BUILDING KNOWLEDGE SYSTEMS IN A-PROLOG
MONICA DE LIMA NOGUEIRA

Computer Science Department

Charles H. Ambler, Ph.D.
Dean of the Graduate School

APPROVED:

Michael Gelfond, Ph.D., Chair

Chitta Baral, Ph.D.

Vladik Kreinovich, Ph.D.

Luc Longpré, Ph.D.

Enrico Pontelli, Ph.D.

BUILDING KNOWLEDGE SYSTEMS IN A-PROLOG

MONICA DE LIMA NOGUEIRA

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at El Paso
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Computer Science Department
THE UNIVERSITY OF TEXAS AT EL PASO

MAY 2003

THE UNIVERSITY OF TEXAS AT EL PASO

Date: May 2003

Author: MONICA DE LIMA NOGUEIRA
Title: Building Knowledge Systems in A-Prolog

Department: Computer Science

Degree: Ph.D. Convocation: May Year: 2003

Permission is herewith granted to The University of Texas at El Paso
to circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

To my children,

Heloisa, Marcus Vinicius, and Daniela,

with love.

Acknowledgements

“As we express our gratitude, we must never forget that the highest appreciation
is not to utter words, but to live by them.”
John F. Kennedy (1917-1963)
[am blessed to have always had the opportunity to meet extraordinary people. People
who have taught me a great deal. I am also blessed to have the support and love
from family and friends no matter where in the world I happened to be. Therefore, I
am lucky to have a long list of people to thank for the help they gave me to complete

my studies.

I am especially indebted to my advisor Michael Gelfond for sharing his knowledge and
his vision of science, philosophy, mathematics, politics, religion, literature, beauty,
history, and innumerous other subjects. From him I learned about logic and the
validity of arguments, both of which have changed the way I think and interact with
other people. Without his help and encouragement, this work would not have been

successful.

[am grateful for what I learned in the many classes I took with Chitta Baral, Vladik
Kreinovich, and Luc Longpré, and for their support and attention to detail when
reviewing this dissertation as my committee members. I want to thank my external

A%

vi
committee member Enrico Pontelli for his helpful comments and the many suggestions
he made to improve this text. I also had the help and support of Son Cao Tran who
reviewed an earlier version of the mathematical proofs presented here and pointed out
many of the mistakes I needed to correct. I especially need to thank Michael, Chitta,
Enrico, and Son for making the effort of coming to El Paso on such short notice at
the end of the semester to attend my dissertation defense; and Luc and Vladik for
making special arrangements regarding their final exams so they could be present.
Luc was also thoughtful enough as to write down his observations about how I can

improve my presentation of this work, for which I thank him.

As a demanding client who is very particular about details, I need to thank Marcello
Balduccini twice for the many hours he worked in the implementation of the graphical
interfaces for the A-Circuit and the USA-Advisor systems that I designed. It was
a pleasure working with him on these projects, and I greatly benefited from our
discussions.

I am also thankful to other graduate students (past and present) from the Knowledge
Representation Laboratory (KRLab), previously at The University of Texas at El
Paso (UTEP) and currently at Texas Tech University (TTU). I particularly wish to
thank Veena Mellarkod, Joel Galloway, and Mary Heidt who allowed me to participate

in their work and to learn from it.

For the last three years I have been a constant visitor at the KRLab at TTU. I wish

to thank Daniel Cooke and his staff for making the Computer Science Department

vii
at TTU an extension of the one at UTEP; I always felt welcome there and found it a
friendly place where I could continue my work. During this time, I was also constantly
a guest at the Gelfonds’ home and wish to express my gratitude to Lara Gelfond for
her gracious hospitality and friendship. I especially wish to thank Lara, Gregory, and

Michael for those extra working hours stolen from their family time together.

Since I started working with the SMODELS and the DVL inference engines, I have
had the help and support of their development teams, which I would like to thank:
[llka Niemela, Patrik Simons, and Tommi Syrjanen for SMODELS, and Nicola Leone,

Wolfgang Faber, and Gerald Pfeifer for DLv.

I am also very fortunate because I participated and learned from many technical
discussions and exchanges of ideas in the Texas Action Group (TAG) organized by
Vladimir Lifschitz and Michael Gelfond. I wish to thank them both for creating this
forum and encouraging researchers and students alike to be part of it. I particularly
want to thank Vladimir, Michael, and the TAG members for the ideas they have
shared with me. This group includes Yuliya Babovich, Marcello Balduccini, Chitta
Baral, Pedro Cabalar, Jonathan Campbell, Esra Erdem, Wolfgang Faber, Paolo Fer-
raris, Alfredo Gabaldon, Joel Galloway, Mary Heidt, Vladik Kreinovich, Jooyhung
Lee, Sheila Mcllraith, Veena Mellarkod, Ramon Otero, Gerald Pfeifer, Enrico Pon-

telli, Tommi Syrjanen, Son Cao Tran, Le-Chi Tuan, Hudson Turner, and many others.

I would like to thank the United Space Alliance (USA) company for providing partial

financial support for this research through several research grants and contracts. In

viii
addition, I would like to thank Matthew Barry from USA and Richard Watson from
TTU for answering questions about the Reaction Control System of the space shuttle
which helped the development of this work. My research was also partially supported

by a scholarship from the National Science Foundation for which I am very grateful.

There are too many friends who helped me through my studies and for whom I
am thankful. Of all these friends, I wish to single out Nelly Delgado and Frank
Fernandez for their constant support and unconditional dependability. During the
busy preparations for my dissertation, they always made sure the little things got

done. They will always have my gratitude and my friendship.

Finally I wish to express my utmost gratitude to my parents for their love and will-
ingness to be my support team at home, supervising my children and my household
for weeks and months at a time while my husband and I were many miles away. [
would never be able to complete my studies without their help. I want to thank my
husband for his support and for believing I could finish this work even when I did
not. Lastly, I want to thank my children for understanding and valuing my desire
to become a better person through my studies, even if it meant I would be away for
long periods of time. I am sure this hardship brought us closer together and was a
worthwhile lesson that will always stay with us.

MonicA DE LIMA NOGUEIRA
The Unwversity of Texas at El Paso

May 2003

Abstract

This work is written in the context of the logic-based approach to Artificial Intelli-
gence (AI) proposed by John McCarthy in 1959 [134]. According to this approach
an agent should have knowledge of its world and its goals, and the ability to use
this knowledge to infer its course of action. This logic-based method suggests that
a mathematical model of an agent should contain: a formal language capable of ex-
pressing commonsense knowledge about the world, a precise characterization of valid
conclusions which can be derived from theories stated in this language, and a means

which will allow the agent to arrive at these conclusions.

The purpose of this dissertation is to investigate the applicability of one such language,
A-Prolog [71, 73], for the development of medium-size knowledge-intensive systems.
A-Prolog is a declarative logic programming language based on stable models/answer
sets semantics of logic programs [74, 75]. It allows the representation of defaults and
several interesting aspects of reasoning about actions and their effects. There is a
recently developed methodology of representing knowledge in A-Prolog, and there

are also rather efficient inference engines associated with the language. Our goal

1X

was to test this methodology and these inference engines on sizeable engineering

applications.

In this dissertation, we developed two such applications. The first is a small system,
designed as a classroom tool for teaching digital circuits, which allows the functional
and behavioral representation of these circuits at the gate-level of abstraction. The
second is a substantially larger application - the implementation of a decision support
system for the space shuttle’s flight controllers. This work involved the representation
of a substantial amount of knowledge about the shuttle as well as the execution of
complex planning (and other reasoning) tasks. The project was successful, and the
system is now in the hands of United Space Alliance (USA), the company responsible

for overseeing the operation of the space shuttle.

This dissertation describes the design and implementation of these systems and dis-
cusses some lessons derived from this experience. We believe that the lessons can
be of interest to AI researchers working in the areas of knowledge representation,
nonmonotonic reasoning, and planning, as well as to software engineers involved in

the construction of knowledge-intensive systems.

Table of Contents

Acknowledgements v
Abstract ix
List of Tables xiv
List of Figures xvi
1 Introduction 1
1.1 Logic Approach to AT 2
1.2 Goals and Contributions of thiswork 21
1.3 Organization of the dissertation 24
2 The A-Prolog Language 25
2.1 Syntax oL e e e 25
2.2 Semantics e 27
3 Digital Circuits in A-Prolog 36
3.1 Digital Circuits in Electrical Engineering 36

X1

3.2 Formalization of Digital Circuits 38
3.3 Formalizing Digital Circuits in A-Prolog 42
3.4 Computing the Maximum Delay of a Circuit 51
3.5 Using the Circuit Theory CT" 53

3.5.1 Simulating the circuit oL 54

3.5.2 Avoiding hazards L oL 55
3.6 Graphical Interface for A-Circuit 60
3.7 Related Work 62
Proofs for A-Circuit 66
4.1 Problem Formulation 66
4.2 Proof of Lemma 4.1 - NOT gate 74
4.3 Proof of Lemma 4.2- ANDgate 87
4.4 Proof of Lemma43-ORgate., 113
4.5 Proof of Proposition 3.1 L 114

The Reaction Control System - Action Theory and Answer Set Pro-

gramming for Controling the Space Shuttle 118
5.1 On NASA, the Space Exploration Program, USA, and the Space Shuttle119
5.2 The RCS and the USA-Advisor Systems 122

5.3 The RCS System 126

5.4 USA-Advisor System’s Design
5.4.1 Plumbing module oL
5.4.2 Valve control module
5.4.3 Circuit theory module
5.4.4 Planning module 0oL

5.5 The Basic Planner

5.6 Smart Planner: adding the control knowledge

5.7 Experimental Results for the USA-Advisor

5.8 Summary L

6 Conclusions

6.1 Lessons Learned

6.2 Future Work

A RCS Experiments’ Results

Bibliography

Curriculum Vitae

202

204

205

210

242

273

List of Tables

3.1 Definition of behavior of basic gates.

5.1 (a) Tri-State gate. (b) Negated Input Logic AND gate.

5.2 Definition of the behavior of a Time Delay (of 1 sec) gate.

5.3 Overall results for 2000 RCS experiments.

A.1 Results for experiments with 3 mech

A.2 Results for experiments with 3 mech.
A.3 Results for experiments with 3 mech.
A.4 Results for experiments with 3 mech.
A.5 Results for experiments with 5 mech.
A.6 Results for experiments with 5 mech.
A.7 Results for experiments with 5 mech.
A.8 Results for experiments with 5 mech.
A.9 Results for experiments with 8 mech.
A.10 Results for experiments with 8 mech.
A.11 Results for experiments with 8 mech.

A.12 Results for experiments with 8 mech.

. and 0 elect.

and 0 elect.
and 2 elect.
and 2 elect.
and 0 elect.
and 0 elect.
and 3 elect.
and 3 elect.
and 0 elect.
and 0 elect.
and 5 elect.
and 5 elect.

faults:
faults:
faults:
faults:
faults:
faults:
faults:
faults:
faults:
faults:
faults:

faults:

cases 1-100.

cases 101-200.

cases 1-100.

cases 101-200.

cases 1-100.

cases 101-200.

cases 1-100.

cases 101-200.

cases 1-100.

cases 101-200.

cases 1-100.

cases 101-200.

A.13 Results for experiments with 10 mech. and 0 elect. faults: cases 1-100.

163
163

222
223
224
225
226
227
228
229
230
231
232
233
234

A.14 Results for experiments with 10 mech. and 0 elect. faults: cases 101-200.235

A.15 Results for experiments with 10 mech. and 3 elect. faults: cases 1-100. 236

Xiv

XV

A.16 Results for experiments with 10 mech. and 3 elect. faults: cases 101-200.237
A.17 Results for experiments with 10 mech. and 5 elect. faults: cases 1-100. 238
A.18 Results for experiments with 10 mech. and 5 elect. faults: cases 101-200.239
A.19 Results for experiments with 10 mech. and 7 elect. faults: cases 1-100. 240
A.20 Results for experiments with 10 mech. and 7 elect. faults: cases 101-200.241

List of Figures

1.1
1.2
1.3

1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

5.1
5.2
9.3

Blocks World Domain. 8
Blocks World Domain. 15
Program describing the blocks world domain given as input to SMOD-

ELS. . . 18
Results for blocks world program of Figure 1.3. 20
Digital circuit with undefined input and defined output.. 40
Symbolic representation of basic gates. 41
Graphical representation of a digital circuit. 43
Program to compute maximum delay of a circuit. 52
(a) Output in numerical form. (b) Timing Analysis. 55
Circuit with a hazard. 56
(a) ToolBox Window. (b) The complete circuit. 61
Interface output for glitch detection problem. 63

Blocks diagram for digital circuit C' decomposed into circuits C,, and

Cle o e 115
A simplified view of the RCS. 131
A simplified view of a circuit. L. 161
A graphical representation of a faulty input wire. 169

xvi

Xvii

5.4 Initial situation common to all test instances of RCS planner. 191

5.5 Test instance for RCS planner with 3 mechanical and 2 electrical faults. 192

5.6 Solution for test instance shown in Figure 5.5. 193
5.7 Plan file corresponding to test instance shown in Figure 5.5. 194
A.1 Results for experiments with 3 mechanical and 0 electrical faults. . . 212
A.2 Results for experiments with 3 mechanical and 2 electrical faults. . . 213
A.3 Results for experiments with 5 mechanical and 0 electrical faults. . . 214
A.4 Results for experiments with 5 mechanical and 3 electrical faults. . . 215
A.5 Results for experiments with 8 mechanical and 0 electrical faults. . . 216
A.6 Results for experiments with 8 mechanical and 5 electrical faults. . . 217
A.7 Results for experiments with 10 mechanical and 0 electrical faults. . . 218
A.8 Results for experiments with 10 mechanical and 3 electrical faults. . . 219
A.9 Results for experiments with 10 mechanical and 5 electrical faults. . . 220

A.10 Results for experiments with 10 mechanical and 7 electrical faults. . . 221

Chapter 1

Introduction

“If I hear, I forget.
If I see, I remember.
If I do, I understand.”

Proverb

In this chapter we present the background information necessary to understand the
subject of this dissertation. The chapter is organized as follows. First, we discuss
the avenues of research which originated from the idea of using logic to represent
Artificial Intelligence (AI) related knowledge. Secondly, we cover the first difficulties
encountered by the logic programming approach and the first nonmonotonic for-
malisms which sought to solve these problems. Next, we illustrate our programming
methology through an example, using the famous blocks world domain. We present
the goals and contributions of this work, and finally, we give the organization of the

dissertation.

1.1 Logic Approach to Al

In 1959 [134], John McCarthy proposed the use of logical formulas to represent Al-

related knowledge. He expressed the advantages of his idea as follows:

“Erpressing information in declarative sentences is far more modular than
expressing it in segments of computer programs or in tables. Sentences
can be true in a much wider context than specific programs can be used.
The supplier of a fact does not have to understand much about how the
recewer functions, or how or whether the receiver will use it. The same
fact can be used for many purposes because the logical consequences of

collections of facts can be available.”

The original approach was to use classical logic to represent and reason about various
types of knowledge. Unfortunately, it was soon discovered that this approach may
not be adequate for representing commonsense knowledge. In [148], Minsky discussed

one such domain which involved describing birds’ flying abilities.

This classical problem consisted of representing the statement
“Normally, birds fly.” (1.1)

This is a typical example of a default - a statement “normally, typically, as a rule,
elements of class C' have property P.” Reasoning with defaults and their exceptions

seems to be essential in our everyday life. However, it does not occur in mathematics.

Minsky argued that defaults cannot, in principle, be represented by the means of

logic. Indeed, suppose that the common knowledge about flying abilities of birds,

including the following four statements:

1. Birds fly.

2. Penguins are birds.

3. Penguins do not fly.

4. Tweety is a bird.

is encoded by a theory 7T of classical logic.

Clearly, T should entail that “Tweety flies” since Tweety is a bird and birds fly.
Now, if we happen to know that “Tweety is a penguin,” adding this new knowledge
to T will make 7 inconsistent. Theory T will now entail that: (a) “Tweety flies,” as
before, and (b) “Tweety does not fly” because Tweety is a penguin and penguins do

not fly.

Intuitively, we should be able to withdraw the previous conclusion, (a), and conclude
(b) in the presence of the new knowledge. This example shows that classical logic is

not suitable for formalizing commonsense knowledge.

Reasoning which permits retraction of previous conclusions when confronted with
contradicting knowledge is called nonmonotonic. In more precise terms an entailment
relation = (over language L) is called nonmonotonic if there are formulas A and B

and a set of formulas T" such that T = B and T, A |~ B. Otherwise, the entailment is

4

said to be monotonic. Classical logic is monotonic. For formalization of commonsense

we seem to need nonmonotonicity.

This realization led to the introduction of several formalisms which extend classical
logic to allow for nonmonotonic reasoning. Some of the most important ones are

Default Logic [169], Autoepistemic Logic [149, 150], and Circumscription [135, 136].

Meanwhile, another line of research led by Kowalski [107, 108] and Colmerauer [44],
which originated with the introduction of the resolution principle by Robinson [173],
and was influenced by Hayes’ [94] idea that “computation is controlled deduction,”
concentrated on developing efficient algorithms that would allow for “programming
in logic.” This work gave birth to the first interpreter for the PROLOG Programming

Language [45].
The language is based on definite Horn clauses. A definite clause has the form:
h + aiN...\Nay

where head h is either an atom, and body a; A ... A a, is a conjunction of atoms.
If the body is empty, the rule is called a fact. The symbol “+” is read as if. A
program in PROLOG consists of a set of definite clauses, which can be interpreted

both declaratively and procedurally. The semantics of a definite clause
pqAT
can be perceived in one of the two following ways:

(a) pis true if ¢ and r is true;

(b) to prove p, prove g and prove 7.

The procedural interpretation is the basis for the implementation of the PROLOG
language which answers queries about an input program P. If a query ¢ has no
variables, the interpreter returns “yes” if it finds a proof of ¢ from P. Otherwise, it
returns “no.” If there are variables in the query, e.g. ¢(X), the system answers “no”
if no terms satisfying the query are found, or returns the first “substitution” X = ¢
that is found. The inference is based on the adaptation of Robinson’s resolution [173]

by [90, 91, 108].

A PROLOG program is often understood as a collection of clauses together with an

interpreter. Even though programs

p<p
Ho{ Hl{p

are equivalent declaratively, when viewed procedurally they exhibit different behav-
iors. Program II; stops and returns “yes” to query p, but program I, goes into an

infinite loop when trying to find a proof for p.

Later, “Pure Prolog” of definite clauses was expanded by a new logical connective,
not , called “negation as failure.” The first interpretation of this connective was

purely procedural and given in terms of the Prolog interpreter. A rule
p - q,notr

reads as “if ¢ is proven and no proof for r is found, then p is proven.” The symbol

W, »

is read as if. A program consisting of this rule and the atom ¢ answers “yes”

to p. Addition of r forces the program to withdraw its answer. The Prolog infer-
ence process becomes nonmonotonic. The problem of finding a declarative semantics
for not proved difficult. The first pioneering work to give a semantics for not was
done by: Clark [42] who introduced the negation as finite failure rule and the notion
of completion of a logic program; Reiter [168] through the encoding of the Closed
World Assumption; Apt, Blair, and Walker [5] who formalized the notion of strati-
fication of logic programs; van Gelder, Ross, and Schlipf’s [197] introduction of the
well-founded semantics; and Gelfond and Lifschitz’s [74] stable models/answer sets
semantics. There are many other approaches. A survey of the use of negation in logic

programming is presented in [6].

These two lines of research converged to develop the field of Logic Programming
and Nonmonotonic Reasoning, and the A-Prolog language which extends “classical”
Prolog by classical negation and disjunction. This language was shown to be closely

connected with Default [78] and Autoepistemic Logic [129].

A-Prolog is a declarative logic programming language based on stable models/answer
sets semantics [74, 75] of logic programs. It allows the encoding of defaults and various
other types of knowledge contained in dynamic domains, e.g. the representation
of actions and their effects. In recent years, the development of several different
reasoning systems for A-Prolog led to the emergence of answer set programming

[131, 152], a new programming paradigm. Currently, the most efficient inference

engines for A-Prolog are SMODELS! [153, 154, 155, 156], and DLV? [41, 55, 53, 54].

Another difficulty in the realization of McCarthy’s program was discovered when

researchers attempted to represent information about effects of actions.

To illustrate the issues involved in this type of reasoning we will use a classic Al
example: the blocks world domain. It consists of a number of blocks which can sit
directly on a table or be stacked up by action mowve block X on top of block Y. A
similar action can be used to unstack a block and move it to the table or on top of

another block.

To model this domain we need to represent blocks, which can easily be done with a

collection of facts, e.g.

block(a).
block(b).
block(c).
block(d).

and the table denoted by ¢.

There are two types of locations where a block can sit: the top of another block or
the table. The following two rules express that a location is either a block or the

table.

location(X) :- block(X).

!The sMODELS homepage is located at http://www.tcs.hut.fi/Software/smodels/
2The DLV homepage is located at http://www.dbai.tuwien.ac.at/proj/dlv/

location(t).

A state of the domain is defined by the relation on(B,L), which says that block B is at
location L. The truth value of this relation changes with time through the execution

of action move(B,L), defined by rule

action(move(B,L)) :-
block(B),

location(L).

For instance, execution of action move(b,a) changes the state in Figure 1.1(a) into

the state shown in Figure 1.1(b).

C b c
a b d a d
(a) Initial situation (b) Goal situation

Figure 1.1: Blocks World Domain.

We would like to specify a transition diagram describing all the possible trajectories of
the domain. To do that we need to define the state of the domain and the transition
relation (0g, a,01), where o7 is the state of the domain after action a is performed in

previous state og.

We start with introducing a relation holds(F,T) which defines that fluent F' holds,
ie. is true, at time 7. By T we mean a discrete time point. (For simplicity, we

assume that the execution of each action takes one time unit.)

A state og will be given by a collection of atoms holds(on(B, L),0); state o1 - by a
collection of atoms holds(on(B, L), 1); a state k in the path (o9, ao, ..., 0k, ak, Ok+1)

will be given by a collection of atoms holds(on(B, L), k).

Explicit negative information is expressed in A-Prolog through the “classical nega-

tion” connective, denoted by —. Rule

—holds(on(B,L2),T) :-
block(B),
time(T),
location(L1),
location(L2),
L1 # L2,

holds(on(B,L1),T). (1.2)

provides negative information about positions of blocks. It says that a block B is not

at a location Lo at time 7 if it is at a different location L; at this time.

This rule is a logic programming variant of the so called “state constraint” (or static

causal law) [132]

gif f (1.3)

which says that property g must be true in any state where property f is true. In

this case, —on(B, Lg) if on(B, Ly),L; # Ls.

We also need to define the direct effects of actions. For that we write a “dynamic

10

causal law” of the form
a causes f if p (1.4)

which says that performing action a causes property f to become true if preconditions

p are true in this state.

In the blocks world domain this corresponds to rule

holds(on(B,L),T+1) :-
block(B),
location(L),
time(T),

occurs (move(B,L),T). (1.5)

Relation occurs(move(B,L),T) defines an “observation” of the occurrence of action

move(B,L) in the state T of the domain.

It is not always possible to execute such an action, e.g. if there exists a block By on
top of block B then B cannot be moved. Knowledge of this type is referred to as an

“impossibility condition,”

and is represented by rules with empty heads. The empty
head of such a rule means that the body must be false in all models of the program.

If the head is empty the rule is often called a “constraint.”

The impossibility condition identified above is described by rule

:— block(B),
block(B1),

B # B1,

11

location(L),
time(T),
occurs (move(B,L),T),

holds(on(B1,B),T). (1.6)

It is also not possible to move a block B to a location L if there exists another block
By at L, i.e.

:— block(B),
block(B1),
B # B1,
location(L),
time(T),
occurs (move(B,L),T),

holds(on(B1,L),T). (1.7)

The following constraint states that a block B cannot be moved on top of itself.

:— block(B),

time(T),

occurs (move(B,B),T) . (1.8)

Rules (1.2), (1.5), (1.6), (1.7), and (1.8) above describe the changes caused in the
state of the domain by execution of action move(B,L). It is also necessary to describe

what has not changed in the state of the domain after executing action a, i.e. which

12
fluents values have not been altered by a. In logic programming this can be done by
the following default

holds(on(B,L),T+1) :-
block(B),
location(L),
time(T),
holds(on(B,L),T),

not —holds(on(B,L),T+1). (1.9)

which says that if a block B is at location L at time 7', and there is no reason to

believe it is not at L in the next moment of time 7T'+1, then it is still there at T+ 1.

The above default encodes the commonsense law of inertia - “normally, things tend
to stay as they are.” Formalization of this default was proposed by McCarthy [137]
as a possible solution for the frame problem. This famous problem, first pointed out
in [138], consisted of describing concisely what should not change in the current state

of the domain after an action is executed.

Negation as failure, which permits an elegant representation of defaults in A-Prolog,
allows for a simple solution of this problem given by rule (1.9). The rule also helps
solving the ramification and qualification problems. The ramification problem [66]
consists of representing the indirect effects of actions. In A-Prolog it is solved by
combining the inertia axiom with dynamic causal laws and state constraints. In the

case of the blocks world - by rules (1.2), (1.5), and (1.9). If a block B is moved

13
from the table on top of another block B;, then an indirect effect of the execution
of this action will be that B is no longer on the table. The qualification problem
[135] consists of describing in a concise way the (impossibility) conditions that would

prevent the execution of an action. In A-Prolog this is done by writing constraints

like (1.6), (1.7), and (1.8).

The resulting state o1, after the execution of an action a in a state oy, is often called
a successor state [171]. It was difficult to define the values of fluents for successor
states. The solution to the frame, ramification, and qualification problems made this
possible. In A-Prolog these solutions are based on the concept of a transition diagram
of the domain. There are various definitions of this diagram and its transition relation,
[133, 194]. These definitions are independent of the notion of answer sets and based
on various theories of causalities. A different definition of transition relation will be

given below. (For details see [26]).
We first need to introduce the following notation.

Let Il be a program consisting of dynamic and static causal laws, the inertia axiom,

and impossibility constraints, where time 7' € {0,1}. Let

holds(o, k) = {holds(f,k) : f € o} U{—holds(f,k): ~f € o},

and let occurs(a,0) be an observation of the occurrence of action a at T' = 0.

14
Definition 1.1. A transition {09, a,o1) belongs to the transition diagram of the do-
main described by Iy if there exists an answer set S of program
IIy U holds(cg,0) U {occurs(a,0)}
such that
(a) f € oy iff holds(f,1) € S;

(b) —f € o1 iff —holds(f,1) € S.

There is a remarkable relationship between the logic programming based definition of
the transition diagram given above and the causality based definitions from [133, 194].
This relationship not only establishes the close connection between causality and
beliefs but also allows us to reduce various reasoning tasks of a dynamic agent to
computing answer sets of various programs. For instance, program II; can be used
to solve classical Al tasks like planning and diagnosis. Let us illustrate the basic idea

of this reduction by an example:

Consider the initial situation o for the blocks world domain, shown in Figure 1.2(a),
and goal situation o,, shown in Figure 1.2(b).

The initial situation holds(oy,0) is described by facts

holds(on(a,d),0).
holds(on(b,a),0).

holds(on(c,t),0).

d C

(a) Initia situation

Figure 1.2: Blocks World Domain.

holds(on(d,t),0).

The goal G(0,,T) is represented by rules

goal(T) :-
time(T),
holds(on(a,t),T),
holds(on(b,a),T),
holds(on(c,t),T),

holds(on(d,c),T).

goal :-
time(T),

goal(T).

b

a

d

C

(b) Goal situation

15

which describe what must be true in the goal situation, and the constraint below that

16
eliminates all models not satisfying the goal.

:— not goal.

To find a plan of length not exceding n, i.e. T' < n, let us take program II,, which
is program Iy with time now ranging from 0 to n, and expand this program in the
following way. The generation phase of planning will be implemented using a choice

rule CR, which has the form

1{occurs(A,T) :action(A) }1 :-
time(T),
T < n,

not goal(T).

This rule states that, for each time point 7' < n, if the goal has not been reached,

then an action must occur at that time.

Choice rules are part of the language of SMODELS [155]. The head of the choice rule

has the form
L{p(X) : ¢(X)}U.

It defines a subset p C ¢ of terms such that L < |p| < U. Normally, there are many
possible sets satisfying these conditions. Hence, a program containing this type of
rules might have multiple answer sets, corresponding to possible choices of p. Choice
rules do not extend the expressive power of the logic programming language and can

be viewed as a shorthand for a set of standard rules of the language. These rules,

17
however, proved to be very convenient. They substantially shorten the program, and

more importantly, they allow for an efficient implementation.

The problem of finding a plan to move from o to o,, of length not exceding n, can

be reduced to finding an answer set of program

I, U holds(cg,0) U G(0,,T) U CR.

It is easy to check, using SMODELS, that we can find an answer set of this program

corresponding to a plan which achieves this goal. One such plan is

(occurs(move(b,t),0), occurs(move(a,t),1),
occurs(move(b,a),2), occurs(move(d,c),3))
There are other plans and other answer sets. The complete program given as input
to SMODELS is shown in Figure 1.3. Notice that the rules in the program are slightly
different from the ones we presented here, in order to accomodate SMODELS syntax
and type requirements. We also use SMODELS’ display formatting capabilities, e.g.
hide p(X), in order to display just the atoms that constitute a plan. All plans, of
length not exceding 4 steps, which achieve the goal described in this example are
given in Figure 1.4, and were computed in 0.06 seconds. There exists no answer set

corresponding to a plan of length smaller than 4.

The answer set programming paradigm was shown to be adequate for comparatively
small problems/domains. Although most of the attention was given to answer set

planning [48, 120], diverse interesting problems have been so far solved using answer

18

Yot ToToTaTo o o JoToTo o o o o ToTo o Blocks World Program Yoo ToToTa o To ol Jo o Ta o o o o o To o

T

T

T

T

T

T

T

b
b

b
b

T

Objects of the domain
block(a).
block(b).
block(c).
block(d).

location(X) :- block(X).
location(t).

action(move(B,L)).

State constraint (Static Causal Law)
-holds(on(B,L1),T) :- holds(on(B,L),T), neq(L,L1).

Dynamic Causal Law
holds(on(B,L),T+1) :- occurs(move(B,L),T).

Inertia Law
holds(on(B,L),T+1) :- holds(on(B,L),T), not -holds(on(B,L),T+1).

Impossibility conditions

Constraint 1:
A block topped by another block cannot be moved.
:- occurs(move(B,L),T), holds(on(B1,B),T), neq(B,B1).

Constraint 2:
A block cannot be moved to a location occupied by another block.
:— occurs(move(B,L),T), holds(on(B1,L),T), neq(B,B1), neq(L,t).

Constraint 3:
A block cannot be moved on the top of itself.
:— occurs (move(B,B),T).

Plan generation rule
1{occurs(A,T):action(A)}1 :- T < lasttime, not goal(T).

Figure 1.3: Program describing the blocks world domain given as input to SMODELS.

19

Tolo o oo ToTo o ToTo o To oo o Blocks World Program (cont.) Yoo ToTo o o To oo ToTo o To o o o

T

T

b
o
o

T

==

Initial situatiomn
holds(on(a,d),0).
holds(on(b,a),0).
holds(on(c,t),0).
holds(on(d,t),0).

Goal situation
goal(T) :- holds(on(a,t),T),
holds(on(b,a),T),
holds(on(c,t),T),
holds(on(d,c),T).

goal :- goal(T).

:— not goal.

Time definition
Maximum plan length is determined by constant lasttime, provided by
user at run time.

time (0. .lasttime).

Types definition
#domain time(T).
#domain block(B;B1).
#domain location(L;L1).

Display formatting commands
hide block(X).
hide location(X).
hide action(X).
hide holds(X,Y).
hide time(X).
hide goal.

Figure 1.3: Program describing the blocks world domain given as input to
SMODELS.

20

oo oo To ToTo To oo ToTo To o Results for Blocks World Program Do toTo To o To o To To o To fo To o

%» Command line for SMODELS to compute all answer sets of blocks world
% input program

lparse —-true-negation -c¢ lasttime=4 blocks_world | smodels O

% Result of computation
smodels version 2.26. Reading...done

Answer: 1
Stable Model: occurs(move(b,t),0) occurs(move(a,t),1)
occurs (move(d,c),2) occurs(move(b,a),3)

Answer: 2
Stable Model: occurs(move(b,t),0) occurs(move(a,t),1)
occurs (move(b,a),2) occurs(move(d,c),3)

Answer: 3
Stable Model: occurs(move(b,c),0) occurs(move(a,t),1)
occurs (move(b,a),2) occurs(move(d,c),3)

False

Duration: 0.060

Number of choice points: 2

Number of wrong choices: 2

Number of atoms: 384

Number of rules: 1344

Number of picked atoms: 82

Number of forced atoms: 45

Number of truth assignments: 2320
Size of searchspace (removed): 8 (6)

Figure 1.4: Results for blocks world program of Figure 1.3.

21
set programming, e.g. product configuration [184], wire routing [61], etc. In this

dissertation, we developed a substantially larger application.

1.2 Goals and Contributions of this work

The goals of this work are to answer the following two questions:

1. Is it possible to represent a real world problem of reasonable size involving

complex effects of actions with the A-Prolog language?

2. Are the available inference engines for A-Prolog able to compute the solutions

to such a domain in a reasonably efficient manner?

We address these questions in two steps.

The first step was inspired by my work aimed at representing knowledge about digital
circuits for the Digital Design I graduate class at The University of Texas at El Paso.
In this class, students were required to learn a Hardware Description Language (HDL)
[30, 84], VHDL [101, 176] or Verilog HDL [159, 160, 186], in order to complete a class
project. This project consisted of representing and simulating a digital circuit using
the language and its simulator. The size and complexity of these languages soon led
me to wonder if it would not be possible, and simpler, to complete these tasks using
a declarative language, more specifically, the A-Prolog language. Because it provides
an extensive range of capabilities, the VHDL language is considered complex and

difficult to understand, even by experienced digital designers [84]. Verilog’s syntax is

22
similar to the C programming language, and is regarded by designers as an easy to
learn and teach language because of its compact size [160]. This is an understimation
caused by the ever present comparison between Verilogand VHDL, the two most pop-
ular Hardware Description Languages today. My limited experience with Hardware
Description Languages increased my difficulties and motivated me to program the
assignment in A-Prolog. At that point, the original question now focused on whether
A-Prolog would allow the representation of digital circuits in a simpler way and if the

language would be powerful enough to also permit the simulation of such circuits.

Results were positive and satisfactory in both accounts. We designed a simple tool -
the A-Circuit® system [14], that can be used by students in Digital Design or other
related classes, to represent and simulate (simple) digital circuits. One main advan-
tage of our approach is the use of a single language to describe both structure and
behavior of gates, and as a simulation environment, which results in a uniform ap-
proach to the simulation of digital circuits. The A-Circuit system also incorporates
some other more sophisticated tasks, which cannot currently be achieved by using
traditional HDL languages. In some cases, several HDL related tools must be used
in order to achieve a task; in other cases, e.g. diagnosis, HDL languages still cannot
support such features. We discuss the design of the A-Circuit system in Chapter 3.
The correctness of the system is proved by various propositions. Chapter 4 presents

these proofs.

3The A-Circuit system is available for download from:
http://www.krlab.cs.ttu.edu/Download /A-Circuit /

23
The second step was more ambitious. We got involved in a real world application,
a project supported by NASA’s major contractor, the United Space Alliance (USA)

company. The objectives of the project were:

1. to represent information about some subsystems of the space shuttle; and

2. to design a decision support system for flight controllers of the shuttle.

The high expressive power and simplicity of the A-Prolog language were fundamen-
tal to the success of the project. Both objectives of the project were satisfactorily
accomplished and the reception of our results, reported in the Third International
NASA Workshop on Planning and Scheduling for Space, in September 2002 [18], was

very positive.

The representation of the space shuttle’s RCS system, which corresponds to the first
objective above, is presented in Section 5.3 of Chapter 5; the design of the deci-
sion support system, USA-Advisor®, the second objective mentioned, is discussed in
Section 5.4 of the same chapter. This application involved a substantial amount of
knowledge representation, as well as the design and implementation of some tasks,
such as plan checking and actual planning. These tasks are discussed in Sections 5.5

and 5.6 of Chapter 5.

4The RCS/USA-Advisor system is available for download from:
http://krlab.cs.ttu.edu/~marcy /RCS/

24

1.3 Organization of the dissertation

This dissertation is organized in the following way. The next chapter presents the
syntax and semantics of the A-Prolog language. The description and discussion about
the design of the A-Clircuit system is given in Chapter 3. Theorems and related proofs
are presented in Chapter 4. The representation of the space shuttle’s RCS system and
the design of the USA-Aduvisor decision support system are described in Chapter 5.
Conclusions, lessons learned, related and future work are discussed in Chapter 6.
Appendix A presents tables and graphs summarizing the results of the experiments

with the RCS system.

Chapter 2

The A-Prolog Language

“A representation is called epistemologically adequate for a person or machine
if it can be used pratically to express the facts that one actually has about the
aspect of the world. A representation is called heuristically adequate if the
reasoning processes actually gone through in solving a problem are expressible

in the language.”

John McCarthy and Patrick Hayes [138]

The A-Prolog language, [71, 73], is a declarative logic programming language based on
stable models/answer sets semantics of logic programs [74, 75]. A-Prolog allows the
representation of defaults and multiple interesting aspects of reasoning about actions
and their effects. We start by defining the syntax and semantics of A-Prolog as given

in [71, 73].

2.1 Syntax

The syntax of A-Prolog is determined by a signature ¥ = (T, C, F, P) where

T, C, F, and P are sets of symbols. Members of the set T are called types. The

25

26
set C contains object constants for each type in T. Symbols from sets F and P are
typed functions and predicate constants, respectively. Each function symbol and
predicate symbol has an associated integer called its arity. It is assumed that the
signature contains symbols for integers and for the standard functions and relations
of arithmetic. A term of X is either a typed object constant, or a string of the form
f(t1,...,tn), where tq, ... t, are terms of the proper types, and f is a typed function
symbol of arity n. An atom is a string of the form p(¢y,...,t,), where p is a typed
predicate symbol of arity n in 3, and ¢y, ...,t, are terms of the corresponding types.
A literal is either an atom (also called a positive literal), or an atom preceded by — (a
negative literal). The symbol — is called classical or strong negation. Literal —a is read
as “a is believed to be false,” under the (epistemic) interpretation of logic programs of
[75]. For a literal I, by —I we mean [, and by [we mean —I. Literals [and —I are called
contrary. Literals and terms not containing variables are called ground. The sets of
all ground terms, atoms and literals over X are denoted by terms(X), atoms(X), and
lit(3), respectively. For a set P of predicate symbols from ¥, atoms(P,X)(lit(P,X))
denote the sets of ground atoms (literals) of ¥ formed with predicate symbols from
P. A set of literals is said to be consistent if it does not contain contrary literals.
Consistent sets of ground literals over signature ¥ containing all arithmetic literals
which are true under the standard interpretation of their symbols are called states of

¥ and denoted by states(X).

27

A rule of A-Prolog is a statement of the form:

lol1,...,lm,n0t lypy1,...,n0t 1, (2.1)

where n > 1, and [;’s are literals over X. Literal [is called the head of the rule, and
liy...,lm,not lypiq, . .., not l,, constitutes the body of the rule. The symbol not is a
logical connective called negation as failure or default negation. An expression not |
is read as “there is no reason to believe in [.” The head [, can be either a literal
or the symbol L. If [=L, rule (2.1) is called a constraint. We frequently omit the

head, L, of a constraint rule.

We assume that literals /; in rules (2.1) are ground. We use rules with variables as a
shorthand for the sets of their ground instantiations. Variables are denoted by capital

letters.

A logic program is a pair {X,II} where ¥ is a signature and II is a collection of rules

over .

A literal [€ [it(X) is true in a state S of X if | € S; [is false in S if | € S. Otherwise,

[is unknown. The symbol L is false for any S.

2.2 Semantics

A program II in A-Prolog can be viewed as a specification given to a rational agent
for constructing beliefs about possible states of the world. Technically, these beliefs

are captured by the notion of an answer set of program II.

28
First, we give the precise definition of answer sets for programs whose rules do not
contain negation as failure. Let II be such a program and let S be a state of {X, IT}.
Set S is said to be closed under II if, for every rule head < body of I, head is true in
S whenever body is true in S. A constraint rule is closed under II if its body is not

contained in S.

Definition 2.1. (Answer set of programs without default negation)
An answer set of a program 11, consisting of rules not containing default negation, s

the smallest set S of ground literals of ¥ which satisfies the following two conditions:

1. S is closed under the rules of ground(Il), i.e., for every rule (2.1) in 11, either

there is a literal [in its body such that | ¢ S or its non-empty head ly € S.

2. If S contains an atom p and its negation —p, then S contains all ground literals

of the language.

It is not difficult to show that there is at most one set (Cn(II)) satisfying these

conditions.

Now, let II be an arbitrary ground program in A-Prolog. For any set S of ground
literals of its signature X, let the reduct of II relative to S, denoted II¥, be the program

obtained from II by deleting:

(i) each rule that has an occurrence of not [in its body with [€ S,

(ii) all occurrences of not [in the bodies of the remaining rules.

29

Definition 2.2. (Answer set of arbitrary programs)
Set S is an answer set of IT if

S = Cn(115). (2.2)

We are interested only in consistent programs, i.e., programs with at least one consis-
tent answer set. Let S be an answer set of II. A ground literal [is truein S if [€ S,
false in S if =l € S. This is expanded to conjunctions and disjunctions of literals in

a standard way.

Definition 2.3. (Entailment)
A program 11 entails a literal | (1 |=1) if | is true in all answer sets of II. Program

I1 answers yes to a query | if Il = 1; no if Il |= I, and unknown otherwise.

Here are some examples. Assume that the signature ¥ contains two object constants

a and b. The program

I, { q(a)
—p(X) +not q(X).

has the unique answer set S = {gq(a), —~p(b)}. The program

m, { p(a) < not p(b).
p(b) < not p(a).

has two answer sets, {p(a)} and {p(b)}. The programs

I3 { p(a) < not p(a).

and

30

I, { p(a).

+ p(a).

have no answer sets.

It is easy to see that programs of A-Prolog are nonmonotonic. For example consider
program ITI;. We saw that II; | —p(b), however, if some new information, ¢(b), is
added to the program, it forces the withdrawal of the previous conclusion —p(b). The
new program II; U {q(b)} has the unique answer set {g(a),q(b)}. Nonmonotonic
reasoning is important for the representation of commonsense knowledge, and gives
the means for reasoning about time and change. A-Prolog is closely connected with
more general nonmonotonic theories. In particular, as was shown in [75, 129], there
is a simple and natural mapping of programs in A-Prolog into a subclass of Reiter’s

default theories [169]. Similar results are also available for Autoepistemic Logic [150].

Next, we present some important theorems and lemmas that exhibit nice properties
of A-Prolog programs. They will be frequently used in the proofs of Chapter 4.

First, we introduce some necessary notation.

Let 7 be a rule of the form (2.1). By head(r), pos(r), and neg(r) we denote {lp} and
the sets {l1,...,lm}, and {ln11, - .., }, respectively. lit(r) denotes the set head(r)U

pos(r) Uneg(r). For a program II, [it(IT) denotes the set of literals occurring in II.

For a program II over the A-Prolog language, a set of literals A, over the language,

is a splitting set of II if for every rule r € II, head(r) N A # () implies lit(r) C A.

31
Let A be a splitting set of II. The bottom of I relative to A, denoted by ba(I), is

the program consisting of all rules r € II such that lit(r) C A.

Given a splitting set A for II, and a set X of literals from lit(ba(II)), the partial
evaluation of 11 by X with respect to A, denoted by e (II, X), is the program obtained

from II as follows. For each rule r € II \ b (II) such that

1. pos(r)NAC X,

2. neg(r) N A is disjoint from X;

there is a rule 7' in e4(II, X) such that

1. head(r'") = head(r) , and

2. pos(r') = pos(r) \ A,

3. neg(r') = neg(r) \ A.

Let A be a splitting set of II. A solution to II with respect to A is a pair (X,Y) of

set of literals satisfying the following two properties:

1. X is an answer set of b4 (II);

2. Y is an answer set of e4 (I \ b4 (1), X);

3. X UY is consistent.

32

Theorem 1. (Splitting Set Theorem, [122])
Let A be a splitting set for a program I1. A set A of literals is a consistent answer set

of Il iff A= X UY for some solution (X,Y) to II with respect to A. O

The following example illustrates the notion of a splitting set and the use of the

Splitting Set Theorem for the computation of answer sets of logic programs.

Let Il be the program consisting of the following rules

Iy <

\

Set Ag = {p(a),p(b)} splits IIy into bottom program, b4,(Ily), and top program,
ta,(Ilg). The last two rules of Il belong to the bottom, and the first two rules
form the top. It is easy to see that the bottom program has the unique answer set
X = {p(a),p(d)}. (Notice that Ag = X in this example, but this is not always the
case.) The partial evaluation of the top with respect to Ag and the answer set X
of the bottom, denoted ey4,(II, X), is obtained by dropping its second rule which is
falsified by the negated subgoal p(a). The result of the simplification is the program

consisting of a single rule
ea,(Ip, X) { r(b) < q(a).

It is easy to see that the unique answer set of e, (Ilg, X) is Y = {}. Therefore, the

only answer set for Ily, denoted by A, can be obtained by adding the unique answer

33

set of the bottom, X, to Y, i.e.

A=XUY = {p(a),p(b)}.

Lemma 2.1. (Marek and Subrahmanian, [128])

For any answer set S of a logic program 11 consisting of rules of the form (2.1)

(a) for any instance r of a rule of the type (2.1) from I1, if pos(r) C S and
neg(r) NS = 0 then head(r) € S;

(b) if S is consistent and ly € S then there exists an instance r of a rule of the type

(2.1) from 11, such that pos(r) C S, neg(r) NS =0, and head(r) = lo. O
The previous example is used again to illustrate the applicability of Lemma 2.1 for
the computation of answer sets of logic programs.

