

Credits

I Presentation: Me
I Work done mainly by:

I Marc Denecker (K.U. Leuven)
I Eugenia Ternovska (SFU, Vancouver)

I And also part of the KRR-group at K.U. Leuven:
I Maurice Bruynooghe
I Nikolay Pelov
I Maarten Mariën
I Johan Wittockx

Introduction to ID-logic

ID-logic and common sense
Defaults
Ontologies
Actions

ID-logic as a computational tool

The relation to ASP and LP

Future work & Conclusion

ID-logic

What is ID-logic?

ID-logic is an extension of classical logic with a new
primitive for representing inductive definitions

Some questions

I Why are we interested inductive definitions?

I Why do we want a new primitive for this?

I Why extend classical logic?

(Inductive) Definitions in Mathematics

I “Ordinary” definitions

A square is defined as a rectangle with equal height and width.

I Monotone inductive definitions

The transitive closure TC (R) of a binary relation R is
inductively defined by the following rules:

I ∀x , y , if (x , y) ∈ R, then (x , y) ∈ TC (R);

I ∀x , y , if ∃z , (x , y), (y , z) ∈ TC (R), then
(x , z) ∈ TC (R).

(Inductive) Definitions in Mathematics (2)

I Non-monotone inductive definitions over a well-founded order

We define the relation S |= φ between structures S
and formulas φ by the following induction (over length
of formulas):

I S |= P(t1, . . . , tn) if (tS
1 , . . . , t

S
n) ∈ PS ;

I S |= φ ∧ ψ if S |= φ and S |= ψ;

I S |= φ ∨ ψ if S |= φ or S |= ψ;

I S |= ∃x φ if there exists d ∈ Dom(S), S |= φ[x/d]

I S |= ¬φ if S 6|= φ

I Iterated inductive definitions

Inductive definitions

In mathematics

I Inductive definitions occur quite often

I Offer constructive characterization of certain concepts

I Useful and well-understood way for representing certain kind
of knowledge

Two diffferent kinds of mathematical knowledge
I Definitions: State what a concept is

I Inductive definitions are important part of this

I Propositions, theorems, . . . : State properties of concepts

Classical logic

As a language for representing mathematical knowledge?

I Is well-suited for representing theorems etc.
I But expressing definitions is harder

I ∀x Square(x)⇔ Rectangle(x) ∧ Height(x) = Width(x)
I ∀x , y R(x , y)⇒ TC (x , y)
∀x , y (∃z TC (x , z) ∧ TC (z , y))⇒ TC (x , y)

∀P

(
(∀x , y R(x , y)⇒ P(x , y))∧
(∀x , y (∃z P(x , z) ∧ P(z , y))⇒ P(x , y)

)
⇒ TC ⊆ P

I For non-monotone definitions: Explicitly encode well-founded
order

New inductive definition primitive

Offers a uniform and straightforward way of representing all
previously mentioned kinds of inductive definitions

In mathematical text

The transitive closure TC (R) of a binary relation R is inductively
defined by the following rules:

I ∀x , y , if (x , y) ∈ R, then (x , y) ∈ TC (R);

I ∀x , y , if ∃z , (x , y), (y , z) ∈ TC (R), then (x , z) ∈ TC (R).

In ID-logic{
∀x , y TC (x , y)← R(x , y).

∀x , y TC (x , y)← ∃z TC (x , z) ∧ TC (z , y).

}

A definition in ID-logic

{
∀x , y TC (x , y)← R(x , y).

∀x , y TC (x , y)← ∃z TC (x , z) ∧ TC (z , y).

}

I Definition is a set of definitional rules between {}

∀x P(t)← φ.

I Defines number of predicates

I Other predicates are open, i.e., supposed to be given

Semantics of a monotone definition ∆

Given an interpretation for the open predicates, the defined
predicates should be interpreted by the least fixpoint of the
operator that derives the heads of all ground instantiations of rules
of ∆ whose bodies are satisfied.

I Fix domain D and pre-interpretation F

I Let R be an interpretation in D of the open predicates of ∆
I Let TR

∆ be the operator on interpretations in D of the defined
predicates of ∆, that maps S to S ′, with for each defined P/n

I PS′
= {d ∈ Dn | for which

I there exists ∀x P(t)← φ. ∈ ∆ and dx ∈ D |x| such that
I d = tF [x/dx] and (R ∪ S)[x/dx] |= φ}

I Given this interpretation R for the open predicates, the
interpretation of the defined predicates should be lfp(TR

∆)

How to extend this to non-monotone definitions?

Semantics of such a definition (2)

Well-founded model

I Generalizes the intuitions behind least fixpoint construction

I To also apply to non-monotone definitions

For the kind of definitions typically occuring in mathematics

I This semantics coincides with their “usual interpretation”

For more complicated definitions

I It also does something reasonable

Formal semantics of a definition

S |= ∆ iff

I Use S to interpret open predicates of ∆

I Construct wfmS |Open∆
(∆) of ∆ given S |Open∆

I wfmS |Open∆
(∆) is two-valued and equal to S |Def∆

Note that, although the semantics uses WFS which can be
three-valued, models of a definitions are two-valued

Formal semantics: Example

{
∀x , y TC (x , y)← R(x , y).

