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Svyntax of CR-Prolog

A regular rule is a statement of the form:

rihyOr ... O hy < l1,...,lm,
not lm_|_1,...,not In

where r is the name of the rule, and h;,[; are
literals.

A cr-rule is a statement of the form:

r:hy Or ... Or hki l1,...,lm,
not lm—|—17 ...,hot Iy
The rule says that:
if l1,...,l;y, belong to a set of agent’s beliefs
and none of l,41,...,ln belongs to it then

the agent “may possibly” believe one of the
hi,...,ht.

This possibility is used only if the agent has no
way to obtain a consistent set of beliefs using
regular rules only. The extension of A-Prolog
by cr-rules is called CR-Prolog.
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Syntax of CR-Prolog (cont.)

Example 1

. a < not b.
0 Tlibi.

e [y has an answer set {a}, computed without
the use of cr-rule rq.

Now consider

Mg = Ng U {—a.}.

e If 71 is not used, My in inconsistent.
e The application of r1 restores consistency,
and leads to the answer set {—a,b}.
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Semantics of Abductive
Logic Programs

e Used to define the semantics of CR-Prolog.

e Abductive logic programs are pairs (I1,.A)
where 1 is a program of A-Prolog and A is
a set of atoms, called abducibles.

e [ he semantics of an abductive program, [1,
IS given by the notion of generalized answer set
— an answer set M(A) of MTUA where A C A

o M(A1) < M(A»y) if A1 C Ar. We refer to
an answer set as minimal if it is minimal with
respect to this ordering.
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Semantics of CR-Prolog

Definition 1 The hard reduct hr(M) = (Hp, atoms({appl}))
transforms CR-Prolog programs into abductive programs.
It is defined as follows:

1. Every regular rule of 1 belongs to Hp.

2. For every cr-rule p of 1, with name r, the following
belongs to Hp:

head(p) < body(p), appl(r).

3. If prefer occurs in 1, Hp contains the following set
of rules, denoted by [1,:

(% transitive closure of predicate prefer
is_preferred(R1, R2) «+ prefer(R1, R2).
is_preferred(R1, R2) < prefer(R1, R3),
is_preferred(R3, R2).

¢ % no circular preferences

<+ is_preferred(R, R).
% prohibits application of a lesser rule if
% a better rule is applied

+ appl(R1),appl(R2),is_preferred(R1, R2).

(R1, Ry, R3 are variables for names of rules.)
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Semantics of CR-Prolog
(cont.)

Definition 2 A set of literals, C, is a candidate
answer set of Il if C is a minimal generalized
answer set of hr(I).

Definition 3 Let C, D be candidate answer
sets of M. C is better than D (C < D) if

Jappl(r1) € C Fappl(ry) € D (1)
is_preferred(ri,m70) € C N D.

(In the following definition, atoms({p,q}) de-
notes the set of atoms formed by predicates p
and q.)

Definition 4 Let C be a candidate answer set
of M, and C be C\ atoms({appl, is_preferred}).
C is an answer set of I if there exists no can-
didate answer set, D, of Il which is better than
C.
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Semantics of CR-Prolog
— Examples —

Example 2

Let us compute the answer sets of:

(r1: p <+ r,notg.

rTo .o T
My <

_|_
| T3 8§ & T

(Notice that M4 \ {r3} is consistent.)

The hard reduct of Iy is given by (M, is omitted):

rr: p < r,notaqg.
/ ro . T.
Hp,

rs s <« r,appl(rs).

e {p,r,s,appl(r3)} is a generalized answer set of hr(MNy),
but it is not minimal.

e The only minimal generalized answer set of hr(ly) is
C ={p,r}.

e (' is the only answer set of ;.
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Example 3
(r1: p < notgqg
ro . r <4+ not s
r3: q < t.
T4 . 8§ <+ t.
ry «~ pr
I
2 4 | N
Te . q <.
T7 . S(i.
- t(i.
\ r9: prefer(re,r7).

