Logic Programs with Consistency-Restoring Rules

by

Marcello Balduccini and Michael Gelfond

2003 AAAI Spring Symposium International Symposium on Logical Formalization of Commonsense Reasoning

February 28, 2003

Syntax of CR-Prolog

A regular rule is a statement of the form:

$$r: h_1 \text{ or } \dots \text{ or } h_k \leftarrow l_1, \dots, l_m, \\ \qquad \qquad \text{not } l_{m+1}, \dots, \text{not } l_n$$

where r is the name of the rule, and h_i, l_i are literals.

A cr-rule is a statement of the form:

$$r: h_1 \text{ or } \dots \text{ or } h_k \overset{+}{\leftarrow} \ l_1, \dots, l_m, \\ \qquad \qquad \text{not } l_{m+1}, \dots, \text{not } l_n$$

The rule says that:

if l_1, \ldots, l_m belong to a set of agent's beliefs and none of l_{m+1}, \ldots, l_n belongs to it then the agent "may possibly" believe one of the h_1, \ldots, h_k .

This possibility is used only if the agent has no way to obtain a consistent set of beliefs using regular rules only. The extension of A-Prolog by cr-rules is called CR-Prolog.

Syntax of CR-Prolog (cont.)

Example 1

$$\Pi_0: \left\{ \begin{array}{l} a \leftarrow \text{not } b. \\ r_1: b \xleftarrow{+}. \end{array} \right.$$

• Π_0 has an answer set $\{a\}$, computed **without** the use of cr-rule r_1 .

Now consider

$$\Pi_0' = \Pi_0 \cup \{\neg a.\}.$$

- If r_1 is not used, Π'_0 in **inconsistent**.
- The application of r_1 restores consistency, and leads to the answer set $\{\neg a, b\}$.

Semantics of Abductive Logic Programs

- Used to define the semantics of CR-Prolog.
- Abductive logic programs are pairs $\langle \Pi, \mathcal{A} \rangle$ where Π is a program of A-Prolog and \mathcal{A} is a set of atoms, called *abducibles*.
- The semantics of an abductive program, Π , is given by the notion of *generalized answer set* an answer set $M(\Delta)$ of $\Pi \cup \Delta$ where $\Delta \subseteq \mathcal{A}$
- $M(\Delta_1) < M(\Delta_2)$ if $\Delta_1 \subset \Delta_2$. We refer to an answer set as *minimal* if it is minimal with respect to this ordering.

Semantics of CR-Prolog

Definition 1 The hard reduct $hr(\Pi) = \langle H_{\Pi}, atoms(\{appl\}) \rangle$ transforms CR-Prolog programs into abductive programs. It is defined as follows:

- 1. Every regular rule of Π belongs to H_{Π} .
- 2. For every cr-rule ρ of Π , with name r, the following belongs to H_{Π} :

$$head(\rho) \leftarrow body(\rho), appl(r).$$

3. If prefer occurs in Π , H_{Π} contains the following set of rules, denoted by Π_p :

```
\begin{cases} \text{\% transitive closure of predicate prefer} \\ is\_preferred(R1,R2) \leftarrow prefer(R1,R2). \\ is\_preferred(R1,R2) \leftarrow prefer(R1,R3), \\ is\_preferred(R3,R2). \end{cases} \\ \begin{cases} \text{\% no circular preferences} \\ \leftarrow is\_preferred(R,R). \\ \text{\% prohibits application of a lesser rule if} \\ \text{\% a better rule is applied} \\ \leftarrow appl(R1), appl(R2), is\_preferred(R1,R2). \end{cases} \\ (R_1, R_2, R_3 \text{ are variables for names of rules.}) \end{cases}
```

Semantics of CR-Prolog (cont.)

Definition 2 A set of literals, C, is a *candidate* answer set of Π if C is a minimal generalized answer set of $hr(\Pi)$.

Definition 3 Let C, D be candidate answer sets of Π . C is better than D ($C \prec D$) if

$$\exists appl(r_1) \in C \ \exists appl(r_2) \in D
is_preferred(r_1, r_2) \in C \cap D.$$
(1)

(In the following definition, $atoms(\{p,q\})$ denotes the set of atoms formed by predicates p and q.)

Definition 4 Let C be a candidate answer set of Π , and \widehat{C} be $C \setminus atoms(\{appl, is_preferred\})$. \widehat{C} is an answer set of Π if there exists no candidate answer set, D, of Π which is better than C.