Let us take program Ily. First, Lemma 2.1 will be used to compute an answer set of

ITy as follows.

By condition (a) of Lemma 2.1 and the last rule of IIy,
p(b)-
it trivially follows that

p(b) must belong to all answer sets of . (2.3)

Since p(b) is a consequence of IIy, given condition (a) of Lemma 2.1, and the third

rule of Iy,

p(a) « p(b).

34
we have that

p(a) must belong to all answer sets of . (2.4)

Statement (2.4) falsifies the second rule of II,

q(a) < not p(a).

Because of this fact, and since there exists no other rule in II; with head g(a), it
follows that

¢(a) does not belong to any answer set of IIj. (2.5)

Hence, no answer set of Iy can satisfy the first rule

r(b) + q(a).

Given this fact, and since there exists no other rule in Iy with head r(b), we can
conclude that

r(b) does not belong to any answer set of II,. (2.6)

The above argument can be viewed as a construction of a set A which must be a
subset of any answer set of IIy. We will show that 4 is indeed an answer set of II,.
To do that, let us compute the reduct of I, with respect to A, II3'. It consists of the

following rules

35
It is easy to see that A is an answer set of II;'. Hence, by the definition of answer

sets A is an answer set of II,. O

Chapter 3

Digital Circuits in A-Prolog

“There are two ways of constructing a software design; one way is to make it
so simple that there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. The first method is far

more difficult.”

Sir Charles Antony Richard Hoare

Digital circuits have been extensively studied. However, in most logical approaches,
circuits are described by propositional formulas [143, 144]. In our work we use logic
programming and build a general theory of digital circuits which contains standard

knowledge about circuits from the electrical engineering field.

3.1 Digital Circuits in Electrical Engineering

We start by reviewing the meaning of some terms of the electrical engineering field

that are used in this work.

An electronic gate, or component, is a device that realizes a logical function. Roughly,

circuit is a collection of interconnected gates.

36

37
In the electrical engineering field, a signal is an impulse or a fluctuating electric
quantity, such as voltage, or current, whose variations represent coded information.
In the area of digital electronics, the precise values of voltage signals, either applied
or generated by components and circuits, are not significant toward determination of
the logical operation of the gates/circuits; in fact, these values vary from circuit to
circuit and from component to component [105]. More importantly, electronic gates
are limited by construction to recognize only two ranges of values, “high” and “low,”

which are, by convention, associated with constants 1 and 0, respectively.

Input (and conversily, output) has been used as a technical term for probably more
than a century in the field of physics, then in electrical engineering, and more recently
in computer science. In this thesis, input/output (of a component or a circuit) are
applied to the domain of electrical engineering. Both terms have been largely misused,
but normally each have one of two meanings when used in this domain. Input conveys:
(a) energy or power, i.e. a signal, used to activate or drive a component /circuit, or (b)
wire or pin at which a (input) signal enters a gate/circuit. By output it is meant: (a)
energy or power, i.e. a signal, produced by a component /circuit, or (b) wire or pin at
which a (output) signal produced by a gate/circuit is present. Even more confusely,
it is possible that the term is used to indicate both concepts (as in items (a) and (b)

mentioned before), simultaneously.

For clarity purposes, whenever refering to input[output] as energy or power, we use

the expressions “input[output] signal,” or “input[output]| value”; and for indicating a

38

wire or pin, we use the term “input[output]| wire.”

A circuit is a collection of interconnected electric components, called gates, where
the output signal present on the output wire of one component is used to actuate

(stimulate) one or more input wires of other components.

A combinational circuit is a circuit whose output signals are functions of only the

current circuit input signals.

The propagation delay of a gate g is the time required to propagate an input signal

through g, or to switch the output of g from a value to another.

For simplicity of exposition we restrict this work to circuits that have a single output
wire. This implies that the output wire of each and all gates in a circuit, with the
exception of a single one, must be connected to at least one input wire of one, or
more, gates in the circuit. Moreover, the time required to propagate the input signal
values applied to the input wires of a circuit to its output wire will be referred to as

the “propagation delay of the circuit.”

3.2 Formalization of Digital Circuits

Normally, computer science students start to study foundations of digital design in
their first or second year at the university. First, they concentrate on combina-
tional circuits which are constructed from simple boolean gates and are used to com-

pute boolean functions. Given such a function Y = f(X;,...,X,), where Y and

39
Xi,...,X, are boolean variables, students learn how to use propositional logic to
construct a circuit C' which instantaneously transforms the values Xy, ..., X,, applied
on its input wires Wy,..., W, to the value Y on its output wire W,. Later, they
move to building more complex devices employing more complex, sequential circuits.
The model of a circuit remains, however, essentially boolean with the only possi-
ble signals corresponding to 0 and 1, and basic gates still performing instantaneous
transmission of information. In more advanced classes students normally “discover”
that the boolean model they have learned is not always a realistic one. Gates suffer
from physical limitations, i.e., do not instantaneously perform the function that they
implement because of propagation (and other types) of delays. For a short time, the
values of signals may lie somewhere between the levels necessary to classify them as
0 and 1, and will therefore be undefined. There are other situations where the analog
(continuous and non-digital) character of gates and signals should be taken into ac-
count. To model such phenomena, scientists introduced the notion of a digital circuit
with delays ([146, 201]) and three possible input values: 0, 1, and 1/2 (undefined)
[201]. These circuits do not instantaneously produce the values of the corresponding
functions. Instead, these values are produced after delays, which are determined by

the circuit and the vector of input signals.

This approach mimics reality and allows input signal values s = {0,1,u}, where u
stands for an undefined value. In this case, input signal values Si,...,S,, where

S; € s, applied to input wires Wy, ..., W, of a circuit C, are converted by a function

40

S =g(S1,-..,S,) to the output value S on the output wire W, of C.
To make it usable for mathematical proofs, this explanation needs to be clarified.

Definition 3.1. Let s = {0,1,u} be the set of possible signal values on wires of a
circuit C. Let g : S — S be the function computed by C' when values Sy, ...,S, are
applied to input wires Wy,..., W, of C at time t. Let 0 be a non-negative integer.
We say that circuit C' computes g(Sh,...,S,) with a delay § if, in the absence of
other inputs, the value on its output wire W, at any time t' >t +§ is equal to S. C

computes function g with a delay 6 if it computes all the values of g with this delay.

Notice that there are cases where even if some input signal value is undefined the
circuit’s output signal is a defined value. Figure 3.1 shows an example of a circuit
with an input signal value undefined but whose output value is 0. The circuit consists
only of a NOT and an AND gate with no delays. We show the graphical representation
of the three basic gates NOT, AND, and OR on Figure 3.2 and their behavior, in the

presence of the “undefined” (u) value, is presented in Table 3.1.

It is important to point out that our use of a 3-valued logic does not affect the principle

of duality [105] which characterizes operations AND and OR from Boolean algebra.

1
©o=u w2 >g w3 o2
Wo
s=0

Figure 3.1: Digital circuit with undefined input and defined output.

4> I -

(@ NOT gate (b) AND gate

>

(c) OR gate

Figure 3.2: Symbolic representation of basic gates.

AND gate
Inputs | Qutput
11 ‘ 12
NOT gate 0]0 0
Input ‘ Qutput 0]1 0
0| u 0
0 1 u | 0 0
1 0
u |1 U
U U
u | u u
110 0
111 1
1| u U

OR gate
Inputs | Output
11 ‘ 12
010 0
011 1
0| u U
u | 0 U
u | 1 1
u | u u
110 1
111 1
1| u 1

Table 3.1: Definition of behavior of basic gates.

41

Introduction of delays and undefined signals bring to life a number of questions not

present in the case of ideal (time independent) boolean circuits. We need to know

for instance, how these ¢’s can be computed, how we can guarantee that a particular

circuit computes g with a given d, how we can check if a component of a circuit can be

replaced by a similar component with a smaller /bigger delay without violating some

important properties of the circuit, etc. To answer these and similar questions we

need to have a precise description of the behavior of a circuit, which, given a vector of

42
values applied to its input wires, will determine the values of signals present on every
wire of the circuit at any moment of time. In the next section we design and implement
a program in A-Prolog which does exactly that. One of the main advantages of using
A-Prolog is that the program is very concise, clear, and elaboration tolerant. More
importantly, in subsequent sections, we demonstrate that the expressive power of A-
Prolog also allows for the description of a variety of tasks, e.g. computing maximum

delay of a circuit and detection of glitches.

3.3 Formalizing Digital Circuits in A-Prolog

We start by introducing a simple language L; for describing digital circuits. The

language has four types of object constants (names for objects of the domain):
(a) g1,92 ... for gates;
(b) wi,wy, ... for wires;
(¢) 0,1,u for signals;

(d) and_gate, or_gate, not_gate for the three basic gate types we chose to represent.

Variables for gates, wires, and signals will be denoted by possibly indexed letters
G, W, and S, respectively. We also assume that L.; contains standard notation for
numbers, needed to denote delays. To describe the geometry of the circuit we use

statements of the form output(W, G) and input(W, G) read as “W is an output (input)

43
wire of gate G.” The types of gates in the circuit and the gates’ delays are expressed
by the statements type_of (G, gate_type) (G is of type gate_type) and delay(G, D)
(G has delay D). In this notation, the circuit from Figure 3.3 corresponds to the

following collection of statements of A-Prolog:

gl
W
J‘—| >O— 3
d=1 w3 :
g

w4

WL‘>@7 d=1
d=0

Figure 3.3: Graphical representation of a digital circuit.

type_of (g1, not_gate).
type_of (g2, not_gate).
type_of(gs, and_gate).
delay(g1,1).

input(ws, gs).

delay(gs,0).
delay(gs, 1).
input(wy, g
input(ws, ga)-
(
(

1)
)
)
input(wy, gs).
output(ws, g1)-

(
output(ws, g2)-
output(ws, g3)-

We denote such a representation of a circuit C' by 7(C).

44

To describe the dynamic behavior of the circuit we need to introduce the notion
of time. AI researchers developed a large variety of different models of time. For
our purposes, we assume the discrete linear time model in which time is represented
by non-negative integers. We view the application of signals to the input wires of
a circuit as the execution of an action which changes the previous signals on these
wires. This triggers a process of signal propagation through the circuit which goes
uninterrupted unless the input signals are changed again. In this way, describing the
behavior of the circuit can be reduced to specifying effects of the corresponding actions
as it is done in action theories of AI (see for instance [77, 124, 132, 162, 172, 194]).
In these theories, dynamic domains consist of actions and fluents (properties whose
values depend on time). Action theories are built to specify the values of fluents at
an arbitrary moment ¢, given their values at moment 0 and the domain history (a
sequence of actions performed in the domain in the past). In our domain we have
only one (parameterized) action apply(w,s) and one (parameterized) propositional
fluent, value(w, s). A statement occurs(apply(w, s),t) says that at moment ¢ signal s
is applied to wire w, while a statement holds(value(w, s),t) denotes that at moment
t the value of the signal on wire w is s. We will also use an auxiliary relation
opposite(sy, s2) satisfied by the pairs [0, 1], [1,0] and [u,u], where u corresponds to
undefined values between 0 and 1. Direct effects of actions will be represented in

A-Prolog by the following rule:

holds(value(W,S),T +1) <« occurs(apply(W,S),T). (3.1)

45
Here T is a variable for time. To guarantee the computability of our models we assume
that T ranges between 0 and some fixed time denoted by the constant lasttime. (This
constant can be viewed as a parameter of our system and it is entered by the user via
the entry program as a part of the problem instance.) The next rule describes the

propagation of the applied signal through the NOT gate of the circuit.

holds(value(Ws, S3), T+D) < type_of(G,not_gate),
delay(G, D),
input(W1, G),
output(Ws, G),
opposite(S, Sa),
holds(value(Wy, S1),T).

Auxiliary predicate opposite(S,S’) is used only for conciseness of representation. It
can be eliminated, in which case there would be three such rules to represent the

propagation of a signal through a gate NOT, instead of the single rule above.

To represent the function of gates AND and OR, we need to define some auxiliary
relations. The first relation, not_all inputs(G,S,T), holds if at moment 7' some
input wire of the gate G has a signal different from S. This can be expressed by the

following rule:

not_all inputs(G,S1,T) <« input(W,G),
Sl 7£ 527
holds(value(W, S2),T).

The second relation, all_inputs(G,S,T), holds if at time T all the input wires of G

have value S, and is defined by the rule:

46

all_inputs(G,S,T) <« not not_all_inputs(G, S, T).

Finally, the relation contains_input(G,S,T) holds if at moment 7" at least one input

wire of G has value S, and is defined by the rule:

contains_input(G, S, T) <+ input(W,QG),
holds(value(W, S),T).

Now we can define the propagation of signals through AND gates:

holds(value(W,1),T+D) <« typeof(G,and_gate),
delay(G, D),
output(W, G),
all_inputs(G,1,T).

holds(value(W,0),T+D) <« typeof(G,and _gate),
delay(G, D),
output(W, G),
contains_input(G,0,T).

holds(value(W,u), T+D) <« typeof(G,and_gate),
delay(G, D),
output(W, G),
not contains_input(G,0,T),

contains_input(G,u,T).

The rules for propagation of signals through OR gates are defined next.

47

holds(value(W,0),T+D) < type-of(G,or_gate),
delay(G, D),
output(W, G),
all_inputs(G,0,T).

holds(value(W,1),T+D) < type-of(G,or_gate),
delay(G, D),
output(W, G),
contains_input(G,1,T).

holds(value(W,u), T+D) < type-of(G,or_gate),
delay(G, D),
output(W, G),
not contains_input(G,1,T),

contains_input(G,u,T).

All the above rules define the effects of changes caused in the circuit by applying
new signals to its input wires. To complete our program we need to specify when the
values of fluents do not change. The task of finding a compact way to specify this in a
formal language is called the frame problem. J. McCarthy in [138] suggested that this
problem is closely related to the problem of representing a particular default called the

law of inertia. The law says that “normally, things stay as they are,”

i.e., in dynamic
domains fluents do not change their values unless they are forced to. Fortunately, the

methodology of representing defaults in A-Prolog is now well understood and can be

applied to obtain a simple and natural solution to the frame problem for our domain.

48

The solution is given by the next two rules.
The first of them is the Law of Inertia:

holds(value(W, S),T+1) <« holds(value(W,S),T),
not —holds(value(W, S), T+1).

This rule allows the reasoner (the program) to assume that the value of a signal on a
wire W does not change from one moment to the next, unless it is forced to believe
otherwise. The second rule states that there may be at most one signal present on a
wire at a given moment of time:

—holds(value(W, S1),T) <« Si# S,
holds(value(W, S3),T).

Rules of this sort are often called “state constraints”. They play an important role
in theory of action languages and are mainly responsible for the conciseness of the

representation of indirect effects of actions.

We denote the resulting program by CT and call it the simple circuit theory. The
theory, in conjunction with the specification of a circuit and its history up to the
current moment t., can be used to specify the values of signals on the circuit wires
at an arbitrary moment 0 < t < lasttime. We call such a specification a domain
description at time t.. It consists of the encoding of a circuit in language L, (see

Figure 3.3) together with statements of the form:

occurs(apply(w, s),t).

49
where 0 < t < t.. We assume that the initial signals of the circuit are undefined.

This assumption can be represented in A-Prolog by facts of the form:

holds(value(W,u),0).

which are added to the CT theory. We assume that domain descriptions used in
conjunction with C'T" are consistent, i.e., do not contain physical impossibilities such
as: two different signals applied to the same wire at the same time, multiple input

wires for the NOT gate, etc.

This can be ensured by expanding the program with the following constraints:

different signals can not be applied to a single wire simultaneously;

:- occurs(apply(w, s),0), occurs(apply(w,s’),0), s # s

the type of a gate is unique;

- typeof(g,y), typeof(g,v'), y # '

there is a unique (propagation) delay associated to each gate;

- delay(g,d), delay(g,d’), d #d'.

each gate has a unique output wire;

- output(w, g), output(w',g), w # w'.

an output wire can not belong to more than one gate.

- output(w, g), output(w,g'), g #¢'.

50
Using standard mathematical techniques recently developed by researchers in logic
programming and non-monotonic reasoning, it is not difficult to show that for any
consistent domain description D, the program Py = CT U D has exactly one con-
sistent answer set. By CT(D) we denote the set of all atoms, formed by predicate
symbol holds, which belong to this answer set. The set C'T(D) can be viewed as a
specification of a dynamic behavior of a combinational circuit with delays.' Let us first
show that our specification correctly captures the behavior of “ideal” combinational
circuits.
Proposition 3.1. Let C' be a combinational circuit, with input wires wsq, ..., Wy,
output wire w,, and no delays, which computes a function f(Si,...,S,). Then for
any input vector sy,...,8, of 0’s, 1’s, and u’s, program Py has a unique answer set
and holds(value(w,, s),1) € CT(D) if and only if s = f(s1,...,8,), where D =

7(C) U {occurs(apply(w;, s;),0) : w; € {wq,...,wp}, 8 € {0,1},1 <i <k, k < n}.

O

The proof of Proposition 3.1, presented in Chapter 4, is by induction on the number
m + 1 of gates of circuit C. We decompose C' into circuits C; and C,, containing 1

and m gates respectively, and show that

(a) their corresponding programs P; and P,, have unique answer sets, A; and A,,;

(b) holds(value(w,, s),1) € A, if and only if s = f(s1,..., Sn).

IThe above definition works only for circuits computing a “single value” function, i.e., a function
returning 0, 1, and u. This restriction is only for simplicity of presentation. All the definitions and
programs can be easily extended to functions returning vectors of signal values.

51
We also show that P, is equivalent to P, U P,,, and therefore, by the Splitting Set
Theorem [122], we conclude that program P, has a unique answer set, Ay = A; UA,,.

From this and (b), it follows that holds(value(w,,s),1) € Ay if and only if s =

f(Sl, ceey Sn).

Any combinational circuit C with delays has its ideal counterpart, i(C) obtained from
C by setting all of the gate delays of C' to 0. The following proposition guarantees
that for any input vector, sq,...,s,, the output signal of C' will eventually stabilize
at the value of f(sy,...,s,) where f is the function defined by the ideal counterpart
of C'. More precisely,

Proposition 3.2. Let C' be a combinational circuit with input wires wy, ..., w, and
output wire w,, and let f(Si,...,S,) be a function computed by its ideal counterpart
i(C). Then there is a delay, §, such that for any t > 6 and any input vector si, ..., Sy
of 0’s, 1’s, and u’s, program Py has a unique answer set and holds(value(w,, s),t) €

CT(D) if and only if s = f(s1,-..,8,), where D = w(C) U {occurs(apply(w;, s;),0) :

wiE{wl,...,wn},si6{0,1},1§i§k,k§n}. U

Proposition 3.2, follows immediatelly from Propositions 3.1 and 3.3.

3.4 Computing the Maximum Delay of a Circuit

The circuit delay from the above proposition can be found constructively. This can

be done by another A-Prolog program, A, shown in Figure 3.4.

The program is based on a simple algorithm for computing circuit delays which can

is_input_wire(W)

is_output(W)

is_output_wire(W)

is_input(W)

in_gate(G)

inner_gate(Q)

—is_input_wire(W)

out_gate(G)

out_delay(G, N)

in_delay(Gs, N)

—mazx_in_delay(G, N)

maz_in_delay(G, N)

out_delay(G, N)

circuit_delay(N)

<_

input(W, G),
not is_output(W).

output(W, G).

output(W, G),
not is_input(W).

input(W, G).

is_gate(G),
not inner_gate(Q).

input(W, G),

—is_input_wire(W).

input(W, G1),
output(W, G2).

is_output_wire(W),
output(W, G).

in_gate(G),
delay(G,N).

output(W, G1),
input(W, Gs),
out_delay(Gy, N).

in_delay(G, N),
in_delay(G, M),
M > N.

in_delay(G, N),

not —mazx_in_delay(G, N).

maz_n_delay(G, Ny),

delay(G, Ns),
N = N; + N,.

out_gate(G),
out_delay(G, N).

Figure 3.4: Program to compute maximum delay of a circuit.

52

53
be found in standard introductory texts on digital logic ([105, 175, 201]). The result
is not necessarily optimal, but it may serve as a good practical approximation. (It is
instructive to notice how rules of A-Prolog are used to encode recursive definitions.)
Again, it is not difficult to show that the program P, U A U 7(C) has exactly one
answer set and that the answer set contains exactly one atom formed by the predicate
symbol circuit_delay. Let us denote this atom by circuit_delay(d). We call number

d the computed delay of C and denote it by §(C).
Now we can state the following proposition.

Proposition 3.3. Let C' be a combinational circuit with input wires we, ..., w, and
output wire w,, and let f(Si,...,S,) be a function computed by its ideal counterpart
i(C). Then for any t > 6(C) and any input vector sy,...,s, of 0’s, 1’s, and u’s,
Py U A U(C) has a unique answer set and holds(value(w,,s),t) € CT(D) and
circuit_delay(6(C)) € CT(D) if and only if s = f(s1,...,8,), where D = 7(C) U

{occurs(apply(w;, s;),0) | w; € {wy,...,w,},s; € {0,1}, 1 <i <k, k<n}. O

The proof of Proposition 3.3 is similar to the proof of Proposition 3.1.

In order to compute the maximum delay of a circuit, a user can utilize the graphical

interface of A-Circuit to specify the circuit and choose this task to be performed.

3.5 Using the Circuit Theory CT

The discussion in the previous section was limited to the use of declarative semantics

of A-Prolog for specifying the behavior of digital circuits. Thanks to the existence

54
of inference engines for A-Prolog, like SMODELS [156], DLV [41], and CMODELS [§],
this specification can be combined with simple reasoning programs aimed at solving
various design tasks, and it can also be actually executed. We present some examples
of such programs next, and in Chapter 5, a “real world” application where our theory

of digital circuits is utilized.

3.5.1 Simulating the circuit

In many cases, it may be instructive for a student to see the simulated behavior of
the circuit. Ideally, this should be an easy task: the student specifies the circuit
and its history using a graphical interface. The corresponding domain description D,
combined with C'T; is given as an input to one of the A-Prolog inference engines, say
SMODELS, which computes the program’s unique answer set. The circuit behavior
defined by CT(D) is extracted from the answer set and displayed in graphical and
numerical form on the screen. The reality is rather close to the ideal situation, but not
identical to it. The reason is that different inference engines have different restrictions
on the programs needed to guarantee their soundness and completeness with respect
to the semantics of A-Prolog. This implies that CT (from the previous section) needs
to be slightly modified for the use of SMODELS. Fortunately, the modification is simple
and basically amounts to replacing our typed variables by the explicit types (see [16]

for details.)

After this modification is done, the resulting system will produce the output shown in

95

File Problem

012 34 5 B 7 8 8310

Model #1

Figure 3.5: (a) Output in numerical form. (b) Timing Analysis.

Figure 3.5, when given the description of the circuit from Figure 3.3 and the following
sequence of input values: [0, 0] applied on [w;, ws] at time 0, and 1 applied on w; at

time 1.

The timing analysis output screen in Figure 3.5(b), shows the propagation of symbols
through the circuit up to moment 10. This graphical representation helps the student

to visualize and better understand the dynamic behavior of the circuit.

3.5.2 Avoiding hazards

One interesting problem when dealing with digital circuits involving delays is the
occurrence of transient incorrect signal values, called glitches, on some of the circuit

wires. A hazard is said to exist when a circuit has a possibility of producing such a

96

wl @

w)
=

g5 7
w3 o w9 N
w8 will
g1 *z : z :
4‘ ><%""5 | =2 (

6
g2 w6 ﬂg w10
D : L/

W

w4

Figure 3.6: Circuit with a hazard.

glitch. A logic designer must be prepared to eliminate hazards even though a glitch
may occur only under the worst-case combination of logical and electrical conditions
[201]. We briefly describe a declarative program for the detection of a particular
form of hazard. Combined with the inference engine of SMODELS this gives us a
new algorithm for finding hazards different from the known algorithms (see [139]).
Again, we believe that the program is sufficiently clear and the algorithm is reasonably

efficient to help a student to understand the phenomenon.

We say that a circuit C', computing boolean function f is hazardous if there are two
vectors, I; and I, of input signals which differ on the value of exactly one input
wire?, and during the transition period the value on the output wire of C changes to

a signal different from f(I3).

To better understand this notion let us consider the circuit in Figure 3.6, taken from

[201].

2We call a consecutive application of such input signals to C' a simple transition.

57
In this circuit, there are 3 paths from input wire wy to output wire wy;. We assume
that all gates, except g3 and g4, have delay 0. The delay of g3 is 1 and the delay of
gs is 2. Two of the paths go through these slower gates and affect the output signal.
To understand how, let us consider the following evolution of the circuit signals.
(a) Applying input signals [0, 0,0, 1] to input wires [wy, ws, w3, wy] causes the output
signal to become 1 at time 0. If we change (b) the value on input wire wy to 1 at
time 1, this change is propagated through the circuit and makes the output value of
C become 0 at time 1. However, the output value of gate g3 is delayed by 1 time
unit and (c¢) will force the output of the circuit to change again to 1 at time 2. Then,
(d) the output of the slower gate g4, with delay 2, also changes, forcing the circuit
output signal to finally reach value 0 at time 3. Therefore, a single transition on
input wire ws caused the values of output wire wy; to change three times, as follows:

1-0—-1—0.

Our goal now is to define hazardous circuits in A-Prolog. We construct a program,
GD (which stands for “glitch detector”), such that Py U GD U 7(C) have an answer

set if and only if a circuit C' is hazardous.

We assume that w is the output wire of circuit C' and that there is a relation
required_output(s) such that for any domain description D, required_output(s) be-
longs to the answer set of C'T" U D if and only if s is the output signal of the ideal
counterpart ¢(C) of C. Suppose now we are given a history H, of input signal values

applied to C, containing a simple transition from I; to I5. Then, by definition, this

58
transition causes a glitch if the following condition holds:

glitch <+ required_output(Si),
holds(value(w, Sy), Ty),
holds(value(w, Sz), Ty),
S1 # Sa,
Ty > Th.

Adding the above rule together with a constraint

< not glitch.

to GD ensures that if C is safe (i.e., has no hazard) then P, U GD U 7(C) have no

answer set.

To complete the construction of GD we need to generate histories containing possible
simple transitions and check that they do not contain glitches. This can be done by
first generating possible input vectors applied to C' at moment 0, which is achieved
by the rules:

occurs(apply(W,1),0) < is_input_wire(W),

not occurs(apply(W,0),0).

occurs(apply(W,0),0) < is_input wire(W),
not occurs(apply(W, 1),0).

which say that for each input W of C| either a signal value 1 or a signal value 0, is

applied to W at time 0.

Then, we proceed by introducing a new relation change(W) which holds when at

59
moment 1 the signal applied to wire W at 0 is changed to its opposite.

occurs(apply(W, S1),1) < change(W),
occurs(apply(W, S2),0),
opposite(Sy, S2).

To ensure that histories generated by our program contain only simple transitions we

need to add the following rule:

change(wy) or ... or change(wy),

where wy, ..., wy is the list of the input wires of C. The DLV [41] inference engine
would understand this rule and would properly compute the corresponding answer
sets. However, to make it work for SMODELS® we need to eliminate the disjunction,
which can be done by the following rules:

change(W) «— is_nput_wire(W),

not other_changed(W).

other_changed(W) < change(W),
W # Wi.

As mentioned in Chapter 1, for efficiency reasons, this rule is written in the form of

a “choice rule” of the language of SMODELS, as follows:

1{change(W) : is_input_wire(W)}1.

Let GD be the program consisting of the rules of C'T, which were introduced in this

subsection, and the definition of the relation required_output.

3Notice that disjuntive rules were recently added to the language of SMODELS.

60

Proposition 3.4. A combinational circuit C' is hazardous if and only if

1s consistent, i.e., has an answer set. O

The proof of Proposition 3.4 is similar to the proof of Proposition 3.1.

Notice that each answer set describes a simple transition causing a glitch and the
signals propagation through the circuit. The graphical interface allows the user to

specify a circuit and request it to be checked for glitches.

The simple theory for circuits, C'T', can be used in a similar way to solve other
problems associated with digital design. C'T', along with various reasoning modules,
can be used to decide what signals should be applied to the input wires of a circuit
to produce the desired output, to find malfunctioning components responsible for the
incorrect behavior of a circuit, to simulate certain forms of sequential circuits, etc. In
the following chapter, we demonstrate how it can be integrated in a pratical system

and applied to obtain such results.

3.6 Graphical Interface for A-Circuit

To simplify the user/program interface we implemented* a schematic entry program,

written in Java, which allows the user to:

4The graphical interface for the A-Circuit system was implemented primarily by Marcello
Balduccini.

61
e draw a circuit diagram by choosing from the options available on the ToolBox
Window (shown in Figure 3.7(a)). For example, Figure 3.8(b) shows how the

circuit diagram presented in Figure 3.3 appears on the graphical interface.

.| TonlE SNE
and | o |
Not | wire |

Salact | Delete : |‘|

Figure 3.7: (a) ToolBox Window. (b) The complete circuit.

e automatically translate a circuit drawing to the corresponding A-Prolog repre-

sentation.

e specify the circuit’s input values graphically.

e eliminate the possibility of inconsistent data to be entered into the correspond-

ing domain description. In particular, the graphical interface does not allow:

— assigning more than a single type to a gate;
— associating more than a single propagation delay with a gate;

— creating gates with more than a single output wire;

62

— assigning the same output wire to more than one gate;

— applying different signals to a single wire simultaneously.

e compute the maximum delay of a circuit.

e check a circuit for glitches. For example, in the circuit C' from Figure 3.6, the
program returns a message box informing the user that the circuit is hazardous,
and it also graphically shows, via the Analyzer Window, the situations in which

the glitch occurs, (see Figure 3.8.)

3.7 Related Work

The relationship between logic and combinational circuits is not new. The connection
was established by Shannon [181, 182] who developed the algebra of switching circuits,

and showed its relation to the calculus of propositions and Boolean algebra.

The relationship allowed standartization of circuits and the use of various logic-based
algorithms in the circuit design. For instance, boolean minimization algorithms [105]
are commonly used to construct the desired circuits with the minimal number of
gates, or other nice properties. Boolean logic, however, is only used for specification
of circuits without delays. More detailed analysis requires the introduction of time
and three valued logic. As we have shown, A-Prolog seems to be a natural tool for

analysis of circuits on this level of abstraction.

63

- COETE— —mEmmm xf X
File Problem A dlitch was detscted. [P
o e
Jorr J
d=n
¥
= 1o

01234 356 7 8 310

Model #3

Figure 3.8: Interface output for glitch detection problem.

Another relationship between logic and combinational circuits, a much more recent
one, can be found in [143], where Intuitionistic Logic is applied to the timing analy-
sis of digital (combinational) circuits. The author uses a fairly complex intuitionstic
modal logic to model circuits with delays depending on both, the properties of the
gate and on its input signal values. In contrast, our model only considers delays inde-
pendent from the input values. It seems, however, that a simple modification of our
theory of circuits will cover these, more complex, delays. Moreover, unlike our for-

malization, the modeling mechanism of [143] does not suggest any logical algorithms

64
for tasks different from the simple timing analysis of the circuit, e.g. discovery of

glitches and other types of diagnosis.

Our work also has rather close connections with Hardware Description Languages
(HDLs) [84]. In industry, digital designers use HDLs to represent large digital cir-
cuits in several different levels of abstraction. There are systems that support these
languages to perform various tasks, in particular, simulation. The most popular HDLs
today are VHDL [101] and Verilog HDL [159] which are used in serious applications
for design, simulation and a limited type of synthesis of digital circuits. These lan-
guages, especially Verilog, which has became of public domain after the introduction
of VHDL, are also used in classrooms for teaching several disciplines, e.g. digital

design.

As mentioned in the introduction, the relative complexity of these languages makes it
difficult for students to rapidly represent and simulate even simple circuits. Normally,
the tools available to students do not have a graphical interface to speed up the
circuit’s description or the specification of the input stimuli. These steps must be

realized prior to performing any simulation task.

Classroom projects involve circuits’ descriptions which are comparable in size to the
ones that we can realize with the A-Circuit system. Combining circuits together can
also be done in the A-Prolog language in a fairly easy way. The graphical interface of
the A-Circuit tool permits a speedy representation of a circuit and the specification

of the input stimuli to be utilized in a simulation. In addition, A-Circuit permits

65
rapid prototyping and has a variety of tasks available to users interested in different
properties of a digital circuit. These characteristics makes the A-Circuit system a

very attractive tool for teaching digital design and related classes.

At the moment, A-Circuit is only apropriate for the gate level of abstraction. In
principle, it can be expanded to other levels of abstraction, althouth this was not
an objective of this project. HDL languages like VHDL and Verilog are really more
expressive and allow the specification of many more properties of digital circuits then
the simple portion we can cover with our system. On the other hand, the A-Circuit
tool allows checking a circuit for glitches and other types of analysis that are not

readily available for HDLs.

In the next chapter, we present an extension to the Circuit Theory described in this
chapter which incorporates additional types of gates. Moreover the modified theory
allows us to do more complex diagnosis of digital circuits. Even though these and
many other extensions are rather natural it is not clear if our representation can
suggest any algorithms for the synthesis of digital circuits. Finding such methods is

an interesting open problem.

Chapter 4

Proofs for A-Circuit

“No matter how correct a mathematical theorem may appear to be, one ought
never to be satisfied that there was not something imperfect about it until it also

gives the impression of being beautiful.”

George Boole (1815-1869)

4.1 Problem Formulation

Consider a circuit C' with input wires, wj,...,w,, and input signals vector Z =
{s1,...,8n}, such that s; € {0,1,u} for 1 <1i < n. Signals 0 and 1 are called definite,

while u is an undefined signal.

A circuit description w(C) over a circuit signature ¥ (defined in Chapter 2) is a

collection of atoms of the form:
e type_of(g,y) denotes that the type of gate g in C is y;

e delay(g,d) denotes that d, a natural number, is the delay associated with gate
9;

66

67

e input(w, g) denotes that w is an input wire of gate g;

e output(w, g) denotes that w is the output wire of gate g;

By an observation, O(Z) we mean a set

{occurs(apply(w;, s;),0) : s; € I, s; # u}.

An observation is used to denote a “definite” input of the circuit at time 0.

By domain description D(C,Z), we mean

D(C,T) = n(C) U O),

where 7(C) is a circuit description and O(Z) is an observation.

A domain description is called consistent if it satisfies the following constraints:

o different signals can not be applied to a single wire simultaneously; represented
as a logic programming constraint as:

:- occurs(apply(w, s),0), occurs(apply(w,s’),0), s # s

e the type of a gate is unique;

- type_of (9,y), type-of (9,y'), y # Y-

e there is a unique (propagation) delay associated to each gate;

- delay(g,d), delay(g,d'), d #d'.

68
e cach gate has a unique output wire;

- output(w, g), output(w',g), w # w'.

e an output wire can not belong to more than one gate.

- output(w, g), output(w,g'), g #¢'.

The description of the dynamic behaviour of a circuit C' over time is reduced to
specifying the effects of actions which apply signal values to the input wires of C.
These signals are propagated through the circuit without interruption until the input

signals are changed by the application of new actions.

The logic program formed by the ground instances of rules (4.1) —(4.14) below is called
the simple circuit theory CTy. The rules of CTy can be divided into the following
groups: dynamic and static causal laws, law of inertia, initial situation and auxiliary
relations. In all the rules, variables W, G stand for wires, and gates, respectively;
S, 8" are variables for signals, while variable S stands for the signal opposite to signal
S; and variable T' denotes time and belongs to interval [0, 1], since we are interested
only in moments of time 0 and 1.

1. Each ground instance of rule (4.1) is called a dynamic causal law, and expresses

that the effect of action apply signal S to input wire W at time T is that value
S holds on input wire W at time T+1.

holds(value(W,S),T+1) :- occurs(apply(W,S),T). (4.1)

69

2. Rules (4.2 — 4.8) are known as static causal laws. They express the indirect

effects of applying signals to the input wires of the following gates:

(a)

NOT gate

Rule (4.2) says that if S is the signal value present at input wire W; of a
NOT gate G at time 7', and G has a (propagation) delay D, then signal
value S (the opposite signal to S) will be present at the output wire W of
G at time T+ D.

holds(value(W,S),T+D) :- typeof(G,notg), (4.2)
delay(G, D),
input(W1, G),
output(W, G),
opposite(S, S),

holds(value(W1, S),T).

AND gate

Given an AND gate G with (propagation) delay D and output wire W,
rule (4.3) expresses that if signal 1 is present (or holds) on all input wires
of G at time T, then signal 1 will hold at W at time 7'+ D. Rule (4.4)
says that if signal 0 holds on at least one of the input wires of GG, then
signal 0 will hold at W at time T+ D. Rule (4.5) expresses that if signal
0 is not present at any of the input wires of GG, but signal u holds on at

least one of G’s input wires, then signal u will also hold at W at time T4D.

(c) OR gate

holds(value(W,1),T+D)

holds(value(W,0),T+ D)

holds(value(W,u), T+ D)

type_of (G, andyg),
delay(G, D),
output(W, G),

all_inputs(G,1,T).

type of (G, andg),
delay(G, D),
output(W, G),

contains_input(G,0,T).

type-of (G, andg),

delay(G, D),

output(W, G),

not contains_input(G,0,T),

contains_input(G,u,T).

70

Analogously, given an OR gate G with (propagation) delay D and out-

put wire W, rule (4.6) expresses that if signal 0 is present (or holds) on all

input wires of GG at time 7', then signal 0 will hold at W at time 7+D. Rule

(4.7) says that if signal 1 holds on at least one of the input wires of G, then

signal 1 will hold at W at time T+ D. Rule (4.8) expresses that if signal

1 is not present at any of the input wires of G, but signal v holds on at

71

least one of G’s input wires, then signal v will also hold at W at time 74D.

holds(value(W,0), T+ D) :- type_of (G,org), (4.6)
delay(G, D),
output(W, G),

all_inputs(G,0,T).

holds(value(W,1),T+D) :- type_of(G,org), (4.7
delay(G, D),
output(W, G),

contains_input(G,1,T).

holds(value(W,u), T+D) :- type_of(G,org), (4.8)
delay(G, D),
output(W, G),
not contains_input(G,1,T),

contains_input(G,u,T).

3. Rules (4.9—4.11) are auxiliary relations used in the definition of the static laws
for gates of type AND, or OR. Rule (4.9) expresses that if a signal S is present
at one of the input wires of a gate G, of a type other than NOT, at time T, then
we can infer that a different signal S’ is not present at all input wires of G at T'.
When rule (4.10) fails to prove that a signal S is not present at all input wires
of G, of a type other than NOT, at time 7', then it deduces that signal S holds

on all input wires of G at 7. Rule (4.11) says that if signal S holds on input

72

wire W of a gate GG, of a type other than NOT, at time 7', then GG contains at

least one input which holds signal S at 7.

not_all inputs(G,S',T) - typeof(G,Y), (4.9)
Y # notyg,
input(W, G),
S#£S,

holds(value(W, S),T).

all_inputs(G,S,T) :- type-of (G,Y), (4.10)
Y # notg,

not not_all_inputs(G, S, T).

contains_input(G,S,T) - typeof (G,Y), (4.11)
Y # notyg,
input(W, G),

holds(value(W, S),T).

4. Rule (4.12) represents the law of inertia which states that “normally, things
tend to stay as they are.” Rule (4.13) is a static causal law used in conjunction
with the law of inertia, which determines that each single wire can only hold a

distint signal value at each point in time.

holds(value(W, S), T+1) : holds(value(W,S),T), (4.12)

not —holds(value(W, S), T+1).

73

—holds(value(W,S"),T) = S#5, (4.13)

holds(value(W, S),T).

5. Rule (4.14) expresses the assumption that the signals present on a circuit in the

initial situation, or initial moment of time 0, are unknown.

holds(value(W,u),0). (4.14)

Let D(C,Z) be a consistent domain description and CTj be the simple circuit theory.

The A-Prolog program representing circuit C' is:

Py=CT, U D(C,I) =CTy U 7(C) U O(Z)..

If C' is a circuit consisting of a single NOT gate g with input wire wy, output wire w,,
and no delays, then its description in A-Prolog, denoted by m(CnoT), consists of the

following statements:)
type-of (g, notg).
delay(g,0).
input(wi, g).

m(Cnot) = { output(w,, g).

opposite(0,1).

opposite(1,0).

opposite(u,u).
\

IFor simplicity, we will drop the parameters when writting D and O.

74

If C is a circuit consisting of a single AND gate g with input wires wy, ..., w,, output
wire w,, and no delays, then its description in A-Prolog, denoted by 7(Canp), consists

of the following statements:

type_of (g, andg).
delay(g,0).

input(wi, g).
m(CAND) = {

input(wn, g)-

output(w,, g).

If C is a circuit consisting of a single OR gate g with input wires wy, ..., w,, output
wire w,, and no delays, then its description in A-Prolog, denoted by 7(CoRr), consists

of the following statements:

type-of (g, 0rg).
delay(g,0).

input(wi, g).
7(Cor) = 1 (w1,9)

input(wy, g).

output(w,, g).

4.2 Proof of Lemma 4.1 - NOT gate

Lemma 4.1. Let C' be a combinational circuit consisting of a single NOT gate g with
input wire wy, output wire w,, and no delays. Let s be an input signal vector of C

and let O = {occurs(apply(w1,s),0) : s €{0,1}}. Then

75

1. Program Py has a unique answer set; and

2. If Ap is the unique answer set of Py then

s = NOT(s) if and only if holds(value(w,,s),1) € Ao.

Sketch of the proof - We construct a collection of programs Py, Py, P,, such that
(i) P,—; has a unique answer set if and only if P; has a unique answer set,
(ii) If A; is an answer set of P; then s is an input signal of C if and only if

holds(value(w,,3s),1) € A;.

At each step the previous program will be substantially simplified. At the end we

show that P, indeed has a unique answer set containing holds(value(w,,Ss),1).

Proof.

Step 1. Let Uy be the set of literals formed by predicates type_of, delay, input,

output, opposite, and occurs, over signature . Let P; be the following program:

holds(value(wn,v),1). from rule (4.1) (4.15)

if occurs(apply(wi,v),0) € O and v € {0,1}

holds(value(w,,$),0)

holds(value(w1, $),0). (4.16)

holds(value(w,,s),1) :- holds(value(ws,s),1). (4.17)

holds(value(w, s),1) :-

—holds(value(w, s'),0) :-

—holds(value(w,s'),1) :-

holds(value(w,u),0).

from rule (4.2)
if s € {0,1,u} and
s=0if s =1,

s=1if s =0,

holds(value(w, s),0),

not —holds(value(w, s), 1).

from rule (4.12)

if w e {w1,wp} and s € {0,1,u}

holds(value(w, s),0).

holds(value(w, s),1).

from rule (4.13)

if w e {wy,wo},s# s and 5,8 € {0,1,u}

from rule (4.14)

if w e {w1,wo}

76

(4.18)

(4.19)

(4.20)

(4.21)

To show that Py and P; satisfy conditions (i)-(ii) notice that set Uy splits program

P,. The bottom program, by,(Py) = m(C) U O, consists only of facts. Hence, it has

7

the unique answer set

It is easy to see that P is the partial evaluation of the top ty,(P,) with respect to Uy

and A,,, i.e.,

Pr = ey, (tvy (Fo), Asy)-
By the Splitting Set Theorem, Ay is an answer set of P, if and only if 4y = A,, U Ay,
where A, is an answer set of P;. Then,

(a) P has a unique answer set if and only if P; does;

(b) Ay, is a set of atoms (not containing predicate holds), hence

holds(value(w,, s),1) € Ag if and only if holds(value(w,, s),1) € A;.

Step 2. Program P, will be constructed in two steps. First, let U; be the set of
literals of P; whose time parameter is 0, i.e.,
Uy = {holds(value(w, s),0), ~holds(value(w, s),0)},

where w € {w,w,}, and s € {0,1,u}. Set Uy splits P; into bottom by, (P;) and top
tr,(P1). Let @, = by, (Py) be program

holds(value(w,,s),0) :- holds(value(ws, s),0). (4.22)

from rule (4.16)
if s € {0,1,u} and

5=0ifs=1,

78

—holds(value(w, s'),0) - holds(value(w,s),0). (4.23)

from rule (4.19)

if w € {wy,wo},s # s and 5,5 € {0,1,u}

holds(value(w,u),0). from rule (4.21) (4.24)

if w e {w1,wo}

It is easy to see that program (); has the unique answer set,

Ay, = {holds(value(w1,u),0), —holds(value(wi, 1),0), —holds(value(wi, 0),0)

holds(value(w,,u),0), —~holds(value(w,, 1),0), “holds(value(w,, 0),0)}.

Now let P, be program

holds(value(w,v), 1). from rule (4.15) (4.25)

if occurs(apply(wi,v),0) € O and v € {0,1}

holds(value(w,,s),1) :- holds(value(ws,s),1). (4.26)

from rule (4.17)

if s €{0,1,u} and

79

s=uifs=u

holds(value(w,u),1) :- not —holds(value(w,u),1). (4.27)

from rule (4.18)

if we {wy,wo} and s € {0,1,u}

—holds(value(w,s'),1) - holds(value(w, s),1). (4.28)

from rule (4.20)

if w € {wy,wo},s# s and 5,5 € {0,1,u}

It is easy to see that P; is the partial evaluation of the top ty, (P;) with respect to Uy

and A, i.e.,

P, = eUl(tUl(P1)7Abl)'

By the Splitting Set Theorem, 4, is an answer set of P; if and only if A; = A4,, U A,,

where A, is an answer set of P,. Then,

(a) P, has a unique answer set if and only if P, does;

(b) A, is a set of literals formed by predicate holds for ¢ = 0 only, hence

holds(value(w,, s),1) € A; if and only if holds(value(w,, s),1) € A,.

80

Now we will show that

(iii) Program P, has a unique answer set, Ay, and v is the input of C if and only if

holds(value(w,,),1) € As.

There are two cases to consider.

