
1

Integrating ASP and CLP solvers:
Computing Answer Sets from Partially Ground Programs

Proposal Defense

Veena S. Mellarkod



2

Planning Example
Ram is at his office and has a dentist appointment in one hour. For the

appointment, he needs his insurance card which is at home and cash to pay

the doctor. He can get cash from the nearby atm. The table shows the time

needed to travel between locations: Dentist, Home, Office and Atm.

Minutes Doctor Home Office Atm

Doctor 0 20 30 40

Home 20 0 15 15

Office 30 15 0 20

Atm 40 15 20 0

(a). Find a plan which takes Ram to the doctor on time.

(b). Find a plan which takes Ram to the doctor at least 15 minutes early.

If the time variables ranged from [0..1440], then classical ASP solvers could

not solve the problem.



3

Problem Definition

Classical ASP and CR-Prolog solvers compute answer sets of programs

from their ground instantiations.

Such solvers are inapplicable to applications which contain variables that

range over large domains.

We propose to solve this problem in two steps:

• designing a new language AC(C), which differs from A-Prolog by

classifying predicates into different types.

• designing an algorithm for computing answer sets of AC(C)
programs from their partial ground instantiations.



4

Planning Example - Representation

person(ram).

item(icard). item(cash).

loc(dentist). loc(office).

loc(home). loc(atm).

step(1..4).

% Actions

action(go_to(P,L)) :- person(P), loc(L).

% Fluents

fluent(at_loc(P,L)) :- person(P), loc(L).

fluent(at_loc(I,L)) :- item(I), loc(L).

fluent(has(P,I)) :- person(P), item(I).



5

% If a person goes to loc L then he is at L in next step.

h(at_loc(P,L),S1) :- person(P), loc(L),

next(S0,S1),

o(go_to(P,L),S0).

% If Ram is at loc L and item I is at loc L then he picks item I

h(has(P,I),S) :- step(S),

h(at_loc(P,L),S),

h(at_loc(I,L),S).

% If a person has an item then it is at same loc as the person

h(at_loc(I,L),S) :- step(S),

h(has(P,I),S),

h(at_loc(P,L),S).



6

% Timing constraints

#csort time(1..1440).

#mixed at(step,time).

% assign times increasingly for steps.

:- next(S1, S2), at(S1,T1), at(S2,T2), T1 - T2 > 0.

% minimum time for travel between dentist and home is 20 mins

:- h(at_loc(P, home), S1), o(go_to(P, dentist),S1),

next(S1,S2), at(S1,T1), at(S2,T2), T1 - T2 > -20.

% minimum time for travel between home and atm is 15 minutes

:- h(at_loc(P, home), S1), o(go_to(P, atm),S1),

next(S1,S2), at(S1,T1), at(S2,T2), T1 - T2 > -15.



7

%% Planning Module

1 { o(A,S) : action(A) } 1 :- step(S), not goal(S).

goal(S) :- h(at_loc(ram,dentist),S), h(has(ram,icard),S),

h(has(ram,cash),S).

plan :- goal(S).

:- not plan.

% (a). He should be at the dentist in 60 minutes

:- goal(S), at(0,T1), at(S,T2), T2 - T1 > 60.

% Initial Situation

h(at_loc(ram,office),0). h(at_loc(icard,home),0).

h(at_loc(cash,atm),0).



8

A-Prolog Equivalent

To get a program equivalent in A-Prolog, we can delete the rules:

#csort time(1..1440).

#mixed at(step,time).

and add the following rules:

time(1..1440).

1 { at(S,T) : time(T) } 1 :- step(S).

lparse was not able to ground the A-Prolog program.



9

Language AC(C)

First goal is to design a language which classifies predicates into different

types.

• syntax

• semantics

Requirements:

• syntax of AC(C) should be close to syntax of A-Prolog.

• semantics of AC(C) should be a natural extension of semantics of

A-Prolog.



10

Language AC(C)
Language AC(C) divides predicates into four types: regular,

constraint, defined and mixed.

Signature of a AC(C) program divides constants into regular or

constraint sorts.

regular predicates define relations with variables ranging over small

domains.

constraint predicates define primitive numerical relations with variables

ranging over large domains.

defined predicates define relations with variables ranging over large

domains.

mixed predicates define relationships between regular and defined;

and regular and constraint predicates.



11

ACsolver

Second goal is to design an algorithm ACsolver for computing answer

sets of AC(C) programs and prove its correctness.

Requirements: ACsolver should compute answer sets from partially

ground programs.

• ground regular terms

• do not ground constraint terms



12

Motivation

How huge a ground instantiation can get?

Let Π be a program as given below:

time(0..1440).
#domain time(T1;T2).
q(1). q(2).
p(X, Y ) ← q(X), q(Y ), X! = Y, not r(X, Y )
r(X, Y ) ← q(X), q(Y ), X! = Y, not p(X, Y )
← r(X, Y ), at(X, T1), at(Y, T2), T1 − T2 > 3
← p(X, Y ), at(X, T1), at(Y, T2), T1 − T2 > 10
1 { at(X, T ) : time(T ) } 1← q(X)

Number of rules in lparse(Π) = 8226921.



13

Motivation - 2

partial ground program

Let Π be a program as given below:

#csort time(0..1440).
#mixed at(q, time).
q(1). q(2).
p(X, Y ) ← q(X), q(Y ), X! = Y, not r(X, Y )
r(X, Y ) ← q(X), q(Y ), X! = Y, not p(X, Y )
← r(X, Y ), at(X, T1), at(Y, T2), T1 − T2 > 3
← p(X, Y ), at(X, T1), at(Y, T2), T1 − T2 > 10

Number of rules in P(Π) = 14.



