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Talk Outline

⇒ Introduction

• Action Language AL

• Sufficient condition for determinism
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Goal

To find a simple algorithmic condition that

guarantees that an action description is

deterministic.

Complex Task ⇒ we will be satisfied with a sufficient

condition.
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Domain Models

• We model domains of interest by transition diagrams

(nodes ⇒ states, arcs ⇒ actions).

• Transition diagrams describe the changes of state caused by

execution of actions.

• Transition diagrams are concisely encoded by action descrip-

tions.
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Talk Outline

• Introduction

⇒ Action Language AL

• Sufficient condition for determinism
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Action Language AL: Syntax

We focus on the Action Description Component of AL.

• Fluent: relevant property of the domain.

• Action Signature 〈F, A〉:
¦ F : set of fluents.

¦ A: set of elementary actions.

• Fluent Literal: fluent f and its negation, ¬f .

• (Compound) Action: a set, {a1, . . . , ak}, of elementary ac-

tions.
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Statements: Dynamic Laws

d : a causes l0 if l1, . . . , ln (1)

“If a were to be executed in a state in which l1, . . . , ln hold, l0
would be caused to hold in the resulting state.”

where:

• d: name the dynamic law.

• a: (compound) action.

• li’s: fluent literals.
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Statements: Other Laws

State Constraints:

s : caused l0 if l1, . . . , ln (2)

“In every state, the truth of l1, . . . , ln is sufficient to cause the

truth of l0.”

Impossibility/Executability Conditions:

b : a impossible if l1, . . . , ln (3)

“a cannot be performed (is impossible, not executable) in any

state in which l1, . . . , ln hold.”
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Action Description

Action Description: a tuple 〈Σ, L〉, where:

• Σ: action signature.

• L: set of laws from Σ.

We normally use L to implicitly define Σ.
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Terminology

Given a dynamic law, w:

d : a causes l0 if l1, . . . , ln

• name(w) = d.

• head(w) = l0.

• trigger(w) = a.

• body(w) = {l1, . . . , ln}.

Similarly for other laws (trigger(w) = ∅ and head(w) = ε when

not applicable).
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Action Language AL: Semantics

Given by defining the successor state for each transition

〈σ0, a, σ1〉 in the transition diagram.

• set of fluent literals S is closed under state constraint w if:

body(w) ⊆ S → head(w) ∈ S.

• CnZ(S) (consequences of S under Z): smallest set of flu-

ent literals that contains S and is closed under Z.

• State: complete and consistent set of fluent literals closed

under the state constraints of action description AD.
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AL Semantics (cont’d)

• E(a, σ) (direct effects of a in state σ):

E(a, σ) =
{head(w) | trigger(w) ⊆ a, body(w) ⊆ σ, w dynamic law of AD}

• Transition Diagram of AD (trans(AD)): directed graph,

〈N, R〉, such that:

• N : collection of all states of AD.

• R: set of all transitions 〈σ0, a, σ1〉 such that a is executable

in σ0, and

σ1 = CnZ(E(a, σ0) ∪ (σ1 ∩ σ0))

(Z: set of state constraints from AD).
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Deterministic Action Descriptions

Definition 1 AD is deterministic if:

〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) ⇐⇒ σ1 = σ2.

Example.




caused p if ¬q, r
caused q if ¬p, r
a causes r

is non-deterministic. In fact, there are two successor states for

action a in state {¬p,¬q,¬r}:

{¬p, q, r} and {p,¬q, r}.
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Talk Outline

• Introduction

• Action Language AL

⇒ Sufficient condition for determinism
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Dependency Graph

Definition 2 (Dependency graph (dep(AD))) A directed

graph 〈FL, C〉:

• FL: fluent literals of AD.

• C: set of 1-arcs and +-arcs. For every state constraint w:

¦ if body(w) = {l}, then 〈head(w),1, l〉 ∈ dep(AD).

