Extending the Role of Causality in Probabilistic Modeling

Joost Vennekens, Marc Denecker, Maurice Bruynooghe

{joost, marcd, maurice}@cs.kuleuven.be K.U. Leuven, Belgium

Causality

- Causality is central concept in much of human knowledge & reasoning
- What is its role in probabilistic modeling?

Bayesian networks

- Acyclic Bayesian networks can be given causal interpretation [Pearl,2000]
- Seems to be important part of succes of this language
- However, Bayesian networks are not inherently causal
 - ► Formally: probabilistic independencies, conditional probabilities
 - Causal interpretation is no longer possible for cyclic nets

In this talk, we will

- Present language with causality at the heart of its semantics
- Analyse its properties, especially compared to Bayesian nets

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

Basic construct

Express both

- Causal relations between propositions
- Probabilistic events

Conditional probabilistic event (CP-event)

If propositions b_1, \ldots, b_n hold, then a probabilistic event will happen that causes at most one of propositions h_1, h_2, \ldots, h_m , where the probability of h_1 being caused is α_1 , the probability of h_2 is α_2, \ldots , and the probability of h_m is α_m (with $\sum_i \alpha_i \leq 1$).

$$(h_1:\alpha_1)\vee\cdots\vee(h_m:\alpha_m)\leftarrow b_1,\ldots,b_n.$$

Combining CP-events

- Meaning of single CP-event is clear
- But what does a set of CP-events mean?
- Terminology:
 - Set of CP-events is called CP-theory
 - ► Language of CP-theories is CP-logic
- Meaning of CP-theory is based on two fundemental principles
 - ► Principle of independent causation
 - ▶ Principle of no *deus ex machina* effects

Principle of independent causation

Every CP-event represents an independent causal process

- Learning outcome of one CP-event
 - May give information about whether another CP-event happens
 - ▶ But not about the outcome of another CP-event
- ► Crucial to have modular representation, that is elaboration tolerant w.r.t. adding new causes
- Compact representation of relation between effect and a number of independent causes for this effect
- ▶ Make abstraction of order in which CP-events are executed

No deus ex machina principle

Nothing happens without a cause

- Fundamental principle of causal reasoning
- Especially important for cyclic causal relations
- Compact representations
 - Cases where there is no cause for something can simply be ignored

Semantics

Under these two principles, CP-theory constructively defines probability distribution on interpretations

Constructive process

- ▶ Simulate CP-event $(h_1 : \alpha_1) \lor \cdots \lor (h_m : \alpha_m) \leftarrow b_1, \ldots, b_n$.
 - ▶ Derive h_i with α_i
 - ▶ Derive nothing with $1 \sum_i \alpha_i$
- Is only allowed if
 - \blacktriangleright All preconditions b_1, \ldots, b_n have already been derived
 - Event has not been simulated before
- Start from {} and simulate as many CP-events as possible

Probability of interpretation is probability of being derived by this process

Semantics

Theorem

The order in which CP-events are simulated does not matter, i.e., all sequences give same distribution

This follows from:

- Principle of independent causation
- Once preconditions are satisfied, they remain satisfied

Two principles are incorporated into semantics

- Independent causation principle
 - ▶ A CP-event always derives h_i with probability α_i
- "No deus ex machina" principle
 - Atom is only derived when it is caused by a CP-event with satisfied preconditions

An example

There are two causes for HIV infection: intercourse with infected partner (0.6) and blood transfusion (0.01). Suppose that a and b are partners and a has had a blood transfusion.

```
(hiv(a): 0.6) \leftarrow hiv(b).
(hiv(b): 0.6) \leftarrow hiv(a).
(hiv(a): 0.01).
```

- ► Principle of independent causation
 - ► Clear, modular, compact representation
 - ► Elaboration tolerant, e.g., add (hiv(b): 0.01).
- "No deus ex machina"-principle
 - Cyclic causal relations
 - ► No need to mentiod that HIV infection is impossible without transfusion or infected partner

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

Negation

- Negated atoms also allowed as preconditions
- ▶ Absence of a cause for an atom can cause some other atom
 - ▶ Absence of a cause for termination of fluent causes it to persist
 - Absence of a cause for winning/losing game causes it to continue
- Makes representation more compact
- ▶ But causes problem with semantics
 - It is no longer the case that true preconditions remain true, so order of CP-events might matter

```
(heads: 0.5) \leftarrow toss. win \leftarrow \neg heads.
```