14

P(Π) Example

#csort time(0..1440).

q(1). q(2).

p(1, 2) ← not r(1, 2)

p(2, 1) ← not r(2, 1)

r(1, 2) ← not p(1, 2)

r(2, 1) ← not p(2, 1)

← r(1, 2), at(1, T1), at(2, T2), T1 − T2 > 3

← r(2, 1), at(2, T2), at(1, T1), T2 − T1 > 3

← r(1, 1), at(1, T1), at(1, T1), T1 − T1 > 3

← r(2, 2), at(2, T2), at(2, T2), T2 − T2 > 3

← p(1, 2), at(1, T1), at(2, T2), T1 − T2 > 10

← p(2, 1), at(2, T2), at(1, T1), T2 − T1 > 10

← p(1, 1), at(1, T1), at(1, T1), T1 − T1 > 10

← p(2, 2), at(2, T2), at(2, T2), T2 − T2 > 10



15

ACsolver

ACsolver mainly consists of two parts.

Partial Grounder Pground

Inference Engine ACengine



16

Pground

Input: an AC(C) program Π.

Output: a partially ground (r-ground) program P(Π).

Proposition: Answer sets of Π are same as answer sets of P(Π).

Requirement: use lparse to ground regular terms.



17

ACengine

Input: an r-ground program Π

Output: returns true and a (simplified) answer set of Π; otherwise

returns false.

Proposition: If ACengine returns true and a set M , then M is a

simplified answer set of Π.



18

ACengine

ACengine tightly couples a ASP solver and a constraint logic

programming (CLP) solver.

The inferences of regular part are computed by ASP solver.

The inferences of defined and constraint parts are computed by CLP

solver.

The inferences of the mixed part are computed by communications

between ASP and CLP solvers.



19

AC(C) instance: AC0

Consider an instance of AC(C) where C = {X − Y > k}, Pd = ∅ and if

r ∈ ΠM then head(r) = ∅. Let us call this language AC0.

This language was studied in ”S. Baselice, P. A. Bonatti, and M. Gelfond.

Towards an integration of answer set and constraint solving. ICLP 2005”.

We can expand the language using consistency restoring rules from

CR-Prolog.

An algorithm to compute answer sets of programs in AC0, integrates

• Davis-Putnam type of algorithm for computing answer sets of ASP

programs,

• the form of abduction from CR-Prolog, and

• incremental constraint satisfaction algorithm for difference constraints.



20

Language AC0

A program of AC0 consists of two modules

• regular rules of ASP and consistency restoring rules of CR-Prolog;

• denials with constraints of type X − Y > k.

The variables of a program Π that occur in constraints are called

constraint variables and the rest are regular variables

The semantics of AC0 extends ASP, CR-Prolog and CASP semantics in

a natural way.



21

Expressive Power of AC0

In addition to standard power of ASP , AC0 allows natural encoding of

constraints and consistency restoring rules, including

• simple temporal constraints (John needs to be at the office in two

hours),

• disjunctive temporal constraints (action a can occur either between

8-9 am or between 4-5 pm),

• qualitative soft temporal constraints (It is desirable for John to come

to office 15 mins early),

• disjunctive qualitative soft temporal constraints (It is desirable for

action a to occur either between 2-4 pm or between 6-8pm).



22

Computing answer sets of programs in

AC0: ADsolver

ADsolver consists of two parts:

(a). Partial grounder Pground.

• Pground uses a modified version of lparse to ground regular variables of

input program Π of AC0.

• The output program P(Π) is much smaller when compared to lparse(Π).

• Proposition: Answer sets of Π are same as answer sets of P(Π).

(b). Inference engine ADengine.

• ADengine combines ASP , CR-Prolog and difference constraint solving

methods to compute answer sets of program P(Π) of AC0.



23

ADengine

ADengine integrates a CR-Prolog engine with a difference constraint

solver, Dsolver.

Given a set of difference constraints D of the form X − Y ≤ k, Dsolver

computes a solution for D.

Dsolver is an incremental constraint solver: given a set of constraints

D, a solution S to D and a new constraint X − Y ≤ k, Dsolver uses S

to compute a solution for D ∪ {X − Y ≤ k}.

The underlying ASP engine and Dsolver are tightly coupled.



24

Planning with temporal constraints

Ram is at his office and has a dentist appointment in one hour. For the

appointment, he needs his insurance card which is at home and cash to pay

the doctor. He can get cash from the nearby atm.

The table shows the time needed to travel between locations: Dentist, Home,

Office and Atm.

Minutes Doctor Home Office Atm

Doctor 0 20 30 40

Home 20 0 15 15

Office 30 15 0 20

Atm 40 15 20 0

(a). Find a plan which takes Ram to the doctor on time.

(b). Find a plan which takes Ram to the doctor at least 15 minutes early.



25

Example: continued

P(Π) has 610 rules and ADsolver took 0.17 seconds to solve both

problems.

An ASP program equivalent to Π with constraint variables ranged from

[0..1440], lparse could not ground the program.

If constraint variables range from [0..100], the ground instantiation is

366060 rules. Using ASP solvers, it takes 183.18 and 161.20 seconds to

solve first and second problems respectively.

Domain size of constraint variables does not affect the efficiency of

ADsolver .



26

Proposed Work

• Design an algorithm ADsolver , to compute answer sets of programs

in AC0 and prove its correctness.

– partial grounder uses intelligent grounding mechanisms.

– the algorithm tightly couples ASP , CR − Prolog and difference

constraint solver.

– difference constraint solver is incremental.

• Implement ADsolver .

• Show efficiency of ADsolver over classical ASP and CR-Prolog
solvers for planning with temporal constraints.

• ? Compare between tightly coupled ADsolver and a loosely coupled

solver which computes answer sets of programs in AC0.



27

• Develop a collection of languages AC(C) parameterized over C.
– syntax of AC(C) is an extension to syntax of A-Prolog.

