attack carried out by Stuxnet:
safe commands sent by the PLC (green) are replaced by dan-
gerous ones (red); alarming readings from the centrifuge’s
sensors (red) are replaced by seemingly safe ones.

The behavior of Stuxnet’s MITM component is outlined
in Figure 1. The MITM component operated by intercepting
the commands sent by a PLC to a connected centrifuge. The
malware first increased the speed of the centrifuge above
normal levels for a short amount of time, and later slowed
it down below normal levels for a longer period of time. It
is believed that the resulting stress caused components of
the centrifuge to expand and eventually destroy it. Under
normal conditions, sensors installed in the centrifuge would
have alerted the PLC – and its users – about the abnormal
conditions, giving them a chance to shut down the system
before damage occurred. However, as part of the MITM at-
tack, Stuxnet also intercepted the sensor readings from the
centrifuge, and sent to the PLC fake readings based on previ-
ous recordings that indicated that the system was operating
normally (this is known as a replay attack).

A seriously concerning feature of MITM attacks is their
ability to take control of the involved parties’ inputs and out-
puts, making the attack virtually undetectable to the parties.
In this section, we show that detection of a MITM attack is
indeed possible if the detection task is reduced to that of rea-
soning about the truthfulness of a communication partner, as
long as one has access to some external knowledge that can
be used as supporter or denial of the partner’s statements.

To demonstrate this, we consider a simplified MITM at-
tack scenario along the lines of Stuxnet’s MITM component.
For simplicity of presentation, we do not include in the sce-
nario occurrences of actions, but it is not difficult to see that
our approach extends in a natural way when occurrences of
actions are present

Consider the case of a motor, M , that can be on or off. A
sensor mounted on the motor tells whether the motor is over-
heating (fluent overheat). A controller, C, is programmed
to turn off the motor if it is found to be overheating.

Suppose now that the system is the target of a MITM at-
tack. An attacker, A, manages to place itself between C and
M , intercepting the communications between them. A inter-
cepts the output of M ’s sensor, discarding the sensor read-
ing and always providing C with a reading of ¬overheat
independently of the actual state of M . In doing so, the at-
tacker could prevent C from turning off an overheating mo-

tor, eventually causing it to become damaged. How can such
an attack be detected?

The solution leverages a technique for reasoning about
cyber-physical systems and their interaction with the phys-
ical environment discussed in (Nedelcu and Balduccini
2015). Suppose that, located near the motor, is a thermo-
stat, T , which generates an acoustic alert every 20 minutes
if the temperature of the room is above 90◦F in order to en-
sure that the operators take more frequent breaks. World
knowledge furthermore tells us that, during a cold season, it
is unlikely for the temperature in the room to be above 90◦F.

The thermostat is not related to the functioning of the mo-
tor and, thus, it is conceivable that A will not attempt to alter
its activities. However, given the proximity of the motor, an
alert from the thermostat when the room is not hot can be
taken as an indication that M is indeed overheating (and that
M ’s sensor reading may have been tampered with). Let us
see how one can draw this conclusion using our framework.

The relevant information can be formalized using the fol-
lowing statements:

default(d1, hot room, [alert]).
default(d2,¬hot room, [cold season]).
prefer(d2, d1).
rule(r1, cold season, [winter]).
default(d3, overheat, [alert,¬hot room]).

The first statement, a default, says that, normally, an alert
from T indicates that the room is hot. The second state-
ment, also a default, states that, normally, the room is not
hot during a cold season. The third statement expresses a
preference for d2 when both d1 and d2 are applicable. This
captures the intuition that, during the cold season, one will
have a tendency to assume that the room is not hot even
if an alert is heard. The fourth statement, a rule, encodes
the world knowledge that winter is a cold season. Finally,
the last statement says that, typically, if an alert is gener-
ated by T when the room is not hot, then M is overheating.
(The statement is encoded as a default to increase elabora-
tion tolerance, making it possible, for example, to take into
account faults in the thermostat or the presence of other heat
sources.)

Let us now suppose that we would like to evaluate the
truthfulness of M ’s sensor reading, and suppose that the sen-
sor reports ¬overheat. The corresponding statement is:

statement(¬overheat, 0).

Next, an alert is generated by T :

observed(alert, 1).

Let KBm be the corresponding knowledge base. Clearly,
default d2 is not applicable and d1 leads us to conclude that
the temperature in the room is above 90◦F. Thus, the rea-
soner has no reason to doubt the sensor reading:

KBm |= +statement(¬overheat, 0)@1

Next, the system is informed that it is winter. The updated
knowledge base, KB′m, extends KBm by the statement:

observed(winter, 2).

Our framework now yields:

KB′m |= −statement(¬overheat, 0)@2

That is, the sensor reading from M is deemed not truthful,
which indicates that the system may be under a MITM at-
tack.

