Identifying Deterministic Action Descriptions: a Sufficient Condition by Marcello Balduccini February 25, 2005 Revised on March 6, 2005 #### Talk Outline - \Rightarrow Introduction - Action Language AL - Sufficient condition for determinism #### Goal To find a simple algorithmic condition that guarantees that an action description is deterministic. **Complex Task** \Rightarrow we will be satisfied with a <u>sufficient</u> condition. #### **Domain Models** - We model domains of interest by transition diagrams (nodes \Rightarrow states, arcs \Rightarrow actions). - Transition diagrams describe the changes of state caused by execution of actions. - Transition diagrams are concisely encoded by action descriptions. #### Talk Outline - Introduction - **⇒ Action Language AL** - Sufficient condition for determinism ## **Action Language AL: Syntax** We focus on the Action Description Component of AL. - Fluent: relevant property of the domain. - Action Signature $\langle F, A \rangle$: - \diamond F: set of fluents. - \diamond A: set of elementary actions. - Fluent Literal: fluent f and its negation, $\neg f$. - (Compound) Action: a set, $\{a_1, \ldots, a_k\}$, of elementary actions. ## **Statements: Dynamic Laws** $$d: a \text{ causes } l_0 \text{ if } l_1, \dots, l_n$$ (1) "If a were to be executed in a state in which l_1, \ldots, l_n hold, l_0 would be caused to hold in the resulting state." #### where: - d: name the dynamic law. - a: (compound) action. - l_i 's: fluent literals. #### **Statements: Other Laws** #### **State Constraints**: $$s$$: caused l_0 if l_1, \ldots, l_n (2) "In every state, the truth of l_1, \ldots, l_n is sufficient to cause the truth of l_0 ." #### Impossibility/Executability Conditions: $$b: a \text{ impossible_if } l_1, \dots, l_n$$ (3) "a cannot be performed (is impossible, not executable) in any state in which l_1, \ldots, l_n hold." ## **Action Description** **Action Description:** a tuple $\langle \Sigma, L \rangle$, where: - Σ : action signature. - L: set of laws from Σ . We normally use L to implicitly define Σ . ### **Terminology** Given a dynamic law, w: d: a causes l_0 if l_1, \ldots, l_n - name(w) = d. - $head(w) = l_0$. - trigger(w) = a. - $body(w) = \{l_1, \dots, l_n\}.$ Similarly for other laws $(trigger(w) = \emptyset)$ and $head(w) = \epsilon$ when not applicable). #### **Action Language AL: Semantics** Given by defining the successor state for each transition $\langle \sigma_0, a, \sigma_1 \rangle$ in the transition diagram. \bullet set of fluent literals S is closed under state constraint w if: $$body(w) \subseteq S \rightarrow head(w) \in S.$$ - $Cn_Z(S)$ (consequences of S under Z): smallest set of fluent literals that contains S and is closed under Z. - **State**: complete and consistent set of fluent literals closed under the state constraints of action description AD. ## **AL** Semantics (cont'd) • $E(a,\sigma)$ (direct effects of a in state σ): $$E(a, \sigma) = \{head(w) \mid trigger(w) \subseteq a, body(w) \subseteq \sigma, w \text{ dynamic law of } AD\}$$ - Transition Diagram of AD (trans(AD)): directed graph, $\langle N, R \rangle$, such that: - \bullet N: collection of all states of AD. - R: set of all transitions $\langle \sigma_0, a, \sigma_1 \rangle$ such that a is executable in σ_0 , and $$\sigma_1 = Cn_Z(E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0))$$ (Z: set of state constraints from AD). #### **Deterministic Action Descriptions** #### **Definition 1** AD is deterministic if: $$\langle \sigma_0, a, \sigma_1 \rangle, \langle \sigma_0, a, \sigma_2 \rangle \in trans(AD) \iff \sigma_1 = \sigma_2.