– semantics of AC(C) is a natural extension of semantics of

A-Prolog.

• Design an algorithm ACsolver, to compute answer sets of programs

in AC(C) and prove its correctness.

– partial grounder uses intelligent grounding mechanisms.

– the algorithm tightly couples ASP , CR − Prolog and a CLP

solver (dependent on C).
– CLP solver is incremental.

• Implement ACsolver for a particular C.
– CLP (R)



28

Structure of Talk

• Background

– Answer Set Programming (ASP)

– Constraint Logic Programming (CLP)

• Language AC(C)
– Syntax and Semantics

• ACsolver

– Pground

– ACengine

• An Instance AC0

• Proposed Work



29

Answer Set Programming

ASP is a declarative programming paradigm.

Language A-Prolog, is a knowledge representation language with roots

in the semantics of logic programming languages and non-monotonic

reasoning.

The language is expressive, and has a well understood methodology for

representing defaults, causal properties of actions and fluents, various

types of incompleteness, etc.

There are several derivatives and expansions of A-Prolog, we describe

the A-Prolog language that is most generally used.



30

A-Prolog syntax

The syntax of A-Prolog is determined by a typed signature Σ consisting

of types, typed object constants, typed variables, typed function symbols

and typed predicate symbols.

We assume that the signature contains symbols for numbers and for the

standard functions and relations of arithmetic. Terms are built as in

first-order languages.

Atoms are expressions of the form p(t1, . . . , tn), where p is a predicate

symbol with arity n and ti’s are terms of suitable types.

Atoms formed by arithmetic relations are called arithmetic atoms.

Atoms formed by non-arithmetic relations are called plain atoms.



31

A-Prolog syntax continued

Literals are atoms and negated atoms, i.e. expressions of the form

¬p(t1, . . . , tn).

A rule r of A-Prolog is a statement of the form:

h1 or h2 or . . . or hk ← l1, . . . lm, not lm+1, . . . ,not ln. (1)

where l1, . . . , lm are literals, and hi’s and lm+1, . . . , ln are plain literals.

A A-Prolog program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a

set of rules.



32

A-Prolog semantics

A plain literal l is satisfied by a consistent set of plain literals S, S |= l,

if l ∈ S.

An extended plain literal not l is satisfied by S if S 6|= l.

A set of literals L is satisfied by S if each element of L is satisfied by S.

A consistent set of plain literals S is closed under a program Π not

containing default negation if, for every rule, r ∈ Π, if body(r) is

satisfied by S, we have head(r) ∩ S 6= ∅.

Answer Set of a program without default negation: A

consistent set of plain literals, S, is an answer set of a program Π not

containing default negation if S is minimally (set theoretic) closed under

all the rules of Π.



33

A-Prolog semantics continued

Reduct of a A-Prolog program: Let Π be an arbitrary A-Prolog
program. For any set S of plain literals, let ΠS be the program obtained

from Π by deleting:

- each rule, r, such that neg(r) ∩ S 6= ∅;

- all formulas of the form not l in the bodies of the remaining rules.

Answer Set of a A-Prolog program: A set of plain literals, S, is an

answer set of a A-Prolog program Π if it is an answer set of ΠS .



34

Example



35

Constraint Logic Programming

Constraint Logic Programming (CLP) began as a natural merger of two

declarative paradigms: constraint solving and logic programming. This

combination helps make CLP programs both expressive and flexible.

Constraint logic programming can be said to involve the incorporation of

constraints and constraint ”solving” methods in logic-based language.

This characterization suggests the possibility of many interesting

languages, based on different constraints like CLP (R), CLP (FD).

Prolog can be said to be a CLP language where the constraints are

equations over the algebra of terms (the Herbrand domain).



36

CLP syntax - 1

The language CLP(D) is defined over a signature Σ = 〈P,D〉, where P

and D are defined as sets of typed constants, variables, function and

predicate symbols (with specified arity for each symbol and type for each

parameter).

The simplest form of constraint we can define from D is a primitive

constraint. A primitive constraint consists of a constraint relation

symbol from D together with appropriate number of arguments.

A constraint is of the form c1 ∧ . . . ∧ cn where n ≥ 0 and c1, . . . , cn are

primitive constraints.



37

CLP syntax - 2

Terms of the language are built as in first order languages.

An atom is of the form p(t1, . . . , tn) where p is a predicate symbol from

P and t1, . . . , tn are terms from P and D.

A rule is of the form

A0 ← α1, α2, . . . , αk.

where each αi, 1 ≤ i ≤ k, is either a primitive constraint or an atom.

A CLP(D) program is defined as a finite collection of rules.



38

CLP(R) example

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2) :- N > 1, fib(N - 1, X1), fib(N - 2, X2).

A goal (query) which asks for a number A such that fibonacci of A lies

between 80 and 90 is:

? 80 ≤ B,B ≤ 90, fib(A,B).

answer constraints: A = 10, B = 89.



39

CLP(D) operation model

The semantics of CLP(D) is defined by its operation model.

Let C be a set of primitive constraints referred to as a constraint store.

Given a program Π, a query Q = l1, . . . , ln, and a constraint store C,

there is a derivation step from a pair 〈Q,C〉 to another pair 〈Q1, C1〉 if:

• Q1 = l1, . . . , li−1, li+1, . . . , ln, where li is a primitive constraint and

C1 is a (possibly simplified) set of constraints equivalent to

C ∪ {li}. Furthermore, C1 is solvable;

• or Q1 = l1, . . . , li−1, b1, . . . , bm, li+1, . . . , ln, where there is a rule

r ∈ Π such that head(r) can be unified with li and body(r) is unified

with the set of literals {b1, . . . , bm}; and C1 = C.