- However, we don't want to force explicit use of time
- Most reasonable convention: execute event depending on $\neg p$ only after all possible causes for p have been exhausted

Formal solution (for now)

Stratified CP-theories

- ▶ Assign level $IvI(p) \in \mathbb{N}$ to each atom p
- Such that for all rules r
 - ▶ If $h \in head_{At}(r)$, $b \in body_+(r)$, then $lvl(h) \ge lvl(b)$
 - ▶ If $h \in head_{At}(r)$, $b \in body_{-}(r)$, then lvl(h) > lvl(b)
- ▶ Level of r is $\min_{p \in At(r)} |v|(p)$
- Execute rules with lowest level first
 - ▶ By the time we get to rule with precondition $\neg p$, all events that might cause p have already been executed
 - ▶ If p has not been derived, it never will

Formal definition of CP-logic

▶ A CP-theory is a stratified set of rules of the form:

$$(h_1:\alpha_1)\vee\cdots\vee(h_m:\alpha_m)\leftarrow b_1,\ldots,b_n.$$

- ▶ With h_i atoms, b_i literals, $\alpha_i \in [0,1]$ with $\sum_i \alpha_i \leq 1$
- ▶ A rule $(h:1) \leftarrow b_1, \ldots, b_n$. is written as $h \leftarrow b_1, \ldots, b_n$.

Probabilistic transition system

$$(h_1:\alpha_1)\vee\cdots\vee(h_m:\alpha_m)\leftarrow b_1,\ldots,b_n.$$

- Tree structure T with probabilistic labels
- ▶ Interpretation $\mathcal{I}(c)$ for each node c in \mathcal{T}
- ▶ Node c executes rule r if children are c_0, c_1, \ldots, c_n
 - for $i \geq 1$, $\mathcal{I}(c_i) = \mathcal{I}(c) \cup \{h_i\}$ and $\lambda(c, c_i) = \alpha_i$
 - $ightharpoonup \mathcal{I}(c_0) = \mathcal{I}(c)$ and $\lambda(c,c_0) = 1 \sum_i \alpha_i$
- ▶ Rule r is executable in node c if
 - ▶ $\mathcal{I}(c) \models r$, i.e., $body_+(r) \subseteq \mathcal{I}(c)$ and $body_-(r) \cap \mathcal{I}(c) = \{\}$
 - ▶ No ancestor of *c* already executes *r*

Formal semantics of CP-logic

- ▶ System T runs CP-theory C
 - ▶ *I*(root) = {}
 - Every non-leaf c executes executable rule r ∈ C with minimal level
 - No rules are executable in leafs
- ▶ Probability of $P_T(c)$ of leaf c is $\prod_{(a,b) \in root, c} \lambda(a,b)$
- ▶ Probability of $\pi_{\mathcal{T}}(I)$ of interpretation I is $\sum_{\mathcal{I}(c)=I} P_{\mathcal{T}}(c)$

Theorem

Every $\mathcal T$ that runs a CP-theory $\mathcal C$ has the same $\pi_{\mathcal T}$

- We denote this unique π_T by π_C
- Defines formal semantics of C

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

Bayesian networks

A Bayesian network expresses

- Conditional probabilities
- Probabilistic independencies

For all nodes m, n, such that n is not a successor of m, n and m are independent given value for Parents(m)

Can these independencies also be expressed in CP-logic?

Probabilistic independencies in CP-logic

- ▶ When can learning the truth of *p* give direct information about *q*?
 - 1. p is a precondition to event that might cause q $\exists r : p \in body(r)$ and $q \in head_{At}(r)$
 - 2. p and q are alternative outcomes of the same CP-event $\exists r: p, q \in head_{At}(r)$
- ▶ p directly affects q iff (1) or (2) holds
- ightharpoonup p affect q = transitive closure

Theorem

If p does not affect q, then p and q are independent, given an interpretation for the atoms r that directly affect p

Independencies of Bayesian network w.r.t. "is parent of"-relation = independencies of CP-theory w.r.t. "directly affects"-relation

Illustration

	B,E	В,¬Е	¬В,Е	¬В,¬Е	Burglary	(Earthquake)
Α	0.9	8.0	8.0	0.1	Jungian	
E 0.2 B 0.1				Ala	arm	

```
(burg: 0.1). (earthq: 0.2). (alarm: 0.9) \leftarrow burg, earthq. (alarm: 0.8) \leftarrow ¬burg, earthq. (alarm: 0.1) \leftarrow ¬burg, ¬earthq.
```

