
Abstract Answer Set Solver

Todolist

• Print the rules of Fig 1.

• An abstract framework for describing
algorithms to find answer sets of a logic
program using “constraint propagation”,
backjumping, learning and forgetting.

Outline

• Notations
• Abstract Answer Set Solver

– A first definition of graph associted with a
program

– An extended graph (catering for backjump)
– Answer set solver

• Appendix
– Generate reasons (in extended records)
– Generate backjump clause

Abstract Answer Set Solver

• States and transition rules on states will be
used, instead of pseudo-code, to describe
ASP algorithms employing propagation,
backjumping, learning and forgetting

States

• State: M||T or FailState
– M is a record: A record relative to a
program P is a list of literals over
atoms of P without repetitions where each
literal has an annotation, a bit that
marks it as a decision literal or not.

– T is a (multi-)set of denials

• Example

Record

• Record
– By ignoring the annotations and ordering, a

record M can be taken as a set of literals, i.e.,
a “partial assignment”

– l is unassigned if neither l nor its complemet is
in M

– A decision literal: supscripted with \Delta
– Non-decision literal: no supscription

Transition rules

• Example

Graph associated to a program

• For any program P, we define a graph
G_P whose
– Nodes are the states of P
– Edges are “transition rules”

• If there is a transition rule S S’ followed by a
condition such that S and S’ are states and the
condition is satisfied, there is an edge between S
and S’ in the graph

Graph and answer set

• Transition rules
• Semi-terminal state
• Result

Transition rules

• Basic rules
– Rules based on satisfying the program rules
– Rules based on unfounded set
– Backjump (backtrack)
– Decide
– Fail

• Rules about learning
• Rules about forgetting

Basic rules

• A clause l ∨ C is a reason for l to be in a
list of literals P l Q w.r.t P if P
satisfies l ∨ C and C⊆ P.

• P satisfies a formula F when for any
consistent and complete set M of literals,
if M+ is an answer set for P, then M |= F.

Rules on learning and forgetting

• Semi-terminal state: there is no edge due
to one of the basic transition rules leaving
this node.

Graph and Answer sets

• Given a program P and its graph G_P
– every path in G_P contains only finitely many

edges labeled by Basic transition rules,
– for any semi-terminal state M||Γ of G_P

reachable from ∅||∅, M+ is an answer set of P,
– FailState is reachable from ∅||∅ in G_P if and

only if P has no answer sets.

Example

Extended graph of a program

• Backjump: in contrast to backtrack to the
previous decision literal, it can backtrack to the
earlier decision literal which “causes” the current
conflict. Efficient in SAT solvers

• Learning and forgetting: clauses are learned
from the current conflict. They can be used to
prune the search space. Forgetting is necessary
because too many learned clauses may slow
down the solver. Again, very useful techniques
in SAT solvers

• Extended graph: extended state || denials, or
FailState

• An extended record M relative to a program P

is a list of literals over atoms in P
without repetitions where
– (i) each literal l in M is annotated either by
or by a reason for l to be in M,

– (ii) for any inconsistent prefix of M its last

literal is annotated by a reason.

Example: extended record Example: non extended record

Extended graph

• We now define a graph G↑_P for any
program P. Its nodes are the extended
states relative to P. The transition rules of
G_P are extended to G↑_P as follows: S1

S2 is an edge in G↑_P justified by a
transition rule T if and only if is an
edge in G_P justified by T .

Proposition 1↑

• For any program P,
– a) every path in G↑_P contains only finitely

many edges labeled by Basic transition rules,
– b) for any semi-terminal state M||Γ of

G↑_P, M+ is an answer set of P,
– c) G↑_P contains an edge leading to

FailState if and only if P has no answer sets.
• Note

– Any semi-terminal state and FailState is
reachable from in G↑_P?

Answer set solver

• Consider finding only one answer set
• A solver using the same inference rules

(unit propagate etc.) as those of G_P (or
G↑_P) can be characterized by its
strategies of traversing the graph to find a
path from to a semi-terminal or
FailState.

SMODELS_cc

1. edges corresponding to the applications of transition rules
Unit Propagate, All Rules Cancelled, Backchain True, Backchain
False, and Unfounded to a state in G_P are considered if
Backjump is not applicable in this state,

2. an edge corresponding to an application of a transition rule
Decide to a state in G_P is considered if and only if none
of the rules among Unit Propagate, All Rules Cancelled,
Backchain True, Backchain False, Unfounded, and Backjump is
applicable in this state,

3. an edge corresponding to an application of a transition rule
Learn to a state in G_P is considered if and only if this
state was reached by the edge Backjump and a FirstUIP
backjump clause is learned

SUP

1 – 3 of SMODELS_cc
• an edge corresponding to an

application of transition rule
Unfounded to a state in G_P is

considered only if a state assigns
all atoms of P

• Remove unfounded from 2.

Generate the reasons

Rules on learning and forgetting

Backjump related notations

• We call the reason in the backjump rule
backjump clause.

• We say that a state in the graph G↑_P is a
backjump state if its record is inconsistent
and contains a decision literal.

• For a record M, by lcp(M) we denote

its largest consistent prefix.

• A clause C is conflicting on a list M of
literals if P satisfies C, and C ⊆
lcp(M).e.g.,

CUT

• What’s a cut
– A cut in the implication graph is a bipartition of

the graph such that all decision variables are
in one set while the conflict is in the other set.

– There are many cuts

• Each cut results in a learned clause

(Decision) backjump clause
through graph

• Decision backjump clause: one set of the
cut contains only decision variables

Obtain backjump clause through
resolution

Apply backjump rule UIP

• What’s unique implication point (UIP)
– A literal l in a implication graph is called a unique implication

point if every path from the decision literal at level l to the point of
conflict passes through l.

– A decision level of a literal l is the number of decision variables
when l is assigned a value.

• First UIP cut
– The 1UIP cut of of an implication graph is the

cut “generated from” the unique implication
points closest to the point of conflict.

• On one set (conflict side): all variables assigned
after the first UIP of current decision level
reachable to the conflict

• On the other side: everything else.

⊥

Apply backjump rule

Application of learning rule

• Reason carried by the last literal can be
put into the store

Refences

1. An abstract answer set solver by Yuliya
2. Efficient Conflict Driven Learning in a

Boolean Satisfiability Solver, iccad 2001

Appendix

• Another implication graph

Backjump clause (conflict clause)
Clauses

Implication graph (with decision literals x1, x2, x3)

Notations

• Unfounded set
– A set U of atoms occurring in a program P
is said to be unfounded on a consistent
set M of literals w.r.t. P if for every
a ∈ U and every
B ∈ Bodies(P, a), B ∩M = ∅ or

U ∩ B = ∅.