The hard reduct of I, is given by:

p

rir. p < notg
. r <+ nots
r3. q < t.
T4 . S <+ L.
(_
H|I—I2 < Ir5 p’/r

7“;3 . g <+ appl(re).
r7 . s <+ appl(ry).
rg .t < appl(rs).

| ro: prefer(re, 7).

e The candidate answer sets of Ny are (is_preferred is omitted):

C1 = {prefer(re,r7),appl(re),q,r}
C> = {prefer(re,r7),appl(r7),s,p}
Cs = {prefer(re,r7),appl(rs),t,q, s}

e Since C; < C», C» is not an answer set of My, while C; and Cs
are.
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Example 4

(r{: a <« p.
Tl a <+ T.
rg3: b <+ q.
rg. b <+ s.
r5q - < NOT a.
rsp - < not b.

3 <

Te - P <i_ .
T7 - q <i_ .
rs - T <——|_ .
To . S i .
ri0 . prefer(rg,r7).

| 711 prefer(rg,rg).

e The candidate answer sets of 3 are:

C1 = { prefer(re,r7),prefer(rg,r9),
appl(re), appl(rg), p, s, a, b}
Cy = { prefer(re,r7),prefer(rg,rg),
appl(rg),appl(rz),r,q,a, b}
e Since C1 < Cy and Cy < (', N3 has no answer
set.
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Motivating Example

System: an electrical circuit connecting a switch
to a light bulb.

Exogenous actions: action "“brks” breaks the
bulb; action "surge” damages the whole cir-
cuit, but leaves the bulb intact if protected.

To model the system we introduce fluents:
closed(SW) — switch SW is closed;

ab(C) — component C is malfunctioning;
prot(b) — bulb b is protected from power surges;
active(r) — relay r is active;

on(b) — bulb b is on.

The action description of the system consists
of the rules in the first three sections of the
following program, [1;.
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Mg <

%% DYNAMIC CAUSAL LAWS

h(closed(s1), T + 1) <«

h(ab(b), T + 1) —
h(ab(r), T + 1) —
h(ab(b), T + 1) -

o(close(s1),T).
o(brks,T).

o(srg,T).
=h(prot(b),T),o(srg,T).

%% DOMAIN CONSTRAINTS

h(active(r),T)
=h(active(r),T)
—h(active(r),T)
h(closed(s2),T)
h(on(b),T)
—h(on(b),T)
—h(on(b),T)

TTTTTTT

h(closed(s1),T),—h(ab(r),T).
h(ab(r),T).

—h(closed(s1),T).
h(active(r),T).
h(closed(s2),T),—h(ab(b),T).
h(ab(b),T).

—h(closed(s2),T).

%% EXECUTABILITY CONDITION
< o(close(s1),T),h(closed(s1),T).

%% INERTIA
h(F,T + 1) —
~h(F,T + 1) —

h(F,T),not —=h(F,T + 1).
—=h(F,T),not h(F, T + 1).

%% REALITY CHECKS

+ obs(F,T),not h(F,T).

<+ obs(—F,T),not —h(F,T).

%% AUXILIARY AXIOMS

o(A,T) —
h(F,0) -
—h(F,0) —

hpd(A,T).
obs(F,0).
obs(—=F,0).
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Motivating Example (cont.)
— Specifying a history —

Recorded history I, (where n is the current time step)
is given by a collection of statements of the form:

e obs(l,t) — ‘fluent literal | was observed to be true at
moment t’;

e hpd(a,t) — ‘action a was observed to happen at mo-
ment ¢’

where t is an integer from the interval [0,n).

The axioms in the last two sections of I, establish the
relationship between relations obs, hpd and h,o.

e obs, hpd: undoubtedly correct observations;

e h, 0. predictions made by the agent — may be defeated
by further observations.

The reality checks axioms ensure that the agent’s pre-
dictions do not contradict his observations.

The trajectories (o0, a0,01,...,an—1,0y) defined by ', can
be extracted from the answer sets of Mz U ,.
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Motivating Example (cont.)
— Specifying a history —

Example 5

(only positive observations are shown for brevity)
History M1 = {obs(prot(b),0), hpd(close(s1),0)}
defines the trajectory

({prot(b)},{close(s1)},
{closed(s1), closed(sp),on(b),prot(b)}).

Example 6

History Mo = {obs(prot(b),0),
hpd(close(s1),0),0bs(—closed(s1),1)}

is inconsistent (thanks to the reality checks of
M), and hence ', defines no trajectories.
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Motivating Example (cont.)
— Diagnostic Component —
Diagnostic module DMj

A diagnostic module is used to find explana-
tions of a given set of observations O.

| o(A, T) or —0(A,T) «<~ 0<T < n,
DMo : { x_act(A).