40

clp(D) operational model

A derivation sequence is a possibly infinite sequence of pairs

〈Q0, C0〉, 〈Q1, C1〉 . . ., starting with an initial query Q0 and initial

constraint store C0, such that there is a derivation step to each pair

〈Qi, Ci〉, i > 0, from the preceding pair 〈Qi−1, Ci−1〉.



41

Let Π be a program as follows:

d(X, Y ) ← X2 ≥ Y, e(X).

e(X) ← X ∗ 4 ≤ 20.

e(X) ← X = 2.

Let Q = d(X, Y ) and let C = ∅. The following is a derivation sequence:

〈Q, C〉 = 〈 {d(X, Y )}, ∅ 〉
〈Q1, C1〉 = 〈 {X2 ≥ Y, e(X)}, ∅ 〉
〈Q2, C2〉 = 〈 {e(X)}, {X2 ≥ Y } 〉
〈Q3, C3〉 = 〈 {X ∗ 4 ≤ 20}, {X2 ≥ Y } 〉
〈Q4, C4〉 = 〈 ∅, {X2 ≥ Y, X ≤ 5} 〉



42

clp(D) operational model

A sequence is successful if it is finite and its last element is 〈∅, Cn〉,
where Cn is a set of solved constraints.

A sequence is conditionally successful if it is finite and its last element

is 〈∅, Cn〉, where Cn consists of delayed and possibly some solved

constraints.

A sequence is finitely failed if it is finite, neither successful nor

conditionally successful, and such that no derivation step is possible

from its last element.

Given a program Π and a query Q, CLP(D)solver returns: true, if it

finds a successful sequence; maybe if it finds a conditionally successful

derivation and false if all sequences are finitely failed.



43

AC(C) syntax - 1

AC(C) is a collection of languages parametrised over a collection C of

constraints (constructed in a natural way).

The syntax of AC(C) is determined by a sorted signature Σ, consisting

of sorts S1, . . . , Sn, properly typed predicate symbols, variables and

function symbols.

Variables of AC(C) have a sort assigned to them. Each variable ranges

over objects constants from their sort. A term of Σ is either a constant,

a variable, or an expression f(t1, . . . , tn), where f is a function symbol

of arity n, t1, . . . , tn are terms of proper sorts.

Terms also have sorts and are assigned in the natural way. An atom is of

the form p(t1, . . . , tn) where p is an n-ary predicate symbol, and

t1, . . . , tn are terms of proper sorts.



44

AC(C) syntax - 2

Each sort is further distinguished as either a regular sort or a

constraint sort.

The object constants from regular sorts and constraint sorts are called

r-constants and c-constants respectively.

A variable is an r-variable (c-variable) if it ranges over constants from a

regular (constraint) sort.

Predicate symbols of Σ are divided into four disjoint sets called regular,

constrained, mixed and defined, denoted by Pr, Pc, Pm and Pd

respectively.

The c-predicate symbols Pc and c-function symbols Fc in Σ are subsets

of predicate and function symbols from C respectively.



45

AC(C) syntax - 3

An atom p(t1, . . . , tn) is

• an r-atom if p ∈ Pr and t1, . . . , tn are r-terms;

• a c-atom if p ∈ Pc and t1, . . . , tn are c-terms;

• a m-atom if p ∈ Pm and t1, . . . , tn are r-terms or c-terms with at

least one from each;

• a d-atom if p ∈ Pd and where each parameter ti is either an r-term

or a c-term.

A literal is either an atom a or its negation ¬a.

An extended literal is either a literal l, or its negation not l.



46

AC(C) syntax - 4

A rule r of AC(C) over Σ is a statement of the form:

h1 or . . . or hk ← l1, . . . , lm, not lm+1, . . . , not ln (2)

where h1, . . . , hk are r-literals or d-literals and l1, . . . , ln are arbitrary

literals.

A rule is an r-rule if the literals in the head and body of the rule are all

r-literals. A rule is a d-rule if all literals in the head are d-literals. The

rest of the rules are called m-rules.

A program of AC(C) is a pair 〈Σ,Π〉, where Σ is a signature and Π is a

collection of rules over Σ.



47

Example

Let Σ be a signature with constants Cr = {a, b} and Cc = {0, . . . , 100};
Pr = {p(Cr, Cr), q(Cr)}, Pm = { at(Cr, Cc) }, Pc = {>, =, ≤, ≥}
and Pd = { equal(Cc, Cc) }; variables Vr = {X, Y } range over Cr and

Vc = {T1, T2} range over Cc.

Π1 : q(a).
q(b).
p(X, Y ) ← q(X), q(Y ), at(X, T1), at(Y, T2), T1 > T2.

Π2 : q(a).
q(b).
p(X, Y ) ← q(X), q(Y ), at(X, T1), at(Y, T2), equal(T1, T2).
equal(T1, T2) ← T1 = T2.



48

AC(C) semantics - 1

To give semantics of programs in AC(C), first we transform an arbitrary

program Π into its ground instantiation ground(Π). The semantics of

ground(Π), will be viewed as the semantics of program Π.

A ground instance of a rule r is a rule obtained from r by:

1. replacing variables of r by ground terms from respective sorts;

2. replacing all numerical terms by their values.



49

AC(C) semantics - 2

A set of ground literals, S satisfies the head of a ground rule r if at least

one of the literals in the head of r is satisfied by S. S satisfies the body

of r if literals l1, . . . , lm belong to S and literals lm+1, . . . , ln do not

belong to S. S satisfies rule r, if the head of r is satisfied by S whenever

the body of r is satisfied by S.

q(a).
q(b).
p(a, b) ← q(a), q(b), at(a, 2), at(b, 3), 2 < 3.