Finally, one can also reason about supporters and denials
of ¬overheat. Given KBm and the above fluents, for ex-
ample, it is not difficult to show that the CR-Prolog en-
coding given earlier yields { } as the minimal supporter of
¬overheat and {winter} as its minimal denial.

Discussion
Within the scope of the ASP and logic programming com-
munity, this work is to the best of our knowledge completely
novel. The AI community has explored the issue of com-
putational trust and reputation in several works—please see
(Sabater and Sierra 2005) for a survey. The survey focuses
predominantly on trust models observed in multi-agent sce-
narios, taking explicitly into account the observations con-
cerning interactions among agents. The survey provides
classification of the models according to different dimen-
sions: conceptual model (cognitive vs. game theoretical),
information sources (direct interactions, direct observations,
witness information, sociological information, prejudice),
visibility (subjective vs. global), granularity (context depen-
dent vs. non-context dependent), model type (trust vs. repu-
tation), type of information exchanged (boolean vs. contin-
uous), and agent behavior’s assumptions (honest, biased but
not lying, lying). Within such classification, our model fo-
cuses on trust (but, as mentioned in our discussion, could ac-
commodate interesting forms of reputation), based on cogni-
tive aspects, it builds on direct observations, but can accom-
modate sociological biases and prejudice through defaults,
it captures subjective visibility, it is context dependent and
relies on boolean information.

The survey by Artz and Gil (Artz and Gil 2007) places a
greater emphasis on surveying models of trust as models to
predict attitude towards future interactions with an agent—
with less emphasis on assessing the trustworthiness of a cur-
rent statement.

Relaxing Consequence
One of the advantages of using a declarative language like
ASP is the ability to explore alternative reasoning strategies.
The proposed encoding is skeptical in the way it handles
the assessment of statements—by considering a statement
true when supported by all answer sets and false when its
negation is supported by all answer sets. There are variations
of this approach that could be easily modeled. For example,
a trusting observe may want to accept the statement of the
agent as long as this is not explicitly contradicted.

Definition 7 Let KB = 〈O,RD〉 be a knowledge base and
let us consider a statement statement(l, s). We say that:
• KB |= +statement(l, s)@t if for every answer set A

of KB we have that h(l̄, t) 6∈ A;
• KB |= −statement(l, s)@t if every answer set A of
KB contains h(l̄, t);

• the statement is otherwise unknown.

This definition, applied to Example 3, allows us to conclude:
• KB1 |= +statement(poor, 0)@0;
• KB1 |= −statement(poor, 0)@1; and
• KB1 |= +statement(poor, 0)@2.

Time-Annotated Knowledge Bases
The components of a knowledge base—as defined in the
previous section—relate properties of the world at a sin-
gle time instance. It is easy to imagine situations in which
rules, defaults, and preferences could relate to informa-
tion in different time points. For example, if the unit
of time is months, the information “if a graduate student
fails the final examination, he/she needs to wait at least
1 year before re-taking the exam” cannot be represented
as a rule in the current framework since the relation be-
tween the fluent take exam second time and the fluent
fail exam first time spans 12 units of times.

We will next propose a generalization of the proposed
framework, called time-annotated knowledge bases, for
dealing with the above issue. Let l be a literal and t be an in-
teger. lt is called a time-annotated literal. A time-annotated
rule, default, or preference has the form (6), (7), or (8), re-
spectively, whose head and body are now time-annotated
literals and sets of time-annotated literals. For example, the
relation between the two fluents take exam second time
(ts) and fail exam first time (ff) can be represented by
the set of rules:{

rule(exame time, (¬ts)i, [ff0]) | i = 1, . . . , 11
}

Given a time-annotated knowledge base KB, the program
Π(KB) defined in the previous section can be easily modi-
fied for computing the truthfulness of statements. In fact, in
all the rules of Π(KB), h(L, S) is replaced with h(U, S+T)
if L is the time-annotated literal US . As an example, the
rule (11) becomes

h(H,S + T)← step(S), rule(D,HT ,M),
NC = #count{LT : member(M,LT)},
#count{LT : member(M,LT), h(L, T + S)} == NC.

(34)

A System for Reputation Evaluation
Given that reputation of agents is exhibited on what they say
and what they do, the proposed framework can be used for
evaluating agents’ reputation if we have a rule (or a set of
rules) for the evaluation, i.e., what does it mean for an agent
to have excellent, good, or bad reputation. A reasonable rule
for such a purpose could be devised using the ratio between
the truthful and non-truthful statements made by agents, e.g.,
an agent has an excellent reputation if the ratio between her
truthful and non-truthful statements is 99%. We note that
this percentage is likely dependent on individual observer,
the agent, and the application. For instance, it might be okay
to classify a saleman as excellent if the percentage is 70%
but this thresthold would be insufficient for a doctor to be
called as excellent.