Case 1. wv is a definite input signal of C. By definition of O, it follows that input v is

definite if and only if occurs(apply(wy,v),0) € O.

Let Uy be the set of positive literals of the form holds(value(w,0),1) and
holds(value(w, 1),1), where w € {wy,w,}. Set Us splits P, into bottom by, (Pz)

and top ty, (Ps).
The bottom consists of rules:

holds(value(wn,v),1). from rule (4.25)

if occurs(apply(wi,v),0) € O and v € {0,1}

holds(value(w,,0),1) - holds(value(wn,1),1).

holds(value(wo,1),1) - holds(value(wi,0),1).

from rule (4.26)

It is easy to see that

Ay, = {holds(value(wn,v), 1), holds(value(w,,v),1)}

81
is an answer set of by, (P). Since by, (Ps) is a definite program, this answer set

is unique.
The top consists of rules:

holds(value(wo,u),1) - holds(value(wr,u),1). (4.29)

from rule (4.26)

holds(value(w,w),1) :- not —holds(value(w,u),1). (4.30)

from rule (4.27)

if w e {w1,wo}

—holds(value(w, s'),1) - holds(value(w,s),1). (4.31)

from rule (4.28)

if w € {wy,wo},s # s" and 5,8 € {0,1,u}

The partial evaluation of the top ty,(P) with respect to Us and Ay,, i.e., P{ =

ev, (tu, (Ps), Ap,), consists of rules:

holds(value(wo,u),1) :- holds(value(wr,u),1).

from rule (4.29)

82

holds(value(w,u),1) :- not —holds(value(w,u),1).

from rule (4.30)

—holds(value(wi,v),1). from rule (4.31)
—holds(value(wy,u),1). if v € {0,1} and
—holds(value(w,,v), 1). v is the dual signal of v

—holds(value(wo, u), 1).

In order to prove that P, has a unique answer set, we need to show that P} also

does.

Let U; be the set of all negative literals formed by predicate holds. Set Us splits
PJ into bottom by, (P§) and top ty,(PJ). The bottom consists of facts of Py,

and has unique answer set

Ap, = {—holds(value(wn,v),1), nholds(value(wr,u), 1),

—holds(value(w,,v), 1), ~holds(value(w,, u),1)}.

The partial evaluation of the top ty,(PJ) with respect to Us and A,, i.e.,

Py = ey, (ty,(PI), Ap,) consists of a single rule:

holds(value(wo,u),1) :- holds(value(wi,u),1).

83

and has the unique answer set:
Ag =1}
Hence, by the Splitting Set Theorem, we can conclude that if v is a definite

input signal of C, then P, has unique answer set AL = A,, U Ay, U Ay, e,

AL = {holds(value(wi,v),1), ~holds(value(wy,T), 1), ~holds(value(wy, u), 1),

holds(value(w,, V), 1), ~holds(value(w,,v), 1), ~holds(value(w,, u), 1)}

which implies that program P, has a unique answer set, namely 4!, and that

for every input signal v € {0,1} of C, holds(value(w,,v),1) € AZ.

Case 2. v = u. By definition of O, v = u if and only if O = (.

Let Uy be the set of literals of the form

1. —holds(value(w,u), 1),
2. holds(value(w,0), 1),

3. holds(value(w,1),1),

where w € {wy,w,}. Set Uy splits P, into bottom by, (P,) and top ty,(Ps).
The bottom consists of rules:

from (4.26): holds(value(w,,0),1) - holds(value(wy,1),1).

holds(value(w,, 1),1) :- holds(value(wi,0),1).

from (4.28): if w € {wy,wo}

—holds(value(w,u),1) - holds(value(w,0), 1).

—holds(value(w,u),1) :- holds(value(w,1),1).

It is easy to see that by, (P;) has the unique answer set

Ab4 = {}

The top ty, (P,) consists of rules

from (4.26): holds(value(wo,u),1) - holds(value(wy,u),1).

from (4.27): if w € {wi,wp}

holds(value(w,w),1) :- not ~holds(value(w,u),1).

from (4.28): if w € {w1,wp}

—holds(value(w,0),1) :- holds(value(w,1),1).

84

(4.32)

(4.33)

(4.34)

85

—holds(value(w,0),1) :- holds(value(w,u),1). (4.35)
—holds(value(w, 1),1) :- holds(value(w,0),1). (4.36)
—holds(value(w,1),1) :- holds(value(w,u),1). (4.37)

The partial evaluation of the top ty, (P;) with respect to Uy and Ay,, i.e., P{T =

ev, (tu, (Ps), Ap,) consists of rules

from (4.32): holds(value(wy,u),1) - holds(value(wi, u),1). (4.38)

from (4.33): if w € {wq,wo}

holds(value(w,u), 1). (4.39)

from (4.35): if w € {w1,wo}

—holds(value(w,0),1) :- holds(value(w,u),1). (4.40)

from (4.37): if w € {w1,wo}

—holds(value(w,1),1) :- holds(value(w,u),1). (4.41)

86
Now, to prove that P, has a unique answer set, it is enough to show that P}!

also does.

Let Us be the set of positive literals of the form holds(value(w,u),1), where
w € {wy,w,}. Set Us splits P{! into bottom by, (PL!) and top ty, (PL).

The bottom consists of the following rules:

from (4.38): holds(value(wy,u),1) - holds(value(w,u),1).

from (4.39): holds(value(ws,u),1).

holds(value(w,,u),1).

It is easy to see that
Ay, = {holds(value(wy,u), 1), holds(value(w,,u),1)}

is an answer set of by, (P{). Since by, (P{!) is a definite program, this answer
set is unique.

The top ty, (P4!) consists of the following rules:

from (4.40): if w € {w1,wo}

—holds(value(w,0),1) :- holds(value(w,u),1).

from (4.41): if w € {w1,wo}

—holds(value(w, 1),1) :- holds(value(w,u),1).

87

The partial evaluation of the top ty, (P’) with respect to Us and A, i.e.,
Ps = ey, (tu, (PIT), Ay,) consists of atoms, and therefore, has the unique answer

set:

As = {—holds(value(ws,0),1), ~holds(value(ws,1),1),

—holds(value(w,,0), 1), holds(value(w,, 1),1)}.

Hence, by the Splitting Set Theorem, we can conclude that if v = u, then P,

has unique answer set Al = A4,, U Ay, U As, ie.,

ALl = {holds(value(wy,), 1), ~holds(value(wy, 0), 1), ~holds(value(wy, 1), 1),

holds(value(w,, u), 1), ~holds(value(w,, 0), 1), mholds(value(w,, 1),1) }.

which implies that program P, has a unique answer set, namely A%/, and that

for every input signal u of C, holds(value(w,,u),1) € AL

which concludes the proof of (iii).

The Lemma follows immediately from (i),(ii), and (iii). O

4.3 Proof of Lemma 4.2 - AND gate

Lemma 4.2. Let C' be a combinational circuit consisting of a single AND gate g with
input wires wy, . . . , Wy, output wire w,, and no delays. Letvq,...,v, be an input signal
vector of C' and let O = {occurs(apply(w;,v;),0) : w; € {ws,...,w,},v; € {0,1},
for1<i<kk<mn}. Then

1. Program P, has unique answer set; and

38

2. If Ay is the unique answer set of Py then

v = AND(vy,...,v,) if and only if holds(value(w,,v),1) € Aj.

Sketch of the proof - This proof follows the same scheme as the proof for Lemma 4.1.

Proof.

Step 1. Let Uy be the set of literals formed by predicates type_of, delay, input,

output, and occurs over signature X. Let P, be program

holds(value(w;,v;),1). from rule (4.1) (4.42)
if occurs(apply(w;,v;),0) € O,
w; € {wi,...,wy}, and v; € {0,1}

holds(value(w,,1),t) :- alliinputs(g,1,t). (4.43)

from rule (4.3)

if t € {0,1}

holds(value(w,,0),t) :- contains_input(g,0,t). (4.44)

from rule (4.4)

if t € {0,1}

holds(value(w,,u),t) - not contains_input(g,0,t), (4.45)

not_all_inputs(g, s;j,t)

all inputs(g, s, t)

contains_input(g, s;,t)

holds(value(w, s), 1)

89

contains_input(g,u,t).

from rule (4.5)

if t € {0,1}

holds(value(w;, s;),t). (4.46)

from rule (4.9)

ifwe {wy,...,w,},

i, 85 € {0,1,u},s; # s;

1<4,j<n, and t € {0,1}

not not_all_inputs(g, s,t). (4.47)

from rule (4.10)

if s€{0,1,u} and t € {0,1}

holds(value(w;, s;),t). (4.48)

from rule (4.11)

if w; € {wl,...,wn},

si € {0,1,u},1<4,57<n, and t € {0,1}

holds(value(w, s),0), (4.49)

90

not —holds(value(w, s),1).

from rule (4.12)

if we {w1,...,wn,wo}, and s € {0,1,u}

—holds(value(w, s'),t) :- holds(value(w,s),t). (4.50)

from rule (4.13)
if we {wy,...,w,,w,},

s# s and 5,5 € {0,1,u}

holds(value(w,u),0). from rule (4.14) (4.51)

if we {wi,...,wn,wo}

Set Uy splits program Py into two parts: bottom, by, (Py) = 7(C) U O, and top,

tv,(Po) = Py \ (m(C) U O). The bottom has the unique answer set

It is easy to see that P is the partial evaluation of the top ty,(P,) with respect to Uy
and Ay, i.e.,

P = ey, (tu, (Po), Ab)-
By the Splitting Set Theorem, A, is an answer set of P, if and only if Ay = A, U A4,

where A; is an answer set of P;. Then

91

(a) P has unique answer set if and only if P; does; and

(b) holds(value(w,, s),1) € Ay if and only if holds(value(w,, s),1) € A;.

Step 2. Program P, will be constructed in two steps. First, let U; be the set of

literals of P; whose time parameter is 0, i.e., all literals of the form

1. holds(value(w, s),0),

2. —holds(value(w, s),0),

3. all_inputs(g, s,0),

4. contains_input(g, s,0),

5. not_all_inputs(g, s,0),

where w € {wy,...,w,}, and s € {0,1,u}.

Set U; splits P into bottom by, (P;) and top ty, (Py). Program by, (P;) consists of

rules
holds(value(w,,1),0) - all_inputs(g,1,0).
holds(value(w,,0),0) - contains_input(g,0,0).
holds(value(w,,u),0) :- not contains_input(g,0,0),

contains_input(g,u,0).

92

not_all_inputs(g,s;,0) = holds(value(w;, s;),0). :1<i<n, s;#s;
all_inputs(g,s,0) - not not_all_inputs(g,s,0).

contains_input(g, si,0) :- holds(value(w;, s;),0). :1<i<n

—holds(value(w,s'),0) :- holds(value(w, s),0). is# s

holds(value(w,u),0).

We need to show that program @y = by, (P;) has a unique answer set. For that, let

Ny be the set of literals of the form

1. holds(value(w,,0),0),

2. contains_input(g, s,0),

3. not_all_inputs(g, s,0),

4. holds(value(w;, s),0),

5. —holds(value(w;, s),0),

where w; € {wy,...,w,} and s € {0,1,u}. Set Ny splits Q1. The bottom by, (Q1)

consists of rules

holds(value(w,,0),0) - contains_input(g,0,0).

not_all inputs(g, 0, 0)
not_all inputs(g, 0, 0)
not_all_inputs(g, 1,0)
not_all inputs(g,1,0)
not_all_inputs(g,u, 0)

not_all_inputs(g,u,0)

contains_input(g,0,0)
contains_input(g,1,0)

contains_input(g,u,0)

—holds(value(w;,0),0)
—holds(value(w;, 0),0)
—holds(value(w;, 1),0)
—holds(value(w;,1),0)
—holds(value(w;,u),0)

—holds(value(w;,u),0)

holds(value(w;, u), 0).

holds(value(w;, 1),0).
holds(value(w;,u),0).
holds(value(w;, 0),0).
holds(value(w;,u),0).
holds(value(w;, 0),0).

holds(value(w;, 1),0).

holds(value(w;, 0),0).
holds(value(w;, 1),0).

holds(value(w;,u),0).

holds(value(w;, 1),0).
holds(value(w;, u), 0).
holds(value(w;,0),0).
holds(value(w;,u),0).
holds(value(w;, 0),0).

holds(value(w;, 1),0).

It is easy to see that bottom by,(Q1) has the unique answer set

Apy,

{holds(value(w;,u),0), ~holds(value(w;, 0),0), ~holds(value(w;, 1), 0),

not_all inputs(g,0,0), not_all inputs(g, 1, 0), contains_input(g,u,0)}.

93

The top tn,(Q1) consists of rules

holds(value(w,, 1),0)

holds(value(w,,u),0)

all_inputs(g,0,0)
all_inputs(g,1,0)

all_inputs(g,u,0)

—holds(value(w,, 0),0)
—holds(value(w,,0),0)
—holds(value(w,, 1),0)
—holds(value(w,, 1),0)
—holds(value(w,,u),0)

—holds(value(w,, u),0)

holds(value(w,,), 0).

all inputs(g, 1,0).

not contains_input(g,0,0),

contains_input(g,u,0).

not not_all_inputs(g,0,0).
not not_all_inputs(g,1,0).

not not_all_inputs(g, u,0).

holds(value(w,, 1), 0).
holds(value(w,, u),0).
holds(value(w,,0),0).
holds(value(w,,u),0).
holds(value(w,, 1), 0).

holds(value(w,,0),0).

The partial evaluation of the top tn,(Q1) with respect to No and A, , i.e.,

Q2 = €No (tNo (Q1)7 ‘AbNO)7

consists of rules

94

95

holds(value(w,, 1), 0) all_inputs(g,1,0).

holds(value(w,,u),0).

all inputs(g,u,0).

—holds(value(w,,0),0) :- holds(value(w,,u),0).
—holds(value(w,,1),0) :- holds(value(w,,u),0).
—holds(value(w,,0),0) :- holds(value(w,,1),0).
—holds(value(wy,u),0) - holds(value(w,,1),0).

holds(value(w,,u),0).

It is easy to see that (), has the unique answer set

Ag, = {all-inputs(g,u,0), holds(value(w,,u),0),

—holds(value(w,, 0),0), =holds(value(w,,1),0)}

By the Splitting Set Theorem, we have that @1 = by, (P;) has unique answer set
Abl = AbNO U AQza ie.,

Ap, = {holds(value(w;,u),0), ~holds(value(w;, 0),0), ~holds(value(w;, 1), 0),

not_all_inputs(g,0,0), not_all_inputs(g, 1,0),

96

all_inputs(g,u,0), contains_input(g, u,0),

holds(value(w,,u),0), mholds(value(w,, 0),0), ~holds(value(w,, 1),0)}.

Second, let P, be program
holds(value(w;,v;),1). from rule (4.1) (4.52)
if occurs(apply(wi,v;),0) € O,

w; € {wi,...,wy}, and v; € {0,1}

holds(value(w,,1),1) :- alliinputs(g,1,1). (4.53)
holds(value(w,,0),1) - contains_input(g,0,1). (4.54)
holds(value(wy,u),1) :- not contains_input(g,0,1), (4.55)

contains_input(g,u,1).

not_all_inputs(g, sj,1) - holds(value(w;, s;),1). (4.56)

1<i<n, s #sj

all_inputs(g,s,1) :- not not_all inputs(g,s,1). (4.57)
contains_input(g, si,1) - holds(value(w;, s;),1). (4.58)
1<1<n

holds(value(w,u),1) :- not —holds(value(w,u),1). (4.59)

97

—holds(value(w, s'),1) - holds(value(w, s),1). (4.60)

s#s

It is easy to see that P; is the partial evaluation of the top ty, (P;) with respect to Uy
and A,,, i.e.,

P2 = eUl(tUl(P1)7'Ab1)'

By the Splitting Set Theorem, A; is an answer set of P; if and only if 4; = A, U As,

where A, is an answer set of P,. Then
(a) P, has unique answer set if and only if P, does; and

(b) holds(value(w,, s),1) € A; if and only if holds(value(w,, s),1) € As.

Step 3. Now we need to show that

1. Program P, has a unique answer set, As;

2. For every input signal vector Z = {vy,...,v,} of C,

v =AND(vq,...,v,) if and only if holds(value(w,,v),1) € A,.

There are three cases to consider:
1. Vv, €Z,v; = 1;

2. Juy € 7 such that vy = 0; and

98

3. Yv; € Z, v; # 0, and dug € 7 such that vy = u.

Case 1. For every v; € Z, v; = 1, which implies that occurs(apply(w;,1),0) € O.

Let Hy be the set of literals of the form

1. holds(value(w;, 1),1),
2. holds(value(w;, 0),1),
3. not_all_inputs(g,u, 1),
4. contains_input(g,0,1),
5. contains_input(g,1,1),
6. holds(value(w,,0),1),
7. —holds(value(w;,u), 1),

where w; € {wy,...,w,}. Set Hy splits P, into bottom by, (P;) and top tg,(Ps).

The bottom consists of rules

holds(value(w;, 1),1).

holds(value(w,,0),1) - contains_input(g,0,1).
not_all_inputs(g,u,1) :- holds(value(w;,0),1).
not_all_inputs(g,u,1) :- holds(value(w;,1),1).

contains_input(g,0,1) - holds(value(w;,0),1).

contains_input(g,1,1) holds(value(w;, 1),1).

—holds(value(w;,u),1) holds(value(w;,0),1).

—holds(value(w;,u),1) holds(value(w;, 1),1).

It is easy to see that by, (P,) has the unique answer set

Apy, = {holds(value(wi,1),1), not_all inputs(g,u,1),

contains_input(g,1,1), ~holds(value(w;,u),1)}.

Top ty,(P,) consists of rules

holds(value(wo,1),1) - all_inputs(g,1,1).
holds(value(w,,u),1) - not contains_input(yg,0,1),

contains_input(g,u,1).

not_all_inputs(g,0,1) = holds(value(w;,1),1).
not_all inputs(g,0,1) = holds(value(w;,u),1).
not_all_inputs(g,1,1) - holds(value(w;,0),1).
not_all inputs(g,1,1) - holds(value(w;,u),1).
all_inputs(g,1,1) - not not_all_inputs(g,1,1).
all_inputs(g,0,1) - not not_all_inputs(g,0,1).
all_inputs(g,u,1) - not not_all_inputs(g,u,1).
contains_input(g,u,1) :- holds(value(w;,u),1).
holds(value(w;,u),1) :- not —holds(value(w;,u),1).

holds(value(w,,u),1) - not —holds(value(w,,u),1).

—holds(value(w;,0),1)
—holds(value(w;, 0),1)
—holds(value(w;,1),1)
—holds(value(w;,1),1)

—holds(value(w,, s'), 1)

holds(value(w,, 1), 1)
holds(value(w,, u),1)
not_all inputs(g,0,1).
not_all_inputs(g,0,1)
not_all inputs(g,1,1)
all_inputs(g,1,1)
all_inputs(g,0,1)
contains_input(g,u,1)
holds(value(w,,u),1)
—holds(value(w;, 0),1).
—holds(value(w;, 0),1)
—holds(value(w;, 1),1)
—holds(value(w,,0),1)
—holds(value(w,,), 1)
—holds(value(w,,0),1)

—holds(value(w,, 1),1)

holds(value(w;, 1),1).

holds(value(w;,u), 1).

holds(value(w;,0),1).

holds(value(w;,u),1).

holds(value(w,, s),1).

P{ = eny(tuy(P2), Aby,), consists of rules

all inputs(g,1,1).

contains_input(g,u,1).

holds(value(w;,u),1).

holds(value(w;,u), 1).

not not_all_inputs(g,1,1).

not not_all_inputs(g,0,1).

holds(value(w;,u),1).

not —holds(value(w,, u), 1).

holds(value(w;,u),1).
holds(value(w;,u),1).
holds(value(w,, 1), 1).
holds(value(w,, 1), 1).
holds(value(wy,u), 1).

holds(value(w,,u),1).

100

The partial evaluation of the top tm, (/%) with respect to Hy and Ay, , ie.

101

In order to prove that P, has a unique answer set, we need to show that P} also
does. Let H; be the set of atoms of the form

1. holds(value(w;,u), 1),

2. not_all_inputs(g,0,1),

3. not_all_inputs(g,1,1),

4. contains_input(g,u, 1),

5. —holds(value(w;, 1), 1),

6. —holds(value(w;,0), 1),

where w; € {wy,...,w,}. Set H; splits P{. The bottom bg, (PJ) consists of

rules

not_all inputs(g,0,1).

not_all inputs(g,0,1) :- holds(value(w;,u),1).
not_all_inputs(g,1,1) - holds(value(w;,u),1).
contains_input(g,u,1) - holds(value(w;,u),1).

—holds(value(w;, 0),1).
—holds(value(w;,0),1) :- holds(value(w;,u),1).

—holds(value(w;,1),1) :- holds(value(w;,u),1).

It is easy to see that bottom by, (PJ) has the unique answer set

Ay, = {not_all_inputs(g,0,1), ~holds(value(w;,0),1)}.

Top tg, (P]) consists of rules

holds(value(w,, 1),1)
holds(value(w,,u),1)
all_inputs(g,1,1)
all_inputs(g,0,1)
holds(value(wo, u), 1)
—holds(value(w,, 0),1)
—holds(value(w,, u), 1)
—holds(value(w,,0),1)

—holds(value(w,,1),1)

102

all inputs(g,1,1).
contains_input(g,u, 1).

not not_all_inputs(g,1,1).
not not_all inputs(g,0,1).
not —holds(value(w,,u),1).
holds(value(w,,1),1).
holds(value(w,,1),1).
holds(value(w,,u),1).

holds(value(w,,u),1).

The partial evaluation of the top tz, (P§) with respect to Hy and Ay, , ie.

P} = en, (tm, (P§), Asy,) consists of rules

holds(value(w,, 1),1)
all_inputs(g,1,1).
holds(value(w,, u), 1)
—holds(value(w,, 0),1)
—holds(value(wy,u), 1)
—holds(value(w,, 0),1)

—holds(value(w,,1),1)

all inputs(g,1,1).

not —holds(value(w,,u),1).
holds(value(w,, 1),1).
holds(value(w,, 1),1).
holds(value(w,,u),1).

holds(value(w,,u),1).

103
We will show that P} also has a unique answer set. Let Hy be the set of literals
of the form
1. allinputs(g,1,1),
2. holds(value(w,, 1), 1),
3. —holds(value(w,,u),1).
Set H, splits P/. The bottom bg,(P/) consists of rules

holds(value(w,,1),1) - allinputs(g,1,1).
all_inputs(g,1,1).

—holds(value(wo,u),1) - holds(value(w,,1),1).

It is easy to see that bg,(P/) has unique answer set

Apy, = {all-inputs(g,1,1), holds(value((wo, 1), 1), ~holds(value(w,, u), 1)}.

Top tg,(P]) consists of rules

holds(value(wy,u),1) :- not —holds(value(wy,u),1).
—holds(value(w,,0),1) :- holds(value(w,,1),1).
—holds(value(w,,0),1) :- holds(value(wo,u),1).

—holds(value(wo,1),1) :- holds(value(wo,u),1).

104

The partial evaluation of the top tm,(P/) with respect to Hy and Ay, , i..

P = ep,(tu,(P{), Aby,), consists of rules

—holds(value(w,,0),1).
—holds(value(wy,0),1) - holds(value(wy,u),1).

—holds(value(w,,1),1) :- holds(value(w,,u),1).

Clearly, P/ has the unique answer set

Apr = {—holds(value(w,,0),1)}.

By the Splitting Set Theorem, we conclude that if for every v; € Z, v; = 1, then

P has unique answer set Ay = Ay, U Ay, U Ay, UApr, ie.

Az = {holds(value(w;, 1),1), ~holds(value(w;,u), 1), ~holds(value(w;,0), 1),
not_all inputs(g,u, 1), not_all_inputs(g,0,1),
all_inputs(g,1,1), contains_input(g,1,1),

holds(value(w,, 1), 1), ~holds(value(w,, u), 1), mholds(value(w,,0),1)}

and since holds(value(w;, 1),1) € Ay, we conclude the proof for Case 1.

Case 2. There exists vy € Z such that vy = 0, which implies that

occurs(apply(wy, 0),0) € O. (4.61)

We need to show that program P, has a unique answer set, A,, and that

holds(value(w,,0),1) € A,.

105

Let A, be an answer set of Ps.

Given statement (4.61) and rule (4.52) of P, we have that

holds(value(wy,0),1) € As. (4.62)

By rule (4.58) of P, and statement (4.62), it holds that

contains_input(g,0,1) € As. (4.63)

Since contains_input(g,0,1) is a consequence of program P, it falsifies rule

By rule (4.60) of P, and statement (4.62), we can conclude that

—holds(value(wyg,u), 1) € Ay (4.64)
and
—holds(value(wy, 1),1) € As. (4.65)

Again, because of statement (4.62) and rule (4.56), it follows that

not_all_inputs(g,u,1) € As. (4.66)

From statement (4.66) and rule (4.57) of P, we conclude that

all inputs(g,u,1) € As. (4.67)

106

By rule (4.56) of P, and statement (4.62), it follows that

not_all inputs(g,1,1) € As. (4.68)

From statement (4.68) and rule (4.57) of P,, we conclude that

all_inputs(g,1,1) &€ A,. (4.69)

Statement (4.69) falsifies rule (4.53) of Ps, and since atom holds(value(w,, 1), 1)

does not appear as head of any other rule of P,, we can conclude that

holds(value(w,,1),1) & As. (4.70)

By statement (4.63) and rule (4.54) of P, it follows that

holds(value(w,,0),1) € As. (4.71)

Statement (4.71) and rule (4.60) of P, imply that

—holds(value(w,,1),1) € A (4.72)
and
—holds(value(w,,u),1) € As. (4.73)

Statement (4.73) falsifies rule (4.59) of P, for w = w,. The only rule left in P,
with an atom of the form holds(value(w,,s),1) in the head, where s € {0,1},
is rule (4.54), hence no contrary literals for w, can be derived from P,. Thus,

no literals contrary to holds(value(w,, s),1) belong to As.

107

Now we need to consider all other input values on input wires w; € {wy, ..., w,}

such that w; # wy. Let us consider such w;. There are two possibilities.

(a) If w;j € {wn,...,w,}, where w; # wy, such that occurs(apply(w;,v;),0) €

O, then from rule (4.52) of P, it follows that

holds(value(w;,v;),1) € As. (4.74)
Statement (4.74) and rule (4.60) of P, imply that

—holds(value(w;, v}),1) € Az : vj # V] (4.75)

Statement (4.75) implies that

—holds(value(w;, u),1) € As. (4.76)
which falsifies rule (4.59) of P, for w; # wy. Therefore

holds(value(w;,u),1) & As.

(b) Ifw; € {w,...,w,}, where w; # wy, such that v; = u, P, does not contain

rule (4.52) for w;. This implies that
holds(value(w;,0),1) & A (4.77)

and

holds(value(w;,1),1) & As. (4.78)

108
By statements (4.77) and (4.78), and since rule (4.60) is the only rule with

a head of the form —holds(value(w, s),1) in P, we can conclude that

—holds(value(w;, u),1) & As. (4.79)

Statement (4.79) and rule (4.59) of P, imply that

holds(value(w;,u),1) € As. (4.80)

Therefore, no contrary literals for can be derived from P; for this case too.

Finally, consider the case when all the input signals v; on the input wires are

equal to 0. It is easy to see that in this case A, contain neither

contains_input(g,1,1), contains_input(g,u, 1), nor not_all inputs(g,0,1). Hence,

by rule (4.57), Ay must contain all_inputs(g,0,1).

If at least one input value is different of 0, A, cannot contain all_inputs(g,0,1),
and must contain
not_all_inputs(g,0,1). In this case, if v; = 1 and/or v; = u then Ay must

contain contains_input(g,1,1) and/or contains_input(g,u, 1), respectively.

The above argument can be viewed as a construction of a set B which must be
a subset of any answer set A, of P,. We will show that B is an answer set of
P,. To do that, let us take B and construct the reduct of P, with respect to B.
From the construction it is easy to see that B is an answer set of the reduct of

P,, and by the definition of answer sets B is an answer set of Ps.

Case 3.

109
To prove uniqueness of this answer set, assume that A is an answer set of Ps.

By construction, B C A. By the anti-chain property of answer sets, B = A.

Since B is the unique answer set of P and holds(value(w,,0),1) € B, we

conclude the proof for Case 2 of Lemma 4.2.

Assume Yv; € Z, v; # 0, and Jvg, € Z such that v, = u.

We need to show that program P, has a unique answer set, Ay, and that

holds(value(w,,u),1) € As.
Let A be an answer set of Ps.

By the assumption that Vv; € Z, v; # 0, we have that for every 1 <i <n

occurs(apply(w;,0),0) & O. (4.81)

By the assumption that Jvy € Z such that vy = u, it follows that

occurs(apply(wy, 1),0) € O. (4.82)

By rule (4.52) of P, and statement (4.81), it follows that for every 1 <i <n

holds(value(w;,0),1) & A,. (4.83)

By statement (4.83) and since contains_input(g,0,1) can only be deduced from

rule (4.58) of Py, it holds that

contains_input(g,0,1) & As, (4.84)

which falsifies rule (4.54) of Ps.

By statement (4.81) and rule (4.52) of P, it follows that

holds(value(wy,0),1) & A,

while statement (4.82) and rule (4.52) of P, imply that

holds(value(wy, 1),1) & As.

110

(4.85)

(4.86)

By rule (4.60) of P, and statements (4.85) and (4.86), we can conclude that

—holds(value(wy, u),1) & A,.

By rule (4.59) of P, and statement (4.87), it holds that

holds(value(wg,u), 1) € As.

By rule (4.60) of P, and statement (4.88), we have that,

—holds(value(wy, 0),1) € Ag

and

—holds(value(wy, 1),1) € As.

By rule (4.58) of P, and statement (4.88), it follows that

contains_input(g,u, 1) € A,.

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

By rule (4.55) of P, and statements (4.84) and (4.91), we conclude that

holds(value(w,,u),1) € As.

By rule (4.56) of P, and statement (4.88), we have that

not_all_inputs(g,0,1) € A,

and

not_all _inputs(g,1,1) € As.

By rule (4.57) of P, and statement (4.93), it follows that

all_inputs(g,0,1) € A,,

and by rule (4.57) of P, and statement (4.94), we have that

all_inputs(g,1,1) & As,

which falsifies rule (4.53) of Ps.

By rule (4.60) of P, and statement (4.92), it follows that

—holds(value(w,,0),1) € As,

and

—holds(value(w,,1),1) € As.

111

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

112

Since both rules (4.53) and (4.54) were falsified, and there are no other rules of

P, whose head is of form holds(value(w,,v), 1), where v € {0,1}, then

holds(value(w,,0),1) &€ As, (4.99)
and
holds(value(w,,1),1) & As, (4.100)

which together with rule (4.60), implies that

—holds(value(w,, u),1) & As. (4.101)

Finally, consider the case when w; € {wy,...,w,}, w; # wg, such that v; = .
It is easy to see that in this case A, contains neither contains_input(g,1,1),

nor not_all_inputs(g,u,1), and hence, it must contain all inputs(g,u,1).

If all input values v; are equal to 1, it is easy to see that A, must contain
not_all inputs(g,u, 1), and contains_input(g,1,1). Hence, it cannot contain

all_inputs(g,u, 1).

The above argument can be viewed as a construction of a set B which must be
a subset of any answer set A, of P,. We will show that B is an answer set of
P,. To do that, let us take B and construct the reduct of P, with respect to B.
From the construction it is easy to see that B is an answer set of the reduct of

P,, and by the definition of answer sets B is an answer set of Ps.

113
To prove uniqueness of this answer set, assume that A is an answer set of Ps.

By construction, B C A. By the anti-chain property of answer sets, B = A.

Since B is the unique answer set of P, and holds(value(w,,u),1) € B, we

conclude the proof for Case 3 of Lemma 4.2.

Lemma 4.2 follows immediately from Cases 1, 2, and 3. O

4.4 Proof of Lemma 4.3 - OR gate

Lemma 4.3. Let C be a combinational circuit consisting of a single OR gate g with
input wires wy, . . . , Wy, output wire w,, and no delays. Letvq,...,v, be an input signal
vector of C' and let O = {occurs(apply(w;,v;),0) : w; € {w,...,wy},v; € {0,1},
for 1 <i<k,k<n}. Then

1. Program Py has unique answer set; and
2. If Ay is the unique answer set of Py then

v = OR(v1,...,v,) if and only if holds(value(w,,v),1) € Ay.

Proof. - Follows immediately from Lemma 4.2, and the application of the Principle

of Duality which characterizes the AND and OR operations of Boolean algebra.

114

4.5 Proof of Proposition 3.1

We now prove

Proposition 3.1. Let C' be a combinational circuit, with input wires wy, ..., w,,
output wire w,, and no delays, which computes a function f(Si,...,S,). Then for
any input vector sy,...,8, of 0’s, 1’s, and u’s, program Py has a unique answer set
and holds(value(w,, s),1) € CT(D) if and only if s = f(s1,...,8,), where D =
7(C) U {occurs(apply(w;, s;),0) : w; € {wy,...,w,},s € {0,1},1 <i < k,k < n}.

O

Proof. The proof is by induction on the number m of gates in C.
Base case: m = 1. Follows immediately from Lemmas 4.1, 4.2, and 4.3.

Induction step: Suppose that we have proved Proposition 3.1 for m > 1. Now, we

need to show that the proposition also holds for m + 1.

Let C),1+1 be a combinational circuit with m+1 gates. C,,11 can always be decomposed

[181] into circuits C,, and C; shown in Figure 4.1.

Note, that the sets W, and W; of input wires of C,, and C; are not necessarily
disjoint and that the set W,,.; of input wires of C,,;; is equal to (W U W;) where

Wo = W, \ {w!}. The decompostion has the following property:

115

wm :
1 |

| | m

| C | Wo
Wm \ m :
n : |
1 |
"."1 |
. ' 1 |
Wl | C l WO :
k o

P

Figure 4.1: Blocks diagram for digital circuit C' decomposed into circuits C,, and C}.

For every set of input signals I,,,; assigned to the input wires of C,,+1

Jm1(Img1) = fm(Lo, fr(11)). (4.102)

Here I and I; are input signals from 7,,,,; applied to the wires of Wy and W; and
fm+1, fm and fi are functions defined by the circuits Cy,y1,Ch, and Cy. (Without

loss of generality we assume that w! is the last argument of f,,.)

Let P,,.1 and P; be lp-descriptions of C,,.; with input I,,;1 and C; with input I

respectively. By the inductive hypothesis P; has a unique answer set, Ay, such that

holds(value(w?,s),1) € A; if and only if s = fi(Iy). (4.103)

It is easy to see that Uy = lit(P) is a splitting set of P, ;1 and hence, by the Splitting

116

Set Theorem and the uniqueness of A,

A4 is an answer set of P, iff it is an answer set of program 77 = A; U P, 1.

(4.104)

To apply the inductive hypothesis we need to establish the relationship between this
program and the lp-description P,, of the circuit C,, with input wires W,,. Let
W] = Wy \ W,, be the set of input wires of C; different from that of C,, and let Uy

be the set of literals of P; which contain names of the wires from W] or w}.

U, is a splitting set of T7. The program by, (T1) can be viewed as an Ip-representation
of a new circuit, C{ obtained from C; by removing the input wires common to C,,.
Hence, by the Lemmas 4.1, 4.2, and 4.3, it has the unique answer set, Ag. Let
Ry = ey, (tv, (Prmy1), Ao) be the result of the partial evaluation of P,,,; with respect
to Ag and R = Ry U holds(w}, s,1) where s = fi(I;). From equation (4.104) and the

Splitting Set Theorem, we have that

A.q1 is an answer set of P, iff it is an answer set of program 75 = A; U R.

(4.105)

Now let us notice that P, contains information about wire w! which does not belong

to R - a rule

(a) holds(value(w},S),1) + occurs(apply(w},S),0).,

and the assignment holds(value(w;,u),0), or occurs(apply(w},s),0), to this

wire.

117

(b) R contains holds(value(w}, s), 1), where s = f;(I;), while P, does not.

These two conditions imply that R is the partial evaluation of P, with respect to the

set {occurs(apply(w}, S),0), holds(value(w!,u),1)}.
By the inductive hypothesis for C,, and the construction of its input, we have that
P,, has the unique answer set B such that

holds(value(w,,v),1) € B if and only if v = f,,(Io, s)

where I is the assignment given by I,,,,1 to the wires from Wy, and s = fi(I7).

This, together with equations (4.102), (4.104), and the construction of Aq guarantees
that P,.1 has a unique answer set A,,,1, and that holds(value(w,,v),1) € Apyq if

and only if v = fr,11(Lny1)-

This concludes the proof of Proposition 3.1. O

Chapter 5

The Reaction Control System -
Action Theory and Answer Set
Programming for Controling the
Space Shuttle

“To advance and communicate scientific knowledge and understanding of the
earth, the solar system, and the universe. To advance human exploration, use,
and develoment of space. To research, develop, verify, and transfer advanced

aeronautics and space technologies.”

NASA Mission Statement [151]

In this chapter we present and discuss in detail the application of the theory of action
and change and the emergent programming paradigm - answer set programming - to
a complex “real world” domain, the Reaction Control System (known as the RCS) of
the space shuttle. The design and implementation of a system to control a complex
medium-size domain in the answer set programming paradigm is one of the achieve-
ments of this research. The successful results thus far obtained with the system can

be considered as a promising step in the use of answer set programming as a powerful

118

119
and efficient tool for programming real world applications. This work is also the first

application of such techniques to a real world domain of this size.

5.1 On NASA, the Space Exploration Program,

USA, and the Space Shuttle

Created in 1958 to study and propel human space flight, the National Aeronautics
and Space Administration (NASA) agency has collected innumerous unique scientific
and technological achievements in areas far beyond space science and aeronautics.
The agency’s long list of important scientific discoveries has reached diverse fields
of human knowledge and has impacted our lives in ways that were not foreseen in
its inception. Both essential and ordinary every day items such as clothing, food,
medicine, even pens, have been modified by such discoveries. Today a large portion

of NASA’s efforts are concentrated in help building the International Space Station.

NASA’s space exploration program has answered fundamental questions about hu-
man space flight, aeronautics, the space and the planet earth through several always
evolving projects. In particular, the dream of human space flight and space explo-
ration was addressed through Project Mercury, the first manned space flight program
which verified the possibility of human survival in space; Project Gemini that used
double manned spacecrafts for two weeks long flights; and the program for scientific
exploration of the moon, the Project Apollo that allowed for the landing of humans

on the moon in 1969.

120
Economical requirements and political pressure for the exploration of space in a conti-
nous basis led to the development of a Space Transportation System (STS) consisting
of reusable spacecrafts, commonly known as space shuttles. In 1981, NASA crossed
yet another frontier with the successful first flight of the space shuttle Columbia® into
space. From the original six space vehicles, the present shuttle (or orbiter) fleet is
reduced to three operable spacecrafts: Discovery, Atlantis, Endevour, and the first
orbiter Enterprise which has been used only as a test-bed for the shuttle program,

but has never flown into space.

In 1996, NASA prompted the consolidation of the multiple Space Shuttle Program
contracts under a single prime contractor. In particular, the flight support operations
conducted by Rockwell and ground operations managed by Lockheed Martin were
merged to form the United Space Alliance (USA), a Limited Liability Company which
overviews the training of personnel and operation of the shuttle fleet, as well as
the International Space Station. Shortly after the contract was effectuated, Boeing
Corporation bought Rockwell’s share of USA and became part of the space flight
program. Today USA maintains the safety and reliable management of the space
shuttle fleet as its primary goals, and is constantly searching for new tools to help in
achieving these goals. Eighty percent of the seven billion Phase I contract, covering

a period of six years, between USA and NASA is attached to maintaining safety and

!The space shuttle Columbia and its seven crewmembers were recently lost on their landing
descent to Kennedy Space Center on February 1, 2003. The cause(s) of the accident are presently
still under investigation. Almost twenty years earlier, all seven crewmembers and the Challenge
space shuttle were destroyed shortly after launching on January 28, 1986 when a booster failure
caused the breakup of the vehicle.

121

related standards. A crucial task to ensure the safe launch, orbiting, and return of

the space shuttle is flight control.

The space shuttle vehicle contains approximately 2,506,450 parts, from which nearly
2,000,000 comprise the orbiter; the remaining parts belonging to the external tank
and solid rocket boosters. The space shuttle orbiter has more than a dozen sophis-
ticated systems, including among others the main propulsion system, the thermal
protection system, the orbital maneuvering system, the reaction control system, the
electrical power system, and the environmental control and life support system. Each
of the space shuttle orbiter’s systems is subdivided into multiple subsystems which
are supervised by a team of specially trained flight controllers assigned to it. Flight
controller personnel are responsible for monitoring and resolving any problems affect-
ing a system during a mission. When not on a mission assigment, flight controllers
study possible future problems that can happen to the system they work with and
generate solutions to these problems. Since the space shuttle systems are relatively
complex involving a high number of components, multiple failures are possible and it
becomes unfeasible to consider and find plans in advance to solve all such situations.
When confronted with a multiple failure situation during a mission, flight controllers
must rapidly come up with a correct solution. Pressured by strict requirements on
both time and precision, flight controllers must perform near perfection. The cost
of a single error can vary from abortion of a mission, in the best scenario, to loss

of the space vehicle and the crew’s lives, in the worst case. An interruption on the

122
communication capability between a flight crew and the control center, overseing
the mission from earth, can also require that the crew formulate a plan(s) to solve

eventual problem(s).

A large collection of historical documents, reports, real time data, photos, interactive
images, and tutorials, including all information presented in this section about NASA,
its space exploration program, the space shuttle and its missions is available online
at NASA’s web page [151]. Details about USA and the operation of the space shuttle
program are also available online at USA’s web page [195]. In the next sections we

discuss the Reaction Control System of the space shuttle.

5.2 The RCS and the USA-Advisor Systems

The RCS is the shuttle’s system that has primary responsibility for maneuvering the
aircraft while it is in space. It consists of fuel and oxidizer tanks, valves and other
plumbing needed to provide propellant to the maneuvering jets of the shuttle. It also
includes electronic circuitry: both to control the valves in the fuel lines and to prepare

the jets to receive firing commands.

The RCS is computer controlled during takeoff and landing. While in orbit, however,
astronauts have the primary control. When an orbital maneuver is required, the
astronauts must perform whatever actions are necessary to prepare the RCS. These
actions generally require flipping switches, which are used to open or close valves or to

energize the proper circuitry. In more extreme circumstances, such as a faulty switch,

123
the astronauts communicate the problem to the ground flight controllers, who will
come up with a sequence of computer commands to perform the desired task and will

instruct the shuttle’s computer to execute them.

During normal shuttle operations, there are pre-scripted plans that tell the astronauts
what should be done to achieve certain goals. The situation changes when there are
failures in the system. The number of possible sets of failures is too large to pre-plan
for all of them. Continued correct operation of the RCS in such circumstances is
necessary to allow for the completion of the mission and to help ensure the safety of

the crew.

The RCS/USA-Advisor System? presented here can be viewed as a part of a decision
support system for shuttle flight controllers. It is an intelligent system capable of

verifying and generating plans that prepare the RCS for the required maneuver.

Part of this dissertation builds on previous work [31, 81, 202, 203] in which the authors
developed a prototype of a system, denoted by M, capable of checking correctness of
plans. The system was based on the programming language Prolog and, to a certain
extent, was tailored toward its inference engine. One of the main contributions of
this work is the development of the new, substantially more powerful, model of the

RCS not suffering from these limitations. In particular, we

1. substantially simplify the model of the part of the RCS represented by M,

without loss of detail,

2Referred to simply as USA-Advisor.

124
2. implement the new model in a different programming paradigm - answer set

programming,

3. include information about electrical circuits of the RCS, which was missing in

M07

4. include a new type of action — computer commands, controlling the position of

valves,

5. include a planning module(s) containing a large amount of heuristic information

(this substantially improves the quality of the plans and efficiency of the search),

6. include a Java interface to simplify the use of the system by a flight controller

and by the system designers.

The resulting system, USA-Advisor?, is now suitable for practical applications. This
project has been funded by United Space Alliance, as mentioned before, the company
contracted by NASA to overview the shuttle’s operation and missions. Programmers
from USA have recently started the work of modifying the interface of the system in

order to customize the system for its deployment.

To understand the functionality of the USA-Advisor let us imagine a shuttle controller
who is considering how to prepare the shuttle for a maneuver when faced with a

collection of faults present in the RCS (for example, switches and valves can be stuck

3The RCS/USA-Advisor system is available for download from:
http://krlab.cs.ttu.edu/~marcy /RCS/

125
in various positions, electrical circuits can malfunction in various ways, valves can be
leaking, jets can be damaged, etc). In this situation, the controller needs to find a
sequence of actions (a plan) to ready the shuttle for the maneuver. Finding manually
such a plan is, in general, not a trivial task. The most difficult part, however, is
proving that the plan will achieve the expected results, given the current conditions
of the shuttle, without causing any possibly dangerous side effect. The RCS/USA-
Advisor can serve as a tool facilitating this task. First of all, the controller can use it
to test if a plan, which he came up with manually, will actually be able to prepare the
RCS for the desired maneuver, and has no side effects. Moreover, the system can be
used to automatically find such a plan, which is therefore guaranteed to be correct.
It is expected that, in the near future, the USA-Advisor will be mainly employed in
this second way. In emergency situations, it will be used “on-line” to generate plans
that achieve the desired goal. The rest of the time, the system will be used “off-line,”

generating pre-packaged plans for situations that might occur in future missions.

The main issues involved in building the USA-Advisor are:

e Modeling the RCS as a dynamic domain: this includes representing information
at multiple levels of detail. At the lowest level we need to describe the effects
of the valves positions on the plumbing system. At the highest level we specify

the electrical circuits used to control the valves.

o Representing knowledge in several separate modules and combining the appro-

priate modules depending on the task given to the system — notice that one of

126
the modules had been independently developed before the start of the USA-

Advisor project.

e Developing a planning module containing a large amount of heuristic informa-
tion (which substantially improves quality of the plans and efficiency of the

search).