¦ if |body(w)| > 1, then for every li ∈ body(w),

〈head(w),+, li〉 ∈ dep(AD).
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Dependency Paths in dep(AD)

Definition 3 (Dependency path in dep(AD)) A sequence

π = 〈l1, t1, l2, t2, . . . , tk−1, lk〉 (k > 1)

such that, for every 1 ≤ i < k, 〈li, ti, li+1〉 ∈ dep(AD).

• Notation: πs = l1; πe = lk; |π| = k (nodes in π).

• Arcs’ labels omitted from arcs and paths when possible

(e.g. 〈l1, l2, . . . , lk〉).
• Terminology: π is conditional if it contains one or more

+-arcs.
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Sequences Through Negation

Definition 4 (Sequence through negation (neg-seq) in dep(AD))

A non-empty sequence, ν = 〈π1, . . . , πk〉, such that:

• every πi is a dependency path.

• For every 1 ≤ i < k:

πs
i+1 = πe

i . (πe
i denotes complement of πe

i .)

Terminology: dep(AD) contains ν.
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Loops Through Negation and Safety

Definition 5 (Dependency loop through negation (neg-loop))

A neg-seq, 〈π1, . . . , πk〉, such that

πs
1 = πe

k.

Definition 6 (Conditional neg-seq or neg-loop) A neg-seq

(resp., neg-loop) 〈π1, . . . , πk〉 such that every πi is conditional.

Definition 7 (Safe Dependency Graph) dep(AD) is safe if it

does not contain any conditional neg-loop.
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Sufficient Condition for Determinism

Theorem 1 For every action description, AD, if dep(AD) is safe,

then AD is deterministic.
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Lemmas

Lemma 1 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6=σ2)
and every l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists an arc 〈l, l′〉 in
dep(AD) such that l′ ∈ σ1 \ σ2.

Proof. l 6∈ E(a, σ0). In fact, E(a, σ0) ⊆ σ2 by def. of successor
state, and l 6∈ σ2 by hypothesis. Also, l 6∈ σ0 implies l 6∈ σ1 ∩ σ0.

Hence, there exists some state constraint, w, such that:
l = head(w), body(w) ⊆ σ1, and body(w) 6⊆ σ2.

By definition of dep(AD), for every l′ ∈ body(w), there exists 〈l, l′〉
in dep(AD). Since body(w) ⊆ σ1 and body(w) 6⊆ σ2, 〈l, l′〉 for some
l′ ∈ body(w).

3
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S-Contained Paths

Definition 8 (S-contained path) A dependency path

〈l1, l2, . . . , lk〉 such that, for every li, li ∈ S.

Definition 9 (S-support of l, CS
l ) The set of all fluent literals

that occur in at least one S-contained path starting from l.



Identifying Deterministic Action Descriptions Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 21

Lemmas (cont’d)

Lemma 2 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6=σ2)

and every l ∈ σ1 \ σ2 such that l 6∈ σ0, there exists a (σ1\σ2)-

contained path in dep(AD) that starts from l.

Proof. Lemma 1 guarantees the existence of an arc 〈l, l′〉 ∈
dep(AD) such that l′ ∈ σ1 \ σ2.

By def. of (σ1\σ2)-contained path, 〈l, l′〉 is a (σ1\σ2)-contained

path.

3
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Lemmas (cont’d)

Lemma 3 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6= σ2) and every

l ∈ σ1 \ σ2, the set σ1 \ C
σ1\σ2

l is closed under the state constraints of AD.

Proof. Let δ = σ1 \C
σ1\σ2

l . Proving the claim by contradiction, let us assume
that there exists a state constraint, caused g if g1, . . . , gh, such that
{g1, . . . , gh} ⊆ δ but g 6∈ δ.

Obviously, g ∈ σ1. Since g 6∈ δ, g ∈ C
σ1\σ2

l . By def. of C
σ1\σ2

l , there exists a
(σ1\σ2)-contained path 〈l, . . . , g〉 in dep(AD). By def. of dependency path, for
every 1 ≤ i ≤ h, 〈l, . . . , g, gi〉 is a dependency path.