S1 = {q(a), q(b)} satisfies first two rules

S2 = {q(a), q(b), p(a, b), at(a, 2), at(b, 3), < (2, 3)} satisfies all rules.



50

AC(C) semantics - 3

Candidate Mixed Set: Let X be a set of ground m-atoms such that

for every mixed predicate p ∈ Pm and every list of ground r-terms t̄r,

there is exactly one list of ground c-terms t̄c such that p(t̄r, t̄c) ∈ X. We

call a set of mixed atoms that satisfies this condition a candidate-mixed
set.

Let mixed predicates of Σ, Pm = {at(Cr, Cc)}, where Cr = {a, b, c} and

Cc = [0 . . . 1000].

X1 = {at(a, 1), at(b, 2), at(a, 3), at(c, 45)} is not a candidate-mixed set.

X2 = {at(a, 48), at(b, 32)} is not a candidate-mixed set.

X3 = {at(a, 10), at(b, 23), at(c, 45)} is a candidate-mixed set.



51

AC(C) semantics - 4

Intended Interpretation: Let Mc be the set of all ground c-atoms

that are true in the intended interpretation of corresponding predicate

symbols in Pc.

Let constraint predicates in Σ, Pc = {<(Cc, Cc), >(Cc, Cc)}, with

Cc = [0..100].

We get:

Mc = {0 < 1, . . . , 0 < 100, 1 < 2, . . . , 99 < 100, 1 > 0, . . . , 100 > 99}



52

AC(C) semantics - 5

[Answer Set] Let (Σ,Π) be an AC(C) program and X be a

candidate-mixed set; a set S of ground literals over Σ is an AC(C)
answer set of Π if S is an ASP answer set of ground(Π) ∪X ∪Mc.

Let Π1 and Π2 be programs as shown before.

An answer set for program Π1 is S = A ∪X ∪Mc, where

A = {q(a), q(b)}, X = {at(a, 3), at(b, 3)} and

Mc = {1 > 0, . . . , 100 > 99, 0 = 0, 1 = 1, . . . , 100 = 100}.

An answer set for program Π2 is S = A ∪X ∪D ∪Mc, where

A = {q(a), q(b), p(a, b), p(b, a)}, X = {at(a, 2), at(b, 2)},
Mc = {1 > 0, . . . , 100 > 99, 0 = 0, 1 = 1, . . . , 100 = 100}, and

D = {equal(0, 0), equal(1, 1), equal(2, 2), . . .}.



53

AC(C) semantics - 6

simplified answer set: Let M = A ∪X ∪D ∪Mc be an answer set

of a program Π, where A,X,D are sets of regular, mixed and defined

atoms respectively and Mc is the set of c-atoms representing the

intended interpretation of c-predicates in Pc. The set A ∪X is called a

simplified answer set of Π.



54

ACsolver

Input: an AC(C) program Π

Output: returns true and an AC(C) simplified answer set of Π; or

returns false



55

ACsolver

The solver for computing answer sets of programs in AC(C) is called

ACsolver. It consists of three parts.

1. Pground

2. T ranslator

3. ACengine

Given a AC(C) program Π, ACsolver first calls Pground to ground

r-terms of Π, the resulting r-ground program, P(Π), is transformed by

T ranslator into an r-ground program T (Π). The ACengine combines

constraint solving techniques with ASP techniques to compute answer

sets of T (Π).



56

Terminology

Π can be divided into three disjoint sets of rules.

The set consisting of r-rules of Π is called the regular part of Π
denoted by ΠR. Similarly, the set consisting of m-rules of Π is called the

middle part of Π denoted by ΠM and the set consisting of d-rules of Π
is called the defined part of Π denoted by ΠD.

The collection of rules of a program Π whose heads are formed by a

predicate p, is called the definition of p in Π. A predicate p is called a

domain predicate with respect to Π, if the definition of p in Π has no

negative recursion.



57

Syntax Restrictions

1. There is only one literal in the head (non-disjunctive programs).
This restriction allows for a simpler description of the algorithm.

2. Given a rule r ∈ ΠM , every c-variable of r should occur in
m-literals of body(r). This restriction ensures the correctness of the

algorithm ACengine.

3. Each r-variable occurring in r ∈ ΠD, occurs in head(r). The

consequences of ΠD will be computed using constraint programming

techniques. This restriction will ensure that a r-variable of a rule

r ∈ ΠD will be ground at the time of solving the head of r; thus

allowing to perform lazy grounding.

4. The only extended m-literals, d-literals and c-literals allowed in Π
are atoms. This restriction simplifies the description of the

algorithm.



58

5. Mixed literals do not occur in rules of ΠD. This restriction

simplifies the description of the algorithm.

6. ΠR ∪ΠM is r-domain restricted in the sense that every r-variable
in a rule r ∈ ΠR ∪ΠM , must appear in an r-atom formed by a
domain predicate in the body of r. This restriction is similar to

domain restriction of the grounder lparse [] and differs by restricting

only r-variables. This restriction allows Pground to use lparse to

ground r-terms of ΠR ∪ΠM .

7. There are no cyclic definitions between d-literals and r-literals.
This restriction simplifies the algorithm ACsolver and ensures the

correctness of the algorithm ACengine.



59

Example - 1

Σ = {Cr = {a, b}, Cc = [1, · · · , 100], Pr = {p(Cr, Cr), q(Cr), r(Cr)},
Pm = {at(Cr, Cc)}, Pc = {>}, Pd = {d(Cc, Cc), d2(Cr, Cc)}} .

Program Π3 does not satisfy restrictions (1), (2), (3) and (6):

q(a) or q(b). r(a).
p(X, Y ) ← q(X), at(X, T1), d(T1, T2).
d(T1, T2) ← not r(X), T1 > T2.