Semantics of CR-Prolog - Examples -

Example 2

Let us compute the answer sets of:

$$\Pi_1 \left\{ egin{array}{ll} r_1 & p & \leftarrow & r, \operatorname{\mathsf{not}} \ q. \\ r_2 & r. & & & \\ r_3 & s & \xleftarrow{+} & r. \end{array}
ight.$$

(Notice that $\Pi_1 \setminus \{r_3\}$ is consistent.)

The hard reduct of Π_1 is given by $(\Pi_p$ is omitted):

$$H'_{\Pi_1} \left\{ egin{array}{ll} r_1 : & p & \leftarrow & r, \operatorname{\mathsf{not}} \ q. \\ r_2 : & r. \\ r'_3 : & s & \leftarrow & r, appl(r_3). \end{array}
ight.$$

- $\{p, r, s, appl(r_3)\}$ is a generalized answer set of $hr(\Pi_1)$, but it is not minimal.
- The only minimal generalized answer set of $hr(\Pi_1)$ is $C = \{p, r\}.$
- C is the only answer set of Π_1 .

Example 3

$$\Pi_{2} \left\{ \begin{array}{cccc} r_{1} & p & \leftarrow & \operatorname{not} \ q. \\ r_{2} & r & \leftarrow & \operatorname{not} \ s. \\ r_{3} & q & \leftarrow & t. \\ r_{4} & s & \leftarrow & t. \end{array} \right.$$

$$\Gamma_{5} & \leftarrow & p, r.$$

$$\Gamma_{6} & q & \leftarrow \\ r_{7} & s & \leftarrow \\ r_{8} & t & \leftarrow \\ r_{9} & prefer(r_{6}, r_{7}).$$

The hard reduct of Π_2 is given by:

$$H'_{\Pi_2} \begin{cases} r_1 : & p \leftarrow & \text{not } q. \\ r_2 : & r \leftarrow & \text{not } s. \\ r_3 : & q \leftarrow t. \\ r_4 : & s \leftarrow t. \end{cases}$$

$$H'_{\Pi_2} \begin{cases} r_5 : & \leftarrow p, r. \\ r'_6 : & q \leftarrow appl(r_6). \\ r'_7 : & s \leftarrow appl(r_7). \\ r'_8 : & t \leftarrow appl(r_8). \end{cases}$$

$$r_9 : prefer(r_6, r_7).$$

• The candidate answer sets of Π_2 are ($is_preferred$ is omitted):

$$C_{1} = \{prefer(r_{6}, r_{7}), appl(r_{6}), q, r\}$$

$$C_{2} = \{prefer(r_{6}, r_{7}), appl(r_{7}), s, p\}$$

$$C_{3} = \{prefer(r_{6}, r_{7}), appl(r_{8}), t, q, s\}$$

• Since $C_1 \prec C_2$, \hat{C}_2 is not an answer set of Π_2 , while \hat{C}_1 and \hat{C}_3 are.

Example 4

$$\begin{cases}
r_1: & a \leftarrow p. \\
r_2: & a \leftarrow r. \\
r_3: & b \leftarrow q. \\
r_4: & b \leftarrow s.
\end{cases}$$

$$r_{5a}: \leftarrow \text{not } a. \\
r_{5b}: \leftarrow \text{not } b.$$

$$r_{6}: & p \stackrel{+}{\leftarrow} . \\
r_{7}: & q \stackrel{+}{\leftarrow} . \\
r_{9}: & s \stackrel{+}{\leftarrow} . \\
\end{cases}$$

$$r_{10}: & prefer(r_6, r_7). \\
r_{11}: & prefer(r_8, r_9).$$

• The candidate answer sets of Π_3 are:

$$C_{1} = \{ prefer(r_{6}, r_{7}), prefer(r_{8}, r_{9}), \\ appl(r_{6}), appl(r_{9}), p, s, a, b \}$$

$$C_{2} = \{ prefer(r_{6}, r_{7}), prefer(r_{8}, r_{9}), \\ appl(r_{8}), appl(r_{7}), r, q, a, b \}$$

• Since $C_1 \prec C_2$ and $C_2 \prec C_1$, Π_3 has no answer set.

Motivating Example

System: an electrical circuit connecting a switch to a light bulb.

Exogenous actions: action "brks" breaks the bulb; action "surge" damages the whole circuit, but leaves the bulb intact if protected.

To model the system we introduce fluents: closed(SW) – switch SW is closed; ab(C) – component C is malfunctioning; prot(b) – bulb b is protected from power surges; active(r) – relay r is active; on(b) – bulb b is on.