Notice that there exists g′ ∈ {g1, . . . , gh} such that g′ 6∈ σ2. (Otherwise, it

would follow that g ∈ σ2, which contradicts g ∈ C
σ1\σ2

l .) Hence, g′ ∈ σ1 \ σ2.
By def. of (σ1\σ2)-contained path, 〈l, . . . , g, g′〉 is (σ1\σ2)-contained. By def.

of C
σ1\σ2

l , g′ ∈ C
σ1\σ2

l . Hence, g′ 6∈ δ, which contradicts the assumption that
{g1, . . . , gh} ⊆ δ.

3
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Lemmas (cont’d)

Lemma 4 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6= σ2) and every
l ∈ σ1 \σ2 such that l 6∈ σ0, there exists a (σ1\σ2)-contained path, 〈l, l1, . . . , lk〉,
such that lk ∈ σ0.

Proof. Proving by contradiction, assume that, for every (σ1\σ2)-contained
path 〈l, l1, . . . , lk〉, li 6∈ σ0 for every li.

Let δ = σ1 \C
σ1\σ2

l . Since existence of a (σ1\σ2)-contained path starting from

l is guaranteed by Lemma 2, C
σ1\σ2

l is not empty. Hence, σ1 ⊃ δ.

From E(a, σ0) ⊆ σ1∩σ2 and C
σ1\σ2

l ⊆ σ1 \σ2, it follows that δ contains E(a, σ0).

The assumption that li 6∈ σ0 for every li, implies that C
σ1\σ2

l ∩σ0 = ∅. Therefore,
δ also contains σ1 ∩ σ0.

Summing up, δ ⊇ E(a, σ0) ∪ (σ1 ∩ σ0), and, by Lemma 3, δ is closed under
the state constraints of AD. Therefore, δ ⊇ CnZ(E(a, σ0) ∪ (σ1 ∩ σ0)). Since
σ1 ⊃ δ, σ1 6= CnZ(E(a, σ0) ∪ (σ1 ∩ σ0)). Contradiction.

3
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Lemmas (cont’d)

Lemma 5 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6=σ2)
and for every l ∈ σ1\σ2 such that l 6∈ σ0, there exists a conditional
path π in dep(AD) such that

πs = l ∧ πe ∈ σ1 \ σ2 ∧ πe ∈ σ0. (4)

Proof. Existence of π satisfying (4): follows directly from
Lemma 4.

π conditional: by contradiction. Assume π contains only 1-arcs.
(li denotes i th node of π.) Then, for every σ, li+1 ∈ σ → li ∈ σ.
Because πe ∈ σ0, l|π|−1 ∈ σ0. By induction, l1 ∈ σ0. Since l1 = l,
l ∈ σ0. But l 6∈ σ0 by hypothesis. Contradiction.

3
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Lemmas (cont’d)

Lemma 6 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) (σ1 6=σ2),
every l ∈ σ1 \ σ2 such that l 6∈ σ0, and every k > 0, there exists a
conditional neg-seq, 〈π1, . . . , πk〉, such that πs

1 = l.

Proof. By induction on k.

Base: k = 1. The conclusion follows directly from Lemma 5.

Inductive Step: assume theorem holds for k, and prove it for k + 1.

By Lemma 5, there exists a conditional path, π1, such that πs
1 = l, πe

1 ∈ σ1\σ2,
and πe

1 ∈ σ0.

Because πe
1 ∈ σ1 \ σ2, πe

1 ∈ σ2 \ σ1; also, from πe
1 ∈ σ0, it follows that πe

1 6∈ σ0.

By inductive hypothesis, there exists a conditional neg-seq, 〈π2, . . . , πk+1〉, of
length k, such that πs

2 = πe
1.

By definition, 〈π1, π2, . . . , πk+1〉 is a conditional neg-seq. Since its length is
k + 1, and πs

1 = l, the proof is complete.
3
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Lemmas (cont’d)

Lemma 7 For every σ0 and a such that a is executable in σ0, if
E(a, σ0) ⊆ σ0, then σ0 is the only successor state of σ0 under a.