$$ #### Example. $$\left\{ \begin{array}{l} \text{caused } p \text{ if } \neg q, r \\ \text{caused } q \text{ if } \neg p, r \\ a \text{ causes } r \end{array} \right.$$ is non-deterministic. In fact, there are two successor states for action a in state $\{\neg p, \neg q, \neg r\}$: $$\{\neg p, q, r\}$$ and $\{p, \neg q, r\}$. #### Talk Outline - Introduction - Action Language AL - ⇒ Sufficient condition for determinism ## **Dependency Graph** **Definition 2 (Dependency graph (**dep(AD)**))** A directed graph $\langle FL, C \rangle$: - FL: fluent literals of AD. - C: set of 1-arcs and +-arcs. For every state constraint w: - \diamond if $body(w) = \{l\}$, then $\langle head(w), 1, l \rangle \in dep(AD)$. - \Leftrightarrow if |body(w)| > 1, then for every $l_i \in body(w)$, $\langle head(w), +, l_i \rangle \in dep(AD)$. ## Dependency Paths in dep(AD) **Definition 3 (Dependency path in** dep(AD)**)** A sequence $$\pi = \langle l_1, t_1, l_2, t_2, \dots, t_{k-1}, l_k \rangle \qquad (k > 1)$$ such that, for every $1 \le i < k$, $\langle l_i, t_i, l_{i+1} \rangle \in dep(AD)$. - Notation: $\pi^s = l_1$; $\pi^e = l_k$; $|\pi| = k$ (nodes in π). - Arcs' labels omitted from arcs and paths when possible (e.g. $\langle l_1, l_2, \dots, l_k \rangle$). - **Terminology:** π is *conditional* if it contains one or more +-arcs. ### **Sequences Through Negation** **Definition 4 (Sequence through negation (neg-seq) in** dep(AD)**)** A non-empty sequence, $\nu = \langle \pi_1, \dots, \pi_k \rangle$, such that: - \bullet every π_i is a dependency path. - For every $1 \le i < k$: $$\pi_{i+1}^s = \overline{\pi_i^e}$$. $(\overline{\pi_i^e} \text{ denotes complement of } \pi_i^e.)$ **Terminology:** dep(AD) contains ν . ## **Loops Through Negation and Safety** Definition 5 (Dependency loop through negation (neg-loop)) A neg-seq, $\langle \pi_1, \dots, \pi_k \rangle$, such that $$\pi_1^s = \overline{\pi_k^e}.$$ **Definition 6 (Conditional neg-seq or neg-loop)** A neg-seq (resp., neg-loop) $\langle \pi_1, \dots, \pi_k \rangle$ such that every π_i is conditional. **Definition 7 (Safe Dependency Graph)** dep(AD) is **safe** if it does not contain any <u>conditional</u> neg-loop. #### **Sufficient Condition for Determinism** **Theorem 1** For every action description, AD, if dep(AD) is safe, then AD is deterministic. #### Lemmas **Lemma 1** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ $(\sigma_1 \neq \sigma_2)$ and every $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$, there exists an arc $\langle l, l' \rangle$ in dep(AD) such that $l' \in \sigma_1 \setminus \sigma_2$. **Proof.