Program Π4 does not satisfy restrictions (4), (5), (6) and (7):

q(a)← not q(b).
q(b)← not q(a).
r(a). r(b).
p(X, Y ) ← r(X), not q(Y ), not at(X, T1), at(Y, T2), d(T1, T2).
d(T1, T2) ← r(X), not d2(X, T1), T1 > T2.

d2(X, T ) ← p(X, X), ¬at(X, T ), T > 50.



60

Example - 2

Σ = {Cr = {a, b}, Cc = [1, · · · , 100], Pr = {p(Cr, Cr), q(Cr), r(Cr)},
Pm = {at(Cr, Cc)}, Pc = {>}, Pd = {d(Cr, Cc, Cc)}}. Programs Π1

and Π2 satisfy the syntax restrictions:

Program Π1:

q(a). q(b). r(a).
p(X, Y ) ← q(X), q(Y ), at(X, T1), at(Y, T2), d(X, T1, T2).
d(X, T1, T2) ← not r(X), T1 > T2.

Program Π2:

q(a)← not q(b).
q(b)← not q(a).
r(a). r(b).
p(X, Y ) ← r(X), r(Y ),not q(Y ), at(X, T1), at(Y, T2), T1 > T2.



61

Pground

Given a AC(C) program Π, Pground returns a r-ground program P(Π).
Answer sets of P(Π) are same as answer sets of Π.

Let Σ be formed by Cr = {1, 2}, Cc = [0..100], Pr = {p, q, r, s,<, 6=},
Pm = {at}, Pc = {≤,=}, Pd = {d} and variables Vr = {X, Y } and

Vc = {T1, T2}. Π is as follows:

ra[1,2] : q(1). q(2).
rb : p(X, Y ) ← q(X), q(Y ), r(X, Y ), X < Y

rc : r(X, Y ) ← q(X), q(Y ), not s(X, Y ), X 6= Y

rd : s(X, Y ) ← q(X), q(Y ), not r(X, Y ), X 6= Y

re : p(X, Y ) ← q(X), q(Y ), at(X, T1), at(Y, T2),
T1 ≤ T2, d(X, Y, T1, T2)

rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



62

Pground

Given a program Π of AC(C), we construct an r-ground program P(Π)

as follows:

1. replace c-variables in ΠM by constants called tc constants,
Π1 = tc(ΣΠ,ΠM ) ∪ΠR ∪ΠD

ra[1,2] : q(1). q(2).
rb : p(X, Y ) ← q(X), q(Y ), r(X, Y ), X < Y

rc : r(X, Y ) ← q(X), q(Y ), not s(X, Y ), X 6= Y

rd : s(X, Y ) ← q(X), q(Y ), not r(X, Y ), X 6= Y

re1 : p(X, Y ) ← q(X), q(Y ), at(X, t1), at(Y, t2),
t1 ≤ t2, d(X, Y, t1, t2)

rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



63

2. remove c-literals occurring in Π1M
and store them in a set C,

Π2 = ΠR ∪ΠD ∪ (Π1M
\ c-lits(Π1M

))

ra[1,2] : q(1). q(2).
rb : p(X, Y ) ← q(X), q(Y ), r(X, Y ), X < Y

rc : r(X, Y ) ← q(X), q(Y ), not s(X, Y ), X 6= Y

rd : s(X, Y ) ← q(X), q(Y ), not r(X, Y ), X 6= Y

re1 : p(X, Y ) ← q(X), q(Y ), at(X, t1), at(Y, t2),
d(X, Y, t1, t2)

rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10

and C = {t1 ≤ t2}.



64

3. add disjunctive rules for mixed and defined predicates and get

Π3 = Π2 ∪ addr(Π2)

rm1 : at(X, Z) ← not n at(X, Z).
rm2 : n at(X, Z) ← not at(X, Z).
rm3 : d(X, Y, Z1, Z2) ← not n d(X, Y, Z1, Z2).
rm4 : n d(X, Y, Z1, Z2) ← not d(X, Y, Z1, Z2).

where, variables Z,Z1, Z2 range over tc constants {t1, t2} and

variables X, Y range over {1, 2}.

The predicates n at and n d are new predicates not in Σ2.



65

4. ground using lparse, Π4 = lparse(Π3R
∪Π3M

∪ addr(Π2)) ∪Π3D

rga[1,2] : q(1). q(2).
rgb1 : p(1, 2) ← r(1, 2)
rgc[1,2] : r(1, 2) ← not s(1, 2). r(2, 1) ← not s(2, 1).
rgd[1,2] : s(1, 2) ← not r(1, 2). s(2, 1) ← not r(2, 1).
rge1 : p(1, 1) ← at(1, t1), at(1, t2), d(1, 1, t1, t2)
rge2 : p(1, 2) ← at(1, t1), at(2, t2), d(1, 2, t1, t2)
rge3 : p(2, 1) ← at(2, t1), at(1, t2), d(2, 1, t1, t2)
rge4 : p(2, 2) ← at(2, t1), at(2, t2), d(2, 2, t1, t2)
rgm1 : at(1, t1) ← not n at(1, t1). · · ·
rgmk

: n at(2, t2) ← not at(2, t2).
rgd1 : d(a, a, t1, t1) ← not n d(a, a, t1, t1). · · ·
rgdj

: n d(b, b, t2, t2) ← not n d(b, b, t2, t2).
rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



66

5. remove ground instantiations of addr(Π2) to get

Π5 = Π4 \ ground(addr(Π2))

rga[1,2] : q(1). q(2).
rgb1 : p(1, 2) ← r(1, 2)
rgc1 : r(1, 2) ← not s(1, 2)
rgc2 : r(2, 1) ← not s(2, 1)
rgd1 : s(1, 2) ← not r(1, 2)
rgd2 : s(2, 1) ← not r(2, 1)
rge1 : p(1, 1) ← at(1, t1), at(1, t2), d(1, 1, t1, t2)
rge2 : p(1, 2) ← at(1, t1), at(2, t2), d(1, 2, t1, t2)
rge3 : p(2, 1) ← at(2, t1), at(1, t2), d(2, 1, t1, t2)
rge4 : p(2, 2) ← at(2, t1), at(2, t2), d(2, 2, t1, t2)
rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