Can be extended to a general way of representing Bayesian networks in CP-logic

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

Motivation

- CP-logic can express probabilistic knowledge in the same way as Bayesian networks
- Often, this is not the most natural way
- Differences show role of causality
- Arise from the two principles of CP-logic
 - Principle of independent causation
 - ▶ Independent causes for the same effect
 - "No deus ex machina"-pinciple
 - Cyclic causal relations
 - Ignoring cases where nothing happens

Independent causes for the same effect

Russian roulette with two guns

Consider a game of Russian roulette with two guns, one in the player's right hand and one in his left. Each of the guns is loaded with a single bullet. What is the probability of the player dying?

$$(death: 1/6) \leftarrow fire(left_gun).$$

 $(death: 1/6) \leftarrow fire(right_gun).$

	left, right	¬ left, right	left, ¬ right	¬ left, ¬ right
death	11/36	1/6	1/6	0

Independent causes for the same effect (2)

$$(death: 1/6) \leftarrow fire(left_gun).$$

 $(death: 1/6) \leftarrow fire(right_gun).$

	left, right	¬ left, right	left, ¬ right	¬ left, ¬ right
death	11/36	1/6	1/6	0

- Independence between causes for death is structural property
 - fire(left_gun), fire(right_gun) not in same body
 - $11/36 = 1/6 + 1/6 1/6 \cdot 1/6$

Qualitative ↔ quantitative knowlegde

- Treated differently, e.g., qualitative knowledge is more robust
- Different origins, e.g.,
 - Quantitative: derived from data
 - Qualitative: from background knowledge about domain

Independent causes for the same effect (3)

$$(death: 1/6) \leftarrow fire(left_gun).$$

 $(death: 1/6) \leftarrow fire(right_gun).$

	left, right	¬ left, right	left, ¬ right	¬ left, ¬ right
death	11/36	1/6	1/6	0

- Probabilities are causal rather than conditional
 - ▶ More informative: Conditional can be derived from causal
 - Using causal probabilities is more compact
 For n guns: n versus 2ⁿ entries
 - ▶ (Can be partly avoided by introducing new nodes)
- ► Elaboration tolerance w.r.t. adding new causes
 - ▶ Player can get heart attack: (death : 0.1).

Cyclic causal relations

HIV infection

```
(hiv(X): 0.6) \leftarrow hiv(Y), partners(X, Y).
(hiv(X): 0.01) \leftarrow blood\_transfusion(X).
```

For partners a and b:

```
(hiv(a): 0.6) \leftarrow hiv(b).
(hiv(b): 0.6) \leftarrow hiv(a).
```

- ► "No deus ex machina"-principle
 - ▶ If no external causes, then neither a nor b is infected
 - ▶ If a undergoes blood transfusion, a is infected with 0.01 and b with 0.01×0.6
 - ▶ If both a and b have blood transfusion, a is infected with $0.01 + 0.01 \times 0.6$
- Cyclic causal relations require no special treatment

Cyclic causal relations in Bayesian networks

New nodes ext(x): x has been infected by an external cause

- $P(ext(a) \mid bloodtrans(a)) = 0.01$
- $P(hiv(a) \mid \neg ext(a), \neg ext(b)) = 0$
- \triangleright $P(hiv(a) \mid \neg ext(a), ext(b)) = 0.6$
- $ightharpoonup P(hiv(a) \mid ext(a), \neg ext(b)) = 1$
- $ightharpoonup P(hiv(a) \mid ext(a), ext(b)) = 1$

Ignoring cases where nothing happens

Craps

In craps, one keeps on rolling a pair of dice until one either wins or loses. In the first round, one immediately wins by rolling 7 or 11 and immediately loses by rolling 2,3, or 12. If any other number is rolled, this becomes the player's so-called "box point". The game then continues until either the player wins by rolling the box point again or loses by rolling a 7.

$$\begin{array}{l} (\mathit{roll}(T+1,2):\frac{1}{12}) \vee \cdots \vee (\mathit{roll}(T+1,12):\frac{1}{12}) \leftarrow \neg \mathit{win}(T), \neg \mathit{lose}(T). \\ \mathit{win}(1) \leftarrow \mathit{roll}(1,7). & \mathit{win}(1) \leftarrow \mathit{roll}(1,11). \\ \mathit{lose}(1) \leftarrow \mathit{roll}(1,2). & \mathit{lose}(1) \leftarrow \mathit{roll}(1,3). & \mathit{lose}(1) \leftarrow \mathit{roll}(1,12). \\ \mathit{boxpoint}(X) \leftarrow \mathit{roll}(1,X), \neg \mathit{win}(1), \neg \mathit{lose}(1). \\ \mathit{win}(T) \leftarrow \mathit{boxpoint}(X), \mathit{roll}(T,X), T > 1. \\ \mathit{lose}(T) \leftarrow \mathit{roll}(T,7), T > 1. \end{array}$$