The solutions devised for the correct modeling and implementation of the RCS in the
answer set programming paradigm and part of the methodologies developed to attack
these issues are original work developed by this research and constitute some of its

contributions.

5.3 The RCS System

The RCS is the system used to maneuver the space shuttle while it is in orbit, e.g.
during the “separation burn” phase to distance itself from the space station. During a
mission, this system is used to roll or move the spacecraft in the direction required for
a photography or by an experiment to be accomplished by the crewmembers. Three
subsystems form the RCS system: the Forward RCS, located on the forward fuselage
nose area of the orbiter; the Left RCS, and the Right RCS, both located with the
Orbital Maneuvering System (OMS) in the aft fuselage of the orbiter vehicle. The
RCS subsystems provide the thrust for attitude (rotational) maneuvers (pitch, yaw

and roll) and also allow for translation maneuvers through small changes in velocity

127

along the orbiter axis.

The propellants for the RCS jets, or thrusters, are stored on fuel and oxidizer tanks,
pressurized with helium, and are distributed through several different types of pressure
regulation and relief valves (namely tank isolation, manifold isolation, and crossfeed
valves), distribution (here termed plumbing) lines and filling and draining connec-
tions, termed junction. There exists a physical interconnection between the Left and
Right RCS in the OMS pod, and also between the OMS and the aft RCS systems
allowing the RCS to utilize the OMS’s propellant for firing its jets. This provision is
part of the redundancy capabilities added to the space shuttle to ensure the safety
of its operation. In case of failure of an OMS engine, the aft RCS can be utilized to

complete any OMS deorbit thrusting period.

The RCS jets are of two different types: (a) primary thrusters, which are robust jets;
and (b) smaller engines called vernier thrusters. In total there are 38 primary and 6
vernier thrusters in the RCS divided in the following way: the forward RCS has 14
primary and two vernier engines, and the Left and Right RCS have 12 primary and
two vernier jets each. The flight crew can select which jets to use for attitude control
in orbit; vernier thrusters are used normally for on-orbit attitude hold. It must be

noted that no redundancy is provided for vernier jets.

In order for the space shuttle to perform a given maneuver, a set of jets, belonging
to the correct subsystems and pointing in the correct directions, must be prepared to

fire. Preparing a jet to fire involves providing an open, non-leaking path for the fuel to

128

flow from pressurized fuel tanks to the jet. The flow of fuel is controlled by opening
and closing pressure regulation and relief valves. Valves are opened and closed by
either having an astronaut flip a switch or by instructing the onboard computer to
issue special commands. In a very simplified form, the RCS can be viewed as the
directed graph in Figure 5.1 whose nodes are tanks, jets and pipe junctions, and
whose arcs are labeled by valves. Switches are connected to valves through fairly

complex electrical circuits.

5.4 USA-Advisor System’s Design

The USA-Advisor system consists of a collection of largely independent modules,
represented by Ip-functions* [72], and a graphical Java interface®, J. The interface
gives simple means for the user to enter information about the history of the RCS,

its faults, and the task to be performed.

At the moment there are two possible types of tasks: checking if a sequence of occur-
rences of actions in the history of the system satisfies a goal, G, and finding a plan
for G of a length not exceeding some number of steps, N. Based on this information,
J verifies that the input is complete, selects an appropriate combination of modules,
assembles them into an A-Prolog program, II, and passes II as an input to a reasoning

system for computing stable models (In the USA-Advisor this role is currently played

4Tn more precise terms, an Ip-function is a program II of A-Prolog with input and output signa-
tures o;(II) and 0, (IT) and a set dom(II) of sets of literals from o;(II) such that, for any X € dom(II),
ITU X is consistent, i.e. has an answer set.

5The graphical interface for the USA-Advisor system was implemented primarily by Marcello
Balduccini.

129
by SMODELS, however we also plan to investigate performance of other systems.) In
this approach the task of checking a plan P is reduced to checking if there exists a
model of the program ITU P. A planning module is used to describe a set of possible
plans the user is interested in. The general correctness theorem [123] from the theory
of action guarantees that there is a one-to-one correspondence between the plans and
the set of stable models of the program. Planning is reduced to finding such models.
Finally, the Java interface extracts the appropriate answer from the SMODELS output

and displays it in a user-friendly format.

In our design, the RCS is described at two levels of detail, the appropriate level
being selected depending on the task to be performed. At the highest level of ab-
straction, electrical circuits are assumed to be working correctly. Thus, their internal
functioning can be ignored, and the function they compute is described explicitly in
terms of the effects that switches and computer commands have on the corresponding
valves. At the lowest level of abstraction, used when electrical circuits contain faulty

components, circuits are represented explicitly.

The RCS is decomposed in four main modules: the Plumbing Module, the Valve
Control Module, the Circuit Theory Module, and the Planning Module. The Plumb-
ing Module models the plumbing system of the RCS. The Valve Control Module
describes how switches and computer commands affect the position of valves. The
Circuit Theory Module describes the behavior of standard combinatorial digital cir-

cuits, augmented with other components, like delay units, power units, switches, and

130
valves. The Planning Module is responsible for generating plans achieving the desired
goal, and contains a large number of heuristics aimed at improving both the quality
of plans and the efficiency of the planner. Additional modules provide the description

of the schematics of each electrical circuit.

In the rest of this section we give a detailed description of particular modules.

5.4.1 Plumbing module

The Plumbing Module (PM) models the plumbing system of the RCS, which consists
of a collection of tanks, jets and pipe junctions connected through pipes. The flow
of fluids through the pipes is controlled by valves. The system’s purpose is to deliver
fuel and oxidizer from tanks to the jets needed to perform a maneuver. The structure
of the plumbing system is described by a directed graph, G, shown in Figure 5.1,
whose nodes are tanks, jets and pipe junctions, and whose arcs are labeled by valves.
The possible faults of the system at this level are leaky valves, damaged jets, and

valves stuck in some position.

The purpose of PM is to describe how faults and changes in the position of valves
affect the pressure of tanks, jets and junctions. In particular, when fuel and oxidizer
flow at the right pressure from the tanks to a properly working jet, the jet is considered
ready to fire. In order for a maneuver to be started, all the jets it requires must

be ready to fire. Pressurization of fuel and oxidizer tanks is obtained by releasing

131

Swl

W3~ |vs Vare—

(>

Figure 5.1: A simplified view of the RCS.

Sw4

helium from the helium tanks connected to the fuel and oxidizer tanks. The necessary
condition for a fluid to flow from a tank to a jet, and in general to any node of G, is
that there exists a path without leaks from the tank to the node and that all valves

along the path are open.

The rules of PM define a function which takes as input the structural description, G,
of the plumbing system, its state, including position of valves and the list of faulty
components, and determines: (a) the distribution of pressure through the nodes of

G, (b) the jets ready to fire, and (c) the maneuvers ready to be performed.

The elements of the plumbing system are represented in PM as follows. The arcs
of graph G are described by relation link(N1,N2,V) which holds iff G contains a

directed arc from node N1 to N2 and this arc is labeled by the valve V. For instance, a

132
statement link(ffh,ff,ffha) says that fuel helium tank ffh is connected to fuel propellant
tank ff by valve ffha. Relations jets_of(J,R) and wvernier_of(J,R) identify jets and
verniers and the subsystem they belong to. As explained in Section 5.3, the RCS is
partitioned into three subsystems: 1. Forward RCS, located on the forward fuselage
nose area of the orbiter; 2. Left RCS, and 3. Right RCS, both located with the
Orbital Maneuvering System (OMS) in the aft fuselage of the orbiter vehicle. The
subsystems of the RCS are identified by statements: system(fwd_rcs), system(left_rcs),
and system(right_rcs). So, for instance, a statement jet_of(flu,fwd _rcs) says that jet
f1u belongs to the forward subsystem of the RCS. Relation direction(J,D) specifies the
direction of jets and verniers. For instance, statement direction(flu,up) says that jet
flu is directed upwards. There are six different possible directions different jets point
to: up, down, left, right, forward, and aft. The downward firing jets on the Forward
RCS must always operate in pairs, one on each side (left and right). To facilitate this
operation, a list of such pairs is kept in the form of statements pair_of jets(J1,J2).
For example, a statement pair_of_jets(f1d,f2d) indicates that jets f1d, f2d constitute
one of such pairs. If one of the jets is not functional the other one cannot be fired.
Relation tank_of(T,R) links each tank to the subsystem it belongs to. For instance,
a statement tank_of(ffh,fwd_rcs) says that the forward fuel helium tank belongs to
the forward subsystem. There are twelve possible maneuvers to be performed by
firing jets of shuttle. They are: +X, —X, +Y, =Y, +Z, —Z, +roll, -roll, +pitch,

-pitch, +yaw, -yaw. Statements of the form maneuver(M) list the types of maneuvers

133
possible. For instance, statement maneuver(plus_z) indicates that plus_z is one such

maneuver.

The initial state of the plumbing module is characterized by fluent in_state(V,S),
specifying that valve V' is in state S (open or closed), and a collection of faulty
components described by atoms has_leak(V) and damaged(J), and relation stuck(V,S)
(valve V is stuck in position S). It is assumed that all helium tanks are pressurized
in the initial state and that normally functioning valves are initially closed. The last

statement is expressed by the default

holds(in_state(V,closed),0) :-
of type(V,valve),

not holds(in_state(V,open),0).

It is also assumed that normally functioning switches are initially in state GPC, i.e.
are controlled by the on-board General Purpose Computers, which is described by

default

holds(in_state(Sw,gpc),0) :-
of type(Sw,v_switch),

not —holds(in_state(Sw,gpc),0).

The current state is described by a set of fluents that includes the fluents used for
the initial state, together with fluent ready_to_fire(J), where J is a jet, and pressur-
ized_by(N,TK), stating that fluid under pressure is flowing from tank TK to node N

(we say that “N is pressurized by TK”).

134
Each maneuver is described by a rule whose body can be satisfied by a collection of jets
located in the corresponding RCS and pointed in the specified directions. Performing
a maneuver corresponds to preparing such jets for firing. Fluent ready_to_fire(J) is
true when jet J is simultaneously pressurized by both fuel and oxidizer tanks, and J
is not damaged. A fluent pressurized_by(N,TK), which reads “node N is pressurized
by tank T'K,” is true if there is an open and non-leaking path from TK to N. To

define such path we use an auxiliary fluent leaking(N) where N is a node of graph G.

The shuttle is ready for a maneuver M if and only if a set of jets satisfying the
requirements for maneuver M is ready to fire. In order to increase the efficiency in
planning the actions required for a maneuver, fluent maneuver-of(M,R) is used to
indicate that the portion of maneuver M executed by RCS subsystem R is ready. If
M does not require any action of RCS subsystem R, we add relation done(M,R) to
the description. The following rule ensures that maneuver M of subsystem R is ready

at time 7.

holds (maneuver_of (M,R),T) :-

done (M,R) .

In the case one or more RCS subsystems require actions to prepare jets to fire in order
to perform a certain maneuver, the above rule is not applicable to these subsystems.
Instead, a maneuver M of a subsystem R is ready at time 7T if the required jet J of

R is ready to fire in direction D at time 7', defined by rule

holds (maneuver_of (M,R),T) :-—

135
jet_of (J,R),
direction(J,D),

holds(ready_to_fire(J),T).

For instance, the shuttle is ready for maneuver +X (plus_z) if an aft jet is ready to

fire on both the Left and Right RCS. This is defined by the following rules

holds (maneuver_of (plus_x,left rcs),T) :-
jet_of (J,left rcs),
direction(J,aft),

holds(ready to fire(J),T).

holds (maneuver of (plus_x,right rcs),T) :-
jet_of (J,right rcs),
direction(J,aft),

holds(ready to fire(J),T).

done (plus x,fwd rcs) .

(Note that since no jet from the forward rcs is required for this maneuver, statement

done(plus_x, fwd_rcs) was added to the description.)

To further illustrate the issues involved in the construction of the Plumbing Module,

let us consider the definition of fluent pressurized _by(N,Tk), describing the pressure

136
on a node N by a tank T'k. Helium tanks are treated as special nodes and presently
assumed to be always pressurized. Hence, the definition of this relation for tank nodes

is trivial. In the initial situation it is given by facts of the form

holds(pressurized by(Tk,Tk),0).

where Tk corresponds to a constant identifying a tank.

The inertia rule below states that tanks maintain correct pressure in all subsequent
situations unless new information is added through relation

—holds(pressurized_by(Tk,Tk),T"), where T" > 0.

holds (pressurized by(Tk,Tk) ,T+1) :-
tank_of (Tk,R),
holds(pressurized by(Tk,Tk),T),

not —holds(pressurized by(Tk,Tk),T+1).

For other nodes, the definition is recursive. It says that any non-tank node N1 is
pressurized by a tank Tk if N1 is not leaking and is connected by an open valve to a

node N2 which is pressurized by Tk.

Representation of this definition in standard Prolog is problematic, since the corre-
sponding graph can contain cycles. (This fact is partially responsible for the relative
complexity of this module in M,.) The ability of A-Prolog to express and to reason
with recursion allows us to use the following concise definition of pressure on non-tank

nodes.

137
holds(pressurized by (N1,Tk),T) :-
not tank_of (N1i,R),
tank_of (Tk,R),
not holds(leaking(N1),T),
link (N2,N1,V),
holds(in_state(V,open),T),

holds(pressurized by(N2,Tk),T).

This rule states that non-tank node N1 is pressurized by tank 7'k if N1 is not leaking
and is connected by an open valve to a node which is pressurized by tank T'k. The

relation that describes pressurization of tank nodes is

holds(pressurized by (N1,Tk),T) :-
tank_of (N1,R),
tank of (Tk,R),
link(N2,N1,V),
holds(in_state(V,open),T),

holds(pressurized by(N2,Tk),T).

It says that tank node N1 is pressurized by tank Tk if N1 is connected by an open

valve to a node which is pressurized by tank 7T'k.

Faults in the RCS system are indicated by the system’s user, or possibly in the future
by signals sent by sensors directly connected to different parts of the system. For

instance, if there is a leak on a valve V' then it is necessary to determine which nodes

138
belonging to the same fuel path of V may be affected, i.e. leaking. This is easily

achieved in A-Prolog by the following rules:

holds(leaking(N1),T) :-
link(N1,N2,V),
has_leak(V),

holds(in_state(V,open),T).

which says that a node is leaking at any time it is connected to a leaking valve which

is open; and

holds(leaking(N1),T) :-
link(N1,N2,V),
holds(in_state(V,open),T),

holds(leaking(N2),T).

stating that a node is leaking if it is connected by an open valve to another node

which is leaking.

There are two propellant lines (one for fuel and one for oxidizer) interconnecting the
Left and the Right RCS subsystems called RCS-to-RCS crossfeed. Crossfeed valves
control the flow of propellant through fuel junctions, denoted by fxfeed, and oxidizer
junctions, ozfeed, in these lines. One of the RCS requirements is to avoid situations
where crossfeed (junctions and valves) are simultaneously pressurized by two tanks

from different subsystems. This can be nicely described in A-Prolog by constraints:

139
:— tank_of (X,R),
tank_of (Y,R1),
neq(X,Y),
holds(pressurized by(fxfeed,X),T),

holds(pressurized by(fxfeed,Y),T).

:- tank of (X,R),
tank_of (Y,R1),
neq(X,Y),
holds(pressurized by (oxfeed,X),T),

holds (pressurized by(oxfeed,Y),T).

These constraints eliminate any models (solutions) where two different tanks simulta-

neously pressurize any of the crossfeed junctions, and consequently, crossfeed valves.

The Plumbing Module consists of approximately 40 rules.

5.4.2 Valve control module

The flow of fuel and oxidizer propellants from tanks to jets is controlled by open-
ing/closing valves along the path connecting these nodes. The state of valves can
be changed either by manipulating mechanical switches or by issuing computer com-
mands. Switches and computer commands are connected to the valves they control

by electrical circuits.

140
In some specific phases of operation of the shuttle, such as launch and landing, the
on-board general purpose computers, GPCs, will be in charge of opening/closing
valves and will achieve this objective by sending computer commands. If the shuttle
is in orbit, or the computer system is malfunctioning, an astronaut can normally
override these commands by manually flipping the switches that control the valves to

be opened/closed.

The Valve Control Module, VC M, describes how computer commands and changes in
the position of switches affect the state of valves. The action of flipping a switch Sw to
some position S normally puts a valve controlled by Sw in this position. Similarly for
computer commands. There are, however, three types of possible failures: switches
and valves can be stuck in some position, and electrical circuits can malfunction in
various ways. Substantial simplification of the VCM module is achieved by dividing

it in two parts, called basic and extended V C' M modules.

At the basic level, it is assumed that all electrical circuits are working properly and
therefore are not included in the representation. The extended level includes infor-
mation about electrical circuits and is normally used when some of the circuits are
malfunctioning. In that case, flipping switches and issuing computer commands may

produce results that cannot be predicted by the basic representation.

141

Basic valve control module

At this level, the VC M deals with a set of switches, computer commands and valves,
and connections among them. The input of the basic VCM consists of the initial
positions and faults of switches and valves, and the sequence of actions defining the
relevant history of events. The module implements an Ip-function that, given this
input, returns positions of valves at the current moment of time. This output is used
as input to the plumbing module. The possible faults of the system at this level are

valves and switches stuck at some position(s).

Effects of actions in the basic VCM are described in a variant of action language
B [77], which contains both static and dynamic causal laws, as well as impossibility
conditions. Recall that the dynamic causal law, a causes fif p, says that f will
be true in a state the system moves to, after the execution of a in any state satisfying
condition p. A static causal law, often referred to as a state constraint, is of the form
fif p. It says that every state of the system satisfying condition p must also satisty
f- Note that the rules of the plumbing module can be viewed as state constraints
- that module contains no dynamic causal laws. Our version of B uses a slightly
different syntax to avoid lists and nesting of function symbols, because of limitations

of the inference engines currently available.

The use of the semantics of B which is defined independently from the logic program-
ming notions, allows one to prove correctness of the logic programming implementa-

tion of causal laws [72]. (Of course, it does not guarantee correctness of the causal

142

laws per se. This can only be done by domain experts.)

Connections between switches and valves, termed devices, are described by relation
controls(Sw, V) meaning that switch Sw controls the state of valve V. In the extended
level, it is necessary to define that this connection is achieved through an electrical

circuit. Rule
controls(Sw,V) :- controls(Sw,V,C).

allows us to have a single set of statements (of the form controls(Sw, V,C)) establishing
the connection and to generate all the facts for both the basic and the extended valve
control modules. For instance, statement controls(fm1,ffm1,fmc1) states that switch
fm1 controls valve ffm1 through electrical circuit fmc1 used in the extended level, and
together with the rule above define the simplified connection controls(fm1,ffm1) used
in the basic level. In the RCS some valves of critical importance can be moved in one
position only by issuing two computer commands simultaneously. If a valve V' can be
moved to a state S by a single computer command, this is denoted by statements of the
form basic_.command(CC,V,S). For instance, statement basic_command(opena._ffha,
ffha,open) says that command opena_ffha opens valve ffha. There are more than 130

such commands.

Otherwise, statements of the form commands(cc(CC1,CC2),V,S) are employed to
express that valve V requires computer commands C'C1 and C'C2 to be simultaneously

issued in order to achieve the desired effect.

For example, statement commands(cc(closea_fi12,closeb_ffi12),[fi12,closed) says that

143
to close valve ffi12 it is necessary to issue simultaneously the commands: closea_fi12

and closeb_ffi12.

An electrical malfunction of the circuitry controlling valve V' is represented by state-
ment bad_circuitry(V). The mechanical malfunction is represented by relation
stuck(D,S), stating that device D is stuck in state S. For example, statement

stuck(fhb,closed) states that switch fhb is stuck closed.

The dynamic behaviour of the basic VC' M is described by a set of fluents and actions.

Actions are represented as follows:

e action_of(flip(Sw,S),R) - flipping switch Sw to state S is an action of the sub-

system R of the RCS.

e action_of(cc(CC1,CC2),V,S),R) - issuing a pair of computer commands CC'1
and C'C2 required to move valve V' to state S is an action of the subsystem R

of the RCS.

e action_of(CC,R) - issuing computer command C'C'is an action of the subsystem

R of the RCS.

As in the plumbing module, the state of devices is described by the fluent in_state(D,S)
meaning that device D is in state S. Furthermore, a device is always in a state S if

it is stuck in S.

Normally computer commands are issued to a valve only when the switch connected

to the valve is in gpc state. If a computer command is issued when the switch is not

144
in gpc state, the state of the valve is undefined in the basic VCM and the input is
considered abnormal. This is represented by fluent ab_input(V).

The input of the basic VCM consists of:

1. a collection of statements of the form holds(in_state(D,S),0) describing the

states of switches and valves in the initial situation;

2. the description of possible malfunctions of switches and valves;

3. the sequence of actions which defines the past history of events up to moment

T.

Notice that fluents of the form ab_input(V) cannot be part of the description of the

initial situation which is enforced by constraint:

:— controls(Sw,V),

holds(ab_input(V),0).

The effects of actions performed on normally functioning devices are defined by two
dynamic causal laws. The first law says that if flipping a properly working switch Sw

to a state S causes it to move to this state. The corresponding rule looks as follows:
holds(in_state(Sw,S),T+1) :-

occurs(flip(Sw,S),T),

not stuck(Sw).

The second dynamic causal law states that, if switch Sw controlling valve V' is in

state gpc, V' is working properly, and all computer commands required to move V'

145
to some state S were issued at time 7', then V will also be in state S at the next

moment of time.

holds(in_state(V,S),T+1) :-
controls(Sw,V),
holds(in_state(Sw,gpc),T),
occurs(CC,T),
commands (CC,V,S),
not stuck(V),

not bad_circuitry(V).

The condition not bad_circuitry(V) is used to stop this rule from being applied when
the circuit connecting Sw and V' is not working properly. (Notice that the above
rule is applied independently of the functioning conditions of the circuit, since it is
related only to the switch itself.) It is important to consider the case when a computer
command is issued to control a valve and cannot be effectuated because of the current
conditions. For example, if the switch is in a position, S1, different from gpc, and
a computer command is issued to move the valve to position S2, then there is a
conflict in case S1 # S2. This is an abnormal situation, which is expressed by fluent
ab_input(V). The addition of the following rule to the description allows to handle

this situation.

holds(ab_input (V) ,T+1) :-

controls(Sw,V),

146
holds(in_state(Sw,S1,T),
occurs(CC,T),
commands (CC,V,S2),
state_of (S1,v_switch),
neq(S1,gpc),
neq(S81,82),

not bad circuitry(V).

This rule expresses that the input of valve V' is abnormal at time 7'+1, i.e. the state
of V' is undefined in the basic level of the VCS. When fluent ab_input(V) is true,
negation as failure is used to stop the application of the static causal law (shown
below). In fact, the final position of the valve can only be determined by using the
representation of the electrical circuit that controls it. This will be discussed in the

next section.

The static connection between switches and valves is expressed by a static causal
law. It says that, under normal conditions, if switch Sw controlling valve V' is in

some state S (open or closed®), at time 7', then V is also in state S at time T

holds(in_state(V,S),T) :-
controls(Sw,V),
holds(in_state(Sw,S),T),

state_of (S,v_switch),

6A switch can be in one of three positions: open, closed, or gpc. When it is in gpc, it does not
affect the state of the valve.

147
neq(S,gpc),
not holds(ab_input(V),T),
not stuck(V),

not bad circuitry(V).

It is assumed that a device D is always on a state S if it stuck at S, as defined by

rule

holds(in_state(D,S),0) :- stuck(D,S).

and that D is stuck if it is stuck in some state.

stuck (D) :- stuck(D,S).

Impossibility conditions are described by constraints. The VC M description includes
such a constraint to express that it is not possible to move a switch to a state it is

already in.

:— holds(in_state(Sw,S),T),
state_of (S,v_switch),

occurs(flip(Sw,S),T).

This constraint eliminates any models where an action flip tries to move a switch Sw,
which is in state S, to the same state S. Constraints of this type play an important

role in increasing efficiency of the module by reducing the search space for plans.

Another constraint included in the basic level of the V CS specifies that a device can

only be in one state at a time, as follows

148
:— of _type(D,Dev),
state_of (S,Dev),
holds(in_state(D,S),T),

—holds(in_state(D,S),T).
As usual, default rules are used to represent the inertia axiom.

holds(in_state(D,S),T+1) :-
holds(in_state(D,S),T),
state_of (S,Dev),

not —holds(in_state(D,S),T+1).

—holds(in_state(D,S),T) :-
holds(in_state(D,S1),T),
state_of (S,Dev),
state_of (S1,Dev),

neq(S,S1).

The output of the VCM is a description of the state of valves and switches at the

current moment of time.

The basic VCM consists of approximately 15 rules.

149

Extended valve control module

The extended V C'M encompasses the basic VC' M and also includes information about
electrical circuits, power and control buses, and the wiring connections among all the

components of the system.

This module, too, defines an Ip-function. It takes as input the same information as
the basic VCM, together with faults on power buses, control buses and electrical
circuits. The extended VCM returns positions of valves at the current moment of

time, exactly like the basic VC M.

Since (possibly malfunctioning) electrical circuits are part of the representation, it
is necessary to compute the signals present on all wiring connections, in order to
determine the positions of valves. The signals present on the circuit’s wires are gen-
erated by the Circuit Theory Module (CTM), included in the extended VCM. Large
part of this module was developed independently to address a different collection of
tasks [14, 15] and can be found in Chapter 3. The corresponding module used by the

USA-Advisor is described in a separate section.

In the extended VCM, a switch Sw and a set of computer commands C'C control
a valve V via an electrical circuit C, that connects both Sw and CC to V. These
connections are represented by relations controls(Sw, V,C) and commands(CC,V,S,C).
Note that each valve and each switch are connected to one circuit only. However, sev-
eral valves (usually two) may be connected to the same circuit and are thus controlled

by the same switch. This explains a somewhat unexpected presence of parameter C'

150

in these relations.

The state of a valve in the extended V M C' is determined by the signals present on its
two input wires, labeled open and closed. If the open wire is set to 1 and the closed
wire is set to 0, the valve moves to state open. Similarly for the state closed. The

following static causal law defines this behavior.

holds(in_state(V,S1),T) :-
input (W1,V),
input (W2,V),
input_of type(W1,S1),
input_of type(W2,S2),
holds(value(Wi,1),T),
holds(value(W2,0),T),
neq(S1,52),

not stuck(V).

The output signals of switches, valves, power buses and control buses are also defined

by means of static causal laws, to be discussed shortly.

At this level, the representation of a switch is extended by a collection of its input
and output wires. Each input wire is associated to one and only one output wire, and
every input /output pair is linked to a position of the switch.” There are a few different

types of switches in the RCS system. Those that control valves are called v_switches

"Note that different pairs may be associated to the same state.

151
and represented by relation of type(Sw,v_switch). Possible states for v_switches are
expressed by relation state_of(S,v_switch), and include open, closed, and gpc. When a
switch Sw is in position (or state) S, an electrical connection is established between
input Wi and output Wo of the pair(s) corresponding to S and represented in A-
Prolog by statement connects(S,Sw, Wi, Wo). This relation expressess that “state S of
switch Sw connects input wire Wi to output wire Wo.” Therefore the signal present

on Wi is transferred to Wo, as expressed by the following rule.

holds(value(Wo,X),T) :-
holds(in_state(Sw,S),T),
connects(S,Sw,Wi,Wo),

holds(value(Wi,X),T).

Output wires Wo of all pairs corresponding to states different from S will have value

0 at time 7, as defined by rule

holds(value (Wo,0),T) :-
holds(in_state(Sw,S),T),
connects(S1,Sw,Wi,Wo),

neq(S,S1).

We will of course also need a more detailed representation of valves. There are two
types of valves in the RCS: solenoid and motor controlled valves. However, a motor
controlled valve can operate in one of three ways depending on the type of electrical

circuit connected to it. So, in our representation, valves can be of four types. In

152
all cases, wires coming from an electrical circuit control the state of the valves. The
present state of a valve V' and the value present on its input wire connected to a

power bus control the value of signals on the output wires of V.

Valves have a set of input pins, one power pin, and two output pins. They are
classified according to their physical properties and to the number of input pins they
have, as follows: (a) solenoid valves (which have two input pins), (b) two-pin motor-
controlled (MC) valves, (c¢) three-pin MC valves, and (d) four-pin MC valves. The
number of input pins determines the way valves are controlled. Two-pin valves have
one “open” and one “closed” pin. When a signal 1 is sent to an input pin, while the
other is set to 0, the valve moves to the state associated with the pin set to 1. This

behavior is captured by rule

holds(in_state(V,S),T) :-
v_solenoid(V),
holds(value(W1,1),T),
input (W1,V),
input_of type(W1,S),
neq(S,power_ bus),
holds(value(W2,0),T),
input (W2,V),
input_of type(W2,S51),

neq(S1,power bus),

153
neq(S,S1),

not stuck(V,S1).
applicable to both solenoid and two-pin M C' valves, which are identified by rules

v_solenoid(V) :- type_of valve(V,solenoid).

v_solenoid(V) :- type_of _valve(V,motor2).

In these rules, the type, Y, of a valve, V| is given by statement type_of valve(V,Y).
For instance, valve ffha is identified as a solenoid by statement:

type_of_valve(ffha,solenoid).

An input/output pin of a valve has a specific function associated with it. Wires
connected to the input pins of valves are represented by the two relations input(W,V)
and input_of type(W,Y), where Y is chosen in order to be able to distinguish among

the different pins.®

Rules describing the behavior of three-pin valves are similar. Three-pin valves have
one “open” pin and two “closed” (closea and closeb) pins. A three-pin valve opens if
its “open” input pin is set to 1 and pin closeb is set to 0. The valve moves to state

“closed” only when both “closed” pins are set to 1.

Four-pin valves are slightly different. They have two “open” (opena and opend) pins
and two “closed” (closea and closeb) pins. In order to open the valve, only one of the

“open” pins needs to be set to 1. The following two rules describe this behavior

8The actual naming depends on the type of valves.

154
holds(in_state(V,open),T) :-
type_of _valve(V,motor4),
input (W1,V),
input_of_type(W1,opena),
holds(value(Wi,1),T),

not stuck(V,closed).

holds(in_state(V,open),T) :-
type_of _valve(V,motor4),
input (W1,V),
input_of type(W1l,openb),
holds(value(W1,1),T),

not stuck(V,closed).

This type of valves close with the same combination of signals as the three-pin valves:
when both closea and closeb input pins are set to 1 while both input pins opena and

openb are set to 0. This is described by rule

holds(in_state(V,closed),T) :-
input (W1,V),
input_of_type(W1,opena),
holds(value(W1,0),T),
input (W2,V),

input_of _type(W1,openb),

155

holds(value(W2,0),T),

input (W3,V),

input_of type(W3,closea),

holds(value(W3,1),T),

input (W4,V),

input_of type(W4,closeb),

holds(value(W4,1),T),

not stuck(V,open).

Power and output pins work in the same way for all types of valves. Of the two
valve output pins one is labeled “open,” and the other “closed”. When a valve is in
state “open,” an electrical connection is established between the power pin and the
“open” output pin, while the “closed” output pin is disconnected. Wires connected
to the output pins are represented by statements output(W, V), which says that wire
W is an output wire of valve V', and output_of type(W,S), stating that output wire W
corresponds to state S. Values on output wires of both solenoid and motor controlled

valves are determined by rule

holds(value(W,1),T) :-
of type(V,valve),
holds(in_state(V,S),T),
output (W,V),

output_of type(W,S),

156
input (Wp,V),
input_of_type (Wp,power_bus),

holds(value(Wp,1).

This rule expresses that if valve V is in state S at time T, then the value on the

output wire (corresponding to S) of V' is 1 at T when V is powered.

Values on ouput wires of a valve V indicate the state of V', and are therefore multually
exclusive under normal behavior. If an output wire has value 1 at time 7', then the

value on the other output wire is 0 at 7. This behavior is defined by rule

holds(value(W2,0),T) :-
of type(V,valve),
output (W1,V),
output (W2,V),
neq(Wi,wW2),

holds(value(W1,1),T).

If a valve has no power (abnormal condition) then all its output wires have value 0,

which is specified by rule

holds(value(W,0),T) :-
of type(V,valve),
output (W,V),
input (Wp,V),

input_of _type (Wp,power_bus),

157

holds(value(Wp,0),T).

The behaviors described for switches and valves are valid provided that no faults are
involved. If a switch is stuck in some position, flipping has no effect. If a valve is stuck
in some positon, signals on the input pins are not effective. If a power or control bus
is faulty, its output is constantly 0. Stuck devices are represented by stuck(D,S) as in
the basic valve control module. Faulty power buses and control buses are described

by statement bad_device(B).

Given the type of a valve V', values on input wires of V' at time 7', malfunctioning
conditions expressed by stuck(V,S), and the state of V' at time T' — 1, the program

determines the state of V' and the values present on its output wires at moment 7.

The electrical circuits of the RCS are composed of both analog and digital com-
ponents. Circuits are named through statements of the form elec_circ(C). In the
extended level of the VCM, a digital gate or component, G, can malfunction if its
input/output wire W is stuck at a value X (0 or 1), defined by statement

stuck_at(W,G,X). If this is the case, the representation of the electrical circuit(s) these
gates belong to, are also included as part of the shuttle’s representation. However, it
is not necessary to add the representation of circuits that are working properly. To

indicate that circuit C' connected to a valve V' is malfunctioning we add rule

bad_circuitry(V) :-
elec_circ(C),

controls(Sw,V,C).

158
The behaviour of different components of electrical circuits is described within the

circuit theory module.

Different power buses of both direct (DC) and alternating current (AC) provide elec-
trical power to the RCS to allow the operation of electrical circuits, switches, valves,
and other devices. These diverse sources of energy are represented by power or control
buses, defined by statements power_bus(B) and control_bus(B). Power buses generate
direct current and are employed as power sources by digital devices. For example,
the power pin of valves is usually connected to a power bus. Control buses generate
alternate current and are used to power mechanical devices. If a bus is faulty we
add statement bad_device(B) to the description. As before, the connection between
a bus and a device (a switch or a valve) is represented by statement output(W,B).
Static laws express the behaviour of power/control buses as follows. If a bus B is
functioning normally and W is its output wire, then the value present on W is 1 at

time 7T'. Otherwise, the value present on W is 0.

holds(value(W,1),T) :-
of type(B,power_bus),
output (W,B),

not bad_device(B).

holds(value(W,0),T)

of type(B,power bus),

159
output (W,B),

bad device(B).
Rules for control buses are defined in a similar way.

The space shuttle flight computer software is contained in its five general purpose
computers (GPCs) which control the vehicle during specific phases of a flight. This
software allows control of all RCS activity being responsible for transmiting com-
mands for valve configuration and jet firings. If a switch is placed in GPC state,
computer commands can be output to open or close the affected valves. Issuing a
computer command is represented as an action that will affect a target device D
by setting D to a new state. At the extended level of the VCM, issuing computer
commands is expressed by a dynamic causal law that asserts value 1 on the wire W
that connects the computer to a component of an electrical circuit. The rule defining
this behavior is

holds(value(W,1),T+1) :-
commands (CC,V,S),
output (W,CC),
occurs(CC,T).

Normally, i.e. in the absence of computer commands, a signal value 0 is assigned to

the wire that connects a component of an electrical circuit to the computer, as follows

holds(value(W,0),T) :-

commands (CC,V,S),

160
output (W,CC),

not holds(value(W,1),T).

Wires connected to the output pins of computer commands, as well as power buses and
control buses, are identified by output(W,E), where E is either a computer command,

a power bus or a control bus.

The extended VCM, without the Circuit Theory module, consists of 36 rules.

5.4.3 Circuit theory module

Large portion of the Circuit Theory Module (CT M) used in the RCS was indepen-
dently developed as part of the A-Circuit project, which is presented in detail in
Chapter 3. Because of the modularity of our design, it has been possible to directly
include the CT M in the RCS/USA-Advisor system. Some additions, however, were
necessary to account for more complex circuits used in the RCS. We added the de-
scription of new electrical components that were not present in the original C'T'M,

and more importantly the representation of stuck faults on wires of a circuit.

The Circuit Theory Module is a general description of normal and faulty behavior
of components of electrical circuits with possible propagation delays and 3-valued
logic. As demonstrated in Chapter 3, it can be used as a stand-alone application for
simulation, computation of the maximum delay of a circuit, detection of glitches, and

other tasks.

The C'TM is employed in this system to model the electrical circuits of the RCS,

161
which are formed by digital gates and other electrical components, connected by
wires. Here, we refer to both types of components as gates. The structure of an
electrical circuit is represented by a directed graph E, as shown in Figure 5.2, where
gates are nodes and wires are arcs. (Note that we allow wire (W3) to be an input to
more than one gate (¢2,g3). We abuse the notation of graphs and represent a single
wire W3, which is split from an electrical connection point (and hence is not a gate
node) and goes to the different gates, in order to approximate the graph to a circuit

schematic diagram.)

wl | w7
wo — gl g3
w3
w9
w4 a2 w8 gl w10
wbH -
w6

Figure 5.2: A simplified view of a circuit.

As before, a gate can possibly have a propagation delay D associated with it, where
D is a natural number (zero indicates no delay). All signals present in the circuit
are also expressed in 3-valued logic (0, 1, u). These signal values will be applied to

input wires and propagated through the gates. Recall that if no definite value (0,

162
1) is present on a wire at a certain moment of time 7' then the value is said to be

undefined (at T') and denoted by wu.

The language L for describing electrical circuits in this module have names for
gates (g1, g2, ...), wires (wl, w2, ...), signals (0, 1, u), as before, but the original gate
types (and_gate, or_gate, not_gate,) have been expanded with: tri_state_gate, td1_gate,
niland_gate, Tpc_gate, connector, and names for wire types were also introduced: (en-

able, and neglog).

A tri_state_gate type corresponds to a Tri-State component, a td1_gate type corre-
sponds to a Time Delay gate, a Negated Input Logic AND gate is named niland_gate,
and a Remote Power Controller gate as rpc_gate. For uniformity of representation
we also specify the points where two (converging) wires are electrically connected as
a “pseudo-gate” named connector. This pseudo-gate behaves similar to an OR gate.
This electrical connection is used when two or more wires must be connected together
and become a single wire. This addition was necessary to accomodate electrical con-

nections present in the RCS circuits, and it facilitated somewhat the translation of a

circuit obtained from the graphical interface to A-Prolog.

A Tri-State gate behaves as an electrical switch which when turned on (or “enabled”)
allows the value on its input wire to be propagated to the output wire; while if it is not
turned on the value on its output is undefined. The enable input wire of a Tri-State
gate “enables” or turns on the component when it holds value 1. The Negated Input

Logic AND gate exhibits the behavior of an AND gate whose neglog (negated logic)

163
input wire is connected to an inversor, a NOT gate. The Time Delay gate, td1_gate,
propagates the signal on its input wires at a certain time T only after a delay of 1

second. The behavior of a Remote Power Controller is similar to an AND gate.

The behavior of the new most interesting gates, in the presence of signal u, is presented

in Tables 5.1(a), 5.1(b), and 5.2.

Inputs Qutput Inputs Qutput
enable | X neglog | X
0 0 U 0 0 0
0 1 u 0 1 1
0 U U 0 U Uu
Uu 0 U U 0 0
U 1 U U 1 U
U U U U U U
1 0 0 1 0 0
1 1 1 1 1 0
1 Uu U 1 U 0

Table 5.1: (a) Tri-State gate. (b) Negated Input Logic AND gate.

Input Output
Time =t | Time = t+1
0 0
U u
1 1

Table 5.2: Definition of the behavior of a Time Delay (of 1 sec) gate.

As before, circuits are named by statements of the form elec_circ(C). Relations

of type(G,GT) and type_of wire(W,G, WT) express that a gate G [wire W] is of type

164
GT [WT], while relation delay(G,D) says that delay D is associated to gate G. In

order to represent types of wires we now reify wires with statement is_wire(W).

The geometry of the circuit (connection among gates), is described the same way as
in the A-Circuit system by representing the input and output wires of each of its
gates. However, there is a slight change in the relations used. To connect the output
of a gate G'1 to an input of a gate G2 by a wire W, we simply indicate that wire W
is the output wire of gate G1, output(W,G1), but to specify that wire W is the input
wire of gate G2 we now use statement is_input(W,G2). The change was prompted by
the introduction of faults on wires and the desire to use the original circuit theory to

describe the normal behavior of gates.

In C'T M, input wires of a circuit are defined as the wires coming from switches, valves,
computer commands, power buses and control buses. Output wires are those that go
to valves. The C'T'M is an Ip-function that takes as input the description of a circuit
C, the values of signals present on its input wires, the set of faults affecting its gates,

and determines the values on the output wires of C' at the current moment of time.

The dynamic behaviour of the CTM is described by fluent value(W,X) which ex-
presses that the value present on wire W is X, and action apply(W,X), which says that
signal value X is applied to wire W. An observation of the form occurs(apply(W,X),T)
states that action apply(W,X) occurred at (the situation corresponding to) moment
of time T'. The effect of applying a signal value to an input wire is expressed by the

following dynamic causal law

165
holds(value(W,X),T) :-
is_input(W,G),

occurs (apply(W,X),T).

We allow for standard faults from the theory of digital circuits [105]. A gate G
malfunctions if its output, or at least one of its input pins, are permanently stuck on
a signal value. This is expressed by relation stuck_at(W,G,X) read as wire W of gate
G is stuck at value X (0 or 1). The effect of a fault associated to a gate of the direct

graph E only propagates forward.

CTM contains two sets of static rules. One of them allows for the representation
of the normal behavior of gates, while the other expresses their faulty behavior. To
illustrate how the normal behavior of gates is described in the C'T'M, let us consider
the case of a gate previously discussed, the NOT gate. The rule that defines its normal
behavior differs from the one previously shown in Chapter 3 only by the inclusion of

condition not is_stuck(W2,G), and is written as follows

holds(value(W2,S2),T+D) :-
of type(G,not_gate),
delay(G,D),
input (W1,G),
output (W2,G),
opposite(S1,S2),

holds(value(W1,S81),T),

166

not is_stuck(W2,G).

This rule says that if value S1 holds at the input wire W1 of a NOT gate, with
propagation delay D, at time 7' then the opposite value S2 will hold in its output

wire W2 at moment of time T+ D if W2 is not stuck at some other value.

Let us now consider a new component: the Tri-State gate, whose behavior is defined
by Table 5.1(a). This type of component has two input wires, of which one is labeled
enable. If this wire is set to 1, the value of the other input is transferred with delay D
to the output wire. Otherwise, the output is undefined. The following rule describes

the normal behavior of the Tri-State gate when it is enabled.

holds(value(W,X),T+D) :-
of type(G,tri_state gate),
delay(G,D),
input (W1,G),
input (W2,G),
type_of wire(W2,G,enable),
neq(Wi,wW2),
holds(value(W1,X),T),
holds(value(W2,1),T),
output (W,G),

not is_stuck(W,G).

The rule defining the case when the enable wire of the Tri-State gate is not set to 1

167

is written as follows.

holds (value(W,u),T+D) :-
of _type(G,tri_state_gate),
delay(G,D),
input (W1,G),
input (W2,G),
type_of wire(W2,G,enable),
neq(W1i,W2),
holds(value(W1,X),T),
holds(value(W2,Y),T),
neq(Y,1),
output (W,G),

not is_stuck(W,G).

Still another new component is the Time Delay gate which propagates a signal present
on its input wires at a certain time 7' only after a delay of 1 second, as shown in
Table 5.2. Since we allow delays in our representation the definition of this rule is

straigthforward.

holds(value(W,X),T+1) :-
of type(G,tdl_gate),
input (W1,G),

output (W,G),

168
h(value(W1,X),T),

not is_stuck(W,G).
Notice that condition not is_stuck(W,G) prevents the above rules, describing the

normal behavior of some gates, from being applied when the output wire is stuck.
What is not apparent is how the normal condition of the input wires is guaranteed
before the application of the rule. This is partially hidden by our choice of predicates

to describe inputs, and will be discussed next.

First, let us examine how input wires are now represented. Recall that we describe
the input wires of a gate by relation is_input(W, G), which is automatically generated
by the translation from the graphical representation of the circuit to A-Prolog. Under
normal conditions, an input wire is not stuck at any value. We define this normal

input as follows

input(W,G) :-
is_input(W,G),

not is_stuck(W,G)

We determine that an input wire W of a gate G is stuck if it is stuck at some value

X, as follows
is_stuck(W,G) :- stuck.at(W,G,X).

Now we need to understand how faults are treated when they occur on the input

wire of a gate. Let us consider the case of a gate G with an input wire stuck at

169
value X. This wire is represented as two unconnected wires, W and stuck_wire(W),
corresponding to the normal and faulty sections of the wire. Figure 5.3 gives a

graphical representation of this idea.

W stuck_wire(W) Wo

Figure 5.3: A graphical representation of a faulty input wire.

The faulty part of the wire, stuck-wire(W), is stuck at value X, while the value of the
normal part W is computed by normal rules depending upon its connection to the
output of other gates. Thus, if the input W of a gate G is stuck at some value, then

we have a “faulty wire” which is defined by rule
input (stuck wire(W)) :- is_stuck(W,G).
The value on the bad connection side of the wire is expressed by rule

holds (value(stuckwire(W),X),0) :-
is_input(W,G),

stuck_at(W,G,X).

So, rules for gates with faulty inputs use stuck_wire(W) as input wire. We show
below an example of how this representation is used to specify a Tri-State gate with

the non-enable wire stuck to X.

holds(value(W,X),T+D) :-—

170
of type(G,tri_state_gate),
delay(G,D),
is_input (W1,G),
input (W2,G),
neq(W1i,W2),
holds(value(stuck wire(W1),X),T),
type_of wire(W2,G,enable),
holds(value(W2,1),T),
output (W,G),

not is_stuck(W,G).