∀x , y TC (x , y)← ∃z TC (x , z) ∧ TC (z , y).

}

{
R(A,B),R(B,C),

TC (A,B),TC (B,C),TC (A,C)

}
|= ∆TC

I If we interpret R/2 by {R(A,B),R(B,C)}
I The wfm of ∆TC is ({TC (A,B),TC (B,C),TC (A,C)},

{TC (A,B),TC (B,C),TC (A,C)})

ID-logic in full

Syntax is inductively defined as:

I A definition ∆ is a formula

I An atom P(t) is a formula

I Disjunctions, conjunctions, negations, quantifications of
formulas are also formulas

Semantics is inductively defined as:

I S |= ∆ if wfmS |Open∆
(∆) is two-valued and equal to S |Def∆

I S |= P(t) if tS ∈ PS

I Usual induction for connectives

A theory T is a set of formulas and S |= T iff ∀φ ∈ T ,S |= φ

Example: Winning positions of a game

The game:

I Two players

I Stack of N stones

I Remove 1 or 2 stones

I Last move wins

∀x Pos(x)⇔ (x ≤ N) ∧ (x ≥ 0){
∀x , y Move(x , y)←Pos(x) ∧ Pos(y)

∧ (y = x − 1 ∨ y = x − 2).

}
{∀x Win(x)← ∃y Move(x , y) ∧ ¬Win(y).}

Example: Winning positions of a game

The game:

I Two players

I Stack of N stones

I Remove 1 or 2 stones

I Last move wins

∀x Pos(x)⇔ (x ≤ N) ∧ (x ≥ 0){
∀x , y Move(x , y)←Pos(x) ∧ Pos(y)

∧ (y = x − 1 ∨ y = x − 2).

}
{∀x Win(x)← ∃y Move(x , y) ∧ ¬Win(y).}

Behaviour of definitions

Two different types of updates
I Adding rule to definition

I Non-monotone
I The set of formulas that hold in all models might decrease

I Adding a definition
I Monotone
I The set of formulas that hold in all models increases
I Same as adding a FOL-formula

ID-logic adds a restricted form of non-monotonicity, while retaining
the overall monotonicity

Usefulness

I An inductive definitions is mathematical concept
I But strongly rooted in intuition

I Describes a constructive process, that is very natural
I Similar to human thought process?
I Similar to cause-effect propagations in the real world?

I ID-logic is also a useful tool for
I Formalizing (aspects of) common sense reasoning
I Solving computational problems

Introduction to ID-logic

ID-logic and common sense
Defaults
Ontologies
Actions

ID-logic as a computational tool

The relation to ASP and LP

Future work & Conclusion

Defaults

General Principle

If you define a relation, then tuples do not belong to this
relation unless there is an explicit reason for them to do so

I {∀x Flies(x)← Bird(x) ∧ ¬Ab(x).}

I

{
Bird(Tweety).

Bird(Fred).

}
∧ {Penguin(Fred).}

I {∀x Ab(x)← Penguin(x).}

Ontologies

ID-logic is a very natural fit, e.g.,
∀x Mammal(x)← Placental Mammal(x).

∀x Mammal(x)← Marsupil(x).

∀x Mammal(x)← Monotreme(x).


∀x Placental Mammal(x)← Primate(x).

∀x Placental Mammal(x)← Rodent(x).

· · ·


I Combine with defaults
I Multiple subdivisions{
∀x Human(x)← Man(x).

∀x Human(x)←Woman(x).

}
∧

{
∀x Human(x)← Child(x).

∀x Human(x)← Adult(x).

}

Situation calculus: Gear wheel example

Fluents: for all g

I Turn(g): Gear wheel g is turning

Actions: for all g

I Start(g): Start gear wheel g

I Stop(g): Start gear wheel g

For every fluent f (x): Hf (x,S), Initf (x), Cf (x,A,S), C¬f (x,A,S)
∀g HTurn(g ,S0)← InitTurn(g).

∀g , a, s HTurn(g , do(a, s))← HTurn(g , s) ∧ ¬C¬Turn(g , a, s).

∀g , a, s HTurn(g , do(a, s))← CTurn(g , a, s).



Gear wheel example (2)

Domain specific part:

I (Direct and indirect) effects of actions
∀g , s CTurn(g ,Start(g), s).

∀g , s C¬Turn(g ,Stop(g), s).

∀g , s CTurn(g , a, s)← ∃h CTurn(h, a, s) ∧ Conn(h, g).

∀g , s C¬Turn(g , a, s)← ∃h C¬Turn(h, a, s) ∧ Conn(h, g).


I Particular instance:{

Conn(1, 2).

∀x , y Conn(x , y)← Conn(y , x).

}

I Initial situation: ¬∃g InitiallyTurn(g)

Introduction to ID-logic

ID-logic and common sense
Defaults
Ontologies
Actions

ID-logic as a computational tool

The relation to ASP and LP

Future work & Conclusion

Hamiltonian Path

Ham(x , y) means that the edge (x , y) is in the path{
∀x Reached(x)←∃y Initial(y) ∧ Ham(y , x).