The **action description** of the system consists of the rules in the first three sections of the following program, Π_d .

```
%% DYNAMIC CAUSAL LAWS
h(closed(s_1), T+1) \leftarrow o(close(s_1), T).
\begin{array}{lll} h(ab(b),T+1) & \leftarrow & o(brks,T). \\ h(ab(r),T+1) & \leftarrow & o(srg,T). \\ h(ab(b),T+1) & \leftarrow & \neg h(prot(b),T), o(srg,T). \end{array}
%% DOMAIN CONSTRAINTS
h(active(r),T) \leftarrow h(closed(s_1),T), \neg h(ab(r),T).

\neg h(active(r),T) \leftarrow h(ab(r),T).

\neg h(active(r),T) \leftarrow \neg h(closed(s_1),T).

h(closed(s_2),T) \leftarrow h(active(r),T).

h(on(b),T) \leftarrow h(closed(s_2),T), \neg h(ab(b),T).

\neg h(on(b),T) \leftarrow h(ab(b),T).
\neg h(on(b), T)
                                       \leftarrow \neg h(closed(s_2), T).
%% EXECUTABILITY CONDITION
\leftarrow o(close(s_1), T), h(closed(s_1), T).
%% INERTIA
h(F,T+1) \leftarrow h(F,T), \text{ not } \neg h(F,T+1).
\neg h(F,T+1) \leftarrow \neg h(F,T), \text{ not } h(F,T+1).
%% REALITY CHECKS
\leftarrow obs(F,T), not h(F,T).
\leftarrow obs(\neg F, T), \text{ not } \neg h(F, T).
%% AUXILIARY AXIOMS
                                        \leftarrow hpd(A,T).
                                        \leftarrow obs(F,0).
\leftarrow obs(\neg F,0).
```

Specifying a history –

Recorded history Γ_n (where n is the current time step) is given by a collection of statements of the form:

- ullet obs(l,t) 'fluent literal l was observed to be true at moment t':
- ullet hpd(a,t) 'action a was observed to happen at moment t'

where t is an integer from the interval [0, n).

The axioms in the last two sections of Π_d establish the relationship between relations obs, hpd and h, o.

- obs, hpd: undoubtedly correct observations;
- \bullet h, o: predictions made by the agent may be defeated by further observations.

The **reality checks** axioms ensure that the agent's predictions do not contradict his observations.

The trajectories $\langle \sigma_0, a_0, \sigma_1, \dots, a_{n-1}, \sigma_n \rangle$ defined by Γ_n can be extracted from the answer sets of $\Pi_d \cup \Gamma_n$.

Specifying a history –

Example 5

(only positive observations are shown for brevity)

History
$$\Gamma_1 = \{obs(prot(b), 0), hpd(close(s_1), 0)\}$$
 defines the trajectory

$$\langle \{prot(b)\}, \{close(s_1)\}, \{closed(s_1), closed(s_2), on(b), prot(b)\} \rangle.$$

Example 6

History
$$\Gamma_2 = \{obs(prot(b), 0), \\ hpd(close(s_1), 0), obs(\neg closed(s_1), 1)\}$$

is inconsistent (thanks to the reality checks of Π_d), and hence Γ_2 defines no trajectories.

Diagnostic Component –

Diagnostic module DM_0

A diagnostic module is used to find explanations of a given set of observations O.

$$DM_0: \left\{ \begin{array}{l} o(A,T) \text{ or } \neg o(A,T) \leftarrow 0 \leq T < n, \\ x_act(A). \end{array} \right.$$

 $(x_act(A)$ is satisfied by exogenous actions.)

- \bullet If $\Pi_d \cup O$ is consistent, no diagnosis is necessary.
- Otherwise, explanations of O are computed by finding the answer sets of

$$\Pi_d \cup O \cup DM_0$$

Motivating Example (cont.) - Conclusions -

- Checking consistency and finding a diagnosis in the previous algorithm is achieved by **two calls** to lp-satisfiability checkers inference engines computing answer sets of logic programs.
- Such multiple calls require the **repetition of** a **substantial amount of computation** (including grounding of the whole program).
- We have **no way to declaratively spec- ify preferences between possible diagnoses**,
 and hence may be forced to eliminate unlikely
 diagnoses by performing extra observations.
- ⇒ These problems can be avoided by **intro**-ducing cr-rules in the diagnostic module.