(x_act(A) is satisfied by exogenous actions.)

o If N;UO is consistent, no diagnosis is neces-
sary.

e Otherwise, explanations of O are computed
by finding the answer sets of

MN;UOUDMg
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Motivating Example (cont.)

— Conclusions —

e Checking consistency and finding a diagno-
Sis in the previous algorithm is achieved by two
calls to Ip-satisfiability checkers — inference en-
gines computing answer sets of logic programs.

e Such multiple calls require the repetition of
a substantial amount of computation (in-
cluding grounding of the whole program).

e We have no way to declaratively spec-
ify preferences between possible diagnoses,
and hence may be forced to eliminate unlikely
diagnoses by performing extra observations.

= [ hese problems can be avoided by intro-
ducing cr-rules in the diagnostic module.
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A New Diagnostic Module

Diagnostic Module DM§"

DMCT T‘(A, T) . O(A, T) (i T < n,
0 x_act(A).

(the rule says that some (unobserved) exogenous ac-
tions may possibly have occurred in the past.)

Example 7

obs(prot(b), 0).
obs(on(b),1).

e The answer set of IN;UO; U DM§ contains no occur-
rences of exogenous actions — cr-rules are not used.

{ hpd(close(s1),0).
01 .

obs(prot(b), 0).

{ hpd(close(s1),0).
O2
obs(—on(b), 1).

e Consistency of the “regular part” of Nz U O2 U DM§"
can be restored only by rule r(brks,0). The observation
is explained by the occurrence of brks.

O - hpd(close(s1),0).
31 obs(—on(b),1).
e [;UO3UDM{G" has two answer sets, one obtained using
r(brks,0), and the other obtained using r(srg,0). The
agent concludes that either brks or srg occurred at time
0.
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Preferred Explanations

Recall that selection of cr-rules is guided by preference
relation prefer(ri,r2), which says that sets of beliefs
obtained by applying r1 are preferred over those obtained

by applying rs.

Problem: representing that “brks occurs more often
than srg” (hence an explanation based on brks is pre-
ferred to one based on srg.)

Solution:
Nt :{ prefer(r(brks,T),r(srg,T)).

Example 8

On - { hpd(close(s1),0).
31 obs(—on(b),1).

e Given MyUOsUNMYUDMSE", cr-rules are used to conclude
that brks occurred at O.

e The agent does not conclude that srg occurred — this
corresponds to a less preferred set of beliefs.

e The agent may derive that srg occurred only if addi-
tional information is provided, showing that brks cannot
have occurred.
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Applications

Dynamic Preferences for DM
Problem: representing the additional information:

“Bulb blow-ups happen more frequently than power surges
unless there is a storm in the area.”

Solution:

DM. - prefer(r(brks,T),r(srg,T)) < —h(storm,0).
P\ prefer(r(srg,T),r(brks,T)) < h(storm,0).

Example 9

hpd(close(s1),0).
Og4 : { obs(storm, Q).
obs(—on(b), 1).

e Obviously O4 requires an explanation. It is storming
and therefore the intuitive explanation is o(srg,0).

e Program Il; U O4 U DM, U DMg" has two candidate
answer sets. Due to the second rule of DM, only one of
them, containing srg, is the answer set of the program
and hence o(srg,0) is the explanation of O,.
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Applications (cont.)

Example 10

p

hpd(close(s1),0).

obs(storm, Q) or obs(—storm,0).
Og : <
obs(—on(b), 1).
obs(—ab(b), 1).

e Common-sense should tell the agent that
there was a power surge. Nothing can be said,
however, on whether there has been a storm.
e The answer sets of ;U Os U DMy U DM§"
contain sets of facts:
{obs(storm,0),0(srg,0)}
{obs(—storm,0),0(srg,0)}
which correspond to the intuitive answers.
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Applications (cont.)

Generation of shortest plans

Consider the following planning module, PMjy:

)

ra(T) :  maxtime(T) L <T.
prefer(ra(T),ra(T + 1)).

| r5(A,T) : o(A,T) & maxtime(MT),n <T < MT.

(Here n stands for the current time of the
agent’s history — in our case 0.)

e Cr-rule r4(T) says that any time can possibly
be the maximum planning time of the agent.
e T he second rule gives the preference to short-

est plans.
e [ he last rule allows to the agent the future

use of any of his actions.
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Applications (cont.)