67

6. (a) put back c-literals removed in step (2), to get Π6a = β(Π5, C,Σ2)

(b) replace tc constants by c-variables,

Π6 = Π5R
∪Π5D

∪ reverse tc(Π5M
, Tc)

rga[1,2] : q(1). q(2).
rgb1 : p(1, 2) ← r(1, 2)
rgc1 : r(1, 2) ← not s(1, 2)
rgc2 : r(2, 1) ← not s(2, 1)
rgd1 : s(1, 2) ← not r(1, 2)
rgd2 : s(2, 1) ← not r(2, 1)
rge1′ : p(1, 1) ← at(1, T1), at(1, T2), T1 ≤ T2, d(1, 1, T1, T2)
rge2′ : p(1, 2) ← at(1, T1), at(2, T2), T1 ≤ T2, d(1, 2, T1, T2)
rge3′ : p(2, 1) ← at(2, T1), at(1, T2), T1 ≤ T2, d(2, 1, T1, T2)
rge4′ : p(2, 2) ← at(2, T1), at(2, T2), T1 ≤ T2, d(2, 2, T1, T2)
rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



68

7. compute rename(Π6M
,Y ), to get

Π7 = rename(Π6M
, Y ) ∪Π6R

∪Π6D
where Y is a r ground mixed

set of Π. We get P(Π) as:

rga[1,2] : q(1). q(2).
rgb1 : p(1, 2) ← r(1, 2)
rgc1 : r(1, 2) ← not s(1, 2)
rgc2 : r(2, 1) ← not s(2, 1)
rgd1 : s(1, 2) ← not r(1, 2)
rgd2 : s(2, 1) ← not r(2, 1)
rgea : p(1, 1) ← at(1, V1), at(1, V1), V1 ≤ V1, d(1, 1, V1, V1)
rgeb

: p(1, 2) ← at(1, V1), at(2, V2), V1 ≤ V2, d(1, 2, V1, V2)
rgec : p(2, 1) ← at(2, V2), at(1, V1), V2 ≤ V1, d(2, 1, V2, V1)
rged

: p(2, 2) ← at(2, V2), at(2, V2), V2 ≤ V2, d(2, 2, V2, V2)
rf : d(X, Y, T1, T2) ← s(X, Y ), X < Y, T1 = T2 + 10



69

Negative Literals

Recall that Pground uses lparse for intelligent grounding of r-terms of

a program Π. The system lparse while grounding also transforms the

program with negative literals (¬) to an equivalent program (with

respect to answer sets) without negative literals. Given a literal l and its

negation ¬l, lparse does the following transformation:

• replaces each occurrence of ¬l in Π by a new literal l′

• adds the following rule to the program.

← l, l′.

Therefore, to simplify the description of the solver, we assume that

programs with negated literals undergo the above transformation and

P(Π) does not contain any negative literals.



70

T ranslator

The T ranslator transforms P(Π) into a new r-ground program T (Π).

Answer sets of P(Π) have one to one correspondence with answer sets

of T (Π).

The solver ACengine then computes answer sets of T (Π) using

constraint programming techniques integrated with ASP techniques.

The program P(Π) is translated to T (Π) in order to eliminate

disjunctive queries to the CLP system.



71

Terminology

Let Π be a r-ground program with signature Σ and B be a set of ground

extended r-literals of Σ.

• We will identify an expression not (not a)) with a.

• pos(B) = {a ∈ Atoms(Σ) | a ∈ B},
neg(B) = {a ∈ Atoms(Σ) | not a ∈ B},
Atoms(B) = pos(B) ∪ neg(B).

• A set, M , of atoms agrees with B if pos(B) ⊆M and

neg(B) ∩M = ∅.

• B covers a set of atoms M , covers(B,M), if M ⊆ Atoms(B)

• B is inconsistent if pos(B) ∩ neg(B) 6= ∅.



72

ACengine

Input: a r-ground AC(C) program Π and a set of ground extended

r-literals S.

Output: returns true and a simplified AC(C) answer set of Π agreeing

with S; otherwise returns false

Proposition: If ACengine returns true and a set M , then M is a

simplified AC(C) answer set of Π.



73

Functions used by ACengine

• function expand

– takes as input a r-ground program ΠR ∪ΠM and a set of ground

extended r-literals S; and

– returns a consistent set of ground extended r-literals which is the

set of consequences of ΠR ∪ΠM and S.

• function pick

– takes as input the r-atoms of Π and a set of ground extended

r-literals S; and

– returns a literal l such that l 6∈ S and not l 6∈ S.



74

• function c solve

– takes as input a non-ground program ΠD, a set of ground extended

r-literals S and a query Q which is a set of r-ground d-literals and

c-literals; and

– returns true, maybe or false. If c solve returns true then it also

returns a set of constraints A.

Let ΠD be the defined part of a program Π and S be a set of ground

extended r-literals. Let Q = query(Π, S), D be the set of d-literals in Q

and V̄Q be the set of variables in Q.

• If c solve(ΠD, S,Q,A) returns true then every answer set of Π

agreeing with S contains D|V̄Q

θ , where θ = a solution(A).

• If c solve(ΠD, S,Q,A) returns false then there is no answer set of

Π agreeing with S.