** $l \notin E(a, \sigma_0)$. In fact, $E(a, \sigma_0) \subseteq \sigma_2$ by def. of successor state, and $l \notin \sigma_2$ by hypothesis. Also, $l \notin \sigma_0$ implies $l \notin \sigma_1 \cap \sigma_0$. Hence, there exists some state constraint, w, such that: l = head(w), $body(w) \subseteq \sigma_1$, and $body(w) \not\subseteq \sigma_2$. By definition of dep(AD), for every $l' \in body(w)$, there exists $\langle l, l' \rangle$ in dep(AD). Since $body(w) \subseteq \sigma_1$ and $body(w) \not\subseteq \sigma_2$, $\langle l, l' \rangle$ for some $l' \in body(w)$. #### S-Contained Paths **Definition 8 (**S**-contained path)** A dependency path $\langle l_1, l_2, \dots, l_k \rangle$ such that, for every l_i , $l_i \in S$. **Definition 9** (S-support of l, C_l^S) The set of all fluent literals that occur in at least one S-contained path starting from l. **Lemma 2** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ $(\sigma_1 \neq \sigma_2)$ and every $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$, there exists a $(\sigma_1 \setminus \sigma_2)$ -contained path in dep(AD) that starts from l. **Proof.** Lemma 1 guarantees the existence of an arc $\langle l, l' \rangle \in dep(AD)$ such that $l' \in \sigma_1 \setminus \sigma_2$. By def. of $(\sigma_1 \setminus \sigma_2)$ -contained path, $\langle l, l' \rangle$ is a $(\sigma_1 \setminus \sigma_2)$ -contained path. **Lemma 3** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ $(\sigma_1 \neq \sigma_2)$ and every $l \in \sigma_1 \setminus \sigma_2$, the set $\sigma_1 \setminus C_l^{\sigma_1 \setminus \sigma_2}$ is closed under the state constraints of AD. **Proof.** Let $\delta = \sigma_1 \setminus C_l^{\sigma_1 \setminus \sigma_2}$. Proving the claim by contradiction, let us assume that there exists a state constraint, caused g if g_1, \ldots, g_h , such that $\{g_1, \ldots, g_h\} \subseteq \delta$ but $g \notin \delta$. Obviously, $g \in \sigma_1$. Since $g \notin \delta$, $g \in C_l^{\sigma_1 \setminus \sigma_2}$. By def. of $C_l^{\sigma_1 \setminus \sigma_2}$, there exists a $(\sigma_1 \setminus \sigma_2)$ -contained path $\langle l, \ldots, g \rangle$ in dep(AD). By def. of dependency path, for every $1 \leq i \leq h$, $\langle l, \ldots, g, g_i \rangle$ is a dependency path. Notice that there exists $g' \in \{g_1, \ldots, g_h\}$ such that $g' \notin \sigma_2$. (Otherwise, it would follow that $g \in \sigma_2$, which contradicts $g \in C_l^{\sigma_1 \setminus \sigma_2}$.) Hence, $g' \in \sigma_1 \setminus \sigma_2$. By def. of $(\sigma_1 \setminus \sigma_2)$ -contained path, $\langle l, \ldots, g, g' \rangle$ is $(\sigma_1 \setminus \sigma_2)$ -contained. By def. of $C_l^{\sigma_1 \setminus \sigma_2}$, $g' \in C_l^{\sigma_1 \setminus \sigma_2}$. Hence, $g' \notin \delta$, which contradicts the assumption that $\{g_1, \ldots, g_h\} \subseteq \delta$. **Lemma 4** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ ($\sigma_1 \neq \sigma_2$) and every $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$, there exists a $(\sigma_1 \setminus \sigma_2)$ -contained path, $\langle l, l_1, \ldots, l_k \rangle$, such that $l_k \in \sigma_0$. **Proof.** Proving by contradiction, assume that, for every $(\sigma_1 \setminus \sigma_2)$ -contained path (l, l_1, \ldots, l_k) , $l_i \notin \sigma_0$ for every l_i . Let $\delta = \sigma_1 \setminus C_l^{\sigma_1 \setminus \sigma_2}$. Since existence of a $(\sigma_1 \setminus \sigma_2)$ -contained path starting from l is guaranteed by Lemma 2, $C_l^{\sigma_1 \setminus \sigma_2}$ is not empty. Hence, $\sigma_1 \supset \delta$. From $E(a, \sigma_0) \subseteq \sigma_1 \cap \sigma_2$ and $C_l^{\sigma_1 \setminus \sigma_2} \subseteq \sigma_1 \setminus \sigma_2$, it follows that δ contains $E(a, \sigma_0)$. The assumption that $l_i \notin \sigma_0$ for every l_i , implies