This rule says that if a Tri-State gate G, with propagation delay D, is enabled at
time 7', while its other input wire W1 is stuck at value X at this time, then the
value on the output wire W of G is X at time T+ D. We also need some other rules
to complete the representation of an enabled Tri-State gate under faulty conditions.

These rules are

holds (value(W,X),T+D) :-
of _type(G,tri_state_gate),
delay(G,D),
input (W1,G),
is_input (W2,G),

neq(W1i,W2),

holds (value(W,X),T1)

171
h(value(W1,X),T),
type_of wire(W2,G,enable),
h(value(stuck_wire(W2),1),T),
output (W,G),

not is_stuck(W,G).

of type(G,tri_state _gate),
delay(G,D),

is_input(W1,G),

is_input (W2,G),

neq(Wi,w2),
holds(value(stuckwire(W1l),X),T),
type_of wire(W2,G,enable),
holds(value(stuckwire(W2),1),T),
output (W,G),

not is_stuck(W,G).

Lastly, when the Tri-State gate is not enabled under faulty conditions the value of its

output wire is undefined.

holds (value(W,u),T+D)

172
of type(G,tri_state_gate),
delay(G,D),
is_input (W2,G),
type_of wire(W2,G,enable),
—holds(value(stuck wire(W2),1),T),
output (W,G),

not is_stuck(W,G).

We show next the rule defining the behavior of a NOT gate with its input wire stuck

at a certain value.

holds(value(W2,S82),T+D) :-
of type(G,not_gate),
delay(G,D),
is_input (W1,G),
holds(value(stuckwire(W1),S1),T),
opposite(S1,52),
output (W2,G),

not is_stuck(W2,G).

It says that if the input value of a NOT gate is S1 at time T ,and its delay is D, then

the value on its output wire is S2, the opposite of S1, at time T+ D.

Faults on output wires are treated differently because the faults are propagated for-

ward, i.e. an output wire will be represented by a normal and a faulty section only if

173
this wire is an input of another gate. Since the set of faults is provided for the initial
situation, we say that if the output W of a gate G is stuck at value X, then the value

on W is X at the initial moment of time. This case is represented by rule

holds(value(W,X),0) :-
output (W,G),

stuck_at(W,G,X).
The inertia law is written in the form of a default as follows

holds (value(W,X),T+1) :-
signal(X),
is wire(W),
holds(value(W,X),T),

not —holds(value(W,X),T+1).

It says that if the value on wire W at time 7" is X, and there is no reason to believe
that the value on W will change at time 7+1, then the value on W will remain X at
time T'+1. To express that there is at most one signal present on a wire at certain

moment of time, we also add rule

—holds(value(W,X),T) :-
signal (X),
signal(Y),
neq(X,Y),

is_wire(W),

174

h(value(W,Y),T).

The behavior of a circuit is said to be normal if all its gates are functioning correctly.

If one or more gates of a circuit malfunction then the circuit is called faulty.

The description of faulty electrical circuit(s) is included as part of the RCS repre-
sentation. However, it is not necessary to add the description of normal circuits
controlling a valve(s) since the program can reason about effects of actions performed
on that valve through the basic VCM. This allows for an increase in efficiency when

computing models of the program.

The Circuit Theory module contains approximately 50 rules.

5.4.4 Planning module

As explained in Section 5.4, the USA-Advisor allows flight controllers to perform two

types of tasks related to planning in the RCS domain. It

o determines whether a plan manually devised by the controllers achieves a goal;

and

e finds a plan, of a length not exceeding some number of steps, N, to achieve a

goal.

The Planning Module establishes the search criteria used by the program to find a
plan, i.e. a sequence of actions that, if executed, would achieve the goal. The modular

design of the USA-Advisor allows for the creation of a variety of such modules.

175
For simplicity of presentation we start our discussion with the basic planning module
(Section 5.5). It will be used to illustrate the idea of answer set planning. Section
5.6 contains an elaboration of this idea and serves as a practical planning module of

the system.

5.5 The Basic Planner

The Basic Planning Module of the USA-Advisor establishes a simple search criteria
used by the program to find a plan. The structure of the Basic Planning Module
described in this section follows the generate and test approach from [48, 120]. The
main idea of this approach consists of establishing one-to-one correspondence between
plans for achieving a goal G and answer sets of a logic program FPg. This program
normally consists of (a) a large part describing our knowledge about the corresponding
dynamic system, and (b) a smaller part containing specification of a goal, a special
rule “generating” actions, and possibly some other rules describing properties of the
desired plans. The following discussion illustrates this idea. Our approach differs
from the standard answer set planning approach by taking advantage of the fact that
the RCS consists of three largely independent subsystems. A plan for the RCS can
therefore be viewed as the composition of three separate plans that can operate in

parallel.

The following rules form the heart of the planner. The first rule, which is responsible

for the generation of actions, states that, for each time point, 7, in a given finite

176
interval, if the goal has not been reached for one of the RCS subsystems, then an

action controlling that subsystem should occur at that time.

1{occurs(A,T):action of (A,R)}1 :-
T < lasttime,
subsystem(R),
not goal(T,R).

A rule of this form is called a “choice rule,”

and is part of the language of SMODELS
[155]. It is proved that choice rules do not extend the expressive power of the language
and can therefore be viewed as a shorthand for a set of logic programming standard
rules. The rules, however, proved to be very convenient. First, they substantially

shorten the program. Even more importantly, they allow efficient implementation

which to a large degree is responsible for the efficiency of our planner.

Notice that the head of the choice rule has the form

L{p(X) : ¢(X)}U.

It defines a subset p C ¢ of terms such that L < |p| < U. Normally, there are many
possible sets satisfying these conditions. Hence, a program containing this type of

rules has multiple answer sets, corresponding to possible choices of p.

In the RCS, the common task is to prepare the shuttle for a given maneuver. The goal
of preparing for such a maneuver can be split into several subgoals, each setting some

jets, from a particular subsystem, ready to fire. The overall goal can therefore be

177
stated as a composition of the goals of individual subsystems containing the desired
jets, as follows. The first rule below states that the overall goal has been reached
if, for each subsystem, there is a time at which the goal has been reached for the

subsystem.

goal :-
goal(T1,left rcs),
goal(T2,right rcs),

goal (T3,fwd rcs).

:— not goal.

The second rule above is a constraint that states that for a model (a solution) to exist,
the overall goal must be achieved. The plan testing phase of the search is implemented

by this constraint which eliminates the models that do not contain plans for the goal.

Splitting the RCS into subsystems allows us to improve the efficiency of the module
substantially. For instance, for some goal, finding a plan of 5 steps takes a few
seconds, as opposed to a few hours required when the representation of the RCS
is not partitioned into subsystems. Notice that, since there are some dependencies
between some subsystems, a very small number of extremely rare (and undesirable)
plans can be missed. It’s possible to modify the Planning module in order to find

these plans too.

One such dependency is the connection between the Left and Right RCS’ subsystems

178
through two crossfeed lines (one for fuel and one for propellant) controlled by crossfeed
valves. Each of the subsystems has one such valve per line. When a fault in the fuel
line of one of these subsystems, say the Left RCS, does not permit preparing one of
its jets for firing, the crossfeed valves are used to direct fuel from the other subsystem,
in this case the Right RCS, to supply what is needed. The actions required for such

operation cannot be generated for certain types of maneuvers, as we explain shortly.

First, recall from Section 5.4.1 that in our current partitioned representation of the
RCS, whenever a maneuver M does not require firing any jets from one of the sub-
systems, say R, we specify that the maneuver portion corresponding to R is ready,
by relation done(M,R). In this case, during planning, no actions are generated for the
subsystem which is ready, and its crossfeed valve stays closed blocking the fuel line
between the subsystems. As a result, no plan using the crossfeed will be found, in

this case.

The situation described above is rather rare. There are 12 possible maneuvers in the
RCS domain. The partitioned representation of the RCS requires 36 rules to express
these maneuvers. From these, only four can be (in extreme circumstances) affected
by this limitation. The maneuvers and corresponding subsystems connected by the

crossfeed lines described as “ready” in our representation are:

e +Y - Right RCS,

e —Y - Left RCS,

179

o +yaw - Left RCS,

e —yaw - Right RCS.

Of course if every available plan for achieving a given maneuver uses the crossfeed
our system will return a misleading “no plan” answer. We dealt with the problem by
following each suspected failure by an extra run of a slightly modified version of the
planner. Recently a new and more elegant solution to this problem was found which

is based on the extension of A-Prolog from [13].

Since the RCS contains more than 200 actions, with rather complex effects, and
may require long plans, the standard planning approach described above needs to
be substantially improved. This is done by addition of various forms of heuristic,
domain-dependent®, information. We refer to the Basic Planner expanded by such

heuristics as Smart Planner.

5.6 Smart Planner: adding the control knowledge

In this section we discuss the expansion of the basic planner by useful heuristic infor-
mation, including control knowledge. The usefulness of control knowledge for plan-
ning has been investigated in [9, 11, 99, 104], but comparatively little is known about
the influence of heuristics in answer set planning (see however [27]). Such knowledge

can be classified into two categories: domain dependent and domain independent.

9Notice that the addition does not affect the generality of the algorithm.

180

Both types of heuristics work by either limiting the combinations of actions that can
occur or by declaring that certain situations are illegal. In either case the heuris-
tics help prune the search space, leading to increased efficiency, and improving plan

quality by eliminating undesired plans.

Some of the control knowledge used in the USA-Advisor can easily be included for
planning in other domains. An example of such domain independent knowledge is
the statement “Do not repeat actions already performed.” Note that, while this rule
does not apply in all domains, in many an optimal plan will never include the same

action twice. This rule can be easily encoded in A-Prolog as the following constraint:

:— action of (A,R),
not equal(T1,T2),
occurs(A,T1),

occurs(A,T2).

Next consider the following statement: “Do not perform two different types of actions
which achieve the same effect.” While the general idea expressed in this statement is

similar to the one above, the encoding is quite different — it is domain dependent.

:— controls(Sw,V),
occurs(flip(Sw,P),T),
commands (CC,V,P),

occurs(CC,T1).

Given a switch Sw that controls a valve V, this constraint eliminates any models

181
where an action flips Sw to position P is later followed by the issuing of a computer

command also seeking to move V to P.

The different encoding is due to the fact that in the RCS domain, the only actions
which have the same effect are those of using either a switch or a computer command
to change the position of a valve. In this case it is much easier to encode the domain
specific instance of the general rule than to write the general rule itself. However we
found that the understanding of the general nature of this heuristic is indispensible

for the system designer.

There are a number of domain specific heuristics in the USA-Advisor. The following
example states that a switch should not be moved to the gpc (general purpose com-
puter) position unless the next action is to issue a computer command to the valve

related to that switch.

:— controls(Sw,V),
occurs(flip(Sw,gpc),T),

not issued_commands(V,T+1).

Note that while there are valid plans for the operation of the RCS which do not obey
this rule, for each of them there is a plan containing exactly the same actions which

does obey it. This allows us to further prune the search space.

The next constraint does not directly address the performance of an action. It states
that, unless a valve is stuck, it is not allowed to be open if there is no pressure above

it.

182
:— link(N1,N2,V),
holds(in state(V,open),T),
not holds(pressurized(N1),T),
not stuck(V),

not holds(in_state(V,open),0).

This constraint is not a physical requirement but rather a preference on types of

plans.

More domain-dependent rules embody common-sense knowledge of the type “do not
pressurize nodes which are already pressurized.” In the RCS, some nodes can be
pressurized through more than one path. Clearly, performing an action in order to
pressurize a node already pressurized will not invalidate a plan, but this involves an
unnecessary action. Although we do not claim the plans computed are optimal, the
shortest sequence of actions to achieve the goal is a good candidate as the optimal
plan(s). The following constraint eliminates models where more than one path to

pressurize a node N2 is open.

:— 1link(N1,N2,V1),
link (N1,N2,V2),
neq(V1i,V2),
holds(in_state(V1,open),T),
holds(in_state(V2,open),T),

not stuck(V1,open),

183

not stuck(V2,open).

As mentioned before, some heuristics are crucial for the improvement of the planner’s
efficiency. One of them states that “a normally functioning valve connecting nodes
N1 and N2 should not be open if N1 is not pressurized.” This heuristic clearly
prunes a significant number of unintended plans. It is represented by a constraint
that discards all plans in which a valve V is opened before the node, preceding it, is

pressurized.

:— link(N1,N2,V),
holds(in_state(V,open),T),
not holds(pressurized by(N1,Tk),T),
not has leak(V),

not stuck(V).

The improvement offered by domain-dependent heuristics has not been studied math-
ematically here. However, our experiments show that some of the domain-dependent
heuristics play a crucial role on the efficiency of the planning module. The impact
of such heuristics was made clear when the time required to find a plan for tasks

involving a large number of faults was reduced from hours to seconds.
The Planning Module contains approximately 35 rules of which 13 are heuristics.

The planner is by far the largest and most sophisticated answer set planner in exis-
tence. In fact we are not aware of any other successful declarative and/or otherwise

provenly correct planner of this size. Below are some lessons we learned from its

184

design and implementation.

e Since a single action of an astronaut changes the values of many interrelated
fluents of the RCS the description of effects of this action becomes a nontrivial
task. To solve it we need to find solutions to frame, ramification, and qualifica-
tion problems [138, 66, 135]. We solved these problems by using the techniques
developed in theory of action and change and the power of A-Prolog rules. The
frame problem was solved by encoding the inertia axiom by a “nonmonotonic,”
default rule of A-Prolog. Qualification was addressed by the use of constraints.
And finally, the most difficult ramification problem was solved by the use of
static causal laws. It is not clear to us how and if the effects of the RCS actions
could be accurately represented by more traditional STRIPS [65] like action
languages like ADL [161].

e A-Prolog proved to be a language capable of specifying the initial situation,
causal and other relations of the domain, as well as the heuristic information
limiting the search space and improving quality of plans. This contrasts with
some of the other representational approaches which require separate languages
for each of these classes of statements. For instance, the encoding of heuristic
information in [9, 10, 11] required a fairly sophisticated use of temporal logic.

e Domain models written in A-Prolog can also be used for tasks different from
planning. We have seen one such example in Section 3.5.2. Example of their

use for diagnostic purposes can be found in [12, 82]. This is done by simply

185
replacing the planning module with an appropriate (e.g. diagnostic) module in
which the agent’s actions are replaced by exogenous actions of the environment.
In a sense answer set diagnostics can be viewed as “planning in the past”.

e The heuristics used in the Smart Planner were easy to encode and to use.
Moreover, our experiments show that they significantly improve both, quality
of plans and efficiency of search.

e It was interesting to notice that many fluents of the RCS domain had natural
recursive definitions, easily expressible in A-Prolog. Recursive definition how-
ever precluded the immediate use of CCALC [132] and other planners which
use satisfiability solvers. It will be interesting to see if such solvers could be
used after some modifications of the representation. It is probably also worth
mentioning that nonmonotonicity of A-Prolog played an important role in the
formalization of the domain, e.g. in specifying the inertia axiom, closed world
assumptions used for describing the initial situation, and other typical default
knowledge.

e The planner’s ability to mix parallel and sequential plans and to efficiently

search for them are the key ingredients in the success of the project.

Overall, answer set planning proved to be a good tool for our purpose. We are not
aware of any other tool which would allow us to deal with complexity of effects of the
RCS actions. The next section shows that the resulting system is remarkably efficient.

Partly this is due to non-numerical nature of the problem. The fact that despite a

186
large number of concurrent actions involved, the plans were comparatively short also
contributed to the efficency. To expand the applicability of answer set planning and
reasoning to hybrid systems, i.e. systems involving “continuous” time and numerical

computations we need to substantially extend existing answer set solvers.

The complete program describing the structure and behavior of the RCS contains

approximately 700 facts and 175 rules.

5.7 Experimental Results for the USA-Advisor

In this section we give an overview of our experiments with the smarter planner of
the USA-Advisor. We used a 2.4GHz Pentium 4 computer with 1024MB of RAM,
running the NetBSD 1.6 Operating System; SMODELS version 2.26 with input from

Lparse version 1.0.9, and MKAtoms'© version 2.1, were used to find the plans.

The number of actions contained in a plan P for an individual subsystem of the RCS
R is called the number of steps of P (since we assume that each action takes one unit
of time (or step) to be performed), and is denoted steps(R). The total number of
steps of a plan for the whole RCS is the maximum among the number of steps taken
by each RCS subsystem, i.e. N = max(steps(Forward), steps(Left), steps(Right)).
In order to allow the grounding of the program by Lparse, it is necessary to include

the number of steps N of the plan in the call to SMODELS.

10 MK Atoms is a utility that re-formats the output of SMODELS and DLV, in order to have only
one atom per line. It was developed by Marcello Balduccini and is available for download from
http://krlab.cs.ttu.edu/ marcy/mkatoms

187
The RCS can be tested on two levels of detail: basic and extended level. There are
two types of tasks to be tested: checking a plan, and finding a plan. To perform
these tasks, besides the modules already discussed, we need a set of rules describing
the initial state of tanks, switches, and valves, called initial situation; and a test
instance, a collection of system faults together with a maneuver to be performed by
the shuttle. The initial situation is common to all test instances, and is shown on
Figure 5.4 . Figure 5.5 shows the test instance for maneuver —Z with the RCS system

malfunctioning with 3 mechanical and 2 electrical faults.

The format of a call to SMODELS is determined by the level of representation and task

to be performed, as follows:

1. The basic level representation does not involve electrical faults, i.e. neither the
Extended Valve Control Module, the Circuit Theory Module, nor any of the

descriptions of circuits of the RCS are used.

a. Planning in this case requires a call to SMODELS of the form:

lparse -c lasttime=N -d none rcs_basic planner

initial _situation test_instance XXX | smodels

where file rcs_basic corresponds to the Basic Valve Control Module, and
planner is the Smart Planner Module. Lparse parameter -c lasttime=N
gives the maximum number of steps to be considered for a plan; parameter

-d none provides an optimization that reduces the ground program by

188
removing literals which are trivially true. (For details on options to Lparse
refer to [189].) Since no parameters are specified for SMODELS, it will
search and return a single plan (the first plan found) satisfying the goal.
SMODELS would compute and return all plans found if the call included

parameter “0”, written as

lparse -c lasttime=N -d none rcs_basic planner

initial_situation test_instance XXX | smodels O

b. Checking a plan requires a slightly different call to SMODELS. The plan to
be checked is written in the form of constraints in file plan_XXX. SMODELS

can then be called with command

lparse -c lasttime=N -d none rcs_basic planner

initial situation test_instance XXX plan XXX | smodels

The extended level representation is used if the problem involves both electri-
cal and mechanical faults. To improve efficiency, the only circuit descriptions

included in the call are those of faulty circuits.

a. For planning in this case the call (corresponding to the test instance of

Figures 5.4, and 5.5) has the form

lparse -c lasttime=N -d none rcs_basic rcs_extended
circuit_theory fmc2 fmc4 planner

initial _situation test_instance XXX | smodels

189
where rcs_extended is the Extended Valve Control Module; circuit_theory
is the Circuit Theory Module; and fmc2, fmc4 are the descriptions of elec-

trical circuits fmc2 and fmc/, respectively.

b. For checking a plan, we add file plan_XXX containing the plan written in

the form of constraints. The call has the form

lparse -c lasttime=N -d none rcs_basic rcs_extended
circuit_theory fmc2 fmc4 planner

initial _situation test_instance XXX plan XXX | smodels

Section “Common Part” of the initial situation shown in Figure 5.4 defines the state of
tanks, switches and valves initially. It is assumed that all helium tanks are pressurized
in the initial state, which is written as facts. The normal condition of switches and

valves is described by default rules.

The first four lines of the section “Faults and Other Exceptions” of the test instance
shown in Figure 5.5 refer to the three mechanical faults affecting the RCS. Switch
fm1 of the Forward RCS is stuck open, while two faults affect the Right RCS: valve
r0i345b is leaking while open, and switch 712 is stuck open. (Note that leaking valves
which are closed do not really constitute a fault.) The last two lines indicate electrical
faults. The first statement says that wire w6 of gate g4 of circuit fmc/ is stuck at
0; the second fault is that wire w28 of gate ¢g8 of circuit fmc2 is stuck to 1. Section

“Goals” contains the subgoals to be achieved by each RCS subsystem in order to

190

prepare the shuttle for maneuver —Z.

The solution to the test instance from Figure 5.5 is shown in Figure 5.6. A plan with
4 steps and 12 actions was found in 2.44 seconds for the SMODELS call corresponding
to lasttime = 4. In principle, it is not known how many steps a plan will have,
therefore several calls may be necessary before a plan is found. In our tests, we
consider only plans containing 3 or more steps, since 1 and 2-step plans can be easily
obtained, even manually. However, the USA-Advisor can also be used for computing
or checking these simple plans. For this example, a previous call with lasttime = 3
returned false in 0.57 seconds, indicating that no plan of 3 steps existed for this
problem. Hence, the total time for computing a plan for this test instance was 3.01

seconds.

During the implementation of the Planner Module we conducted the following series of

experiments in order to compare the performance of the basic and the smart planner:

(a) randomly generated a collection of test instances with a given number of me-
chanical and electrical faults;
(b) ran the basic and the smart planners in a loop with lasttime ranging from 3 to

10. The duration of each iteration of the loop was limited to 10 minutes.

Overall, about 500 test instances were generated in this manner, and included three

191

Dot To oo To To foTo o INITIAL SITUATION Dot To o Voo To fo oo o

Tololo o oo oo o o COMMON PART TotoToo e To o oo To o

% Initially, the Helium tanks are pressurized.
holds(pressurized by (ffh,ffh),0).
holds(pressurized by(foh,foh),0).
holds(pressurized by(1fh,1fh),0).
holds(pressurized by(loh,loh),0).
holds(pressurized by(rfh,rfh),0).

holds(pressurized by(roh,roh),0).

% All switches are normally in state GPC initially.
holds(in_state(Sw,gpc),0) :- of _type(Sw,v_switch),

not —holds(in_state(Sw,gpc),0).
% Valves are all normally closed initially.

holds(in_state(V,closed),0) :- of _type(V,valve),
not —holds(in state(V,open),0).

Figure 5.4: Initial situation common to all test instances of RCS planner.

192

Yoo To 1o oo oo To o INITIAL SITUATION Yoo ToTo oo oo To oo
hhhhhhhhhh% FAULTS and OTHER EXCEPTIONS Tt Tl ToToToTo T
stuck(fml,open).

has_leak(roi345b).

h(in_state(roi345b,open),0).

stuck(ril2,open) .

stuck_at (fmc4_w6,fmcd_g4,0) .

stuck_at (fmc2_w28,fmc2_g8,1).

Toloolotololo s o o o o To oo GOALS Toloto ool To oo o o o o
% Maneuver to be performed: plus_z

goal(T,fwd_rcs) :— time(T),
h(maneuver_of (minus_z,fwd_rcs),T).

goal(T,left_rcs) :- time(T),
h(maneuver_of (minus_z,left_rcs),T).

goal(T,right_rcs) :- time(T),
h(maneuver_of (minus_z,right_rcs),T).

Figure 5.5: Test instance for RCS planner with 3 mechanical and 2 electrical faults.

smodels version 2.26. Reading...done

Answer:

1

Stable Model:

True

occurs(flip(fha,open),0)
occurs(f1lip(ri345b,closed),0)
occurs(cc(closea_1i12,closeb_1fi12),0)

occurs(flip(£i345,open),1)
occurs (opena_rfhb,1)
occurs (opena_lfha,1)

occurs(flip(fm3,open),2)
occurs(flip(1i345b,open),2)
occurs(flip(ri345a,open),2)

occurs(flip(fm4,open) ,3)
occurs(flip(1m4,open) ,3)
occurs(flip(rmé4,open),3)

Duration: 2.440

Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of

choice points: 20

wrong choices: 0

atoms: 28221

rules: 80256

picked atoms: 26060
forced atoms: 601

truth assignments: 2130760

Size of searchspace (removed): 593 (790)
Total: 3.010

Figure 5.6: Solution for test instance shown in Figure 5.5.

193

WIWWUWUWA, PLAN TO BE CHECKED %Al

:— not

:= not

:— not

:— not

:— not

:— not

:— not

:—= not

:— not

:= not

:— not

:— not

Figure 5.7: Plan file corresponding to test instance shown in Figure 5.5.

occurs (flip(fha,open),0).

occurs (f1ip(ri345b,closed),0).

occurs(cc(closea_1i12,closeb 1fil12),0).

occurs(flip(£i345,open),1).
occurs (opena rfhb,1).

occurs (opena_1lfha,1).

occurs (f1ip(fm3, open) ,2) .
occurs(f1ip(1i345b,open),2).
occurs (flip(ri345a,open),2).
occurs(flip(fm4,open),3).
occurs (flip(1m4,open),3).

occurs(flip(rm4,open),3).

194

195
mechanical and two electrical faults - the most interesting situation from the stand-
point of the USA experts. The Smart Planner was able to find the plans or discover
their absence in less than 22 seconds. The Basic Planner required substantially more
time (in some cases the difference exceeded 2 orders of magnitude). On average the

Smart Planner was about 10 times faster.

The second series of experiments dealt with our deliberate attempt to crash the sys-
tem. We selected a number of test instances which seemed to correspond to especially
difficult situations. Even though the size of the grounded program, the length of plans,
and the number of actions involved are substantially larger than those in the initial
experiments, the time is still quite acceptable (USA wanted planning times of less
than 15 minutes). In contrast, the basic planner was not able to find solutions to any

of these problems - we stopped the planner after 24 hours of work.

It is interesting to note that achieving this performance required all of the Smart
Planner heuristics - removal of some of them gave a small improvements on a few test
instances, but on others tests the performance was worsened by more than an order
of magnitude. A Pentium IT 450MHz system was used in these initial trials. More

detailed results on these experiments appear in [158, 18, 157].

To further test the Smart Planner we conducted a series of experiments based on
the random generation of 2000 test instances, distributed in blocks of 200 instances,

containing the following number of faults:

e Block 1: 3 mechanical and 0 electrical;

196

e Block 2: 3 mechanical and 2 electrical;

e Block 3: 5 mechanical and 0 electrical;

e Block 4: 5 mechanical and 3 electrical;

e Block 5: 8 mechanical and 0 electrical;

e Block 6: 8 mechanical and 5 electrical;

e Block 7: 10 mechanical and 0 electrical;

e Block 8: 10 mechanical and 3 electrical,;

e Block 9: 10 mechanical and 5 electrical,;

e Block 10: 10 mechanical and 7 electrical.

The tests performed with these instances used the smart planner in a loop with
lasttime ranging from 3 to 10; and as before, the duration of each iteration of the
loop was limited to 10 minutes. Our choice of 10 minutes is guided by the expectation
of flight controllers to have a result in less than 15 minutes. The number of steps
and the time limit can always be increased, however it becomes increasingly harder

to find plans for instances with such high number of faults.

The overall results for the 2000 experiments are summarized in Table 5.3. Here the
name of an instance group indicates the number of mechanical and electrical faults in

that block of experiments, e.g. ins-10-7 means that all 200 test instances in this block

197
have 10 mechanical and 7 electrical faults. The first column of Table 5.3 indicates
the different instance groups tested; the second column gives the maximum number
of actions performed, and the third indicates the maximum number of steps needed,
for all plans found in a specific instance group. The maximum time, in seconds, to
find a plan with N steps, without considering previous unsuccessful computations
with 3 < lasttime < N, is given in the fourth column. The maximum total time, in
seconds, to find a plan with N steps, which includes the time required for previous
unsuccessful computations with 3 < lasttime < N, is presented in the fifth column.
This correspond to the worst-case scenario. Notice that in these experiments, few
difficult test instances required several minutes to compute a plan, or to indicate a
plan did not exist, while the majority of the test instances was solved in seconds. The
values in the sixth column confirm this obsertation. It gives the maximum average
total time, in seconds, to find a plan with N steps, which includes the time required
for previous unsuccessful computations with 3 < lastttme < N. The last column
shows the number of test instances, per block of experiments, for which no plan was
found. Tt is important to point out that for all these instances the planner indicated
the absence of a plan, i.e. the planner was able to conclude that no plan exists in the

time allowed for the computation.

Some other important information regarding these experiments are: (a) the number
of ground rules in the tests ranges from 50,000 to 285,000 with an average of 160,000

rules, and (b) the number of ground atoms ranges from 15,000 to 70,000 with an

198

Instance Max- Max- | Max-time | Max-total Avg-total | #no-plan
groups #actions | #steps | (seconds) | time (secs) | time (secs) found
ins-3-0 18 6 17.020 608.300 4.459 7
ins-3-2 15 5) 5.560 19.170 3.760 60
ins-5-0 15 7 75.810 687.320 5.930 30
ins-5-3 18 7 35.720 753.460 16.618 103
ins-8-0 18 6 79.270 610.770 11.034 69
ins-8-5 16 6 13.130 114.590 8.460 140
ins-10-0 18 7 465.420 1213.000 20.478 99
ins-10-3 18 6 41.750 615.280 16.856 147
ins-10-5 12 6 8.790 105.560 9.447 163
ins-10-7 12 4 108.100 108.680 10.439 181

Table 5.3: Overall results for 2000 RCS experiments.

average of 34,000 atoms. Graphs and tables with detailed information about the test

instances used in these experiments are presented in Appendix A.

Finally, we highlight the fact that, on average, the maximum total time required to

find a plan, for all test instances for which such a plan existed, was less than 21

seconds.

5.8 Summary

In this chapter we described a medium size decision support system written in A-

Prolog. This application requires modeling of the operation of a fairly complex sub-

system of the space shuttle at a level suitable for use by shuttle flight controllers. It

is expected that deployment of this system, for use in the space program, will begin

199
in August of 2003. The system, while based on a representation of the Reaction Con-
trol System described on previous work [203, 31], represents a substantial advance
over its predecessor (which was developed in Prolog.) The RCS/USA-Advisor is im-
plemented in the declarative language A-Prolog and uses methodologies and search

engines based on a new programming paradigm, answer set programming.

From the scientific standpoint, this work can be of interest to two groups of people,
those interested in answer set programming and those interested in planning. We
hope both groups will be glad to learn about the existence of a comparatively large
and practical software system written in A-Prolog. The former group can also learn
about advantages of A-Prolog with respect to standard Prolog, evident even in the

case of plan checking.

An important methodological lesson we learned from this exercise is the importance
of careful initial design. For instance, introduction of junction nodes in the model of
the Plumbing Module of the RCS substantially simplified the resulting program. We
are also satisfied with our use of the Java interface for selecting modules necessary for
solving a given problem, and integrating these modules into a final A-Prolog program.
Structuring most modules as lp-functions contributed to the reusability and proof of
correctness of the integration. Such proof is especially important due to the critical
nature of the RCS. Consider the following situation: suppose you have Ip-functions f
and g correctly implementing the plumbing and basic VCM modules of the system;

integration of these modules leads to the creation of new lp-function h = f og. It is

200
known that, due to nonmonotonicity of A-Prolog, logic programming representation
of this function cannot always be obtained by combining together rules of f and g.
In our case, however, a general theorem [72] can be used to check if this is indeed the

case.

The people from planning may find it interesting to see a system of substantial size
built on theory of action and change. In particular, we were somewhat surprised by
the importance of static causal laws in our model. We are not sure that the use of
STRIPS-like languages containing only dynamic causal laws is sufficient for a concise

representation of the RCS, and especially of the extended VC M.

The use of A-Prolog allowed us to deal with recursive causal laws, which may pose
a problem to more classical planning methods. (Partial solution to this problem is
suggested in [59], where the authors use ccALc ([133]) to reduce the computation of
answer sets to the computation of models of some propositional formula. They give
a sufficient condition of the correctness of such transformation. Unfortunately, the

idea does not apply here, since the corresponding graph is not acyclic.)

Recent work in planning drew attention to the problem of finding a language which
would allow a declarative and efficient representation of heuristic information [10, 99,
104, 68]. We believe that this dissertation demonstrates that a large amount of such
information can be naturally expressed in A-Prolog. Moreover, its use dramatically
improves efficiency of the planner (which is not always the case for satisfiability based

planners.)

201
Finally, it may be interesting to see how modularity allows planning to be performed
in different levels. It is easy, for instance, to modify our planning module to search
for manual plans, i.e., those not including computer commands. The new planner
will be much more efficient and, in many cases, sufficient for the flight controllers’
needs. We have plans of applying these techniques to modeling other systems of the

space shuttle.

Chapter 6

Conclusions

“Emergy and persistence conquer all things.”

Benjamin Franklin (1706-1790)

The purpose of this work is to answer the following two questions:

1. Is it possible to represent a real world problem of reasonable size involving

complex effects of actions with the A-Prolog language?

2. Are the available inference engines for A-Prolog able to compute the solutions

for such a domain in a reasonably efficient manner?

We have addressed both questions and succeeded in demonstrating that the answer
to both is positive. It is important to point out that we have developed the largest
and by far most complex application of answer set programming to date. Other
planners, to the best of our knowledge, have substantial difficulty in representing
domains dealing with state constraints and recursion. The results obtained in this

project are so positive that there are indications of their use beyond this application.

202

203
A sign of this trend is the present work under development by United Space Alliance

programmers to extend our system to other subsystems of the space shuttle.

Another important point is that, in principle, the Theory of Circuits, as well as
other parts of our program, which can be viewed as a Theory of Switches, a Theory
of Valves, etc., can be re-utilized in the design of other control applications, e.g.

systems with mechanical and/or electrical modules.

Even though we have not included the proofs for all our theorems in the dissertation,
we have been able to show that some of our programs are provenly correct. This was
possible thanks to the general level of knowledge about mathematical properties of

the A-Prolog language.

It was also demonstrated that the most sophisticated and powerful inference engines
for answer set programming available at the moment have limitations that still need
to be addressed. Answer set programming works and allows planning in domains
where parallelism and a great deal of knowledge are available. It does not work well
when planning involves long plans, and it does not work well with domains which
require numerical computations. This work, in this sense, is also mportant because it
made clear what the current limitations are. An important contribution of this work
is to prove that the language is powerful enough to represent and reason about effects
of actions in certain classes of domains. We believe that future work will allow the
expansion of this class of programs for those requiring numerical computation and/or

that are only partially grounded.

204

6.1 Lessons Learned

It was believed for some time that A-Prolog is capable of representing default knowl-
edge as well as various forms of knowledge incompleteness. Quite recently, it was
noticed that A-Prolog is also suitable for modeling reasoning of agents in dynamic
domains. Even more recently, it was understood that methodologies of declarative
programming developed in these two areas can be used in many other interesting
domains. In this work, the A-Prolog language was used to demonstrate the applica-
bility of this methodology by solving the problem of reasoning in a dynamic domain,

including electrical and mechanical system modules.

When modeling complex domains, the syntactic restrictions of A-Prolog can make
some rules appear non-natural — in our case, the three rules used in the GD program
from Section 3.5.2, in order to exhaustively generate possible input vectors for the
circuit. There is some work currently being done on an extension of A-Prolog to deal

with sets [95] which is expected to overcome this problem.

We also would like to stress the following software engineering lessons learned from

this work:

1. The syntax and semantic of A-Prolog, as well as its mathematical theory, al-
lowed us to quickly build a concise and modular solution to a comparatively

non-trivial problem.

2. The solution was constructed in parallel with the development of the proof of

205

its correctness. Declarativeness of A-Prolog greatly facilitated this process.

3. Reasoning and constraint satisfaction algorithms built in the A-Prolog inference
engine proved to be sufficiently efficient for implementing interesting new algo-
rithms for simulation and analysis of digital circuits, planning, plan checking,
and even diagnosis. Comparison of their efficiency with respect to other known
algorithms remains to be investigated. The preliminary results, especially for

planning, are very encouraging.

4. Declarative programs in A-Prolog were nicely integrated with each other and
with the Java-based graphical interface allowing a user—friendly interaction with

the system.

We believe that the integration of programs written in different languages, with dif-
ferent programming paradigms, will be a trademark of future knowledge-intensive

systems.

6.2 Future Work

In this dissertation we developed a decision support system for the space shuttle’s
flight controllers based on the Reaction Control System. This is a complex domain
which is worth further investigation. Our work was mainly concentrated on planning
tasks; it would be interesting to examine the issues involving other reasoning tasks.

Diagnosis of faulty components from the different modules, e.g. switches, valves,

206

and digital gates, is an obvious candidate task. The idea of reducing the problem of
finding a diagnosis for a faulty system to finding stable models of a logic program
was first proposed in [62]. Recent work [12, 69, 82] in this area seems to be easily
applicable to this domain as far as our preliminary tests indicated. In this context,
diagnosis can be viewed as “planning in the past.” The relationship between several
reasoning tasks, e.g. planning, diagnosis, abduction, is still not entirely clear. We
consider A-Prolog the best candidate for specification of these reasoning tasks. Much
work remains to be done towards methodologies of use of A-Prolog and development

of algorithms for different reasoning tasks.

There are a number of unanswered questions related to the RCS domain; we discuss

some of these issues next.

The nature of the RCS system allowed us to create a partitioned representation and
to develop an efficient planner based on the parallel computation of independent
subgoals. The existence of dependencies among different subparts of a system would,
in principle, prevent the use of such technique. We can deal with partial dependencies
among subsystems of the RCS by utilizing a different partition of the system. There
exists ongoing research on consistency-restoring rules [13] that seems to overcome the
limitations imposed by these dependencies. More needs to be done in this direction.
This line of research seems to be closely connected to the specification of prioritized
defaults [80] — rules establishing preferences among choices available to a reasoning

system. This relationship remains to be investigated.

207
The planner implemented in this dissertation contains a large amount of control
knowledge which was easily described in the A-Prolog language. The use of this
knowledge dramatically improved the efficiency of the planner. We intend to apply
what we have learned from this experiment to other domains and analyze whether
this is always possible or for which classes of problems this is mostly adequate. The
modular design of our program resulted in planning with different programs, which
corresponded to different levels of detail of the domain. To the best of our knowledge,
this technique was not used before. Further investigation of its applicability to differ-
ent classes of programs should be done. Moreover, there are many other approaches

for planning, and their correspondence to our approach is still not clear.

It would also be interesting to investigate the reusability of the several modules devel-
oped for the RCS, e.g. Plumbing, Valve, and Circuit Theory, in different applications

involving similar knowledge.

We have experimented with a version of the RCS/USA-Advisor which uses the DLV
inference engine [41, 55]. The results were slower than those obtained with SMOD-
ELS. This is due, in part, to the fact that our program does not contain disjunctive
rules which can be efficiently computed by DLv. Currently there are no standard
benchmarks that could be utilized for comparing the efficiency of A-Prolog inference
engines. A real world application of the size of the RCS can be an interesting test
bed for this goal, but the differences between these engines must be examined in a

much broader spectrum.

208
There are many interesting open problems directly related to the implementation of
A-Prolog engines. Some of these problems, including the ones under investigation by

various research groups, are:

1. Modification of algorithms and reasoning engines in order to allow the computa-
tion of longer plans and efficient handling of programs corresponding to heavily

numerical domains;

2. Development and implementation of new inference rules, in the spirit of the
EER rule [142], that would improve the efficiency of the computation of stable

models;

3. Development of algorithms allowing the partial grounding [56, 89] of the logic

programs given as input to these inference engines;

4. Development of algorithms allowing the parallel computation of stable models.
There are several research groups working on parallel engines, for details see

67, 164, 165].

In this dissertation, we have demonstrated the applicability of the A-Prolog language
to the representation of defaults and multiple interesting aspects of reasoning about
actions and their effects. Several extensions to the language are being developed, e.g.

sets and consistency-restoring rules, and much remains to be investigated.

Clearly, both the A-Prolog language and the answer set programming paradigm have

experienced an explosive development on the last five years. It was a privilege to see

209
it happen and we hope that this work allows the reader to share the excitement of

the many existing possibilities and also gives a glimpse of much that is still to come.

Appendix A

RCS Experiments’ Results

“It is of great importance that the general public be given the opportunity to
experience, consciously and intelligently, the efforts and results of scientific
research. It is not sufficient that each result be taken up, elaborated, and applied
by few specialists in the field. Restricting the body of knowledge to a small group

deadens the philosophical spirit of a people and leads to spiritual poverty.”
Albert Einstein (1879-1955)

This appendix presents the detailed results for 2000 experiments performed with the
RCS. These experiments were divided in blocks of 200 test instances as explained
in Section 5.7. The results for each block of experiments are given in two types of

graphs:

1. The “Total Time” graph provides the sum of the time spent on each call to
SMODELS until a plan was found, or the last step of the loop with lasttime = 10

was processed.

2. The “Number of Steps” graph shows the number of steps contained in each
plan found. If the number of steps equals to 0 then no plan was found for that

210

211

instance.

A label of the form results/res-3-2, appearing on the upper right corner of the graphs,
indicates the number of mechanical and electrical faults in the experiments, e.g. res3-
2 means that the instances have 3 mechanical and 2 electrical faults. Appendix A also
contains tables summarizing the most important data with respect to the experiments.
In these tables, the first column is the test instance number, the second gives the
number of RCS subsystems involved in the maneuver (1, 2, or 3), the third is the
number of time steps needed, the fourth is the total number of actions performed, the
fifth and sixth are the number of rules and atoms used by SMODELS in the grounded
code for that test case, and the seventh column is the time, in seconds, needed to find
a plan (this time refers only to the time step when the plan was found). The test

instance of Figures 5.5, and 5.6 corresponds to instance 8 of Table A.3.

212

700 T T T T T T T T
results/res-3-0 —+—
600 - i .
500 .

400 b

300 - b

Time (secs)

200 b

100 b

0 & l i R LA FRTTSY TOTPRTRTORRNIv=C IV TR TR
0 20 40 60 80 100 120 140 160 180 200
Experiment Number

6 T T T T T

résults/re's-S-O —

Steps
w

1 1 1 1 1 ‘
0 |
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.1: Results for experiments with 3 mechanical and 0 electrical faults.

213

20 T T T T T T T T

+ results/res-3-2 —+—
18 .
16 .

14 .

Time (secs)

o 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

5 T T T T T

I
results/rgs-3-2 —+——

Steps

O T 1 il 1 n m 1
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.2: Results for experiments with 3 mechanical and 2 electrical faults.

214

700 T T T T T T i T
results/rels-5-0 —+—
600 - .
500 .

400 b

300 - b

Time (secs)

200 b

100 b

O Bosstiersmiaigton el ok g, Al A mwjle\nﬁ ;WWMJ b ot]
0 20 40 60 80 100 120 140 160 180 200
Experiment Number

7 T T T T T T

résults/rels-S-O —

Steps

I |

O 1 1 1 — 1 1 1 L L L 1 |
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.3: Results for experiments with 5 mechanical and 0 electrical faults.

215

800 T T T T T T T T
_ results/res-5-3 —+—

700 - b

600 - ﬁ .

500 - b

400 + .

Time (secs)

300 b
200 r b

100 b

0 M@WW%WWWMMMVMM L*WM%MM@F
0 20 40 60 80 100 120 140 160 180 200
Experiment Number

7 T T T T T T fT T
results/res-5-3 —+—

Steps

O HHHH HW!HHHHHHH H H‘IH H 1 HAHHH A 1 } HHHH—H IHHH H 1 HtH
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.4: Results for experiments with 5 mechanical and 3 electrical faults.

216

700 T T T T T T T T
results/res-8-0 —+—

600 1 1 b

500 .

400 b

300 b

Time (secs)

200 b

100 b

0 hmmmwﬁMWWwM@m.Rmﬁijmmmmmm mm;biﬂ@mmm

0 20 40 60 80 100 120 140 160 180 200
Experiment Number

6 T T T T T

T T
resultsfres-8-0 —+—

Steps
w S
e -
 S—
—
—
—

O i 1 H 1 H—H IH H—H ml H 1 H—H 1 H I‘H H ‘!‘ H
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.5: Results for experiments with 8 mechanical and 0 electrical faults.

217

120 T T T T T T T T T
N results/res-8-5 —+—
100 .
80 | E
w
o
?
~ 60 - .
(4]
E
|_
40 E
140 160 180 200
Experiment Number
6 T T T T T T T T
results/res-8-5 —+—
5 - -

Steps

w
—
—F
—
.

O n IH HHHH HIH H Hmm!m”m mm!mwmmm ‘!HMHH IHHHHHHH 1 i umquuuuuuuulummuuuu
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.6: Results for experiments with 8 mechanical and 5 electrical faults.

218

1400 T T T T T T T T
results/res-10-0 —+—
1200 + T .
1000 .
“ 8o} It]
(]
“2
£
= 600 .
400 | E
200 .
0 b SR b ot b b | TN UNTORRTTEEpat [INETRPPRTTT NN USENTTO TERPVUPN " COPP RUORYeINTopN|
0 20 40 60 80 100 120 140 160 180 200
Experiment Number
7 T T T T T T T T
results/res-10-0 —+—
6 - .
5 - .

(o8

2

U) v
3
2
1

0 20 40 60 80 100 120 140 160 180 200
Experiment Number

Figure A.7: Results for experiments with 10 mechanical and 0 electrical faults.

219

700 T T T T T T T T T
results/res-10-3 —+—
600 1 1 .
500 .

400 1 b

300 - b

Time (secs)

200 b

100 b

Qg 1 MMW@W%
100 120

0 20 40 60 80 140 160 180 200
Experiment Number

6 T T T T T

res'ults/res'-lo-s -

Steps
w

0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.8: Results for experiments with 10 mechanical and 3 electrical faults.

220

120 T T T T T T T T
results/res-10-5 —+—
100 E

80 .

60 .

Time (secs)

0 20 40 60 80 100 120 140 160 180 200
Experiment Number

6 T T T T T T

res'ults/res'-lo-s -

Steps
w
—t

0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.9: Results for experiments with 10 mechanical and 5 electrical faults.

221

120 T T T T T T T T
results/res-10-7 —+—

100 b

60 .

Time (secs)

20

0 20 40 60 80 100 120 140 160 180 200
Experiment Number

4 T T T T T T T T
results/res-10-7 —+—

3.5 4

2.5 1 .

Steps
N

0.5 .