A New Diagnostic Module

Diagnostic Module DM_0^{cr}

$$DM_0^{cr} \left\{ \begin{array}{l} r(A,T): & o(A,T) \xleftarrow{+} T < n, \\ & x_act(A). \end{array} \right.$$

(the rule says that some (unobserved) exogenous actions may possibly have occurred in the past.)

Example 7

$$O_1: \left\{ egin{array}{l} hpd(close(s_1),0). \\ obs(prot(b),0). \\ obs(on(b),1). \end{array}
ight.$$

• The answer set of $\Pi_d \cup O_1 \cup DM_0^{cr}$ contains no occurrences of exogenous actions — cr-rules are not used.

$$O_2$$
:
$$\begin{cases} hpd(close(s_1), 0). \\ obs(prot(b), 0). \\ obs(\neg on(b), 1). \end{cases}$$

• Consistency of the "regular part" of $\Pi_d \cup O_2 \cup DM_0^{cr}$ can be restored only by rule r(brks,0). The observation is explained by the occurrence of brks.

$$O_3: \left\{ \begin{array}{l} hpd(close(s_1),0). \\ obs(\neg on(b),1). \end{array} \right.$$

• $\Pi_d \cup O_3 \cup DM_0^{cr}$ has two answer sets, one obtained using r(brks,0), and the other obtained using r(srg,0). The agent concludes that either brks or srg occurred at time 0.

Preferred Explanations

Recall that selection of cr-rules is guided by preference relation $prefer(r_1, r_2)$, which says that sets of beliefs obtained by applying r_1 are preferred over those obtained by applying r_2 .

Problem: representing that "brks occurs more often than srg" (hence an explanation based on brks is preferred to one based on srg.)

Solution:

$$\Pi_d^p$$
: { $prefer(r(brks, T), r(srg, T))$.

Example 8

$$O_3$$
: $\begin{cases} hpd(close(s_1), 0). \\ obs(\neg on(b), 1). \end{cases}$

- Given $\Pi_d \cup O_3 \cup \Pi_d^p \cup DM_0^{cr}$, cr-rules are used to conclude that brks occurred at 0.
- ullet The agent does not conclude that srg occurred this corresponds to a less preferred set of beliefs.
- ullet The agent may derive that srg occurred only if additional information is provided, showing that brks cannot have occurred.

Applications

Dynamic Preferences for DM_0^{cr}

Problem: representing the additional information:

"Bulb blow-ups happen more frequently than power surges unless there is a storm in the area."

Solution:

$$DM_p: \left\{ egin{array}{l} prefer(r(brks,T),r(srg,T)) \leftarrow \neg h(storm,0). \\ prefer(r(srg,T),r(brks,T)) \leftarrow h(storm,0). \end{array}
ight.$$

Example 9

$$O_4$$
:
$$\begin{cases} hpd(close(s_1), 0). \\ obs(storm, 0). \\ obs(\neg on(b), 1). \end{cases}$$

- Obviously O_4 requires an explanation. It is storming and therefore the intuitive explanation is o(srg, 0).
- Program $\Pi_d \cup O_4 \cup DM_p \cup DM_0^{cr}$ has two candidate answer sets. Due to the second rule of DM_p only one of them, containing srg, is the answer set of the program and hence o(srg,0) is the explanation of O_4 .

Applications (cont.)

Example 10

```
O_5: \left\{egin{array}{l} hpd(close(s_1), \mathtt{0}). \\ obs(storm, \mathtt{0}) 	ext{ or } obs(\lnot storm, \mathtt{0}). \\ obs(\lnot on(b), \mathtt{1}). \\ obs(\lnot ab(b), \mathtt{1}). \end{array}
ight.
```

- Common-sense should tell the agent that there was a power surge. Nothing can be said, however, on whether there has been a storm.
- The answer sets of $\Pi_d \cup O_5 \cup DM_p \cup DM_0^{cr}$ contain sets of facts:

$$\{obs(storm, 0), o(srg, 0)\}\$$

 $\{obs(\neg storm, 0), o(srg, 0)\}$

which correspond to the intuitive answers.

Applications (cont.)

Generation of shortest plans

Consider the following planning module, PM_0 :

$$\begin{cases} r_{4}(T) : & maxtime(T) \stackrel{+}{\leftarrow} n \leq T. \\ & prefer(r_{4}(T), r_{4}(T+1)). \end{cases}$$
$$r_{5}(A,T) : o(A,T) \stackrel{+}{\leftarrow} maxtime(MT), n \leq T < MT.$$

(Here n stands for the current time of the agent's history — in our case 0.)