that $C_l^{\sigma_1 \setminus \sigma_2} \cap \sigma_0 = \emptyset$. Therefore, δ also contains $\sigma_1 \cap \sigma_0$. Summing up, $\delta \supseteq E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0)$, and, by Lemma 3, δ is closed under the state constraints of AD. Therefore, $\delta \supseteq Cn_Z(E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0))$. Since $\sigma_1 \supset \delta$, $\sigma_1 \neq Cn_Z(E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0))$. Contradiction. **Lemma 5** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ $(\sigma_1 \neq \sigma_2)$ and for every $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$, there exists a conditional path π in dep(AD) such that $$\pi^s = l \wedge \pi^e \in \sigma_1 \setminus \sigma_2 \wedge \pi^e \in \sigma_0. \tag{4}$$ **Proof.** Existence of π satisfying (4): follows directly from Lemma 4. π conditional: by contradiction. Assume π contains only 1-arcs. $(l_i \text{ denotes } i^{th} \text{ node of } \pi.)$ Then, for every σ , $l_{i+1} \in \sigma \to l_i \in \sigma$. Because $\pi^e \in \sigma_0$, $l_{|\pi|-1} \in \sigma_0$. By induction, $l_1 \in \sigma_0$. Since $l_1 = l$, $l \in \sigma_0$. But $l \notin \sigma_0$ by hypothesis. Contradiction. **Lemma 6** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ $(\sigma_1 \neq \sigma_2)$, every $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$, and every k > 0, there exists a conditional neg-seq, $\langle \pi_1, \dots, \pi_k \rangle$, such that $\pi_1^s = l$. **Proof.** By induction on k. <u>Base</u>: k = 1. The conclusion follows directly from Lemma 5. <u>Inductive Step</u>: assume theorem holds for k, and prove it for k+1. By Lemma 5, there exists a conditional path, π_1 , such that $\pi_1^s = l$, $\pi_1^e \in \sigma_1 \setminus \sigma_2$, and $\pi_1^e \in \sigma_0$. Because $\pi_1^e \in \sigma_1 \setminus \sigma_2$, $\overline{\pi_1^e} \in \sigma_2 \setminus \sigma_1$; also, from $\pi_1^e \in \sigma_0$, it follows that $\overline{\pi_1^e} \notin \sigma_0$. By inductive hypothesis, there exists a conditional neg-seq, $\langle \pi_2, \dots, \pi_{k+1} \rangle$, of length k, such that $\pi_2^s = \overline{\pi_1^e}$. By definition, $\langle \pi_1, \pi_2, \dots, \pi_{k+1} \rangle$ is a conditional neg-seq. Since its length is k+1, and $\pi_1^s = l$, the proof is complete. **Lemma 7** For every σ_0 and a such that a is executable in σ_0 , if $E(a, \sigma_0) \subseteq \sigma_0$, then σ_0 is the only successor state of σ_0 under a. **Proof.** Consider an arbitrary $\langle \sigma_0, a, \sigma_1 \rangle \in trans(AD)$, and let us prove that, under the hypotheses, $\sigma_1 = \sigma_0$. Recall that $\sigma_1 = Cn_Z(E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0))$. Obviously, $\sigma_1 \cap \sigma_0 \subseteq \sigma_0$. As $E(a, \sigma_0) \subseteq \sigma_0$ by hypothesis, $E(a, \sigma_0) \cup (\sigma_1 \cap \sigma_0) \subseteq \sigma_0$. Since σ_0 is a state, for every $X \subseteq \sigma_0$, $Cn_Z(X) \subseteq \sigma_0$. Hence, $Cn_Z(E(a,\sigma_0) \cup (\sigma_1 \cap \sigma_0)) \subseteq \sigma_0$, which implies that $\sigma_1 \subseteq \sigma_0$. Since σ_0 , σ_1 are states, $\sigma_1 = \sigma_0$. #### **Corollaries** **Corollary 1** For every σ_0 and a such that a is executable in σ_0 , if $\langle \sigma_0, a, \sigma_0 \rangle \in trans(AD)$, then σ_0 is the only successor state of σ_0 under a. **Proof.