O]]]] 1 1]]]
0 20 40 60 80 100 120 140 160 180 200

Experiment Number

Figure A.10: Results for experiments with 10 mechanical and 7 electrical faults.

222

Table A.1: Results for experiments with 3 mech. and 0 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
1 2 3 6 47271 14709 0.430 51 1 3 3 47274 14710 0.420
2 2| 3 6 47286 14709 0.450 52 1] 3 3 47247 14710 0.470
3 2| 4 8 63718 18122 0.970 53 1] 4 4 63671 18124 0.610
4 2| 3 6 47274 14710 0.440 54 1] 4 4 63685 18124 0.590
5 2|3 6 47271 14710 0.440 55 1] 4 4 63718 18122 0.640
6 2| 3 6 47278 14710 0.450 56 115 5 82373 21570 0.860
7 2|3 6 47295 14709 0.460 57 3|1 4|12 63681 18124 1.630
8 2| 3 6 47295 14709 0.450 58 1] 4 4 63687 18123 0.640
9 2| 3 6 47282 14709 0.440 59 3| 4|12 63707 18123 1.660

10 2| 3 6 47275 14709 0.450 60 1]0 0 | 215364 39301 1.690
11 3 4 12 63691 18123 1.690 61 2 3 6 47295 14709 0.440
12 3 4 12 63691 18123 1.640 62 2 0 0 | 215422 39299 1.710
13 3| 4|12 63700 18123 1.680 63 2| 3 6 47267 14710 0.500
14 3 4 12 63692 18123 1.740 64 2 3 6 47265 14710 0.560
15 3| 4| 12 63707 18123 3.120 65 2| 3 6 47263 14710 0.530
16 3| 4|12 63661 18123 1.830 66 2| 3 6 47279 14709 0.440
17 3| 4| 12 63680 18123 1.840 67 2| 3 6 47247 14710 0.450
18 3|3 9 47274 14710 0.620 68 2| 3 6 47295 14709 0.560
19 3| 4| 12 63707 18123 1.780 69 2| 3 6 47303 14708 0.440
20 3| 6| 18 | 103478 25049 7.290 70 2| 3 6 47263 14709 0.450
21 2| 3 6 47275 14710 0.550 71 3| 4| 12 63707 18123 1.460
22 2| 3 6 47275 14709 0.450 72 2| 3 6 47262 14709 0.440
23 2| 3 6 47287 14710 0.500 73 2| 3 6 47301 14707 0.450
24 2| 3 6 47286 14709 0.440 74 2| 3 6 47287 14710 0.460
25 2|3 6 47287 14710 0.660 75 2| 3 6 47258 14710 0.450
26 2| 4 8 63686 18123 1.080 76 2| 3 6 47295 14709 0.530
27 2| 3 6 47287 14710 0.440 kéd 2| 4 8 63696 18123 0.820
28 31 4|12 63718 18122 2.060 78 2| 3 6 47295 14709 0.440
29 2| 3 6 47295 14709 0.560 79 2| 3 6 47266 14710 0.450
30 2| 3 6 47282 14709 0.450 80 2| 3 6 47295 14709 0.450
31 3| 4| 12 63707 18123 2.360 81 2| 3 6 47287 14710 0.450
32 3| 4| 12 63666 18123 | 12.770 82 3] 4| 12 63691 18123 2.130
33 34|11 63677 18123 2.270 83 2| 4 8 63682 18123 1.330
34 3| 3 9 47287 14710 0.490 84 2| 3 6 47287 14710 0.450
35 3| 4| 12 63707 18123 2.030 85 2| 3 6 47303 14708 0.490
36 3| 4| 12 63696 18124 2.240 86 2| 3 6 47278 14710 0.560
37 3|3 9 47287 14710 0.480 87 2| 3 6 47287 14710 0.650
38 3| 4| 12 63696 18124 1.810 88 2| 3 6 47270 14710 0.470
39 31411 63696 18124 1.960 89 2| 4 7 63707 18123 1.560
40 3| 4| 12 63707 18123 1.560 90 2| 3 6 47287 14710 0.560
41 3| 3 9 47275 14710 0.560 91 3|3 9 47271 14709 0.470
42 3|3 9 47295 14709 0.470 92 34|11 63680 18124 2.290
43 3| 4| 12 63685 18124 1.750 93 3| 4|12 63682 18123 1.910
44 3] 3 9 47287 14710 0.710 94 3|0 0 | 215393 39300 1.670
45 3| 3 9 47275 14710 0.450 95 3| 4|12 63677 18123 1.670
46 3|3 9 47278 14710 0.470 96 3|5 |14 82373 21570 4.580
47 3| 3 9 47278 14709 0.730 97 34|11 63696 18124 1.990
48 3|3 9 47272 14709 0.470 98 3|1 4|12 63696 18124 1.570
49 3| 4| 12 63689 18124 1.380 99 31411 63696 18124 1.740
50 3|3 9 47286 14709 0.580 100 314 |11 63707 18123 | 17.020

223

Table A.2: Results for experiments with 3 mech. and 0 elect. faults: cases 101-200.

Inst | R | S A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
101 3| 4| 12 63677 18123 2.240 151 3|3 9 47278 14710 0.570
102 2| 3 6 47270 14710 0.440 152 3|3 9 47283 14708 0.460
103 2| 3 6 47275 14709 0.450 153 3|3 9 47295 14709 0.550
104 2| 3 6 47250 14710 0.460 154 3| 3 9 47277 14709 0.480
105 2| 3 6 47270 14710 0.550 155 3| 4|12 63696 18124 1.640
106 2| 3 6 47278 14709 0.440 156 310 0 | 215393 39300 1.700
107 2| 3 6 47295 14709 0.440 157 3|1 4|12 63676 18124 1.580
108 2| 3 6 47267 14710 0.520 158 3| 4|12 63660 18124 1.650
109 2| 3 6 47295 14709 0.430 159 3| 4|12 63707 18123 2.840
110 2 3 6 47287 14710 0.420 160 3 4 12 63662 18123 1.820
111 1] 3 3 47275 14709 0.450 161 2| 3 6 47295 14709 0.470
112 1 3 3 47278 14710 0.450 162 2 4 8 63691 18123 1.250
113 1] 5 5 82359 21571 0.850 163 2| 4 8 63707 18122 1.400
114 1 3 3 47287 14710 0.440 164 2 3 6 47287 14710 0.460
115 1] 3 3 47263 14710 0.430 165 2| 3 6 47295 14709 0.560
116 113 3 47287 14710 0.430 166 2| 3 6 47261 14710 0.460
117 1|0 0 | 215422 39299 2.400 167 2| 3 6 47295 14709 0.460
118 10 0 | 215341 39301 1.710 168 3|3 9 47278 14710 0.780
119 1] 6 6 | 103495 25048 2.560 169 2| 3 6 47274 14710 0.470
120 3| 3 9 47275 14709 0.480 170 2| 3 6 47287 14710 0.450
121 2| 3 6 47287 14710 0.550 171 2| 3 6 47271 14710 0.530
122 2| 4 8 63691 18123 1.160 172 2| 3 6 47265 14710 0.480
123 2| 3 6 47267 14710 0.460 173 2| 3 6 47257 14710 0.480
124 20 0 | 215393 39300 1.710 174 2| 3 6 47283 14708 0.440
125 2| 3 6 47267 14710 0.440 175 2| 3 6 47275 14709 0.440
126 2| 3 6 47287 14710 0.560 176 2| 3 6 47295 14709 0.450
127 2| 3 6 47279 14709 0.450 177 2| 3 6 47287 14710 0.450
128 2|1 3 6 47287 14710 0.450 178 2| 3 6 47303 14708 0.540
129 2| 3 6 47234 14710 0.470 179 2| 3 6 47287 14710 0.440
130 2| 3 6 47295 14709 0.440 180 2| 3 6 47295 14709 0.440
131 2| 3 6 47269 14708 0.460 181 1] 3 3 47278 14709 0.490
132 2| 3 6 47282 14709 0.460 182 1] 5 5 82293 21571 0.860
133 3| 3 9 47303 14708 0.470 183 1] 4 4 63696 18124 0.590
134 2| 3 6 47258 14710 0.430 184 1] 4 4 63650 18124 0.650
135 2| 3 6 47311 14707 0.440 185 1] 4 4 63729 18121 0.610
136 2| 4 8 63707 18123 0.830 186 1] 4 4 63696 18124 0.620
137 2| 4 8 63700 18123 0.940 187 1] 3 3 47287 14710 0.410
138 2| 3 6 47301 14707 0.450 188 1] 3 3 47295 14709 0.480
139 2| 3 6 47265 14709 0.460 189 1] 3 3 47263 14710 0.480
140 2|13 6 47282 14709 0.550 190 1] 4 4 63707 18123 0.590
141 2 3 6 47295 14709 0.440 191 2 4 8 63718 18122 0.820
142 2| 4 8 63718 18122 1.820 192 2| 3 6 47303 14708 0.450
143 2| 3 6 47295 14709 0.530 193 2| 3 6 47275 14709 0.450
144 2| 3 6 47287 14710 0.560 194 2| 3 6 47287 14710 0.580
145 2| 3 6 47287 14710 0.460 195 2| 4 8 63682 18123 0.910
146 2| 3 6 47303 14708 0.460 196 2| 3 6 47263 14710 0.450
147 2| 3 6 47282 14709 0.460 197 2| 3 6 47271 14710 0.440
148 3| 4] 12 63686 18123 1.610 198 2| 3 6 47271 14709 0.440
149 2|3 6 47287 14710 0.460 199 2| 3 6 47295 14709 0.430
150 2| 3 6 47295 14709 0.550 200 2| 3 6 47287 14710 0.540

224

Table A.3: Results for experiments with 3 mech. and 2 elect. faults: cases 1-100.

Inst | R | S A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
1 3| 4| 12 72682 24809 1.760 51 3|3 9 60544 22900 0.700
2 3|0 0 | 235154 53588 1.950 52 3|0 0 | 234869 53589 1.840
3 3|0 0 | 251085 60822 2.100 53 3|3 9 60554 22902 0.590
4 3|0 0 | 251323 60821 2.010 54 3| 4|12 80191 28220 2.040
5 3|0 0 | 251049 60822 2.000 55 3|3 9 60570 22904 0.610
6 3|0 0 | 251217 60822 2.150 56 3|3 9 60545 22903 0.590
7 3|0 0 | 251320 60821 2.090 57 3|3 9 60535 22904 0.600
8 3 4 12 80256 28221 2.440 58 3 4 12 80201 28221 1.940
9 3|0 0 | 251183 60821 2.110 59 3|3 9 54545 20130 0.660

10 3| 5| 15 | 102138 33571 4.070 60 3|3 9 60487 22902 0.730
11 2|10 0 | 251199 60821 2.140 61 2|0 0 | 251277 60820 2.000
12 2| 3 6 60578 22903 0.690 62 2| 3 6 60560 22903 0.580
13 2| 3 6 60549 22902 0.640 63 2| 3 6 60558 22903 0.640
14 2| 3 6 60536 22903 0.620 64 2|0 0 | 251172 60819 2.340
15 20 0 | 251203 60822 2.070 65 210 0 | 251169 60822 2.570
16 2|0 0 | 251289 60820 2.040 66 2| 4 8 80132 28220 1.090
17 2| 4 8 72738 24810 1.220 67 2| 3 6 60573 22902 0.650
18 2| 3 6 60415 22904 0.600 68 2| 4 7 80215 28220 1.240
19 2| 3 6 60533 22902 0.630 69 2|0 0 | 251354 60820 2.010
20 2| 3 6 54639 20128 0.650 70 2| 4 8 72748 24810 1.010
21 2| 3 6 54573 20128 0.520 71 2| 3 6 60511 22903 0.580
22 2| 3 6 60510 22902 0.590 72 2|0 0 | 235146 53589 1.860
23 2| 3 6 60498 22904 0.600 73 2| 3 6 60538 22900 0.620
24 2| 3 6 60572 22903 0.610 74 210 0 | 234953 53588 1.860
25 2| 3 6 60522 22902 0.740 75 2| 3 6 54523 20129 0.520
26 2| 3 6 60558 22903 0.590 76 2|0 0 | 251338 60823 2.380
27 2| 3 6 60566 22902 0.600 kéd 2|0 0 | 251304 60821 2.460
28 2|0 0 | 251252 60820 2.000 78 2| 3 6 60588 22901 0.580
29 2 4 8 72814 24809 1.320 79 2 0 0 | 251212 60820 2.510
30 2| 3 6 60576 22902 0.580 80 2| 3 6 60461 22904 0.580
31 3 4 12 72764 24811 2.180 81 2 0 0 | 251138 60822 2.000
32 3|0 0 | 251365 60820 1.990 82 2| 4 8 80180 28221 1.010
33 3|0 0 | 251213 60821 1.980 83 2| 3 6 54517 20129 0.510
34 3| 3 9 60451 22904 0.670 84 2| 3 6 54592 20129 0.510
35 3| 4] 12 72847 24809 2.320 85 2| 3 6 54565 20130 0.520
36 3]0 0 | 251290 60821 5.560 86 2| 3 6 54496 20130 0.510
37 3|10 0 | 251243 60820 2.080 87 2| 3 6 54570 20128 0.510
38 3|0 0 | 251311 60820 2.020 88 2| 3 6 60553 22902 0.570
39 3|0 0 | 251212 60820 2.500 89 2| 3 4 54561 20130 0.560
40 3|0 0 | 251333 60820 1.980 90 2|0 0 | 234987 53589 2.360
41 2 3 6 60482 22903 0.570 91 3 4 12 80144 28222 2.130
42 2|10 0 | 251246 60821 2.020 92 3|0 0 | 251367 60821 1.980
43 2| 3 6 60485 22902 0.640 93 3|0 0 | 251231 60820 1.990
44 2| 3 6 60470 22903 0.560 94 3|0 0 | 251138 60821 2.160
45 20 0 | 251129 60822 2.130 95 3|3 9 60597 22901 0.640
46 2| 3 6 60514 22902 0.670 96 3| 5| 15 | 102154 33572 3.860
47 2| 4 8 80150 28219 1.510 97 3| 4|12 80179 28221 1.930
48 2| 3 6 60608 22901 0.580 98 31411 80070 28222 2.550
49 2|0 0 | 251264 60820 2.000 99 3| 4|12 72709 24811 2.360
50 2| 3 6 60515 22903 0.590 100 3|3 9 60511 22903 0.760

225

Table A.4: Results for experiments with 3 mech. and 2 elect. faults: cases 101-200.

Inst | R | S | A Rules | Atoms | Time Inst | R | S | A Rules | Atoms | Time
101 21 3 6 60482 22903 0.570 151 3| 3 9 60497 22903 0.650
102 2| 3 6 60446 22902 0.610 152 3| 3 9 60553 22902 0.600
103 210 0 | 251367 60821 2.590 153 3| 3 9 60517 22903 0.710
104 2| 3 6 60573 22901 0.570 154 3| 3 9 60593 22902 0.620
105 2| 4 8 72730 24808 1.170 155 310 0 | 235015 53589 1.840
106 210 0 | 251236 60822 2.540 156 3|3 9 60438 22903 0.670
107 210 0 | 251268 60821 2.440 157 3|3 9 60578 22903 0.710
108 2| 3 6 54546 20127 0.510 158 3| 3 9 60548 22902 0.600
109 21 3 6 60566 22902 0.570 159 3| 4|12 80155 28220 1.670
110 21 3 6 60558 22903 0.580 160 3|3 9 54580 20129 0.550
111 21 3 6 60495 22903 0.560 161 3| 5| 15 | 102128 33572 3.970
112 2| 3 6 60534 22903 0.640 162 310 0 | 251189 60820 1.970
113 210 0 | 251174 60823 2.000 163 3 4|12 72773 24810 1.790
114 2| 3 6 60494 22903 0.650 164 310 0 | 251291 60822 1.990
115 210 0 | 251238 60821 2.000 165 3 4|11 72806 24809 2.490
116 2|3 6 60560 22901 0.630 166 3 4|12 72751 24810 1.680
117 210 0 | 251415 60822 2.000 167 3|10 0 | 251410 60820 1.990
118 21 3 6 60528 22902 0.580 168 3 4|12 72706 24811 1.810
119 2|3 6 60527 22904 0.560 169 3 4|12 80106 28221 1.930
120 21 3 6 60474 22902 0.580 170 3|3 9 60597 22902 0.650
121 3|0 0 | 251344 60821 2.450 171 21 3 6 54545 20130 0.530
122 310 0 | 251286 60820 1.980 172 210 0 | 235041 53588 1.850
123 3]0 0 | 234999 53588 1.830 173 21 3 6 54609 20129 0.530
124 310 0 | 251213 60821 1.990 174 2| 3 6 60577 22901 0.580
125 3|3 9 60559 22902 0.600 175 2|3 6 54510 20131 0.620
126 3|3 9 60511 22901 0.600 176 2|3 6 60474 22902 0.570
127 3| 3 9 60522 22903 0.610 177 2| 3 6 54514 20131 0.620
128 310 0 | 251019 60823 2.180 178 2|3 6 60547 22904 0.650
129 3|3 9 60602 22902 0.770 179 21 3 6 60549 22903 0.590
130 3| 3 9 60542 22901 0.670 180 21 3 6 60548 22902 0.570
131 210 0 | 235125 53589 1.860 181 310 0 | 251223 60821 2.410
132 21 3 6 54502 20131 0.500 182 3| 4|12 80090 28221 2.090
133 2| 3 6 60500 22902 0.570 183 3| 5| 14 | 102066 33570 6.080
134 210 0 | 251323 60821 1.990 184 3| 3 9 60526 22903 0.640
135 210 0 | 251362 60819 2.000 185 3| 4| 12 72712 24810 2.020
136 2| 3 6 54576 20130 0.510 186 310 0 | 251086 60823 2.390
137 2| 4 8 80256 28220 1.040 187 3| 4| 12 80213 28220 2.130
138 21 3 6 60486 22904 0.570 188 314 |11 72731 24811 2.350
139 2|3 6 60526 22902 0.660 189 310 0 | 251246 60821 1.980
140 2| 3 6 60522 22901 0.670 190 3| 4| 12 72672 24811 2.090
141 210 0 | 251293 60821 2.010 191 3| 3 9 54540 20129 0.780
142 2| 3 6 60413 22904 0.570 192 3| 3 9 54561 20130 0.540
143 21 3 6 60566 22902 0.560 193 3| 3 9 60580 22902 0.610
144 2| 3 6 60527 22904 0.600 194 3| 3 9 60455 22902 0.590
145 2| 3 6 54548 20130 0.550 195 3| 3 9 60582 22902 0.750
146 2| 4 8 80185 28218 1.090 196 3|3 9 60523 22903 0.660
147 2| 3 6 60618 22901 0.580 197 3| 3 9 60558 22900 0.600
148 2|3 6 54581 20129 0.600 198 3|3 9 54548 20128 0.540
149 2| 3 6 60590 22902 0.650 199 3|10 0 | 251329 60819 1.980
150 2|3 6 60514 22901 0.560 200 313 9 60550 22902 0.720

226

Table A.5: Results for experiments with 5 mech. and 0 elect. faults: cases 1-100.

Inst | R | S A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
1 1| 4 4 63669 18127 0.570 51 3|0 0 | 215368 39303 1.690
2 10 0 | 215258 39303 2.320 52 3|3 9 47238 14714 0.840
3 2| 3 6 47269 14711 0.430 53 3|3 9 47291 14712 0.560
4 1] 4 4 63662 18127 0.590 54 3| 3 9 47274 14712 0.570
5 2| 3 6 47265 14712 0.470 55 310 0 | 215339 39304 1.670
6 113 3 47235 14714 0.440 56 3|3 9 47291 14712 0.660
7 1] 4 4 63637 18128 0.640 57 3|1 4|12 63643 18126 1.650
8 2| 3 6 47291 14712 0.530 58 3| 4|12 63664 18126 1.590
9 110 0 | 215261 39304 1.950 59 3| 4|12 63711 18125 1.900

10 1] 4 4 63646 18126 0.620 60 3|3 9 47225 14714 0.460
11 34|11 63700 18126 1.730 61 3| 5|13 82363 21573 4.180
12 3| 4| 12 63668 18127 1.740 62 3|3 9 47253 14713 0.460
13 3| 4] 12 63685 18126 1.590 63 34|11 63647 18127 1.900
14 3| 4| 12 63689 18127 1.530 64 3| 4| 12 63700 18125 3.080
15 3| 3 9 47275 14712 0.530 65 34|11 63689 18127 1.920
16 3| 4] 12 63659 18127 1.550 66 310 0 | 215293 39304 1.690
17 3| 3 9 47291 14712 0.600 67 3] 4| 12 63722 18124 3.740
18 3| 3 9 47274 14713 0.690 68 3|1 4|12 63689 18126 3.260
19 3| 4] 12 63700 18126 2.790 69 3| 4|12 63662 18127 1.810
20 3| 3 9 47299 14711 0.530 70 2| 4 8 63648 18127 1.180
21 3 4 11 63623 18128 1.890 71 2 3 6 47242 14714 0.610
22 3| 4| 12 63643 18127 1.800 72 2| 3 6 47266 14714 0.670
23 3| 3 9 47291 14712 0.860 73 2| 3 6 47231 14714 0.550
24 3]0 0 | 215368 39303 1.670 74 2| 3 6 47259 14712 0.440
25 3| 4] 12 63648 18127 2.230 75 2|3 6 47242 14714 0.450
26 3| 4] 12 63623 18128 1.520 76 2| 3 6 47250 14714 0.460
27 3|0 0 | 215313 39303 1.670 kéd 2| 3 6 47291 14712 0.680
28 3|10 0 | 215313 39303 1.680 78 2| 3 6 47283 14713 0.620
29 3| 4] 12 63678 18128 1.850 79 2| 3 6 47282 14712 0.510
30 3| 5|15 82349 21574 3.630 80 2| 4 8 63673 18127 1.300
31 2| 3 6 47253 14713 0.440 81 1] 4 4 63672 18126 0.610
32 2| 3 6 47250 14713 0.580 82 1] 4 4 63621 18128 0.620
33 2| 3 6 47282 14712 0.460 83 1] 4 4 63666 18125 0.620
34 2|0 0 | 215339 39304 1.700 84 1] 4 4 63638 18128 0.610
35 2| 3 6 47222 14714 0.460 85 2|3 6 47271 14712 0.470
36 2| 4 7 63664 18127 0.920 86 1] 4 4 63659 18127 0.600
37 2| 3 6 47289 14711 0.480 87 1] 4 4 63637 18128 0.640
38 2| 3 6 47255 14714 0.500 88 1] 4 4 63722 18124 0.620
39 2|1 3 6 47251 14714 0.450 89 110 0 | 215278 39303 2.350
40 2|13 6 47275 14712 0.450 90 1] 5 5 82316 21574 0.950
41 2| 3 6 47238 14714 0.530 91 2| 4 8 63653 18127 1.220
42 2| 3 6 47238 14714 0.450 92 2| 3 6 47253 14713 0.510
43 2| 3 6 47254 14713 0.450 93 2| 3 6 47279 14711 0.490
44 2| 4 8 63691 18125 0.940 94 2|0 0 | 215339 39304 3.840
45 2| 3 6 47250 14713 0.450 95 2| 3 6 47266 14714 0.460
46 2|0 0 | 215397 39302 1.710 96 2| 3 6 47246 14713 0.470
47 20 0 | 215282 39304 1.940 97 2| 3 6 47283 14713 0.460
48 2|1 3 6 47282 14712 0.510 98 2|3 6 47251 14712 0.610
49 2| 4 8 63673 18127 1.690 99 2| 4 6 63653 18127 1.730
50 2| 3 6 47246 14712 0.440 100 23 4 47274 14713 0.610

227

Table A.6: Results for experiments with 5 mech. and 0 elect. faults: cases 101-200.

Inst | R | S | A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
101 2 3 6 47281 14712 0.460 151 2 3 6 47259 14713 0.480
102 2| 3 6 47283 14713 0.430 152 2|0 0 | 215162 39304 1.690
103 210 0 | 215305 39304 1.710 153 2| 3 6 47283 14713 0.550
104 2| 3 4 47262 14714 0.510 154 2| 3 6 47263 14714 0.530
105 213 4 47255 14714 0.540 155 2| 3 6 47275 14714 0.460
106 2| 3 6 47278 14712 0.570 156 2|3 6 47241 14714 0.430
107 2|3 6 47271 14713 0.540 157 2| 4 8 63722 18124 0.940
108 2|3 6 47274 14713 0.510 158 2| 4 8 63648 18127 0.830
109 2| 3 6 47274 14712 0.450 159 2|3 6 47283 14713 0.440
110 2| 3 6 47254 14713 0.440 160 2| 7| 12 | 127030 28567 | 75.810
111 3 3 9 47242 14714 0.590 161 3 5 15 82347 21572 4.620
112 31 3 9 47259 14713 0.650 162 3|0 0 | 215384 39301 1.670
113 3| 3 8 47238 14714 0.660 163 3| 4|12 63673 18127 2.120
114 3| 4| 12 63627 18127 1.730 164 3| 4| 12 63678 18127 1.650
115 3| 3 9 47223 14713 0.670 165 3|3 9 47233 14714 0.710
116 310 0 | 215313 39303 1.690 166 2| 3 6 47291 14712 0.830
117 3|3 9 47263 14713 0.500 167 3|3 9 47291 14712 0.650
118 310 0 | 215368 39303 1.700 168 3|3 9 47283 14713 0.590
119 310 0 | 215368 39303 1.670 169 2| 3 6 47283 14713 0.750
120 3|3 9 47283 14713 0.550 170 2| 3 6 47261 14713 0.520
121 3 4 12 63659 18126 4.490 171 3 4 12 63664 18127 2.260
122 3| 3 9 47283 14713 0.620 172 3| 4|12 63664 18126 2.560
123 3| 5|15 82352 21572 6.260 173 2| 3 6 47238 14714 0.440
124 2| 4 8 63673 18127 0.990 174 3| 4|12 63640 18128 1.970
125 3|3 9 47291 14712 0.580 175 2| 3 6 47285 14712 0.500
126 3|3 9 47275 14714 0.600 176 34|11 63659 18127 2.580
127 34|11 63689 18127 2.330 177 310 0 | 215368 39303 1.670
128 3|3 9 47257 14712 0.580 178 3| 4|12 63648 18127 1.720
129 3|3 9 47275 14714 0.710 179 2| 3 6 47282 14712 0.450
130 3|1 4|11 63658 18127 2.140 180 2| 3 6 47281 14712 0.550
131 2| 3 6 47263 14713 0.500 181 2|0 0 | 215368 39303 1.680
132 2 6 12 103381 25054 | 31.300 182 2 3 6 47262 14713 0.440
133 2| 3 6 47255 14714 0.500 183 2| 3 6 47283 14713 0.420
134 210 0 | 215306 39304 1.680 184 2| 3 6 47291 14712 0.430
135 2| 4 8 63668 18127 1.260 185 2| 3 6 47261 14713 0.450
136 2| 3 6 47291 14712 0.490 186 2| 3 6 47271 14713 0.440
137 2| 3 6 47234 14713 0.430 187 2|3 6 47242 14714 0.500
138 2| 3 6 47267 14713 0.510 188 2| 3 6 47283 14713 0.500
139 2| 4 8 63700 18126 1.310 189 2| 3 6 47266 14714 0.430
140 210 0 | 215259 39304 3.910 190 2| 3 6 47283 14713 0.450
141 2 3 6 47291 14712 0.460 191 1 4 4 63662 18128 0.600
142 2| 3 6 47262 14714 0.570 192 1]0 0 | 215339 39304 1.690
143 2| 3 6 47299 14711 0.450 193 1] 4 4 63633 18127 0.600
144 2| 3 6 47263 14713 0.500 194 1] 3 3 47274 14713 0.450
145 2| 3 6 47266 14713 0.510 195 1[0 0 | 215231 39305 1.690
146 2|0 0 | 215270 39304 1.670 196 110 0 | 215316 39304 1.690
147 2| 3 6 47274 14713 0.430 197 1] 3 3 47267 14713 0.420
148 210 0 | 215261 39304 1.680 198 1] 3 3 47266 14714 0.440
149 213 6 47274 14713 0.430 199 1] 5 5 82347 21573 0.800
150 2|0 0 | 215313 39303 1.680 200 110 0 | 215294 39304 1.690

228

Table A.7: Results for experiments with 5 mech. and 3 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms | Time
1 3| 4| 12 80175 28226 1.860 51 3| 6 | 18 | 126340 38958 | 14.050
2 310 0 | 267514 68059 2.710 52 310 0 | 251041 60827 1.980
3 34|12 80065 28229 1.740 53 310 0 | 251272 60827 1.990
4 310 0 | 267311 68060 2.120 54 3| 3 9 60399 22909 0.610
5 310 0 | 267507 68060 2.290 55 3| 5| 15 | 110977 37624 4.980
6 310 0 | 251228 60827 2.490 56 31 4|12 80184 28226 2.240
7 310 0 | 251300 60825 1.990 57 310 0 | 250992 60826 1.980
8 310 0 | 251224 60826 1.980 58 310 0 | 251109 60825 2.000
9 34|11 80052 28228 1.980 59 310 0 | 267197 68059 2.120

10 310 0 | 251088 60825 1.990 60 3| 4|12 80078 28226 2.240
11 310 0 | 267514 68059 5.310 61 3|3 9 60422 22909 1.110
12 3| 3 9 60509 22908 0.600 62 310 0 | 250955 60828 1.980
13 34|12 80070 28229 2.200 63 310 0 | 251077 60828 2.160
14 3| 5| 15 | 101998 33579 4.880 64 3|3 9 60491 22908 0.600
15 34|11 80156 28227 1.980 65 310 0 | 267397 68060 2.320
16 310 0 | 267300 68060 2.630 66 3|41 12 80069 28226 2.050
17 310 0 | 267240 68060 2.840 67 110 0 | 267496 68056 2.140
18 310 0 | 251174 60828 1.990 68 310 0 | 251311 60825 1.980
19 310 0 | 251070 60825 1.990 69 3|3 9 60502 22909 1.040
20 310 0 | 251185 60823 1.990 70 3|3 9 60375 22911 0.630
21 10 0 | 251096 60825 2.000 71 310 0 | 251266 60825 1.990
22 10 0 | 267249 68059 2.480 72 3| 4| 12 80143 28227 | 35.720
23 10 0 | 251187 60826 2.020 73 310 0 | 251249 60826 1.990
24 1] 4 4 72678 24815 0.760 74 1[5 5 | 101990 33577 1.560
25 10 0 | 251149 60829 2.240 75 3|3 9 66395 25683 0.840
26 310 0 | 267517 68060 2.500 76 34|12 80036 28226 | 13.740
27 1] 4 4 80108 28224 0.750 77 310 0 | 267188 68061 2.120
28 110 0 | 251215 60826 2.020 78 3| 5| 13 | 102029 33578 4.180
29 310 0 | 267486 68059 2.580 79 1] 4 4 80248 28226 0.750
30 10 0 | 251310 60825 2.420 80 310 0 | 250920 60828 2.220
31 210 0 | 251031 60826 2.000 81 1|5 5 | 102003 33579 1.460
32 310 0 | 251300 60825 2.000 82 1[5 5 | 102044 33578 1.030
33 210 0 | 251021 60828 2.130 83 10 0 | 251310 60825 2.270
34 210 0 | 250798 60829 1.990 84 3|3 9 60445 22908 0.760
35 2|3 6 60447 22908 0.600 85 310 0 | 267081 68061 2.550
36 210 0 | 235023 53594 1.850 86 3| 4112 80098 28225 7.580
37 2|3 6 60532 22905 0.720 87 3|3 9 60478 22908 0.760
38 210 0 | 267316 68058 2.140 88 310 0 | 251238 60824 2.020
39 2|3 6 66386 25683 0.740 89 31411 87574 31634 9.050
40 2|3 6 60553 22908 0.620 90 310 0 | 250999 60829 2.140
41 310 0 | 267290 68059 2.750 91 310 0 | 251191 60826 2.000
42 3|3 9 66521 25679 0.910 92 3| 4| 12 87547 31639 2.050
43 34|12 87514 31636 2.090 93 10 0 | 267240 68060 2.210
44 3|3 9 60477 22909 0.680 94 3| 4|12 80131 28226 4.720
45 310 0 | 251224 60826 2.530 95 310 0 | 234902 53595 2.280
46 34|12 80250 28225 1.800 96 310 0 | 251055 60828 2.000
47 310 0 | 251125 60827 1.980 97 310 0 | 267345 68058 2.130
48 3| 4| 12 80137 28224 2.240 98 110 0 | 251174 60828 1.990
49 3|3 9 60434 22909 0.830 99 310 0 | 251090 60826 1.990
50 313 9 60437 22910 0.580 100 3|41 12 87549 31634 2.570

229

Table A.8: Results for experiments with 5 mech. and 3 elect. faults: cases 101-200.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms | Time
101 210 0 | 251181 60827 2.000 151 210 0 | 267298 68060 2.150
102 10 0 | 251049 60825 2.010 152 2| 4 8 80200 28225 1.380
103 210 0 | 267197 68060 2.150 153 2|3 6 60485 22910 0.690
104 210 0 | 251172 60826 2.010 154 2|3 6 66404 25681 0.620
105 210 0 | 267093 68061 2.140 155 310 0 | 251128 60827 1.990
106 210 0 | 267385 68060 2.660 156 210 0 | 267411 68060 2.150
107 2|3 6 66447 25682 0.660 157 2|3 6 60536 22907 0.630
108 210 0 | 251067 60828 2.180 158 210 0 | 250936 60827 2.020
109 2| 3 6 66498 25679 0.620 159 3| 6| 14 | 126275 38961 7.810
110 2| 3 6 60447 22910 0.570 160 2| 7| 14 | 141233 39057 | 16.560
111 210 0 | 250994 60827 2.120 161 3|41 12 80186 28227 1.880
112 210 0 | 250958 60830 2.510 162 310 0 | 267299 68061 2.540
113 2| 3 6 60480 22909 0.640 163 310 0 | 251179 60826 1.990
114 210 0 | 251093 60827 2.000 164 310 0 | 251061 60828 2.400
115 2| 3 6 60501 22908 0.650 165 3| 4112 80195 28225 1.820
116 2|3 6 66440 25683 0.700 166 310 0 | 267460 68058 2.360
117 10 0 | 251164 60824 1.980 167 310 0 | 251204 60826 2.000
118 2| 4 8 80113 28227 1.060 168 310 0 | 267296 68060 2.130
119 310 0 | 251096 60825 1.970 169 3| 5| 15 | 102026 33577 4.460
120 2|3 6 60489 22909 0.670 170 310 0 | 251041 60827 2.170
121 3| 5| 15 | 110852 37624 5.240 171 2|3 6 60492 22908 0.690
122 310 0 | 251126 60827 2.020 172 2|3 6 60541 22907 0.680
123 3| 4| 12 80018 28228 2.670 173 210 0 | 267496 68060 2.150
124 310 0 | 251121 60825 1.990 174 2|3 6 60525 22911 0.760
125 3| 4| 12 72692 24815 1.860 175 210 0 | 251195 60827 2.020
126 3| 4| 12 72707 24816 1.960 176 2|3 6 60378 22911 0.590
127 3| 4|12 80060 28225 2.010 177 2|3 6 66504 25683 0.760
128 3| 4| 12 80134 28226 2.160 178 2| 4 8 87468 31637 4.300
129 3| 5| 13 | 110831 37625 4.570 179 310 0 | 250985 60827 1.990
130 3| 6| 18 | 126231 38962 9.500 180 2|3 6 54499 20136 0.700
131 3]0 0 | 251147 60826 2.180 181 2|3 6 66359 25684 0.630
132 310 0 | 267438 68059 2.640 182 2| 5| 10 | 110865 37623 3.880
133 34|12 80139 28224 5.120 183 2| 4 8 72639 24816 1.720
134 34|12 87587 31637 2.330 184 2|3 6 60463 22910 0.580
135 34|12 80083 28228 2.620 185 31 4|12 80214 28224 2.370
136 310 0 | 251282 60826 2.170 186 2|3 6 60449 22907 0.570
137 34|12 80031 28225 2.070 187 2|3 6 60486 22909 0.830
138 310 0 | 250768 60829 1.980 188 2|3 6 60435 22908 0.580
139 310 0 | 267428 68059 2.640 189 2|3 6 60446 22908 0.840
140 310 0 | 251113 60826 2.380 190 2|3 6 66475 25683 0.720
141 210 0 | 267373 68059 2.150 191 210 0 | 267198 68060 2.770
142 2|13 5 66471 25682 0.710 192 210 0 | 251031 60828 2.100
143 210 0 | 267353 68060 2.150 193 3| 5| 14 | 101917 33578 6.400
144 2| 3 6 54521 20136 0.650 194 310 0 | 250980 60826 1.990
145 210 0 | 251065 60825 2.530 195 310 0 | 251011 60828 2.160
146 2|3 5 60560 22906 0.690 196 310 0 | 267394 68060 2.130
147 210 0 | 267254 68060 2.150 197 310 0 | 267472 68059 2.130
148 2|3 5 60560 22908 0.630 198 210 0 | 250787 60829 2.010
149 310 0 | 251151 60829 1.980 199 2|3 6 60439 22908 0.590
150 210 0 | 251206 60827 2.020 200 310 0 | 267488 68060 2.320

230

Table A.9: Results for experiments with 8 mech. and 0 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
1 2| 3 6 47247 14718 0.490 51 2| 3 6 47235 14717 0.570
2 210 0 | 215345 39307 1.680 52 2|0 0 | 215308 39306 1.710
3 2| 3 6 47262 14716 0.520 53 3| 4|12 63673 18131 2.200
4 210 0 | 215151 39308 1.690 54 310 0 | 215316 39308 1.660
5 213 6 47244 14718 0.430 55 310 0 | 215310 39305 1.660
6 3| 4| 12 63647 18132 | 79.270 56 310 0 | 215307 39305 1.670
7 310 0 | 215374 39306 1.670 57 3|1 4|12 63610 18133 1.810
8 3| 4| 12 63657 18132 1.900 58 3| 4|12 63685 18129 2.070
9 210 0 | 215289 39307 1.680 59 3| 5|11 82315 21577 3.660

10 310 0 | 215143 39309 1.690 60 3|3 9 47223 14718 0.720
11 310 0 | 215220 39309 2.310 61 2| 3 6 47269 14717 0.530
12 310 0 | 215112 39310 1.670 62 2|0 0 | 215232 39309 1.680
13 3| 4|12 63624 18133 | 16.170 63 2|0 0 | 215258 39310 1.680
14 210 0 | 215253 39309 1.680 64 2| 3 6 47237 14720 0.470
15 2| 3 6 47226 14719 0.500 65 210 0 | 215314 39307 1.690
16 210 0 | 215242 39309 1.690 66 2| 3 6 47245 14719 0.440
17 2| 3 6 47228 14719 0.730 67 2|0 0 | 215224 39310 1.690
18 2| 3 6 47250 14716 0.540 68 2|0 0 | 215238 39308 1.680
19 2| 3 6 47251 14718 0.450 69 2| 3 6 47240 14717 0.500
20 310 0 | 215177 39309 1.660 70 2| 3 6 47201 14718 0.500
21 2| 3 6 47224 14719 0.530 71 2|0 0 | 215170 39310 1.680
22 3| 5|15 82292 21578 5.680 72 2|0 0 | 215248 39308 1.660
23 2| 5| 10 82289 21579 3.450 73 2| 4 8 63654 18131 1.450
24 2| 3 6 47248 14717 0.890 74 2| 4 7 63622 18133 1.520
25 3| 4| 12 63579 18133 1.530 75 2| 3 6 47217 14720 0.520
26 2| 3 6 47236 14719 0.710 76 2| 3 6 47240 14720 0.470
27 2| 3 6 47272 14717 0.790 kéd 2| 4 8 63613 18131 0.970
28 2| 3 6 47234 14717 0.570 78 2|0 0 | 215254 39309 1.690
29 210 0 | 215282 39308 1.680 79 2|0 0 | 215316 39308 1.680
30 210 0 | 215316 39308 1.690 80 2|0 0 | 215293 39308 1.690
31 210 0 | 215316 39308 1.690 81 3|3 9 47245 14719 0.810
32 2| 4 8 63684 18131 1.810 82 34|11 63615 18134 1.890
33 210 0 | 215137 39310 1.680 83 3| 4| 12 63595 18132 3.250
34 2| 4 8 63677 18129 1.990 84 3| 4|12 63632 18132 | 11.930
35 2|0 0 | 215253 39309 1.680 85 2|0 0 | 215316 39308 1.680
36 2| 3 6 47265 14719 0.500 86 3| 4|12 63688 18128 2.170
37 2| 3 6 47212 14717 0.550 87 3|3 9 47249 14718 0.590
38 2| 4 8 63635 18133 1.350 88 31411 63660 18131 1.840
39 2|3 6 47253 14719 0.520 89 310 0 | 215188 39309 1.670
40 2| 3 6 47265 14717 0.440 90 3| 4|12 63610 18134 1.790
41 1] 4 4 63704 18128 0.590 91 2| 3 6 47207 14718 0.490
42 2|0 0 | 215176 39309 1.710 92 2| 4 8 63647 18131 1.380
43 2| 6 | 12 | 103353 25059 4.250 93 2| 3 6 47256 14719 0.600
44 2| 3 6 47236 14719 0.560 94 2|0 0 | 215272 39308 1.680
45 1] 4 4 63594 18134 0.590 95 2|0 0 | 215261 39308 1.680
46 110 0 | 215161 39308 2.360 96 2| 3 6 47218 14718 0.470
47 2| 3 6 47247 14718 0.460 97 210 0 | 215345 39307 1.680
48 110 0 | 215311 39306 1.950 98 2| 4 7 63598 18132 1.720
49 210 0 | 215198 39309 4.260 99 2| 3 6 47287 14715 0.440
50 2| 3 6 47227 14718 0.450 100 23 6 47215 14719 0.440

231

Table A.10: Results for experiments with 8 mech. and 0 elect. faults: cases 101-200.
Inst | R | S| A | Rules | Atoms | Time Inst | R | S| A | Rules | Atoms | Time
101 | 2| 3| 6| 47232 | 14718 | 0.430 151 | 3| 0| 0| 215230 | 39308 | 1.660
102 | 2 | 3| 6| 47264 | 14718 | 0.420 152 | 1| 5| 5| 82243 | 21581 | 0.840
103 | 3| 4 | 11 | 63662 | 18132 | 1.840 153 | 3| 5 | 14 | 82297 | 21579 | 2.940
104 | 3| 0| 0| 215322 | 39307 | 4.980 154 | 3 | 3 | 9| 47210 | 14719 | 0.540
105 | 3| 0| 0| 215203 | 39310 | 1.680 155 | 3 | 6 | 18 | 103324 | 25059 | 9.640
106 | 3| 3| 9| 47216 | 14719 | 0.460 156 | 3 | 4 | 12 | 63610 | 18131 | 3.450
107 | 2| 3| 6| 47265 | 14719 | 0.470 157 | 1| 0| 0| 215236 | 39308 | 1.700
108 | 3| 0| 0| 215339 | 39306 | 1.670 158 | 1| 4| 4| 63637 | 18132 | 0.610
109 | 3| 0| 0| 215343 | 39306 | 1.990 159 | 3| 0| 0| 215314 | 39307 | 1.680
110 | 3| 5 | 15 | 82323 | 21577 | 3.610 160 | 3| 4 | 12 | 63663 | 18130 | 3.060
111 | 2| 3| 6 | 47185 | 14719 | 0.430 161 | 1| 4| 4| 63679 | 18130 | 0.600
112 | 3| 3| 9| 47232 | 14718 | 0.730 162 | 3| 0 | 0| 215232 | 39309 | 1.680
113 | 3| 4 | 12 | 63595 | 18133 | 15.070 163 | 3 | 0 | 0 | 215197 | 39309 | 1.670
114 | 3| 4 | 10 | 63579 | 18133 | 2.190 164 | 3| 0 | 0| 215271 | 39308 | 1.680
1156 | 2| 5| 9| 82328 | 21578 | 2.080 165 | 3 | 4 | 11 | 63659 | 18131 | 8.630
116 | 3 | 0 | 0 | 215264 | 39309 | 4.370 166 | 3 | 4 | 11 | 63695 | 18130 | 2.390
117 | 3| 3| 9| 47257 | 14718 | 0.450 167 | 3| 0 | 0| 215254 | 39309 | 1.680
118 | 2| 0 | 0 | 215232 | 39309 | 1.700 168 | 3| 0 | 0 | 215267 | 39307 | 1.670
119 | 3| 4 | 12 | 63612 | 18133 | 9.190 169 | 1| 0 | 0| 215285 | 39309 | 1.700
120 | 3| 4 | 12 | 63680 | 18129 | 61.780 170 | 3 | 4 | 12 | 63595 | 18132 | 1.780
121 | 2| 3| 6| 47256 | 14719 | 0.460 171 | 1| 4| 4| 63673 | 18132 | 0.610
122 | 2| 4| 8| 63632 | 18131 | 0.870 172 | 3 | 3 | 9 | 47257 | 14718 | 0.450
123 | 2| 3| 6| 47203 | 14719 | 0.430 173 | 3| 3| 9| 47221 | 14719 | 0.740
124 | 2| 0| 0| 215316 | 39308 | 1.690 174 | 3 | 4 | 12 | 63673 | 18132 | 10.510
125 | 2| 3| 6| 47265 | 14719 | 0.610 175 | 3| 3| 9| 47195 | 14720 | 0.500
126 | 2 | 4| 8| 63657 | 18129 | 0.940 176 | 3 | 0 | 0 | 215207 | 39308 | 1.690
127 | 2| 3| 6| 47212 | 14719 | 0.500 177 | 3 | 5 | 15 | 82311 | 21578 | 3.600
128 | 2| 0| 0| 215199 | 39309 | 1.680 178 | 3 | 6 | 18 | 103420 | 25058 | 5.620
120 | 2| 3| 4| 47229 | 14718 | 0.470 179 | 3 | 4 | 11 | 63567 | 18132 | 2.340
130 | 2 | 3| 4| 47220 | 14719 | 0.510 180 | 3| 0 | 0| 215226 | 39308 | 1.670
131 | 3| 4| 12 | 63626 | 18132 | 1.490 181 | 3| 0| 0| 215285 | 39308 | 1.680
132 | 1] 4| 4| 63695 | 18130 | 0.630 182 | 3| 0| 0| 215240 | 39308 | 1.680
133 | 3| 0| 0| 215232 | 39309 | 1.670 183 | 3 | 4 | 12 | 63674 | 18128 | 2.470
134 | 3| 3| 9| 47273 | 14718 | 0.650 184 | 3| 4 | 12 | 63676 | 18129 | 15.680
135 | 3| 3| 9 | 47230 | 14718 | 0.440 185 | 3| 0 | 0| 215345 | 39307 | 1.670
136 | 3| 0| 0| 215187 | 39309 | 1.670 186 | 3 | 0 | 0 | 215332 | 39307 | 1.680
137 | 1| 4| 4| 63691 | 18127 | 0.630 187 | 3| 0 | 0| 215157 | 39310 | 2.420
138 | 3| 3| 9 | 47213 | 14720 | 0.600 188 | 3 | 4 | 12 | 63591 | 18133 | 2.400
139 | 1] 5| 5| 82321 | 21577 | 0.790 189 | 3| 4 | 12 | 63653 | 18131 | 1.860
140 | 3| 3| 9| 47213 | 14719 | 0.830 190 | 3| 4 | 12 | 63684 | 18131 | 3.580
141 | 2| 0| 0| 215229 | 39309 | 1.680 191 | 2| 3| 6| 47202 | 14717 | 0.460
142 | 2| 3| 6 | 47245 | 14717 | 0.480 192 | 3| 5 | 14 | 82357 | 21576 | 4.250
143 | 2| 3| 6| 47215 | 14720 | 0.450 193 | 2| 3| 5| 47212 | 14719 | 0.800
144 | 2| 0| 0 | 215344 | 39306 | 1.690 194 | 3| 4 | 12 | 63666 | 18130 | 2.360
145 | 2 | 3| 6 | 47219 | 14718 | 0.530 195 | 2 | 3| 6 | 47260 | 14718 | 0.430
146 | 2 | 0| 0 | 215077 | 39310 | 1.670 196 | 2 | 3 | 5| 47241 | 14718 | 0570
147 | 2 | 3| 6| 47239 | 14716 | 0.620 197 | 2 | 0 | 0 | 215287 | 39309 | 1.680
148 | 2 | 3| 6 | 47256 | 14717 | 0.510 198 | 2| 3| 6| 47245 | 14719 | 0.640
149 | 2 | 3| 6| 47252 | 14719 | 0.570 199 | 2| 3| 6| 47264 | 14718 | 0.580
150 | 1] 0| 0 | 215237 | 39308 | 1.700 200 | 2| 3| 6| 47256 | 14718 | 0.700