Given a knowledge base KB, a set of statements S made
by an agent, and a classification rule of the form “an agent
is of the type xType if the ratio between her truthful and
non-truthful statements is y%,” the program ΠQ(KB) can
be extended for determining whether or not the agent is of
the type xType in the following way.

reputation(xType, T)← step(T), (35)
NT = #count{L, T : true(L, T)},
NF = #count{L, T : false(L, T)},
NT > 0, NT ∗ 100 ≥ NF ∗ y.

where we assume that y is given by an integer ranging be-
tween 0 and 100.

Observe that this rule determines the reputation of the
agent at the step T . The rule could be changed to compute
the reputation of an agent over the full history considered
by the program. Using the same method for computing the
truthfulness of agents’ statements, we can answer the ques-
tion of whether or not the agent is of the type xType.

Let ΠR = ΠQ ∪ {(35)}. If the program ΠR ∪ {←
not reputation(xType, t)} has an answer set and the pro-
gram ΠR(KB)∪{← reputation(xType, t)} has no answer
set then we can conclude that the agent is of the type xType
at the time step t.

Final Remark
Let us conclude with a final remark. The proposed frame-
work bears similarity to the ASP frameworks developed to
support diagnosis. In particular, both frameworks focus on
using observations (and an underlying logical theory) to in-
fer the correctness of some entity—a statement in our frame-
work, a system in the case of diagnosis. On the other hand,
there is a profound difference between the two frameworks:
unlike diagnosis, our framework does not rely on a well
elaborated theory of how the agent works. In particular, our
frameworks does not make any assumption about complete-
ness of knowledge of the agent (e.g., in the form of a com-
plete model).

Conclusions
In this paper, we presented a framework based on Answer
Set Programming to reason about the truthfulness of state-
ments made by an agent; the framework does not assume
complete knowledge about the agent being observed and the
reasoning process builds on observations about the state of
the world and occurrences of actions. We explored the use
of the framework in simple scenarios derived from man-in-
the-middle attacks.

The framework represents a starting point for the explo-
ration of ASP-based methods to reason about trust and rep-
utation of agents. The literature has explored a variety of
models to describe the reputation of agents—our next step
will embed such models in ASP, thus offering a knowledge-
based approach to study agent’s behavior in presence of in-
complete knowledge. We will also explore alternative ap-
proaches assess truthfulness of statements, reflecting differ-
ent attitudes of the observer.

References
Artz, D., and Gil, Y. 2007. A Survey of Trust in Computer
Science and the Semantic Web. Journal of Web Semantics
5:58–71.
Baral, C. 2003. Knowledge Representation, reasoning, and
declarative problem solving with Answer sets. Cambridge
University Press, Cambridge, MA.
Citrigno, S.; Eiter, T.; Faber, W.; Gottlob, G.; Koch, C.;
Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello, F. Sep
1997. The dlv system: Model generator and application
frontends. In Bry, F.; Freitag, B.; and D., S., eds., Pro-
ceedings of the 12th Workshop on Logic Programming WLP,
128–137.
Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive ag-
gregates in disjunctive logic programs: Semantics and com-
plexity. In Alferes, J. J., and Leite, J. A., eds., Logics in Ar-
tificial Intelligence, 9th European Conference, JELIA 2004,
Lisbon, Portugal, September 27-30, 2004, Proceedings, vol-
ume 3229 of Lecture Notes in Computer Science, 200–212.
Springer.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007. clasp: A conflict-driven answer set solver. In
Baral, C.; Brewka, G.; and Schlipf, J., eds., Proceedings
of the Ninth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence, 260–265.
Springer-Verlag.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Warren, D., and Szeredi, P., eds.,
Logic Programming: Proceedings of the Seventh Interna-
tional Conference, 579–597.
Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on Artificial Intelligence 3(6).
Nedelcu, A., and Balduccini, M. 2015. An Approach and
Tool for Reasoning about Situated Cyber-Physical Systems.
In The First Workshop on Action Languages, Process Mod-
eling, and Policy Reasoning (ALPP 2015).
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable model
semantics for weight constraint rules. In Proceedings of the
5th International Conference on on Logic Programming and
Nonmonotonic Reasoning, 315–332.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Par-
tial stable models for logic programs with aggregates. In
Logic Programming and Nonmonotonic Reasoning, 7th In-
ternational Conference, LPNMR 2004, Fort Lauderdale, FL,
USA, January 6-8, 2004, Proceedings, volume 2923 of Lec-
ture Notes in Computer Science, 207–219. Springer.
Sabater, J., and Sierra, C. 2005. Review on Computational
Trust and Reputation Models. Artificial Intelligence Review
24:33–60.
Son, T., and Pontelli, E. 2007. A Constructive Se-
mantic Characterization of Aggregates in Answer Set Pro-
gramming. Theory and Practice of Logic Programming
7(03):355–375.