Example 11: Using PMj

Consider the Yale Shooting Scenario. The agent
IS given:

o Initial situation: the turkey is alive and the
gun is unloaded;

o goal: Killing the turkey, represented as:

goal < h(dead,T).
< not goal.

e [ he goal does not hold at current moment
0, which causes inconsistency.

e Rules r5(A,0),r5(A,1),...,r5(A, MT) allow
to restore consistency.

e Without the preference relation, MT', can be
determined by any rule from r4(0),r4(1)....

e T he preference forces the agent to select the
shortest plan — in our case

{o(load,0), h(shoot, 1)}.
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Related Work

DLV’s weak constraints

e Weak constraint: a constraint that can be violated,
to obtain an answer set.

e Weight: the cost of violating the weak constraint.

e Preferred answer set: minimizes the sum of the weights
of the constraints that the answer set violates.

e Weights induce a total order on the weak constraints
of the program, as opposed to the partial order that can
be specified on cr-rules.

Diagnostic module for DLV, DM,;

( 0(A,T) or m0(A,T) «+0<T <n, z_act(A).
:~ o(brks,T), h(storm,0). [4 ‘]
:~ o(srg,T), h(storm,0). [1 :]
:~ o(brks,T),—h(storm,0). [1 :]

| i~ o(srg,T),-h(storm,Q). [4 ]

2\

e First two constraints: if a storm occurred, assuming
that action brks occurred has a cost of 4, while assum-
ing that action srg occurred has a cost of 1.

e [ ast two constraints: if a storm did not occur, as-
suming that action brks occurred has a cost of 1, while
assuming that action srg occurred has a cost of 4.
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Related Work (cont.)

Example 12

[ hpd(close(sy),0).

obs(storm, Q) or obs(—storm,0).
05 B
obs(—on(b), 1).
obs(—ab(b), 1).

e The only possible explanation of recorded
history Osg is the occurrence of srg at time 0.
o N;UOsU DM, has two “candidate” answer
sets:
{obs(storm,0),o0(srg,0)}
{obs(—storm,0),o0(srg,0)}

e Problem: the second set of facts has a cost
of 4, while the first has a cost of 1. This forces
the reasoner to assume, without any sufficient
reason, the presence of a storm.
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Motivating Example (cont.)
— Agent Architecture —

Our agent architecture is based on the fol-
lowing loop:

Observe-think-act loop

observe the world;
interpret the observations;
. select a goal;

plan;

. execute part of the plan.

o s b

Diagnosis occurs as follows:

During step 1, the agent obtains observations O. At
step 2, it first needs to check if ;UO is consistent. If it
is not, then it must find explanations for O by computing
the answer sets of NM; U O U D M.
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o Pareto Optimality
etl:

e [1 be a program,
e r be the name of a cr-rule of [1
e A and B be generalized answer sets of Hp.

Definition 5 A is better than or equal to B
w.r.t r (A <X, B) iff:

appl(r) € AN appl(r) € B, or
appl(r) € AN 3 appl(r') € B s.t.
is_preferred(r,v’) € AN B

Definition 6 Ais better than Bw.r.t. r (A <,
B) iff:

A <y B, and
appl(r) & B.

Definition 7 A dominates B iff:

Vappl(r) e A A<, B, and
Jappl(r) € A A<, B
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Pareto Optimality (cont.)

Definition 8 A is a Pareto-optimal candi-
date answer set of Il if there exists no gen-
eralized answer set of H that dominates A.

Definition 9 A is a Pareto-optimal answer
set of Il if A is set-theroretic minimal among
the Pareto-optimal candidate answer sets of I1.

e [ his alternative semantics yields the same
results in the previous examples.

e Differences arise with programs where there
IS no clear reason to prefer one generalized an-
swer set to another.
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Pareto Optimality (cont.)

Example 13
(g &
ra: p &
r3 . a (i
rga . b <i
My <

prefer(a,b).
prefer(p,q).

ok <+ a,q.
ok <+ b,p.
< not ok.

e Original semantics: 'l has no answer set—
M4 has two candidate answer sets, A = {a,q}
and B = {b,p}, but A < B and B < A.

e Pareto optimality: A and B are Pareto-
optimal answer sets — none dominates the
other; both are Pareto optimal candidate an-
swer sets, and they are also minimal.
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