232

Table A.11: Results for experiments with 8 mech. and 5 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms Time
1 210 0 | 267156 68067 2.140 51 3|3 8 66369 25691 1.030
2 2| 4 8 87328 31649 1.570 52 3|10 0 | 250560 60839 1.990
3 210 0 | 267076 68069 2.110 53 110 0 | 267196 68066 2.150
4 2| 3 6 66346 25693 0.920 54 3|3 9 66357 25693 0.740
5 210 0 | 266792 68072 2.140 55 110 0 | 267067 68070 2.420
6 2| 3 6 66326 25691 0.870 56 110 0 | 283181 75304 2.750
7 2| 3 6 66450 25691 0.650 57 310 0 | 266932 68069 2.130
8 2| 4 8 87455 31645 1.420 58 310 0 | 283379 75301 2.280
9 210 0 | 250806 60835 2.000 59 310 0 | 267187 68067 2.140

10 2| 4 8 87501 31644 1.660 60 110 0 | 266695 68069 2.130
11 2| 3 6 66436 25689 0.750 61 210 0 | 267191 68068 2.150
12 210 0 | 266981 68071 2.130 62 110 0 | 267013 68069 2.140
13 210 0 | 283121 75301 2.290 63 210 0 | 266965 68069 2.150
14 210 0 | 267232 68066 2.130 64 210 0 | 267123 68070 2.150
15 2| 3 6 66323 25691 0.770 65 210 0 | 266958 68072 2.150
16 2| 3 6 60346 22919 1.040 66 210 0 | 267174 68069 2.140
17 2| 3 3 60461 22917 0.550 67 2|3 6 66305 25692 0.620
18 210 0 | 266898 68071 2.140 68 210 0 | 267142 68065 2.150
19 2|3 6 72335 28464 0.700 69 210 0 | 267119 68069 2.290
20 2| 4 8 87521 31646 1.970 70 210 0 | 266882 68072 2.140
21 21 3 6 66324 25693 0.760 71 2| 4 7 87508 31646 1.620
22 210 0 | 250876 60833 2.010 72 2| 3 6 66388 25690 0.650
23 1|0 0 | 267046 68070 2.440 73 210 0 | 267234 68066 2.160
24 21 3 6 66420 25689 0.880 74 2|3 6 66370 25691 0.740
25 1|0 0 | 266643 68070 2.150 75 110 0 | 283294 75300 2.640
26 2| 4 8 87510 31644 1.310 76 110 0 | 267011 68069 2.130
27 10 0 | 283267 75302 2.440 77 110 0 | 283313 75301 2.280
28 1|0 0 | 267053 68069 2.150 78 210 0 | 250853 60837 2.000
29 1|0 0 | 283350 75299 2.310 79 210 0 | 283228 75302 2.420
30 21 3 6 66413 25690 0.800 80 210 0 | 267133 68069 2.150
31 210 0 | 283183 75301 2.260 81 310 0 | 267349 68068 2.140
32 210 0 | 282949 75304 2.490 82 310 0 | 251049 60836 1.990
33 2| 3 6 66390 25689 0.690 83 310 0 | 266701 68071 2.130
34 210 0 | 267201 68070 2.150 84 310 0 | 266948 68066 2.890
35 210 0 | 266973 68068 2.120 85 3| 4|12 87444 31646 | 13.130
36 2| 3 6 60379 22921 0.590 86 310 0 | 250865 60833 1.990
37 2| 4 8 87538 31643 1.290 87 310 0 | 267402 68068 2.510
38 2| 3 6 66376 25691 0.650 88 110 0 | 267159 68072 2.150
39 210 0 | 283146 75303 2.830 89 310 0 | 267206 68065 2.130
40 210 0 | 267052 68065 2.150 90 2|3 6 66297 25694 0.910
41 2| 4 8 87467 31642 2.880 91 310 0 | 267165 68070 2.130
42 210 0 | 267146 68067 2.280 92 310 0 | 267138 68068 2.140
43 210 0 | 250695 60837 1.970 93 3|10 0 | 266991 68068 2.130
44 2| 3 6 72296 28465 0.910 94 3|3 8 66348 25691 0.980
45 210 0 | 250973 60836 2.120 95 310 0 | 267006 68071 2.130
46 2| 4 8 87351 31648 1.370 96 310 0 | 250576 60838 1.990
47 210 0 | 283332 75301 3.000 97 310 0 | 250701 60836 2.360
48 210 0 | 267010 68070 2.140 98 2| 4 8 87382 31647 1.690
49 1|0 0 | 266835 68070 2.150 99 2| 4 8 87458 31644 1.450
50 213 6 66401 25691 0.750 100 310 0 | 266940 68068 2.130

233

Table A.12: Results for experiments with 8 mech. and 5 elect. faults: cases 101-200.
Inst | R | S A Rules | Atoms Time Inst | R | S A Rules | Atoms | Time
101 | 3| 0| O | 282966 | 75304 | 2.280 151 | 2| 3| 6| 66253 | 25693 | 0.860
102 | 2| 0| 0| 267201 | 68070 | 2.130 152 | 2| 0| 0| 283564 | 75301 | 2.890
103 | 2| 0| 0| 267321 | 68065 | 2.130 153 | 2| 4| 8| 87506 | 31648 | 1.240
1024 | 2| 3| 6| 60379 | 22921 | 0.640 154 | 2| 4| 8| 87419 | 31648 | 1.030
105 | 3| 0| 0| 267054 | 68070 | 2.140 155 | 2| 0| O 250660 | 60838 | 2.010
106 | 3| 0| 0| 267385 | 68065 | 2.150 156 | 2| 0| 0] 283290 | 75301 | 2.460
107 | 2| 0| 0] 267300 | 68066 | 2.120 157 | 2| 0| 0] 283383 | 75301 | 2.900
108 | 3| 0| 0| 267434 | 68068 | 2.720 158 | 2| 0| 0] 267271 | 68064 | 2.150
109 | 3| 0| 0| 267031 | 68068 | 2.340 159 | 3| 0| O | 267044 | 68070 | 2.110
110 | 2| 3| 6| 66376 | 25693 | 0.640 160 | 2| 3| 6| 66278 | 25691 | 0.670
11| 2| 0| 0| 266979 | 68069 | 2.270 161 | 3| 3| 9| 60316 | 22918 | 0.780
112 | 2| 0| 0| 283420 | 75301 | 2.300 162 | 3| 4 | 12 | 87507 | 31646 | 2.140
113 | 2| 3| 6| 66271 | 25692 | 0.630 163 | 2| 0| 0| 267036 | 68069 | 2.300
114 | 2| 3| 6| 66352 | 25693 | 0.740 164 | 2| 0| 0| 283170 | 75303 | 2.290
115 | 2| 0| 0| 283186 | 75302 | 2.270 165 | 2| 0| 0| 251009 | 60834 | 2.010
116 | 2 | 5 | 10 | 119683 | 41679 | 4.420 166 | 2| 0| 0| 266959 | 68067 | 2.140
117 | 2| 0| 0| 283578 | 75302 | 2.430 167 | 3| 0| 0] 267012 | 68071 | 2.110
118 | 2| 3| 6| 66408 | 25688 | 0.710 168 | 3| 0| 0| 267260 | 68066 | 2.320
119 | 2| 3| 6| 66407 | 25691 | 0.680 169 | 2| 0| 0| 283200 | 75302 | 2.280
120 | 2| 0| O | 267459 | 68068 | 2.150 170 | 2| 0| 0] 267157 | 68067 | 2.130
121 | 3 | 6 | 16 | 136374 | 43655 | 10.190 171 | 3| 0| 0| 267287 | 68066 | 2.750
122 | 3| 0| O | 266984 | 68069 | 2.460 172 | 3| 0| 0| 251040 | 60837 | 2.000
123 | 3 | 0| 0 | 283404 | 75299 | 2.400 173 | 3| 0| 0| 267056 | 68066 | 2.100
124 | 3| 0| 0| 283370 | 75296 | 3.140 174 | 3| 0| 0| 266935 | 68070 | 2.100
125 | 3| 0| 0] 267272 | 68067 | 2.430 175 | 3| 0| 0| 283418 | 75300 | 2.270
126 | 2| 0| 0| 267052 | 68065 | 2.150 176 | 3| 0| 0| 283200 | 75298 | 2.260
127 | 3| 0| 0| 267065 | 68068 | 2.140 177 | 3| 0| 0| 251132 | 60836 | 2.520
128 | 2| 0| 0| 267116 | 68064 | 2.580 178 | 3| 0| 0| 283101 | 75302 | 2.270
129 | 3| 0| O | 283508 | 75302 | 2.280 179 | 3| 0| 0] 267156 | 68068 | 2.120
130 | 2| 0| 0| 267136 | 68067 | 2.330 180 | 3| 0| O] 267035 | 68066 | 2.140
131 | 2| 0| 0| 267143 | 68070 | 2.150 181 | 2| 3| 6| 60397 | 22917 | 0.560
132 | 2| 0| 0| 283399 | 75298 | 2.900 182 | 2| 3| 6| 72274 | 28466 | 0.930
133 | 2| 3| 6| 72296 | 28465 | 0.930 183 | 3| 0| 0| 266931 | 68070 | 2.100
134 | 2| 0| 0| 250728 | 60835 | 1.990 184 | 3| 0| 0| 267257 | 68068 | 2.120
135 | 2| 0] 0] 267252 | 68070 | 2.140 185 | 2| 3| 6| 60370 | 22921 | 0.630
136 | 2| 0| 0| 283500 | 75301 | 2.290 18 | 3| 0| 0| 267193 | 68066 | 2.110
137 | 2| 0| 0| 283250 | 75300 | 2.240 187 | 2| 0| 0| 283413 | 75300 | 2.300
138 | 2 | 4| 8| 79945 | 28238 | 1.240 188 | 2| 0| 0] 251225 | 60834 | 2.020
139 | 2| 3| 6| 66349 | 25690 | 0.850 180 | 3| 0| 0] 266976 | 68069 | 2.120
140 | 2| 0| 0| 266811 | 68070 | 2.150 190 | 2| 0| 0| 282937 | 75302 | 2.440
141 | 2 | 4 | 8 | 94990 | 35056 | 1.870 191 | 2| 0| 0] 267218 | 68068 | 2.130
142 | 2 | 3| 6| 66256 | 25694 | 0.750 192 | 2| 0| 0 250911 | 60838 | 2.160
143 | 2 | 3| 6 | 72380 | 28464 | 0.880 193 | 2| 0| 0| 283301 | 75303 | 2.310
144 | 2| 0| 0 | 267127 | 68069 | 2.160 194 | 2| 0| 0| 283575 | 75302 | 2.300
145 | 2 | 0| 0| 267002 | 68070 | 2.140 195 | 3| 0| 0| 267155 | 68070 | 2.120
146 | 2| 0| 0| 267045 | 68071 | 2.250 196 | 2| 3| 6| 60342 | 22920 | 0.680
147 | 2| 0| O | 267342 | 68066 | 2.220 197 | 2| 0| 0| 250950 | 60836 | 2.010
148 | 2| 0| 0| 266931 | 68070 | 2.120 198 | 3| 0| 0] 266976 | 68071 | 2.110
149 | 2| 0| 0| 267195 | 68069 | 2.130 199 | 3| 0| 0] 267185 | 68069 | 2.100
150 | 2| 3| 6| 66408 | 25691 | 0.650 200 | 2] 0] O 266965 | 68070 | 2.770

234

Table A.13: Results for experiments with 10 mech. and 0 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms | Time
1 3 4 12 63625 18132 1.940 51 1 3 3 47242 14722 0.400
2 310 0 | 215212 39311 1.680 52 3| 3 9 47204 14724 0.600
3 2| 4 8 63633 18133 0.790 53 3| 3 9 47269 14721 0.880
4 310 0 | 215192 39314 1.670 54 3 4|12 63594 18137 1.170
5 310 0 | 215234 39310 1.670 55 3 4|12 63603 18135 1.890
6 210 0 | 215233 39311 1.700 56 3| 6 | 17 | 103381 25062 6.200
7 310 0 | 215291 39311 2.370 57 1|4 4 63579 18135 0.640
8 3|3 9 47243 14720 0.920 58 1[0 0 | 215205 39311 1.930
9 310 0 | 215153 39312 1.670 59 3| 3 9 47217 14722 0.520

10 210 0 | 215262 39312 1.670 60 310 0 | 215224 39311 1.680
11 3| 7| 18 | 127093 28573 | 11.580 61 310 0 | 215291 39311 1.670
12 3]0 0 | 215104 39314 1.680 62 3| 4| 12 63562 18137 2.180
13 3| 6| 17 | 103377 25061 8.830 63 310 0 | 215181 39314 4.540
14 3| 5|15 82291 21580 4.960 64 3| 4| 12 63602 18136 1.690
15 310 0 | 215123 39311 1.670 65 3] 41|10 63656 18134 2.160
16 210 0 | 215167 39313 1.690 66 310 0 | 215188 39313 1.660
17 3|5 |15 82208 21582 5.490 67 1|3 3 47226 14719 0.440
18 34|11 63644 18136 2.080 68 313 9 47211 14723 0.460
19 310 0 | 215233 39311 3.960 69 1|4 4 63610 18135 0.660
20 310 0 | 215161 39312 1.670 70 3| 6 | 18 | 103344 25061 5.380
21 1] 4 4 63583 18135 0.610 71 210 0 | 215262 39312 4.740
22 2| 3 6 47250 14720 0.430 72 2| 3 6 47237 14722 0.490
23 210 0 | 215082 39314 1.660 73 310 0 | 215105 39312 2.330
24 210 0 | 215320 39310 1.680 74 210 0 | 215263 39309 1.680
25 1] 4 4 63590 18136 0.610 75 2|0 0 | 215239 39312 1.680
26 1] 3 3 47243 14721 0.420 76 2| 4 8 63635 18135 0.990
27 10 0 | 215181 39311 1.670 77 3| 3 9 47186 14724 0.540
28 1] 4 4 63619 18136 0.640 78 2| 3 6 47248 14720 0.530
29 1|5 5 82273 21582 0.910 79 2| 3 5 47258 14720 0.560
30 10 0 | 215216 39312 1.700 80 2| 3 6 47237 14723 0.480
31 310 0 | 215147 39310 1.670 81 3] 4|12 63656 18134 1.830
32 2 3 6 47245 14722 0.440 82 3 4 12 63564 18135 1.560
33 210 0 | 215104 39314 1.680 83 3| 3 9 47199 14724 0.890
34 35|15 82269 21581 4.230 84 310 0 | 215195 39312 1.690
35 34|12 63676 18133 2.000 85 2| 3 6 47285 14719 0.450
36 2| 4 8 63576 18132 0.890 86 2| 3 6 47244 14722 0.490
37 1|5 5 82345 21580 1.010 87 2|0 0 | 215207 39312 1.680
38 34|12 63631 18134 2.500 88 2| 3 6 47239 14721 0.520
39 34|12 63575 18135 2.060 89 210 0 | 215104 39314 1.690
40 10 0 | 215087 39315 1.690 90 210 0 | 215150 39312 1.680
41 10 0 | 215234 39311 2.590 91 310 0 | 215190 39310 1.670
42 10 0 | 215279 39311 1.690 92 310 0 | 215263 39310 1.680
43 10 0 | 215049 39314 1.690 93 310 0 | 215207 39312 1.670
44 10 0 | 215199 39310 2.490 94 3| 3 9 47195 14721 0.500
45 10 0 | 215205 39311 1.700 95 310 0 | 215152 39312 1.670
46 10 0 | 215114 39314 1.700 96 3| 4|12 63639 18135 2.100
47 10 0 | 215144 39313 1.930 97 310 0 | 215233 39313 1.680
48 1] 5 5 82229 21581 0.810 98 313 9 47221 14722 0.580
49 10 0 | 215003 39314 1.770 99 3| 3 9 47158 14724 0.910
50 10 0 | 215161 39312 1.690 100 310 0 | 215147 39314 1.680

235

Table A.14: Results for experiments with 10 mech. and 0 elect. faults: cases 101-200.
Inst | R | S | A Rules | Atoms Time Inst | R | S A Rules | Atoms | Time
101 3 0 0 | 215163 39312 1.680 151 1 0 0 | 215088 39313 1.700
102 3 0 0 | 215168 39310 4.470 152 1 0 0 | 215106 39312 1.690
103 3 3 9 47219 14724 0.610 153 1 0 0 | 215304 39309 2.010
104 3 4 | 12 63537 18137 1.800 154 1 4 4 63625 18135 0.580
105 310 0 | 215133 39313 1.780 155 110 0 | 215225 39311 1.700
106 310 0 | 215118 39312 1.770 156 1| 4 4 63592 18135 0.610
107 310 0 | 215210 39310 1.700 157 110 0 | 215228 39312 1.700
108 3 0 0 | 215139 39311 1.770 158 1 0 0 | 215257 39311 1.700
109 3 0 0 | 215271 39308 1.810 159 1 5 5 82311 21580 0.890
110 3 4 | 12 63557 18137 2.960 160 1 0 0 | 215261 39311 1.760
111 2 0 0 | 215195 39312 1.690 161 3 0 0 | 215234 39311 1.730
112 2 0 0 | 215205 39312 1.690 162 1 4 4 63666 18134 0.660
113 2 3 6 47163 14724 0.480 163 1 0 0 | 215149 39311 1.690
114 2 3 6 47241 14723 0.550 164 1 0 0 | 215082 39311 1.700
115 3 5| 10 82271 21583 | 465.420 165 3 0 0 | 215349 39309 1.680
116 210 0 | 215199 39313 1.680 166 3] 4|12 63599 18137 1.470
117 2 3 6 47192 14722 0.440 167 3 0 0 | 215253 39310 1.670
118 210 0 | 215291 39311 1.680 168 3]0 0 | 215202 39311 1.680
119 210 0 | 215194 39312 1.690 169 110 0 | 215178 39313 1.690
120 2 3 6 47229 14720 0.430 170 1 4 4 63593 18137 0.620
121 2 3 6 47235 14721 0.540 171 3 0 0 | 215173 39312 2.020
122 2 0 0 | 215121 39313 1.680 172 3 0 0 | 215268 39311 1.670
123 2 4 8 63597 18136 0.830 173 3 0 0 | 215269 39311 1.680
124 2 4 8 63615 18134 1.010 174 3 0 0 | 215160 39314 1.680
125 2 3 6 47222 14721 0.480 175 3 4 | 11 63639 18136 1.910
126 210 0 | 215133 39313 1.680 176 310 0 | 215081 39314 1.670
127 2 3 6 47257 14721 0.490 177 3 4 | 12 63614 18135 2.050
128 215 9 82220 21582 1.560 178 1| 4 4 63619 18134 0.620
129 2 0 0 | 215257 39311 1.690 179 3 0 0 | 215213 39311 1.670
130 2 0 0 | 215129 39312 1.690 180 3 4 | 11 63605 18135 9.150
131 2 3 5 47248 14722 0.950 181 1 0 0 | 214952 39315 1.690
132 2 4 8 63625 18135 1.360 182 1 0 0 | 215291 39311 1.750
133 2 3 6 47204 14723 0.450 183 1 4 4 63580 18133 0.590
134 2 4 8 63636 18135 1.390 184 1 3 3 47249 14721 0.460
135 2| 3 6 47215 14720 0.820 185 1| 4 4 63603 18136 0.620
136 2 3 5 47180 14724 0.550 186 1 0 0 | 215134 39313 1.690
137 210 0 | 215168 39311 1.680 187 1| 4 4 63699 18132 0.610
138 2 3 6 47212 14723 0.510 188 1 4 4 63692 18132 0.620
139 21 3 6 47224 14720 0.430 189 1|7 7 | 126964 28575 1.930
140 2 0 0 | 215155 39313 1.680 190 1 5 5 82299 21580 0.890
141 2 0 0 | 215252 39309 1.680 191 1 3 3 47207 14722 0.460
142 2 0 0 | 215320 39310 1.700 192 1 3 1 47275 14719 0.430
143 2 5 9 82318 21581 1.790 193 1 0 0 | 215137 39314 1.930
144 2 0 0 | 215148 39311 1.680 194 2 0 0 | 215155 39313 1.680
145 2 0 0 | 215156 39313 1.710 195 2 3 6 47179 14724 0.590
146 210 0 | 215218 39312 1.670 196 210 0 | 215160 39312 1.680
147 2 3 6 47244 14720 0.440 197 1 0 0 | 215042 39312 2.030
148 21 3 6 47222 14721 0.460 198 21 4 8 63614 18136 0.880
149 2 3 6 47243 14722 0.650 199 2 3 6 47211 14720 0.460
150 210 0 | 215249 39312 1.710 200 110 0 | 215206 39311 1.700

236

Table A.15: Results for experiments with 10 mech. and 3 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms | Time
1 310 0 | 267086 68063 2.130 51 310 0 | 267178 68067 2.110
2 310 0 | 267229 68068 2.150 52 3|3 9 60514 22918 1.120
3 310 0 | 267102 68068 2.120 53 2|3 6 66448 25691 0.650
4 310 0 | 267275 68067 2.140 54 310 0 | 267222 68065 2.140
5 310 0 | 251071 60835 2.000 55 210 0 | 250800 60836 2.000
6 310 0 | 267432 68068 2.700 56 2|3 6 66419 25689 0.710
7 110 0 | 250875 60833 2.450 57 210 0 | 250922 60835 2.010
8 10 0 | 267273 68066 2.150 58 3|3 9 60489 22916 0.630
9 310 0 | 267245 68068 2.650 59 210 0 | 267434 68066 2.150

10 3| 4|11 87471 31646 2.280 60 310 0 | 251124 60835 1.980
11 10 0 | 267175 68067 2.150 61 310 0 | 250979 60834 3.060
12 2| 4 8 80105 28236 0.940 62 310 0 | 234913 53602 1.870
13 10 0 | 250790 60836 2.330 63 3| 3 9 60424 22921 0.950
14 210 0 | 267304 68066 2.160 64 3| 6| 15 | 126229 38968 | 10.160
15 210 0 | 267104 68069 4.190 65 310 0 | 251054 60836 1.970
16 210 0 | 266856 68069 2.140 66 310 0 | 250824 60836 2.000
17 210 0 | 267139 68068 2.280 67 310 0 | 251116 60835 2.010
18 2|3 6 60467 22918 0.600 68 3|41 12 72530 24825 2.080
19 210 0 | 234715 53606 1.970 69 310 0 | 251138 60834 2.350
20 10 0 | 251127 60836 2.010 70 310 0 | 250796 60836 1.980
21 2|3 6 66417 25689 0.650 71 3|3 9 60463 22917 0.920
22 1] 3 3 60474 22917 0.580 72 310 0 | 251026 60835 2.510
23 210 0 | 267311 68066 2.150 73 310 0 | 251056 60834 3.990
24 210 0 | 267152 68067 2.610 74 310 0 | 267186 68069 2.130
25 2|0 0 | 234653 53602 1.870 75 310 0 | 250989 60836 1.980
26 10 0 | 234551 53602 1.850 76 310 0 | 250924 60837 2.000
27 210 0 | 267217 68068 2.150 77 3| 4112 79953 28235 1.560
28 110 0 | 251104 60834 2.350 78 310 0 | 250828 60834 1.990
29 210 0 | 234930 53600 1.870 79 310 0 | 250664 60838 1.970
30 1] 4 4 80026 28235 0.850 80 3| 6| 18 | 126216 38966 | 11.640
31 10 0 | 250951 60837 1.980 81 310 0 | 267110 68068 2.140
32 310 0 | 267113 68069 2.410 82 310 0 | 251200 60832 1.980
33 310 0 | 267246 68065 2.150 83 310 0 | 250965 60836 2.000
34 34|11 80087 28235 4.460 84 310 0 | 267304 68067 2.120
35 3| 5| 14 | 101909 33585 5.040 85 310 0 | 234836 53601 1.820
36 310 0 | 267291 68066 2.800 86 3|5 |15 93043 290536 5.770
37 310 0 | 267162 68067 2.130 87 310 0 | 267118 68070 2.110
38 310 0 | 250978 60835 2.000 88 34|12 80094 28234 3.370
39 310 0 | 267191 68067 2.130 89 310 0 | 267040 68070 2.140
40 310 0 | 267284 68068 2.130 90 310 0 | 250889 60837 2.010
41 210 0 | 250858 60835 2.010 91 3| 5| 15 | 110959 37634 | 41.750
42 310 0 | 250863 60838 1.960 92 3|3 8 66397 25689 0.800
43 310 0 | 267233 68066 2.120 93 310 0 | 251233 60830 1.990
44 210 0 | 251019 60835 2.000 94 310 0 | 251004 60833 2.010
45 310 0 | 250756 60837 4.430 95 310 0 | 267267 68067 2.140
46 2|0 0 | 267369 68066 4.380 96 3| 5|12 | 101871 33586 3.880
47 210 0 | 251034 60833 2.020 97 310 0 | 250951 60835 1.990
48 310 0 | 250949 60835 1.990 98 310 0 | 251159 60833 1.990
49 210 0 | 251010 60835 2.010 99 310 0 | 267272 68067 2.760
50 2|3 5 66412 25688 0.770 100 3|3 9 60444 22917 0.680

237

Table A.16: Results for experiments with 10 mech. and 3 elect. faults: cases 101-200.

Inst | R | S | A Rules | Atoms | Time Inst | R | S A Rules | Atoms | Time
101 310 0 | 250971 60835 1.980 151 210 0 | 251191 60833 2.000
102 2| 3 6 60472 22913 0.580 152 310 0 | 267283 68068 2.140
103 2| 5| 10 | 101866 33586 3.130 153 3|3 9 60524 22918 0.930
104 210 0 | 250769 60837 2.010 154 310 0 | 267010 68065 2.130
105 210 0 | 250806 60835 1.980 155 210 0 | 267119 68065 2.120
106 2|3 6 60502 22916 0.620 156 3| 4|12 87490 31642 1.520
107 310 0 | 250518 60838 1.970 157 310 0 | 267116 68068 2.340
108 2|3 6 60365 22919 0.560 158 210 0 | 267352 68067 2.250
109 2| 6| 12 | 126224 38969 4.670 159 310 0 | 267093 68067 2.130
110 3| 4| 12 87554 31643 7.810 160 310 0 | 250738 60837 1.990
111 210 0 | 267257 68066 2.150 161 2| 4 8 80072 28232 2.760
112 210 0 | 267228 68067 5.540 162 2| 4 8 80121 28235 0.970
113 210 0 | 251084 60832 2.010 163 2| 6| 12 | 136530 43656 3.180
114 210 0 | 251107 60836 2.020 164 210 0 | 251048 60836 2.000
115 310 0 | 250899 60839 2.450 165 210 0 | 250980 60834 2.010
116 210 0 | 250740 60838 2.140 166 2|3 6 66329 25691 0.850
117 210 0 | 267221 68067 2.150 167 210 0 | 251155 60832 1.990
118 313 9 60454 22918 0.670 168 2|3 6 66470 25684 1.410
119 210 0 | 251147 60837 1.990 169 210 0 | 250914 60837 2.020
120 2| 4 8 80086 28235 1.440 170 210 0 | 250921 60836 2.010
121 210 0 | 267075 68068 2.150 171 2|3 6 60534 22913 0.750
122 2| 3 6 66470 25689 0.610 172 210 0 | 267060 68069 2.140
123 210 0 | 267253 68067 2.640 173 210 0 | 267210 68067 2.130
124 210 0 | 267306 68068 2.140 174 2|3 6 60473 22918 0.640
125 2|3 6 60425 22919 0.690 175 2| 4 8 87442 31645 1.680
126 210 0 | 266973 68070 2.310 176 210 0 | 251124 60833 1.990
127 210 0 | 267386 68068 2.120 177 210 0 | 250875 60835 1.970
128 210 0 | 250966 60836 1.990 178 210 0 | 250928 60834 2.000
129 2 | 5| 10 | 102010 33583 1.980 179 210 0 | 266902 68070 2.150
130 210 0 | 267066 68068 2.150 180 210 0 | 250593 60837 2.010
131 210 0 | 267233 68067 2.140 181 210 0 | 251063 60835 2.010
132 210 0 | 267504 68063 2.160 182 210 0 | 267305 68067 2.120
133 210 0 | 267338 68063 2.120 183 210 0 | 234661 53604 1.850
134 210 0 | 251160 60835 2.010 184 210 0 | 250978 60836 2.000
135 2|0 0 | 267242 68066 2.720 185 210 0 | 251216 60834 2.430
136 2| 3 6 60512 22913 0.560 186 210 0 | 267049 68068 2.740
137 2|3 6 60470 22919 0.640 187 2|3 6 54488 20143 0.630
138 210 0 | 250834 60836 2.010 188 2|3 6 60413 22918 0.550
139 210 0 | 234902 53602 1.860 189 210 0 | 267110 68069 2.140
140 210 0 | 250980 60834 2.020 190 210 0 | 267443 68064 2.150
141 310 0 | 251016 60833 2.000 191 210 0 | 251042 60836 2.020
142 310 0 | 250853 60838 1.990 192 210 0 | 267261 68067 2.150
143 3| 4| 12 87521 31641 6.000 193 210 0 | 267332 68064 2.660
144 310 0 | 267230 68070 2.150 194 210 0 | 267236 68065 2.150
145 310 0 | 267259 68068 2.140 195 2| 5| 10 | 101867 33586 | 30.110
146 310 0 | 251277 60833 2.490 196 210 0 | 250912 60837 2.010
147 310 0 | 250570 60838 1.970 197 210 0 | 267044 68068 2.160
148 310 0 | 250841 60838 1.990 198 210 0 | 267430 68065 2.270
149 310 0 | 250756 60837 2.010 199 210 0 | 250679 60837 2.010
150 34|12 72703 24825 2.500 200 210 0 | 267504 68066 2.120

238

Table A.17: Results for experiments with 10 mech. and 5 elect. faults: cases 1-100.

Inst | R | S A Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
1 2|0 0 | 267109 68071 2.310 51 2|0 0 | 267164 68075 2.150
2 2|0 0 | 283239 75305 2.310 52 2|0 0 | 267149 68072 2.600
3 2|0 0 | 266931 68073 2.330 53 2|0 0 | 266985 68070 2.150
4 3|0 0 | 266935 68070 2.110 54 2|0 0 | 267060 68072 2.150
5 2|0 0 | 283232 75306 2.480 55 2| 4 8 94818 35058 1.170
6 2| 3 6 66495 25694 0.690 56 2|0 0 | 266814 68074 2.740
7 3|0 0 | 267081 68072 2.100 57 2|0 0 | 283266 75305 2.290
8 2| 4 8 87521 31651 1.370 58 2| 4 8 87371 31652 0.960
9 2|0 0 | 283394 75305 2.320 59 2|0 0 | 267015 68072 2.150

10 3| 4|11 87330 31649 7.720 60 2|0 0 | 266978 68069 2.150
11 3|0 0 | 267126 68071 2.300 61 2| 3 6 72354 28469 0.980
12 3|0 0 | 283396 75304 2.270 62 2|0 0 | 250711 60838 2.010
13 3|0 0 | 266972 68068 2.150 63 2|0 0 | 267022 68073 2.150
14 3|0 0 | 266824 68073 2.140 64 2|0 0 | 250650 60843 2.000
15 3]0 0 | 283285 75304 2.290 65 210 0 | 266748 68071 2.140
16 3| 3 9 66251 25698 0.700 66 2|0 0 | 250721 60841 2.000
17 3|0 0 | 266996 68069 2.810 67 310 0 | 266974 68071 2.080
18 3|0 0 | 266806 68072 2.170 68 310 0 | 266639 68072 2.100
19 3|10 0 | 267050 68072 2.120 69 310 0 | 266955 68071 2.100
20 3|0 0 | 267191 68074 2.140 70 2| 5| 10 | 110776 37635 3.490
21 3|0 0 | 266710 68074 2.090 71 3|0 0 | 267024 68072 2.770
22 2|0 0 | 283321 75303 2.340 72 3|0 0 | 266897 68072 2.090
23 2|0 0 | 267101 68072 2.670 73 3|0 0 | 266586 68075 2.130
24 20 0 | 283168 75306 2.510 74 310 0 | 266859 68071 2.100
25 2|0 0 | 267055 68074 3.940 75 310 0 | 267294 68071 2.120
26 2|0 0 | 267232 68069 2.160 76 310 0 | 267175 68067 2.140
27 20 0 | 266908 68070 2.160 kéd 310 0 | 267050 68076 2.130
28 2|0 0 | 266904 68069 2.190 78 310 0 | 266699 68074 2.090
29 2| 3 6 60388 22919 0.680 79 310 0 | 283142 75305 2.230
30 2|10 0 | 267043 68072 2.160 80 3|10 0 | 266848 68076 2.120
31 3|0 0 | 267120 68072 2.120 81 310 0 | 283301 75305 2.250
32 3|0 0 | 267078 68073 2.140 82 3|0 0 | 283526 75300 2.280
33 3|0 0 | 267211 68071 2.150 83 3|0 0 | 283170 75303 2.270
34 3| 4] 12 79995 28240 2.020 84 3|0 0 | 283181 75304 2.930
35 3|0 0 | 267328 68070 2.130 85 310 0 | 266960 68073 2.300
36 3]0 0 | 266834 68073 2.150 86 2|0 0 | 266839 68072 2.110
37 3|10 0 | 283114 75304 2.460 87 2|0 0 | 250763 60840 1.990
38 3|0 0 | 266884 68071 2.140 88 310 0 | 250664 60842 2.000
39 3|0 0 | 266899 68073 2.120 89 310 0 | 266631 68076 2.360
40 3|0 0 | 267011 68075 2.100 90 3|14 10 79991 28239 2.040
41 3| 3 9 72298 28467 0.810 91 2|0 0 | 283252 75306 2.440
42 3|0 0 | 267057 68074 2.150 92 2|0 0 | 283646 75303 2.280
43 3|0 0 | 250725 60843 1.960 93 210 0 | 251042 60837 2.010
44 3|0 0 | 250537 60844 2.010 94 2| 3 6 66383 25695 0.920
45 3|0 0 | 267000 68074 2.140 95 2| 4 7 87588 31648 1.640
46 3|0 0 | 251100 60840 1.990 96 2| 3 6 66339 25696 0.620
47 3]0 0 | 250925 60838 1.980 97 210 0 | 283394 75304 2.280
48 3|0 0 | 283110 75309 2.480 98 2|0 0 | 267054 68071 2.680
49 3|0 0 | 283138 75305 2.290 99 2| 3 6 66344 25696 0.730
50 3| 4] 12 80014 28239 2.770 100 2| 3 6 66290 25697 0.730

239

Table A.18: Results for experiments with 10 mech. and 5 elect. faults: cases 101-200.
Inst | R | S| A | Rules | Atoms | Time Inst | R | S| A Rules | Atoms | Time
101 2 0 0 | 250682 60838 1.990 151 2 0 0 | 267114 68072 2.110
102 2 3 6 66396 25695 0.650 152 3 0 0 | 266941 68073 2.120
103 2 3 6 66372 25694 0.660 153 3 0 0 | 250745 60840 2.010
104 2 5 8 | 110795 37634 5.660 154 2 0 0 | 266803 68072 2.640
105 210 0 | 266876 68076 2.480 155 3]0 0 | 282917 75304 | 2.300
106 210 0 | 267432 68070 2.150 156 3| 3 8 66415 25694 1.100
107 210 0 | 266850 68069 2.150 157 3]0 0 | 267031 68072 2.150
108 2 0 0 | 283042 75305 2.470 158 3 0 0 | 250820 60837 2.000
109 2 0 0 | 283361 75301 2.290 159 3 0 0 | 250611 60842 8.790
110 2 0 0 | 266770 68075 2.160 160 3 3 9 66234 25697 0.680
111 2 0 0 | 266688 68076 2.140 161 2 0 0 | 267237 68067 2.120
112 2 0 0 | 266781 68073 2.130 162 2 3 6 54458 20149 0.620
113 310 0 | 250812 60839 2.000 163 2 3 6 60439 22922 0.660
114 3|0 0 | 283397 75306 2.280 164 2 0 0 | 266717 68074 2.150
115 2 3 6 66295 25695 0.620 165 2 0 0 | 283432 75302 2.250
116 310 0 | 266944 68075 2.130 166 2| 4 8 94896 35056 1.690
117 2 0 0 | 250676 60842 1.980 167 2 0 0 | 267164 68073 2.130
118 210 0 | 267064 68072 2.150 168 210 0 | 267073 68072 2.130
119 210 0 | 267171 68073 2.250 169 210 0 | 283228 75303 2.290
120 3|0 0 | 266742 68073 2.150 170 2 0 0 | 267092 68072 2.140
121 2 3 6 66360 25698 0.650 171 3 0 0 | 250703 60840 2.000
122 2 0 0 | 266865 68074 2.150 172 3 0 0 | 267253 68073 2.140
123 2 3 6 66405 25694 0.680 173 3 0 0 | 266961 68069 2.140
124 2 0 0 | 283128 75305 2.290 174 3 0 0 | 250873 60840 2.000
125 2| 4 8 87448 31648 1.330 175 3]0 0 | 266912 68074 | 2.100
126 210 0 | 283508 75302 2.270 176 3]0 0 | 266971 68074 | 2.130
127 2 5 | 10 | 110748 37634 4.670 177 3 0 0 | 250733 60843 1.990
128 210 0 | 283228 75306 2.300 178 34|11 80070 28238 2.250
129 2 0 0 | 266955 68073 2.530 179 3 0 0 | 250914 60841 2.000
130 2 0 0 | 266932 68072 2.150 180 3 0 0 | 267142 68068 2.100
131 2 0 0 | 283344 75306 2.820 181 2 3 6 54392 20151 0.620
132 2 0 0 | 267210 68075 2.170 182 2 0 0 | 266703 68073 2.160
133 2 0 0 | 267057 68074 2.160 183 3 0 0 | 250798 60840 1.990
134 2 0 0 | 251167 60836 1.980 184 2 0 0 | 266991 68070 2.230
135 210 0 | 267123 68069 2.150 185 3]0 0 | 267035 68070 2.100
136 2 6 | 12 | 136462 43660 4.880 186 2 3 6 66294 25696 0.860
137 210 0 | 266834 68073 2.120 187 210 0 | 267443 68072 2.160
138 2 0 0 | 266935 68070 2.140 188 2 0 0 | 283156 75304 2.290
139 210 0 | 266921 68073 2.160 189 210 0 | 283249 75303 2.300
140 2 0 0 | 283288 75304 2.280 190 3 0 0 | 267068 68075 2.300
141 3|0 0 | 283337 75306 2.270 191 2 0 0 | 267305 68074 2.150
142 2 0 0 | 267208 68071 2.120 192 3 0 0 | 267223 68071 2.120
143 2 0 0 | 283549 75305 2.260 193 2 0 0 | 250509 60840 2.000
144 3|0 0 | 266927 68073 2.130 194 2 0 0 | 250724 60843 2.030
145 3 3 9 66259 25696 0.980 195 3 0 0 | 266594 68076 2.100
146 210 0 | 267047 68070 2.300 196 3]0 0 | 250800 60839 1.960
147 2 0 0 | 267398 68070 2.130 197 3 0 0| 267113 68072 2.320
148 310 0 | 250528 60843 1.990 198 210 0 | 283515 75303 2.280
149 3|0 0 | 267046 68075 2.140 199 2 0 0 | 283275 75310 2.440
150 310 0 | 283240 75306 2.280 200 213 6 60533 22919 | 0.720

240

Table A.19: Results for experiments with 10 mech. and 7 elect. faults: cases 1-100.

Inst | R | S | A Rules | Atoms Time Inst | R | S A Rules | Atoms Time
1 210 0 | 283130 75308 2.290 51 3|0 0 | 283034 75308 2.280
2 2| 4 8 79747 28248 | 14.670 52 3|0 0 | 266785 68078 2.120
3 2| 3 6 72154 28475 0.790 53 3|0 0 | 266795 68077 2.140
4 310 0 | 266756 68076 2.110 54 3|0 0 | 283198 75309 2.260
5 210 0 | 266710 68077 2.280 55 3|0 0 | 282819 75309 2.270
6 310 0 | 283178 75308 2.260 56 3|0 0 | 250569 60845 1.980
7 2| 4 7 87411 31656 1.300 57 3|0 0 | 283008 75309 2.260
8 310 0 | 267052 68075 2.100 58 3|0 0 | 283280 75304 2.240
9 310 0 | 250768 60844 1.980 59 3|0 0 | 266666 68076 2.120

10 210 0 | 282956 75308 2.300 60 3|0 0 | 267006 68073 2.120
11 210 0 | 282839 75311 2.300 61 3|0 0 | 266786 68079 2.130
12 3]0 0 | 282927 75313 2.260 62 3|0 0 | 266695 68078 2.120
13 210 0 | 250874 60843 2.010 63 3| 3 9 66227 25698 0.750
14 210 0 | 282674 75309 2.480 64 3| 4] 12 87233 31656 | 108.100
15 210 0 | 266918 68077 2.160 65 3]0 0 | 266703 68080 2.110
16 310 0 | 266718 68076 2.090 66 3|0 0 | 283092 75306 2.270
17 210 0 | 282950 75309 2.290 67 3|0 0 | 266977 68072 2.140
18 310 0 | 282641 75311 2.230 68 3|0 0 | 266867 68078 2.910
19 210 0 | 266623 68079 2.150 69 3|10 0 | 266677 68077 2.120
20 210 0 | 283390 75304 2.290 70 3|0 0 | 283177 75309 2.290
21 3]0 0 | 266798 68079 2.130 71 3|0 0 | 266809 68077 2.130
22 310 0 | 283153 75306 2.270 72 3|0 0 | 283298 75307 2.280
23 3]0 0 | 266729 68076 2.130 73 3|0 0 | 282766 75309 2.280
24 310 0 | 266962 68074 2.110 74 3]0 0 | 283614 75307 2.260
25 3|10 0 | 250674 60841 1.990 75 3|10 0 | 266883 68073 2.140
26 310 0 | 267099 68069 2.510 76 3|0 0 | 282684 75312 2.250
27 310 0 | 283155 75309 2.290 77 3|0 0 | 266815 68076 2.690
28 310 0 | 283246 75309 2.280 78 3|10 0 | 266821 68079 2.110
29 3| 4| 12 79929 28243 2.100 79 3| 3 9 72141 28474 0.940
30 310 0 | 266743 68077 2.120 80 3|0 0 | 267187 68071 2.150
31 310 0 | 283135 75308 2.250 81 3|0 0 | 283246 75308 2.290
32 10 0 | 266654 68078 2.170 82 3|0 0 | 266637 68080 2.700
33 10 0 | 266791 68079 2.160 83 3|0 0 | 283330 75309 2.240
34 3| 4| 12 87220 31653 2.300 84 3|0 0 | 250744 60842 2.000
35 10 0 | 282884 75309 2.460 85 3|0 0 | 282842 75310 2.270
36 10 0 | 283030 75310 2.300 86 3]0 0 | 282944 75310 2.280
37 10 0 | 282856 75310 2.310 87 3|10 0 | 282741 75310 2.280
38 3| 4| 12 94737 35062 2.490 88 3|0 0 | 283312 75308 2.880
39 310 0 | 282851 75309 2.750 89 3|0 0 | 282803 75308 2.290
40 310 0 | 266957 68075 2.120 90 3|0 0 | 283051 75310 2.270
41 210 0 | 267049 68072 2.140 91 2|10 0 | 282698 75311 2.290
42 210 0 | 266856 68079 2.140 92 2|0 0 | 282971 75308 2.440
43 210 0 | 266805 68075 2.140 93 210 0 | 267037 68078 2.160
44 210 0 | 266808 68078 2.160 94 2|0 0 | 267099 68076 2.160
45 210 0 | 266848 68074 2.150 95 3|0 0 | 266703 68077 2.100
46 310 0 | 283134 75309 2.240 96 2| 4 8 87283 31654 1.420
47 210 0 | 283076 75308 2.280 97 20 0 | 266877 68075 2.160
48 2| 4 7 87236 31650 1.070 98 2|0 0 | 283260 75306 2.260
49 210 0 | 283087 75311 2.300 99 2|0 0 | 266880 68078 2.150
50 210 0 | 282895 75308 2.280 100 2|0 0 | 266783 68076 2.160

241

Table A.20: Results for experiments with 10 mech. and 7 elect. faults: cases 101-200.