Ignoring cases where nothing happens (2)

Craps

$$(roll(T+1,2): \frac{1}{12}) \lor \cdots \lor (roll(T+1,12): \frac{1}{12}) \leftarrow \neg win(T), \neg lose(T).$$

 $win(T) \leftarrow \dots$
 $lose(T) \leftarrow \dots$

- Only specify when game is won or lost
- Negation is used to express that game continues otherwise
- The "otherwise"-cases do not need to be explicitely mentioned

	$(bp, roll_t)$							
state _t	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	(4,8)	
Win	0	0	1	0	0	0	0	
Lose	0	0	0	0	0	1	0	
Neither	1	1	0	1	1	0	0	

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

An alternative semantics

- An instance of a CP-theory is normal logic program that results from making a number of independent probabilistic choices
- ▶ For each rule $(h_1 : \alpha_1) \lor \cdots \lor (h_n : \alpha_n) \leftarrow body$
 - ▶ Replace rule by $h_i \leftarrow body$ with probability α_i
 - Remove rule with probability $1 \sum_{i} \alpha_{i}$
- Interpret such an instance by well-founded semantics
- Probability of I is sum of the probabilities of all instances that have I as their well-founded model

Theorem

This probability distribution is the same as $\pi_{\mathcal{C}}$

An alternative semantics (2)

Historical note

Instance-based semantics was defined first, for *Logic Programs* with Annotated Disjunctions (LPADs). The interpretation of rules as CP-events and link to causality were discoverd later.

Usefulness

- Relax stratification condition
 - New characterization works for all CP-theories s.t. all instances have two-valued well-founded model
 - Weaker requirement
 - ▶ Not only static, syntactical stratification
 - ▶ But also dynamic, semantical stratification
- Clarify the relation between CP-logic and logic programming

Normal logic programs

$$h \leftarrow b_1, \ldots, b_m$$
.

▶ For normal logic program C, $\pi_C(wfm(C)) = 1$

Intuitive meaning of rule

If propositions b_1, \ldots, b_n hold, then an event will happen that causes h

- Interesting link between WFS and causality
 - ► [Denecker, Ternovska, 2005]: WFS is used to deal with causal ramifications in situation calculus
- WFS formalizes inductive definitions [Denecker, 1998]
 Inductive definition is set of deterministic causal events

Disjunctive logic programs

$$h_1 \vee \cdots \vee h_n \leftarrow b_1, \ldots, b_m.$$

- Suppose every such rule represents CP-event $(h_1 : \alpha_1) \lor \cdots \lor (h_n : \alpha_n) \leftarrow b_1, \ldots, b_m$. with $\sum_i \alpha_i = 1$
- {interpretation $I \mid \pi_C(I) > 0$ } does not depend on precise values of $\alpha_i > 0$
- This set gives possible world semantics for DLP

Intuitive meaning of rule

If propositions b_1, \ldots, b_n hold, then a non-deterministic event will happen that causes precisely one of h_1, h_2, \ldots, h_m .

- Different from stable model semantics
 - Not about beliefs of an agent, but the outcome of causal events
- ► For stratified programs, identical to Possible Model Semantics [Sakama,Inoue]

Related work: P-log

Some differences

- Focus
 - CP-logic: only concerned with representing probability distribution
 - ► P-log: various kinds of updates
 - (It seems straightforward to define do-operator for CP-logic)
- ▶ In P-log, attributes have dynamic range
 - ► CP-logic only allows static enumeration of alternatives
- Probabilities are attached to
 - ▶ CP-logic: independent causes that might occur together
 - P-log: mutually exclusive circumstances, as in Bayesian networks

Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion

Conclusion

- Study role of causality in probabilistic modeling
- CP-logic: sets of conditional probabilistic events
 - Principle of independent causation
 - Principle of no deus ex machina effects
- Can express same knowledge as Bayesian networks
- Differences in natural modeling methodology for
 - Independent causes for effect
 - Cyclic causal relations
 - Absence of a cause
- ► Different view on Logic Programming