Proof. Consider an arbitrary 〈σ0, a, σ1〉 ∈ trans(AD), and let us
prove that, under the hypotheses, σ1 = σ0.

Recall that σ1 = CnZ(E(a, σ0)∪(σ1∩σ0)). Obviously, σ1∩σ0 ⊆ σ0.
As E(a, σ0) ⊆ σ0 by hypothesis, E(a, σ0) ∪ (σ1 ∩ σ0) ⊆ σ0.

Since σ0 is a state, for every X ⊆ σ0, CnZ(X) ⊆ σ0. Hence,
CnZ(E(a, σ0)∪ (σ1∩σ0)) ⊆ σ0, which implies that σ1 ⊆ σ0. Since
σ0, σ1 are states, σ1 = σ0.

3



Identifying Deterministic Action Descriptions Marcello Balduccini

Knowledge Representation Lab – Texas Tech University 27

Corollaries

Corollary 1 For every σ0 and a such that a is executable in σ0, if 〈σ0, a, σ0〉 ∈
trans(AD), then σ0 is the only successor state of σ0 under a.

Proof. By def. of successor state, E(a, σ0) ⊆ σ0. The application of Lemma
7 concludes the proof.

3

Corollary 2 For every 〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) such that σ1 6=σ2,

σ1 6= σ0 and σ2 6= σ0.

Proof. By contradiction. If σ1 = σ0, then σ2 = σ0 by Corollary 1. Therefore,
σ1 = σ2. Contradiction.

3
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Proof of the Main Theorem

We prove the contrapositive of the theorem, i.e.:

If AD is non-deterministic, then dep(AD) is not safe.

Proof. Since AD is non-deterministic, there exist
〈σ0, a, σ1〉, 〈σ0, a, σ2〉 ∈ trans(AD) such that σ1 6= σ2. By Corollary 2, there
exists l ∈ σ1 \ σ2 such that l 6∈ σ0.

Let:

• n: number of all fluent literals from signature of AD.

• k′: some positive integer such that k′ > n.

Lemma 6 guarantees existence of a neg-seq, 〈π1, . . . , πk′〉, such that πs
1 = l.

Since k′ > n, there exist 1 ≤ i < j ≤ k′ such that πs
i = πs

j . By def. of neg-seq,

πs
j = πe

j−1. By def. of neg-loop, 〈πi, πi+1, . . . , πj−1〉 is a conditional neg-loop.

Hence dep(AD) contains a conditional neg-loop. By definition of safe depen-
dency graph, dep(AD) is not safe.

3
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Examples

Consider the non-deterministic action description:




caused p if ¬q, r
caused q if ¬p, r
a causes r

Its dependency graph is not safe, as it contains the conditional

neg-loop:

〈〈p,¬q〉, 〈q,¬p〉〉.
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Examples (cont’d)

The action description:

{
caused p if ¬p, q
a causes q

is deterministic, and its dependency graph is safe (no arcs out

of nodes ¬p and q).
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Examples (cont’d)

The action description:





caused p if q, r
caused p if ¬q, r
a causes r

is deterministic, and its dependency graph is safe (no arcs out

of nodes q and ¬q).
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Counter-Examples

The action description:





caused p if ¬q,¬r
caused q if ¬p, r
a causes r

is deterministic. However, its dependency graph is not safe, as
it contains the conditional neg-loop:

〈〈p,¬q〉, 〈q,¬p〉〉.

Possible solution: parametrize dep(AD) on a set of fluent lit-
erals, and re-define “safety” considering only consistent sets of
fluent literals.
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Counter-Examples (cont’d)

The action description:





caused p if ¬q, r
caused q if ¬p, r
a causes ¬r

is deterministic: executing a only makes r false. However, the
dependency graph is not safe, as it contains the conditional neg-
loop:

〈〈p,¬q〉, 〈q,¬p〉〉.

Possible solution: difficult, requires considering laws other than
state constraints.