∀x Reached(x)←∃y Reached(y) ∧ Ham(y , x).

}
∀x , y , z Ham(x , y) ∧ Ham(x , z)⇒ z = y

∀x , y , z Ham(x , y) ∧ Ham(z , y)⇒ z = x

∀x , y Ham(x , y)⇒ Edge(x , y)

∀x Vertex(x)⇒ Reached(x)

I Input: {Vertex(A). · · · Vertex(S).} {Initial(A).}
{Edge(A,B). · · · Edge(R,S).}

I Find paths by generating Herbrand models

Different approach

A Framework for Representing and Solving NP Search Problems. D.

Mitchell and E. Ternovska. Proc. AAAI 2005.

I Use same theory
I Input: let R be a structure for {Vertex/1,Edge/2, Initial/1}

I Domain(R) = {A,B, . . .}
I InitialR = {A}
I VertexR = Domain(R)
I EdgeR = {(A,B), . . .}

I Find paths by extending R to model for theory

I Complexity result: MX(FO(ID)) captures NP

Implementation: MidL

Main idea

I ID-logic extends classical logic with inductive definitions
I MidL extends SAT-solving with incremental WFM

computation
I Guess open atom
I Propagate by SAT clauses
I Propogate by definitions

Focus

I Achieving good integration between these two components

I E.g. watched literals, clause learning,. . .

Download:
http://www.cs.kuleuven.be/∼maartenm/research/midl.html

Introduction to ID-logic

ID-logic and common sense
Defaults
Ontologies
Actions

ID-logic as a computational tool

The relation to ASP and LP

Future work & Conclusion

The relation with ASP

I Informally: very different
I ID-logic is about representing inductive definitions
I ASP is about representing rules governing the beliefs of a

rational agent

I Formally: very similar

I Practical examples: very similar

I Straightforward transformations between large subsets of
ID-logic and extended LPs

I The constructive process described by an inductive definition
corresponds to reasoning process of a rational agent?

Main difference

ID-logic has no epistemic component, i.e., things like
check : −not orphan, not ¬orphan. are not possible

Some correspondences

I Definitions

I

{
Reached(x)←∃y Reached(y) ∧ Ham(y , x).

Reached(x)←Initial(x).

}
I reached(X) : −reached(Y), ham(Y ,X).

reached(X) : −initial(X).

¬reached(X) : −not reached(X).

I Open predicates (i.e., not defined anywhere)
I Nothing in ID-logic
I ham(X ,Y) ∨ ¬ham(X ,Y).
I or ham(X ,Y) : −not ¬ham(X ,Y).

¬ham(X ,Y) : −not ham(X ,Y).

I Assertions
I ∀x , y , z Ham(x , y) ∧ Ham(x , z)⇒ z = y
I : −ham(X ,Y), ham(X ,Z),Z <> Y .

Contributions of ID-logic to LP

I LPs can be used to represent inductive definitions
I Well known for monotone definitions
I WFS extends this to non-monotone definitions

I ID-logic isolates this informal “fragment” of LP
I Clear, unambiguous and well-known intuitive reading

I Shows how it can be integrated into classical logic
I By adding a single new primitive to the language

I Allows it to be used together with all the expertise for
classical logic

ID-logic shows

One clearcut contribution that LP has to offer to classical
logic is its ability to represent inductive definitions

Introduction to ID-logic

ID-logic and common sense
Defaults
Ontologies
Actions

ID-logic as a computational tool

The relation to ASP and LP

Future work & Conclusion

Work being done on ID-logic

I Most of the research in our group is devoted/related to
ID-logic

I Develop model generator
I Develop a proof system (preliminary)
I Study relation with fixpoint logics
I Use ID-logic for data integration

I At SFU:
I Study MX(FO(ID))
I Using ID-logic for verification

I My interests
I Proving some modularity results
I Relation between ID-logic and CP-logic

Relation between inductive definitions and causality

I An inductive definition implicitely describes a mathematical
object as the outcome of a derivation process governed by a
set of rules

I A CP-theory implicitely describes a probability distribution as
the outcome of a derivation process governed by a set of
conditional probabilistic experiments

I The intuitions (and mathematics) seem very closely related

I Is an inductive definition simply a set of deterministic causal
rules in the context of mathematical objects?

I What if we replace the “inductive definition”-primitive by a
“probabilistic causal process”-primitive?

Conclusion

I ID-logic introduces a new primitive that allows inductive
definitions to be represented in a uniform and straightforward
way

I Inductive definitions are important
I In mathematics
I For common sense reasoning
I For solving computational problems

I ID-logic integrates this in classical logic
I Reuse all old expertise

I Everyone who knows classical logic and who can read an
inductive definition, already knows ID-logic

http://www.cs.kuleuven.be/∼maartenm/research/midl.html

	Introduction to ID-logic
	ID-logic and common sense
	Defaults
	Ontologies
	Actions

	ID-logic as a computational tool
	The relation to ASP and LP
	Future work & Conclusion