75

ACengine(Π: r-ground program, B: set of r-literals)

[a] S := expand(ΠR ∪ΠM , B)

[b] if inconsistent(S) return false

[c] if covers(S, rAtoms(Π)) then

[d] V := c solve(ΠD, S, query(Π,S), A)

[e] if V = true return true {a-set: pos(S) ∪m atoms|A}
[f ] else return false

[g] else V := c solve(ΠD, S, pos(query(Π,S)), A)

[h] if V = false return false

[i] pick(l, S̄)

[j] if ACengine(Π,S ∪ {l}) then return true

[k] else return ACengine(Π,S ∪ {not l})



76

AC(C) instance: AC0

Consider an instance of AC(C) where C = {X − Y > k}, Pd = ∅ and if

r ∈ ΠM then head(r) = ∅. Let us call this language AC0.

This language was studied in ”S. Baselice, P. A. Bonatti, and M. Gelfond.

Towards an integration of answer set and constraint solving. Proceedings of

ICLP 2005”.

We can expand the language using consistency restoring rules from

CR-Prolog.

An algorithm to compute answer sets of programs in AC0, integrates

• Davis-Putnam type of algorithm for computing answer sets of ASP

programs,

• the form of abduction from CR-Prolog, and

• incremental constraint satisfaction algorithm for difference constraints.



77

Language AC0

A program of AC0 consists of two modules

• regular rules of ASP and consistency restoring rules of CR-Prolog;

• denials with constraints of type X − Y > k.

The variables of a program Π that occur in constraints are called

constraint variables and the rest are regular variables

The semantics of AC0 extends ASP, CR-Prolog and CASP semantics in

a natural way.



78

Expressive Power of AC0

In addition to standard power of ASP , AC0 allows natural encoding of

constraints and consistency restoring rules, including

• simple temporal constraints (John needs to be at the office in two

hours),

• disjunctive temporal constraints (action a can occur either between

8-9 am or between 4-5 pm),

• qualitative soft temporal constraints (It is desirable for John to come

to office 15 mins early),

• disjunctive qualitative soft temporal constraints (It is desirable for

action a to occur either between 2-4 pm or between 6-8pm).



79

Computing answer sets of programs in

AC0: ADsolver

ADsolver consists of two parts:

(a). Partial grounder Pground.

• Pground uses a modified version of lparse to ground regular variables of

input program Π of AC0.

• The output program P(Π) is much smaller when compared to lparse(Π).

• Proposition: Answer sets of Π are same as answer sets of P(Π).

(b). Inference engine ADengine.

• ADengine combines ASP , CR-Prolog and difference constraint solving

methods to compute answer sets of program P(Π) of AC0.



80

ADengine

ADengine integrates a CR-Prolog engine with a difference constraint

solver, Dsolver.

Given a set of difference constraints D of the form X − Y ≤ k, Dsolver

computes a solution for D.

Dsolver is an incremental constraint solver: given a set of constraints

D, a solution S to D and a new constraint X − Y ≤ k, Dsolver uses S

to compute a solution for D ∪ {X − Y ≤ k}.

The underlying ASP engine and Dsolver are tightly coupled.



81

Planning with temporal constraints

Ram is at his office and has a dentist appointment in one hour. For the

appointment, he needs his insurance card which is at home and cash to pay

the doctor. He can get cash from the nearby atm.

The table shows the time needed to travel between locations: Dentist, Home,

Office and Atm.

Minutes Doctor Home Office Atm

Doctor 0 20 30 40

Home 20 0 15 15

Office 30 15 0 20

Atm 40 15 20 0

(a). Find a plan which takes Ram to the doctor on time.

(b). Find a plan which takes Ram to the doctor at least 15 minutes early.



82

Example: continued

The domain description of the problem contains direct effects, in-direct effects,

executability conditions of actions, and temporal constraints like:

% Time taken to travel between office and atm is at least 20 mins

:- h(at_loc(P, office), S), o(go_to(P, atm),S),

at_time(S,T1), at_time(S+1,T2), T1 - T2 > -20.

P(Π) has 610 rules and ADsolver took 0.17 seconds to solve both problems.

An ASP program equivalent to Π with constraint variables ranging from

[0..100] has a ground instantiation of 366060 rules. Using ASP solvers, it takes

183.18 and 161.20 seconds to solve first and second problems respectively.

If constraint variables ranged from [0..1440] (the number of minutes in a day),

lparse could not ground the program.

Domain size of constraint variables does not affect the efficiency of ADsolver .



83

Reasoning in AC0

ADsolver was tested for complex planning and scheduling problems

using a decision support system for space shuttle controllers:

USA-Advisor.

USA-Advisor was expanded by:

(a). adding temporal information on the time taken for fuel and oxidant to

flow from one valve to another;

(b). temporal constraints to describe valve being stabilized before opening; and

(c). soft temporal constraint to describe, if possible, it is desirable to fire the

jets by 30 seconds.



84

step, time Pground ADsolver lparse Surya Smodels

domain seconds seconds seconds

3, 0..400 8.033 18.158 error - -

3, 0..400 7.980 20.395 error - -

3, 0..31 8.033 18.158 10min >2hr >2hr

3, 0..31 7.980 20.395 10min >2hr >2hr

4, 0..31 10.682 31.807 10min >2hr >2hr

3, 0..31 8.023 15.770 10min >2hr >2hr

3, 0..31 7.989 12.011 10min >2hr >2hr

3, 0..31 7.986 19.297 10min >2hr >2hr

The table shows timing results of looking for plans with different initial

situations and final goals.

Using longer steps results in lparse unable to ground the program.



85

Proposed Work

• Develop a tight algorithm ADsolver

• Implement ADsolver using incremental constraint solver Dsolver

• Show efficiency of ADsolver over classical ASP and CR-Prolog
solvers for planning with temporal constraints.

• Develop a tight algorithm ACsolver

• Prove correctness of ACsolver

• Implement ACsolver using a CLP system