** By def. of successor state, $E(a, \sigma_0) \subseteq \sigma_0$. The application of Lemma 7 concludes the proof. **Corollary 2** For every $\langle \sigma_0, a, \sigma_1 \rangle$, $\langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ such that $\sigma_1 \neq \sigma_2$, $\sigma_1 \neq \sigma_0$ and $\sigma_2 \neq \sigma_0$. **Proof.** By contradiction. If $\sigma_1 = \sigma_0$, then $\sigma_2 = \sigma_0$ by Corollary 1. Therefore, $\sigma_1 = \sigma_2$. Contradiction. #### Proof of the Main Theorem We prove the contrapositive of the theorem, i.e.: If AD is non-deterministic, then dep(AD) is not safe. **Proof.** Since AD is non-deterministic, there exist $\langle \sigma_0, a, \sigma_1 \rangle, \langle \sigma_0, a, \sigma_2 \rangle \in trans(AD)$ such that $\sigma_1 \neq \sigma_2$. By Corollary 2, there exists $l \in \sigma_1 \setminus \sigma_2$ such that $l \notin \sigma_0$. #### Let: - n: number of all fluent literals from signature of AD. - k': some positive integer such that k' > n. Lemma 6 guarantees existence of a neg-seq, $\langle \pi_1, \dots, \pi_{k'} \rangle$, such that $\pi_1^s = l$. Since k' > n, there exist $1 \le i < j \le k'$ such that $\pi_i^s = \pi_j^s$. By def. of neg-seq, $\pi_j^s = \overline{\pi_{j-1}^e}$. By def. of neg-loop, $\langle \pi_i, \pi_{i+1}, \dots, \pi_{j-1} \rangle$ is a conditional neg-loop. Hence dep(AD) contains a conditional neg-loop. By definition of safe dependency graph, dep(AD) is not safe. #### **Examples** Consider the non-deterministic action description: $$\begin{cases} \text{caused } p \text{ if } \neg q, r \\ \text{caused } q \text{ if } \neg p, r \\ a \text{ causes } r \end{cases}$$ Its dependency graph is *not safe*, as it contains the conditional neg-loop: $$\langle\langle p, \neg q \rangle, \langle q, \neg p \rangle\rangle.$$ ## Examples (cont'd) The action description: $$\begin{cases} \text{ caused } p \text{ if } \neg p, q \\ a \text{ causes } q \end{cases}$$ is deterministic, and its dependency graph is safe (no arcs out of nodes $\neg p$ and q). ## Examples (cont'd) The action description: $$\begin{cases} \text{caused } p \text{ if } q, r \\ \text{caused } p \text{ if } \neg q, r \\ a \text{ causes } r \end{cases}$$ is deterministic, and its dependency graph is safe (no arcs out of nodes q and $\neg q$). #### **Counter-Examples** The action description: $$\begin{cases} \text{caused } p \text{ if } \neg q, \neg r \\ \text{caused } q \text{ if } \neg p, r \\ a \text{ causes } r \end{cases}$$ is deterministic. However, its dependency graph is *not safe*, as it contains the conditional neg-loop: $$\langle\langle p, \neg q \rangle, \langle q, \neg p \rangle\rangle.$$ **Possible solution:** parametrize dep(AD) on a set of fluent literals, and re-define "safety" considering only <u>consistent</u> sets of fluent literals. ## Counter-Examples (cont'd) The action description: $$\begin{cases} \text{caused } p \text{ if } \neg q, r \\ \text{caused } q \text{ if } \neg p, r \\ a \text{ causes } \neg r \end{cases}$$ is deterministic: executing a only makes r false. However, the dependency graph is *not safe*, as it contains the conditional negloop: $$\langle\langle p, \neg q \rangle, \langle q, \neg p \rangle\rangle.$$ **Possible solution:** difficult, requires considering laws other than state constraints.