Inst | R | S | A Rules | Atoms | Time Inst | R | S | A Rules | Atoms | Time
101 2|3 6 60271 22928 0.670 151 3|0 0 | 283029 75312 2.970
102 210 0 | 283103 75310 2.430 152 1[0 0 | 282787 75311 2.310
103 210 0 | 266788 68079 2.250 153 3|0 0 | 266858 68075 2.110
104 210 0 | 282978 75306 2.370 154 1] 4 4 87390 31652 0.860
105 210 0 | 282969 75311 2.270 155 110 0 | 250582 60849 2.240
106 210 0 | 282668 75312 2.470 156 310 0 | 266621 68079 2.130
107 2| 4 7 94723 35061 1.100 157 310 0 | 283004 75309 2.900
108 210 0 | 283013 75309 2.250 158 3|10 0 | 266389 68080 2.100
109 210 0 | 283205 75311 2.320 159 110 0 | 282953 75304 2.310
110 210 0 | 266948 68073 2.150 160 1]0 0 | 266701 68081 2.150
111 210 0 | 266717 68077 2.120 161 310 0 | 283162 75302 2.280
112 210 0 | 266980 68076 2.130 162 3|0 0 | 283359 75309 2.280
113 310 0 | 267105 68079 2.730 163 310 0 | 266975 68077 2.140
114 310 0 | 282921 75311 5.000 164 3|0 0 | 282869 75310 2.470
115 310 0 | 283080 75310 2.280 165 310 0 | 283382 75307 2.280
116 310 0 | 266984 68076 2.140 166 310 0 | 283085 75309 2.940
117 310 0 | 266882 68078 2.150 167 310 0 | 283231 75310 2.290
118 310 0 | 283063 75309 2.280 168 310 0 | 250546 60847 2.000
119 310 0 | 266816 68076 2.130 169 310 0 | 266726 68076 2.130
120 210 0 | 266909 68075 2.140 170 310 0 | 266745 68074 2.130
121 3|3 9 66202 25698 0.660 171 3|0 0 | 282878 75312 2.240
122 3|10 0 | 266807 68075 2.130 172 3|0 0 | 283137 75308 2.270
123 3|10 0 | 283209 75306 2.280 173 3|0 0 | 266818 68075 2.140
124 3|3 8 72159 28475 1.000 174 210 0 | 283215 75306 2.270
125 210 0 | 266947 68075 2.120 175 310 0 | 283427 75305 2.280
126 1|0 0 | 282820 75312 2.290 176 2|0 0 | 283175 75307 2.250
127 1|0 0 | 283180 75307 2.290 177 2|0 0 | 283132 75307 2.440
128 1|0 0 | 283054 75310 2.270 178 310 0 | 283284 75307 2.280
129 1|0 0 | 283170 75306 2.540 179 310 0 | 282702 75311 2.280
130 310 0 | 267039 68077 2.140 180 3|10 0 | 266830 68075 2.130
131 1| 4 4 94824 35064 1.000 181 110 0 | 282713 75312 2.300
132 1|0 0 | 283084 75303 2.250 182 2|0 0 | 283113 75308 2.270
133 1|0 0 | 266882 68074 2.140 183 1[0 0 | 267063 68071 2.140
134 1|0 0 | 283348 75309 2.280 184 1[0 0 | 282692 75312 2.280
135 1|0 0 | 282780 75311 2.310 185 110 0 | 283196 75310 2.440
136 1|0 0 | 282928 75309 2.300 186 1[0 0 | 266896 68075 2.150
137 1|0 0 | 282795 75310 2.300 187 110 0 | 282960 75308 2.340
138 1| 4 4 94882 35066 1.150 188 2|0 0 | 266681 68077 2.120
139 1|0 0 | 283191 75306 2.450 189 110 0 | 282841 75312 2.310
140 1|0 0 | 283157 75308 2.660 190 2|0 0 | 250728 60843 1.990
141 1|0 0 | 282925 75313 2.270 191 2|0 0 | 267136 68071 2.130
142 3|10 0 | 283044 75306 2.260 192 2|0 0 | 266680 68075 2.140
143 3|10 0 | 266908 68075 2.110 193 210 0 | 282907 75310 2.310
144 3|10 0 | 266873 68075 2.120 194 2|0 0 | 266699 68078 2.170
145 3|10 0 | 267109 68079 2.750 195 2|0 0 | 266741 68080 2.190
146 310 0 | 266479 68077 2.110 196 2|0 0 | 282820 75310 2.270
147 310 0 | 266994 68073 2.130 197 2| 3 6 66200 25700 0.730
148 310 0 | 266741 68075 2.290 198 2|0 0 | 266932 68077 2.170
149 310 0 | 266581 68077 2.130 199 2|0 0 | 283055 75311 2.250
150 310 0 | 266887 68079 2.110 200 2|0 0 | 283432 75307 2.300

Bibliography

1]

2]

(6]

M. Agnes, editor in chief. Webster’s New World College Dictionary. IDG Books

Worldwide, Inc., Fourth Edition, 2001.

J.J. Alferes, R. Li, and L.M. Pereira. Concurrent Actions and Changes in the
Situation Calculus. In H. Geffner, editor, Proceedings of IBERAMIA 94, pp.

93-104, McGraw Hill, 1994.

J.J. Alferes and L.M. Pereira. Reasoning with Logic Programming. LNAI Volume

1111, Springer-Verlag, 1996.

G. Antoniou. Nonmonotonic Reasoning. The MIT Press, 1997.

K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In Jack Minker, editor, Foundations of Deductive Databases and Logic Program-

ming, pp. 89-148, Morgan Kaufmann, Los Altos, California, 1988.

K.R. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal of

Logic Programming, vols. 19-20, pp. 9-71, 1994.

242

243
[7] K.R. Apt, V.W. Marek, M. Truszczyniski, and D.S. Warren, editors. The Logic

Programming Paradigm - A 25-Year Perspective. Springer, 1999.

[8] Y. Babovich. Cmodels system. Available from

http://www.cs.utexas.edu/users/tag/cmodels.html

[9] F. Baccus and F. Kabanza. Using Temporal Logic to Control Search in a Forward
Chaining Planner. In M. Ghallab and A. Milano, editors, New Directions in

Planning, pp. 141-153, IOS Press, 1996.

[10] F. Bacchus and F. Kabanza. Planning for Temporally Extended Goals. In Annals

of Mathematics and Artificial Intelligence, 22(1-2), pp. 5-27, 1998.

[11] F. Baccus and F. Kabanza. Using Temporal Logics to Express Search Control

Knowledge for Planning. Artificial Intelligence, vol. 16, pp. 123-191, 2000.

[12] M. Balduccini, J. Galloway, and M. Gelfond. Diagnosing physical systems in A-
Prolog. In Proceedings of the 25th National Conference on Artificial Intelligence

(AAAI-01) - Workshop on Answer Set Programming, pp. 77-83, 2001.

[13] M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring
Rules. In P. Doherty, J. McCarthy, and M. Williams, editors, Proceedings of the
International Symposium on Logical Formalization of Commonsense Reasoning

- AAAI Spring 2003 Symposium, March 2003.

[14]

[15]

[16]

[17]

18]

[19]

244
M. Balduccini, M. Gelfond, and M. Nogueira. A-Prolog as a tool for declarative

programming. In Proceedings of the Twelfth International Conference on Soft-

ware Engineering and Knowledge Engineering (SEKE-2000), pp. 6372, 2000.

M. Balduccini, M. Gelfond, and M. Nogueira. Digital Circuits in A-Prolog. Tech-
nical Report, Department of Computer Science, University of Texas at El Paso,

2000.

M. Balduccini, M. Gelfond, and M. Nogueira. Reasoning about Digital Circuits
in A-Prolog. Technical Report, The University of Texas at El Paso and Texas

Tech University, 2000.

M. Balduccini, M. Gelfond, M. Nogueira, and R. Watson. The USA-Advisor: A
Case Study in Answer Set Planning. In Proceedings of the Sixthth International

Conference on Logic Programming and Nonmonotonic Reasoning, pp. 439-442,

September 2001.

M. Balduccini, M. Gelfond, M. Nogueira, and R. Watson. Planning with the
USA-Advisor. In D. Kortenkamp, editor, Third NASA International Workshop

on Planning and Scheduling for Space, October 2002.

A. Baker. Nonmonotonic reasoning in the framework of situation calculus. Arti-

ficial Intelligence, 49(1-3), pp. 523, May 1991.

[20]

[21]

[22]

23]

[24]

[25]

[26]

245
A. Baker and M. Ginsberg. Temporal Projection and Explanation. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-

89), pp. 906-911, Detroit, Michigan, 1989.

C. Baral. Reasoning about Actions: Non-deterministic effects, Constraints and
Qualification. In Proceedings of the 14th International Joint Conference on Ar-

tificial Intelligence (IJCAI-95), pp. 2017-2023, Montreal, Canada, 1995.

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

C. Baral and M. Gelfond. Representing concurrent actions in extended logic
programming. In Proceedings of 13th International Joint Conference on Artificial

Intelligence (IJCAI-93), pp. 866-871, Chambery, France, 1993.

C. Baral and M. Gelfond. Logic programming and knowledge representation.

Journal of Logic Programming, vol. 12, pp. 1-80, 1994.

C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal

of Logic Programming, 31(1-3), pp. 85-117, 1997.

C. Baral and J. Lobo. Defeasible specification in action theories. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97),

pp- 1441-1446, Nagoya, Japan, 1997.

[27]

28]

[29]

[30]

[31]

[32]

246
C. Baral and L. Tuan. Effect of knowledge representation on model based plan-
ning: experiments using logic programming encodings. In A. Provetti and S.C.
Tran, editors, Answer Set Programming: Towards Efficient and Scalable Knowl-

edge Representation and Reasoning, AAAI Spring 2001 Symposium Series, pp.

110-115, Stanford University, California, March 2001.

C. Baral, T. Son, and L. Tuan. A transition function based characterization of
actions with delayed and continuous effects. In Proceedings of the Eighth Inter-

national Conference on Principles of Knowledge Representation and Reasoning

(KR-02), pp. 291-302, 2002.

M. Barbacci, D. Siewiorek, R. gordon, R. Howbrigg, and S. Zuckerman. An
Architectural research facility — ISP Descriptions, simulation, data collection.

In Proceedings of the AFIPS National Computer Conference, 1977.

M.R. Barbacci and T. Uehara. Computer Hardware Description Languages: The
Bridge Between Software and Hardware. In IEEE Computer, pp. 6—8, February

1985.

M. Barry and R. Watson. Reasoning about actions for spacecraft redundancy
management. In Proceedings of the 1999 IEEE Aerospace Conference, vol. 5, pp.

101-112, 1999.

G.M. Baudet, M. Cutler, M. Davio, A.M. Peskin, and F.J. Ramming. The Re-

lationship between HDLs and Programming Languages. In VLSI and Software

[33]

[34]

[35]

[36]

[37]

[38]

[39]

247

Engineering Workshop, pp. 6469, Port Chester, NY, June 1982.

G. Brewka. Nonmonotonic reasoning: logical foundations of commonsense. Cam-

bridge University Press, 1991.

P.W. Case, H.H. Graff, and M. Kloomok. The Recording, Checking, and Printing
of Logic Diagrams. In Proceedings of the Fastern Joint Computer Conference,

pp- 108-118, 1958.

G.R. Case and J.D. Stauffer. SALOGS-IV: A Program to Perform Logic Simu-
lation and Fault Diagnosis. In Proceedings of the 15th Design Automation Con-

ference, pp. 392-397, ACM/IEEE, June 1978.

S.G. Chapel and P.R. Menon. Functional Simulation in the LAMP System. Jour-

nal of Design Automation and Fault Tolerant Computing, pp. 203-215, May 1977.

H.Y. Chang, G.W. Smith, and R.B. Walford. LAMP: System Description. The

Bell System Technical Journal, 53(8), pp. 1431-1449, October 1974.

P. Cholewinski, W. Marek, and M. Truszczynski. Default Reasoning System
DeReS. In Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR-96), pp. 518-528, Morgan Kauff-

man, 1996.

Y. Chu. An ALGOL-like Computer Design Language. Communications of the

ACM, pp. 607615, October 1965.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

248
Y. Chu, D.L. Dietmeyer, F. Hill, and D. Siewiorek. Introducting Computer Hard-

ware Description Languages. IEEE Computer, 7(12), pp. 27-44, December 1974.

S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,
G. Pfeifer, and F. Scarcello. The dlv system: Model generator and application

frontends. In Proceedings of the Twelfth Workshop on Logic Programming, pp.

128-137, 1997.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logics and

Databases, pp. 293—-322, Plenum Press, New York, 1978.

P. Clark and B. Porter. KM — the knowledge machine: Reference manual. Tech-

nical report, AI Lab, University of Texas at Austin, 1998.

A. Colmerauer. Les Systéemes-@Q) ou un formalisme pour analyser et synthétiser
des phrases sur ordinateur. Technical Report 43, Department of Computer Sci-

ence, University of Montreal, Quebec, Canada, 1970.

A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un Systéme de Commu-
nication Homme-Machine en Frangais. Technical Report, Groupe de Recherche

en Intelligence Artificielle, Université d’Aix-Marseille II, Luminy, France, 1973.

M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.

Journal of the ACM, 7(3), pp. 201-215, July 1960.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

249
D.L. Dietmeyer. Introducing DDL. IEEE Computer, 7(12), pp. 34—-38, December

1974.

Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. In Lecture Notes in Artificial Intelligence - Recent

Advances in AI Planning, Proceedings of the Fourth European Conference on

Planning (ECP-97), vol. 1348, pp. 169-181, 1997.

P. Doherty. Notes on PMON circumscription. Technical Report, LiTH-IDA-R-
94-43, Computer Science Department, Linkoping University, Linkoping, Sweden,

1983.

P. Doherty. Reasoning about Action and Change using Occlusion. In Proceedings
of the Eleventh European Conference on Artificial Intelligence (ECAI-94), pp.

401-405, Amsterdam, The Netherlands, August 1994.

P. Doherty and J. Kvarnstrm. Tackling the Qualification Problem using Fluent
Dependency Constraints: Preliminary Report. In Proceedings of the Fifth Inter-
national Workshop on the Temporal Representation and Reasoning (TIME-98),

pp- 97-104, Sanibel Island, Florida, 1998.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Databases. ACM Transactions

on Database Systems, 22(3), pp. 364—418, September 1997.

T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and

F. Scarcello. The DLV System. In J. Minker, editor, Workshop on Logic-Based

[54]

[55]

[56]

[57]

[58]

250
Artificial Intelligence, Computer Science Department, College Park, Washington,

D.C., Maryland, June 1999.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Program-
ming Approach to Knowledge—State Planning, II: The DLV-K System. Artificial

Intelligence, 144(1-2), pp. 157211, 2003.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons and Benchmarks. In A.G. Cohn, L. Schubert,
and S.C. Shapiro, editors, Proceedings of the Sizth International Conference on
Principles of Knowledge Representation and Reasoning (KR-98), pp. 406417,

Morgan Kaufmann, 1998.

T. Eiter, J. Lu, and V.S. Subrahmanian. A first-order representation of stable
models. Technical Report, IFIG, Universitat Giessen, 1998. (Also in The Furo-
pean Journal on Artificial Intelligence (AI Communications), 11(1), pp. 53-73,

IOS Press, 1998.)

C. Elkan. Reasoning about Action in First-Order Logic. In Proceedings of the
Ninth Biennial Conference of the Canadian Society for Computational Studies

of Intelligence (CSCSI-92), Morgan Kaufmann, Vancouver, Canada, May 1992.

E. Erdem. Theory and applications of answer set programming. Ph.D. Disser-
tation, Department of Computer Sciences, The University of Texas at Austin,

Texas, 2002.

[59]

[60]

[61]

[62]

[63]

[64]

251
E. Erdem and V. Lifschitz. Transitive Closure, Answer Sets and Predicate Com-
pletion. In A. Provetti and S.C. Tran, editors, Answer Set Programming: To-
wards Efficient and Scalable Knowledge Representation and Reasoning, AAAI

Spring 2001 Symposium Series, pp. 6065, Stanford University, CA, 2001.

E. Erdem, V. Lifschitz, L. Nakhleh, and D. Ringe. Reconstructing the evolu-
tionary history of Indo-European languages using answer set programming. In
Proceedings of the Fifth International Symposium on Practical Aspects of Declar-

ative Languages (PADL’03), pp. 160-176, 2003.

E. Erdem, V. Lifschitz, and M. Wong. Wire routing and satisfiability planning. In
Proceedings of the First International Conference on Computational Logic (CL

2000), pp. 822-836, London, U.K., 2000.

K. Eshghi. Diagnoses As Stable Models. Technical Report, Hewlett Packard Lab-

oratories, 1990.

D. Etherington, R. Mercer, and R. Reiter. On the Adequacy of Circumscription

for Closed-World Reasoning. Computational Intelligence, vol. 1, pp. 11-15, 1985.

W. Faber, N. Leone, and G. Pfeifer. Optimizing the Computation of Heuris-
tics for Answer Set Programming Systems. In T. Eiter, W. Faber, and M.

Truszczynski, editors, Lecture Notes in Artificial Intelligence - Proceedings of

[65]

[66]

[67]

[68]

[69]

[70]

252
the 6th International Conference in Logic Programming and Nonmonotonic Rea-
soning (LPNMR-01), Vienna, Austria, vol. 2173, pp. 288-301, Springer Verlag,

September 2001.

R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2, pp. 189-208, 1971.

J.J. Finger. Ezploiting Constraints in Design Synthesis. PhD Thesis, Department

of Computer Science, Stanford University, California, 1987.

R.A. Finkel, V.W. Marek, N. Moore, and M. Truszczynski. Computing Stable
Models in Parallel. In A. Provetti and S.C. Tran, editors, Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and Reasoning,
AAAI Spring 2001 Symposium Series, pp. 72—76, Stanford University, California,

March 2001.

A. Finzi, F. Pirri, and R. Reiter. Open World Planning in the Situation Calculus.
In Proccedings of the 17th National Conference of Artificial Intelligence (AAAI-

00), pp. 754760, 2000.

J.R. Galloway. Diagnosing Dynamic Systems in A-Prolog. Master’s Thesis, Com-

puter Science Department, The University of Texas at El Paso, Texas, 2000.

M. Gelfond. Autoepistemic logic and formalization of commonsense reasoning,

In M Reinfrank, J. de Kleer, M. Ginsberg, and E. Sandewall, editors, Lecture

[71]

[72]

[73]

[74]

[75]

[76]

253
Notes in Artificial Intelligence - Non-Monotonic Reasoning: Second Interna-

tional Workshop, vol. 346, pp. 176-186, Springer-Verlag, 1989.

M. Gelfond. Representing Knowledge in A-Prolog, Computational Logic: Logic
Programming and Beyond, Essays in Honour of Robert A. Kowalski, volume

2408, Part II, pp. 413-451, Springer-Verlag, Berlin, 2002.

M. Gelfond and A. Gabaldon. From Functional Specifications to Logic Programs.
In J. Maluszynski, editor, Proceedings of the International Logic Programming
Symposium (ILPS-97), pp. 355-369, Port Jefferson, Long Island, N.Y., October

1997.

M. Gelfond and N. Leone. Logic Programming and Knowledge Representation
- An A-Prolog perspective. In Artificial Intelligence, 138(1-2), pp. 3-38, June

2002.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs.
In Proceedings of the Fifth International Conference on Logic Programming, pp.

1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunc-

tive Databases. New Generation Computing, 9(3/4), pp. 365-386, 1991.

M. Gelfond and V. Lifchitz. Representing actions and change by logic programs.

Journal of Logic Programming, 17(2-4), pp. 301-322, 1993.

[77]

[78]

[79]

[80]

[81]

[82]

254
M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Ar-

tificial Intelligence, 3(16), 1998.

M. Gelfond, V. Lifschitz, H. Przymusinska, and M. Truszczynski. Disjunctive de-
faults. In J. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Second International Confer-

ence, pp- 230-237, Morgan Kaufmann, 1991.

M. Gelfond, V. Lifschitz, and A. Rabinov. What are the limitations of the situa-
tion calculus? In Working Notes of the AAAI Spring Symposium on the Logical

Formalizations of Commonsense, pp. 59—69, Stanford University, AAAI Press,

Menlo Park, California, 1991.

M. Gelfond and T. Son. Reasoning with Prioritized Defaults. In J. Dix, L.M.
Pereira, and T. Przymusinski, editors, Lecture Notes in Artificial Intelligence -

Selected Papers from the Workshop on Logic Programming and Knowledge Rep-

resentation 1997, vol. 1471, pp 164-224, 1998.

M. Gelfond, and R. Watson. On methodology for representing knowledge in dy-
namic domains. In Proc of the 1998 ARO/ONR/NSF/DARPA Monterey Work-

shop on Engineering Automation for Computer Based Systems, pp. 57-66, 1999.

M. Gelfond and R. Watson. Diagnostics with answer sets: Dealing with unob-
servable fluents. In Proceedings of the Third International Workshop on Cognitive

Robotics (CogRob-02). To appear, 2002.

255
[83] M.R. Genesereth and M.L. Ginsberg. Logic programming. Communications of

the ACM, 28(9), pp. 933-941, September 1985.

[84] Sumit Ghosh. From Hardware Description Languages: Concepts and Principles.

In TEEE Press Series on Micreoeletronic Systems, New York, NY, 2000.

[85] P.C. Gilmore. A Proof Method for Quantification Theory. IBM Journal Research

and Development, vol. 4, pp. 28-35, 1960.

[86] M.L. Ginsberg and D.E. Smith. Possible Worlds and the Qualification Problem.
In Proceedings of the Sixth National conference on Artificial Intelligence (AAAI-

87), pp. 212-217, 1987.

[87] M.L. Ginsberg and D.E. Smith. Reasoning about Action I: A Possible Worlds

Approach. Artificial Intelligence, 35(2), pp. 165-195, 1988.

[88] M.L. Ginsberg and D.E. Smith. Reasoning About Action II: The Qualification

Problem. Artificial Intelligence, 35(3), pp. 311-342, 1988.

[89] G. Gottlob, S. Marcus, A. Nerode, G. Salzer, and V.S. Subrahmanian. A non-
ground realization of the stable and well-founded semantics. Theoretical Com-

puter Science, 166(1-2), pp. 221-262, 1996.

[90] C.C. Green. Theorem Proving by Resolution as a Basis for Question-Answering
Systems. In B. Meltzer D. Michie, editors, Machine Intelligence, vol. 4, pp. 183~

205, Edinburgh University Press, Edinburgh, U.K., 1969.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

256
C.C. Green. Application of theorem-proving to problem solving. In D.E. Walker

and L.M. Norton, editors, Proceedings of the First International Joint Conference

on Artificial Intelligence (IJCAI-69), pp. 219239, Washigton, D.C., 1969.

J. Gustafsson and P. Doherty. Embracing Occlusion in Specifying the Indirect
Effects of Actions. In L. Aiello, J. Doyle, and S. Shapiro, editors, Proceedings of
the Fifth International Conference on Principles of Knowledge Representation

and Reasoning (KR-96), Morgan Kauffman, 1996.

S. Hanks and D. McDermott. Nonmonotonic Logic and Temporal Projection.

Artificial Intelligence, 33(3), pp. 379-412, 1987.

P. Hayes. Computation and Deduction. In Proceedings of the Second Symposium
on Mathematical Foundations of Computer Science, pp. 105-118, Czechoslovak

Academy of Sciences, Czechoslovakia, 1973.

M. Heidt. Dewveloping an inference engine for ASET-Prolog. Master’s Thesis,

Computer Science Department, The University of Texas at El Paso, Texas, 2001.

D. Hill. Adlib Users Manual. Technical Report 177, Computer Systems Lab.,

Stanford University, CA, 1979.

D. Hill. Language and Environment for Multi-level Simulation. Techical Report

185, Computer Systems Lab., Stanford University, California, 1980.

257
[98] F.J. Hill and G.R. Peterson. Digital Systems: hardware Organization and Design,

Chapter Introduction, pp. 5-6, John Wiley and Sons, New York, 2 edition, 1978.

[99] Y. Huang, H. Kautz, and B. Selman. Control Knowledge in Planning: Benefits
and Tradeoffs. In Proccedings of the 16th National Conference of Artificial Intel-
ligence (AAAI-99) and 11th Conference on Innovative Applications of Artificial

Intelligence, pp. 511-517, AAAT Press/The MIT Press, 1999.

[100] Y.C. Huang, B. Selman, and H.A. Kautz. Learning Declarative Control Rules
for Constraint-Based Planning. In P. Langley, editor, Proceedings of the Sev-
enteenth International Conference on Machine Learning (ICML-00), Stanford

University, Stanford, California, Morgan Kaufmann, pp. 415-422, 2000.

[101] The Institute of Electrical and Electronic Engineers. IEEE Standard VHDL
Language Reference Manaual. ANSI/TEEE Std 1076-1993, IEEE, Institute of

Electrical and Electronic Engineers, Inc., New York, NY, April 14 1994.

[102] L. Karlsson, J. Gustafsson, and P. Doherty. Delayed Effects of Actions. In Pro-
ceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),

Brighton, August 1998.

[103] G. Kartha and V. Lifschitz. Actions with indirect effects: Preliminary report. In
Proceedings of the Fourth International Conference on Principles of Knowledge

Representation and Reasoning (KR-94), pp. 341-350, 1994.

258
[104] H. Kautz and B. Selman. The Role of Domain-Specific Axioms in the Planning

as Satisfiability Framework. In Proceedings of AIPS-98, pp. 181-189, 1998.

[105] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Computer Sci-

ence Series, 1978.

[106] J. Kvarnstrom and P. Doherty. Tackling the Qualification Problem using De-

pendency Constraints. Computational Intelligence, 16(2), pp.169-209, 2000.

[107] R.A. Kowalski. The predicate calculus as a programming language. In Pro-
ceedings of the International Symposium and Summer School on Mathematical

Foundations of Computer Science, Jablonna, Polland, August 1972.

[108] R.A. Kowalski. Predicate logic as a programming language. DCL Memo 70,
School of Artificial Intelligence, University of Edinburgh, U.K., November 1973.
(Also in Proceedings of Information Processing (IFIP-74), pp. 569574, Stock-

holm, North-Holland, Amsterdan, 1974.

[109] R.A. Kowalski. Algorithm = logic + control. Communications of the ACM,

22(7), pp- 424-436, July 1979.

[110] R.A. Kowalski. The early years of logic programming. Communications of the

ACM, 31(1), pp. 38-43, January 1988.

259

[111] N. Leone, R. Rosati, and F. Scarcello. Enhancing Answer Set Planning. In A.
Cimatti, H. Geffner, E. Giunchiglia, and J. Rintanen, editors, IJCAI-01 Work-
shop on Planning under Uncertainty and Incomplete Information, pp. 33-42,

August 2001.

[112] H. Levesque and R. Scherl. The Frame Problem and Knowledge Producing
Actions. In Proceedings of the 10th National Conference of Artificial Intelligence

(AAAI 93, pp. 689-695, 1993.

[113] H. Levesque and R. Scherl. Knowledge Producing Actions. In Proceedings of
the Fourth International Conference on Principles of Knowledge Representation

and Reasoning (KR94), pp- 1139-1146, 1994.

[114] V. Lifschitz. Computing circumscription. In Proceedings of the Nineth In-
ternational Joint Conference on Artificial Intelligence (IJCA1-85), Morgan-

Kaufmann, San Mateo, California, 1985.

[115] V. Lifschitz. Formal theories of action. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-87), pp. 966-972, Milan, Italy,

1987.

[116] V. Lifschitz. On the declarative semantics of logic programs with negation.
Readings in nonmonotonic reasoning, Morgan Kaufmann Publishers Inc., San

Francisco, California, 1987.

260
[117] V. Lifschitz. Circumscription. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson,
editors, The Handbook of Logic in Artificial Intelligence and Logic Programming,

Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pp. 297-352,

Oxford University Press, 1994.

[118] V. Lifschitz. Foundations of logic programming. In G. Brewka, editor, Principles

of Knowledge Representation, pp. 69—-128, CSLI Publications, 1996.

[119] V. Lifschitz. Two components of an action language. In Proceedings of Common

Sense 96, 1996.

[120] V. Lifschitz. Action languages, Answer Sets, and Planning. In The Logic Pro-

gramming Paradigm: a 25-Year Perspective, pp. 357-373, Spring-Verlag, 1999.

[121] V. Lifschitz. Answer set programming and plan generation. In Artificial Intel-

ligence, 138(1-2), pp. 39-54, June 2002.

[122] V. Lifschitz and H. Turner. Splitting a logic program. In P. van Hentenryck,
editor, Proceedings of the 11th International Conference on Logic Programminyg,

pp- 23-37, 1994.

[123] V. Lifschitz and H. Turner. Representing transition systems by logic programs.
In Proceedings of the 5th International Conference on Logic Programming and

Nonmonotonic Reasoning, pp. 92-106, 1999.

261
[124] F. Lin. Embracing causality in specifying the indirect effects of actions. Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-

95), pp. 1985-1991, Montreal, Canada, 1995.

[125] F. Lin. Embracing causality in specifying the indeterminate effects of actions.
Proceedings of the 13th National Conference of Artificial Intelligence (AAAI-96,

pp. 670-676, 1996.

[126] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag Symbolic

Computation Series, second edition, 1987.

[127] R. MacGregor and R. Bates. The LOOM knowledge representation language.

Technical Report ISI-RS-87-188, ISI, California, 1987.

[128] V. Marek and V.S. Subrahmanian. The relationship between logic program
semantics and non-monotonic reasoning. In G. Levi and M. Martelli, editors,

Proceedings of the Sizth International Conference on Logic Programming, pp.

600-617, 1989.

[129] V. Marek and M. Truszczyniski. Stable semantics for logic programs and default
theories. In Proceedings of the North American Conference on Logic Program-

ming, pp. 243-256, MIT Press, 1989.

[130] V. Marek and M. Truszczyniski. Nonmonotonic Logic. Springer, 1993.

262
[131] V. Marek and M. Truszczyiski. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pp.

375-398. Springer-Verlag, 1999.

[132] N. McCain and H. Turner. A causal theory of ramifications and qualifications.
Proceedings of the 14th International Joint Conference on Artificial Intelligence

(IJCAI-95), pp. 1978-1984, Montreal, Canada, 1995.

[133] N. McCain and H. Turner. A causal theory of action and change. In Proceedings
of the 14th National Conference of Artificial Intelligence (AAAI-97), pp. 460—

465, 1997.

[134] J. McCarthy. Programs with common sense. In Proceedings of the Tedding-
ton Conference on the Mechanization of Thought Processes, pp. 75-91, London,
U.K., 1959. Her Majesty Stationery Office. (Also in M. Minsky, editor, Semantic

Information processing, pp. 403-418. MIT, Cambridge, 1960.)

[135] J. McCarthy. Epistemological problems of artificial intelligence. In Proceedings
of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77),

pp- 1038-1044, Cambridge, Massachusetts, 1977.

[136] J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial

Intelligence, vol. 13(1-2), pp. 27-39, 1980.

[137] J. McCarthy. Applications of circumscription to formalizing common sense

knowledge. Artificial Intelligence, 26(3), pp. 89-116, 1986.

263
[138] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of

artificial intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence,

vol. 4, pp. 463-502, Edinburgh University Press, Edinburgh, 1969.

[139] E.J. McCluskey. Introduction to the Theory of Switching Circuits. McGraw-Hill,

1965.

[140] D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories. Journal

of the ACM, 29(1), pp. 33-57, 1982.

[141] D. McDermott and J. Doyle. Nonmonotonic Logic I. Artificial Intelligence, 13(1-

2), pp. 41-72, 1980.

[142] V. Mellarkod. Optimizing The Computation Of Stable Models Using Merged
Rules, Master’s Thesis, Department of Computer Science, Texas Tech University,

Texas, May 2002.

[143] M. Mendler. Timing analysis of combinational circuits in intuitionistic propo-
sitional logic. Formal Methods in System Design, 2000. (A short preliminary
version was presented at TABLEAUX 96, Lecture Notes in Artifical Intelligence,

vol. 1071, pp. 261277, Springer, 1996.)

[144] M. Mendler. Characterising Timing Analyses in Intuitionistic Modal Logic.

Logic Journal of the IGPL, 2000.

264
[145] S.A. Mcllraith. A Closed-Form Solution to the Ramification Problem (Some-
times). In Proceedings of the IJCAI’97 Workshop on Nonmonotonic Reasoning

Action and Change, pp. 103—126, Nagoya, Japan, August 1997.

[146] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill

Series in Electrical and Computer Engineering, 1994.

[147] J. Minker. An overview of nonmonotonic reasoning and logic programming.

Journal of Logic Programming, 17(2-4), pp. 95-126, 1993.

[148] M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor,
The Psych. of computer vision, pp. 211-277, McGraw-Hill, NY, 1975. Reprinted
in: R. Brachman and H. Levesque, editors, Readings in Knowledge Representa-

tion, pp. 245262, 1985.

[149] R.C. Moore. Possible-world semantics for autoepistemic logic. In R. Reiter,
editor, Proceedings of the Workshop on Nonmonotonic Reasoning, pp. 344—-354,
1984. Reprinted in: M. Ginsberg, editor, Readings on nonmonotonic reasoning,

pp- 137-142, Morgan Kaufmann, 1990.

[150] R.C. Moore. Semantical Considerations on Nonmonotonic Logic. Artificial In-

telligence, 25(1), pp. 75-94, 1985.

[151] The National Aeronautics and Space Administration (NASA) web site located

at http://www.nasa.org, 2003.

265
[152] I. Niemel4. Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. In Proceedings of the Workshop on Computational Aspects

of Nonmonotonic Reasoning, pp. 72-79, 1998.

[153] I. Niemeld and P. Simons. Efficient implementation of the well-founded and
stable model semantics. In Proceedings of Joint International Conference and

Symposium on Logic Programming, pp. 289-303, MIT Press, 1996.

[154] I. Niemeld and P. Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal logic programs. In Proceedings of the Fourth

International Conference on Logic Programming and Non-Monotonic Reasoning,

pp- 420429, 1997.

[155] 1. Niemeld and P. Simons. Extending the Smodels System with Cardinality and
Weight Constraints. In J. Minker, editor, Logic-Based Artificial Intelligence, pp.

491-521, Kluwer Academic Publishers, 2000.

[156] I. Niemel&, P. Simons, and T. Syrjanen. Smodels: a system for answer set pro-
gramming. In Proceedings of the 8th International Workshop on Non-Monotonic

Reasoning, Breckenridge, Colorado, USA, April 2000.

[157] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-

Prolog decision support system for the Space Shuttle. In A. Provetti and S.C.

266
Tran, editors, Answer Set Programming: Towards Efficient and Scalable Knowl-

edge Representation and Reasoning, AAAI Spring 2001 Symposium Series, pp.

139-145, Stanford University, California, March 2001.

[158] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-
Prolog decision support system for the Space Shuttle. In Lecture Notes in

Computer Science - Proceedings of Practical Aspects of Declarative Languages

(PADL-01), vol. 1990, pp. 169183, 2001.

[159] Open Verilog International. Verilog HDL Language Reference Manual (LRM).

[160] S. Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis, SunSoft

Press, Prentice Hall, 1996.

[161] E. Pednault. ADL: exploring the middle ground between STRIPS and the situ-
ation calculus. In R. Brachman, H. Levesque, and R. Reiter, editors, Proceedings

of the First International Conference on Principles of Knowledge Representation

and Reasoning (KR-89), pp. 324-332, 1989.

[162] J. Pinto and R. Reiter. Reasoning about Time in the Situation Calculus. An-
nals of Mathematics and Artificial Intelligence, 14(2-4), pp. 2561-268, September,

1995.

[163] D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence - a logical

approach. Oxford University Press, 1998.

267
[164] E. Pontelli, M. Balduccini, and F. Bermudez. Non-monotonic Reasoning on
Beowulf Platforms. In V. Dahl and P. Wadler, editors, Lecture Notes in Artificial

Intelligence - Proceedings of Practical Aspects of Declarative Languages (PADL-

03), vol. 2562, pp. 37-57, January 2003.

[165] E. Pontelli and O. El-Khatib. Exploiting Vertical Parallelism from Answer Set
Programs. In A. Provetti and S.C. Tran, editors, Answer Set Programming: To-
wards Efficient and Scalable Knowledge Representation and Reasoning, AAAI
Spring 2001 Symposium Series, pp. 174-180, Stanford University, California,

March 2001.

[166] D. Prawitz. An Improved Proof Procedure. Theoria, vol. 26, pp. 102-139, 1960.

[167] T. Przymusinski. The Well-Founded Semantics Coincides With The Three-

Valued Stable Semantics, Fundamenta Informaticae, vol. 13, pp. 445-464, 1990.

[168] R. Reiter. On Closed World Data Bases. In H. Gallaire and J. Minker, editors,

Logic and Databases, pp. 55-76, Plenum, 1978.

[169] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2), pp. 81—

132, 1980.

[170] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,

32(1), pp. 57-95, 1987.

268

[171] R. Reiter. The Frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz, edi-

tor, Artificial Intelligence and Mathematical Theory of Computation: Papers in

Honor of John Mccarthy, pp. 359-380, Academic Press, 1991.

[172] R. Reiter. Natural actions, concurrency and continuous time in the situation
calculus. In L.C. Aiello, J. Doyle, and S.C. Shapiro, editors, Proceedings of the
Fifth International Conference on Principles of Knowledge Representation and

Reasoning (KR-96), pp. 2-13. Morgan Kaufmann, 1996.

[173] J.A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.

Journal of the ACM, 12(1), pp. 2341, January 1965.

[174] J.A. Robinson. Logic and logic programming. Communications of the ACM,

35(3), pp. 40-65, March 1992.
[175] C.H. Roth, Jr. Fundamentals of Logic Design, West Publishing Company, 1992.

[176] C.H. Roth, Jr. Digital Systems Design Using VHDL. PWS Publishing Company,

Boston, MA, 1998.

[177] P. Roussel. PROLOG: manuel de Reference et d’Utilization. Groupe

d’Intelligence Artificielle, Université d’Aix-Marseille, 1975.

269
[178] K. Sagonas, T. Swift, and D.S. Warren. XSB as an Efficient Deductive Database
Engine. In Proceedings of the ACM SIGMOD Conference on Management of

Data, pp. 442-453, 1994.

[179] E. Sandewall. Systematic comparison of approaches to ramification using
restricted minimization of change. IDA Techical Report, LiTH-IDA-R-95-
15, Department of Computer and Information Science, Linkoping University,

Link6ping, Sweden, 1995.

[180] M. Shanahan. Solving the frame problem: a mathematical investigation of the

common sense law of inertia, MIT Press, Cambridge, MA, 1997.

[181] C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Transac-

tions of AIEFE, vol. 57, pp.713-723, 1938.

[182] C.E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell System

Tech. Journal, vol. 28, pp. 59-98, 1949.

[183] P. Simons. Ezxtending and Implementing the Stable Model Semantics. Doctoral
dissertation. Research Report 58, Helsinki University of Technology, Helsinki,

Finland, April 2000.

[184] T. Soininen and I. Niemel&. Developing a declarative rule language for applica-
tions in product configuration. In Proceedings of Practical Aspects of Declarative

Languages (PADL-99), pp. 305-319, Springer-Verlag, 1999.

270

[185] T. Son, C. Baral, and S. Mcllraith. Planning with domain-dependent knowl-
edge of different kinds — an answer set programming approach. In T. Eiter, W.
Faber, and M. Truszczynski, editors, Lecture Notes in Artificial Intelligence -
Proceedings of the 6th International Conference in Logic Programming and Non-
monotonic Reasoning (LPNMR-01), Vienna, Austria, vol. 2173, pp. 226-239,

Springer Verlag, September 2001.

[186] E. Sternheim, R. Singh, and Y. Trivedi. Digital Design with Verilog HDL, Au-

tomata Publishing Company, Cupertino, CA, 1990.

[187] S.Y.H. Su. A Survey of Computer Hardware Description Languages in the

U.S.A., IEEE Computer, Dec 1974.

[188] V.S. Subrahmanian and C. Zaniolo. Relating Stable Models and AI Planning
Domains. In Proceedings of the Twelfth International Conference on Logic Pro-

gramming, Tokyo, Japan, pp. 233247, June 1995.

[189] T. Syrjénen. Lparse 1.0.11 User’s Manual. Available at

http://www.tcs.hut.fi/Software /smodels, 2003.

[190] S.A. Szygenda and A.A. Lekkos. Integrated Techniques for Functional and Gate
Level Digital Logic Simulation. In Proceedings of the 10th Design Automation

Conference, pp. 159-172, 1973.

271
[191] S.A. Szygenda and E.W. Thompson. Digital Logic Simulation in a Time-Based
Table-Driven Environment, Part I: Design Verification. IEEE Computer, 8(3),

pp- 24-40, March 1975.

[192] M. Thielscher. Representing actions in equational logic programming. Proceed-

ings of the International Conference of Logic Programming, 1994.

[193] M. Thielscher. Ramification and Causality. Technical Report TR-96-003, Inter-

national Computer Science Institute (ICSI), Berkeley, CA, January 1996.

[194] H. Turner. Representing actions in logic programs and default theories: A sit-
uation calculus approach. Journal of Logic Programming, 31(1-3), pp. 245—298,

1997.

[195] The United Space Alliance (USA) web site located at

http: //www.unitedspacealliance.com, 2003.

[196] M. van Emden and R. Kowaslski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4), pp. 733-742, 1976. (Also: DCL
Memo 73, School of Artificial Intelligence, University of Edinburgh, U.K., Febru-

ary 1974.)

[197] A. van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for

General Logic Programs. Journal of the ACM, 38(3), pp. 620—650, 1991.

272
[198] W.M. vanCleemput. A Hierarchical Language for the Structural Description of

Digital Systems. In Proceedings of the 14th Design Automation Conference, pp.

378-385, ACM/IEEE, New Orleans, June 1977.

[199] W.M. vanCleemput. Computer Hardware Languages and their Applications. In
Proceedings of the 16th Design Automation Conference, pp. 554560, ACM/IEEE

San Diego, California, June 1979.

[200] W.M. vanCleemput and H. Ofek. Design Automation for Digital Systems. IEEE

Computer, pp. 114-122, October 1984.

[201] J.F. Wakerly. Digital Design Principles and Practices, Prentice Hall, 1994.

[202] R. Watson. Action Languages and Domain Modeling. Ph.D. Dissertation, Com-

puter Science Department, The University of Texas at El Paso, Texas, 1999.

[203] R. Watson. An application of action theory to the space shuttle. In G. Gupta,
editor, Lecture Notes in Computer Science — Proceedings of Practical Aspects of

Declarative Languages (PADL-99), vol. 1551, pp. 290-304, 1999.

[204] J.C. Weber. On the representation of concurrent actions in the situation cal-
culus. In Proceedings of the Eighth Biennial Conference of the Canadian Society
for Computational Studies of Intelligence (CSCSI-90), pp. 28—32, University of

Ottawa, Ottawa, Canada, July 1990.

CURRICULUM VITAE

Monica de Lima Nogueira was born on January 3, 1961 in Manaus, Amazonas, Brazil,
the first among four daughters of Ivens José de Lima and Maria do Carmo Marques
de Lima. She is married to Antonio Geraldo Queiroz Nogueira and together they
have three children; the twins, Heloisa and Marcus Vinicus, and a younger daughter,
Daniela.

Before coming to the United States, Monica received her M.Sc. in Computer Sci-
ence from the University of Campinas, Sdo Paulo, Brazil, in 1989. Prior to that,
she received a B.S. in Electronic Engineering from the University of Technology of
Amazonia, Manaus, Brazil, in 1982, and a B.S. in Electrical Engineering from the
Federal University of Amazonas, Manaus, Brazil, in 1983. She taught Computer Sci-
ence classes as a lecturer at the University of Piracicaba, University of Campinas,
and the Federal University of Amazonas.

Monica began her doctoral program at the University of Texas at El Paso (UTEP)
in 1996. She worked as a teaching assistant and as a research assistant in the area of
artificial intelligence at the Computer Science Department at UTEP for several years,
where she also lectured Artificial Intelligence in the fall of 2000. In the summer of
2000, she worked as a research assistant at Texas Tech. University. In 2001, she was
named a National Science Foundation Scholar.

Her research interests include reasoning about actions and change, nonmonotonic

273

274
reasoning, knowledge representation, answer set programming, robotics, and digital
design. In 1996, she was part of the UTEP-robotic team which won the third place
in the Robot Competition of the Thirteenth National Conference on Artificial Intel-
ligence. In 2003, she was choosen as the outstanding graduate in computer science
at UTEP. She is a member of the Upsilon Pi Epsilon honors society, the American

Association of Artificial Intelligence, and the Association for Computing Machinery.

Permanent address: 6240 Brisa Del Mar Dr.

El Paso, TX 79912

This dissertation was typeset by Monica Nogueira using IXTEX 2..