- Cr-rule $r_4(T)$ says that any time can possibly be the maximum planning time of the agent.
- The second rule gives the preference to shortest plans.
- The last rule allows to the agent the future use of any of his actions.

Applications (cont.)

Example 11: Using PM_0

Consider the Yale Shooting Scenario. The agent is given:

- initial situation: the turkey is alive and the gun is unloaded;
- ⋄ goal: killing the turkey, represented as:

$$\begin{cases} goal \leftarrow h(dead, T). \\ \leftarrow \text{not } goal. \end{cases}$$

- The goal does not hold at current moment
 0, which causes inconsistency.
- Rules $r_5(A, 0), r_5(A, 1), \dots, r_5(A, MT)$ allow to restore consistency.
- Without the preference relation, MT, can be determined by any rule from $r_4(0), r_4(1)...$
- The preference forces the agent to select the shortest plan – in our case

$$\{o(load, 0), h(shoot, 1)\}.$$

Related Work

DLV's weak constraints

- Weak constraint: a constraint that can be violated, to obtain an answer set.
- Weight: the cost of violating the weak constraint.
- Preferred answer set: minimizes the sum of the weights of the constraints that the answer set violates.
- Weights induce a *total order* on the weak constraints of the program, as opposed to the *partial order* that can be specified on cr-rules.

Diagnostic module for DLV, DM_{wk}

```
 \begin{cases} o(A,T) \text{ or } \neg o(A,T) \leftarrow 0 \leq T < n, \ x\_act(A). \\ :\sim o(brks,T), h(storm,0). \ [4:] \\ :\sim o(srg,T), h(storm,0). \ [1:] \\ :\sim o(brks,T), \neg h(storm,0). \ [1:] \\ :\sim o(srg,T), \neg h(storm,0). \ [4:] \end{cases}
```

- ullet First two constraints: if a storm occurred, assuming that action brks occurred has a cost of 4, while assuming that action srg occurred has a cost of 1.
- ullet Last two constraints: if a storm did not occur, assuming that action brks occurred has a cost of 1, while assuming that action srg occurred has a cost of 4.

Related Work (cont.)

Example 12

$$O_5$$
: $\left\{egin{array}{l} hpd(close(s_1), \mathtt{0}). \\ obs(storm, \mathtt{0}) ext{ or } obs(\lnot storm, \mathtt{0}). \\ obs(\lnot on(b), \mathtt{1}). \\ obs(\lnot ab(b), \mathtt{1}). \end{array}
ight.$

- The only possible explanation of recorded history O_5 is the occurrence of srg at time 0.
- \bullet $\Pi_d \cup O_5 \cup DM_{wk}$ has two "candidate" answer sets:

$$\{obs(storm, 0), o(srg, 0)\}\$$

 $\{obs(\neg storm, 0), o(srg, 0)\}$

• **Problem:** the second set of facts has a cost of 4, while the first has a cost of 1. This forces the reasoner to assume, without any sufficient reason, the presence of a storm.

Agent Architecture –

Our **agent architecture** is based on the following loop:

Observe-think-act loop

- 1. observe the world;
- 2. interpret the observations;
- 3. select a goal;
- 4. plan;
- 5. execute part of the plan.

Diagnosis occurs as follows:

During step 1, the agent obtains observations O. At step 2, it first needs to check if $\Pi_d \cup O$ is consistent. If it is not, then it must find explanations for O by computing the answer sets of $\Pi_d \cup O \cup DM_0$.

Pareto Optimality

Let:

- Π be a program,
- r be the name of a cr-rule of Π
- A and B be generalized answer sets of H_{Π} .

Definition 5 A is **better than or equal to** B w.r.t r $(A \leq_r B)$ iff:

$$appl(r) \in A \land appl(r) \in B$$
, or $appl(r) \in A \land \exists \ appl(r') \in B \text{ s.t.}$ $is_preferred(r,r') \in A \cap B$

Definition 6 A is **better than** B w.r.t. r ($A \prec_r$ B) iff:

$$A \leq_r B$$
, and $appl(r) \notin B$.

Definition 7 A dominates B iff:

$$\forall \ appl(r) \in A \ A \leq_r B$$
, and $\exists \ appl(r) \in A \ A \prec_r B$

Pareto Optimality (cont.)

Definition 8 A is a **Pareto-optimal candidate answer set** of Π if there exists no generalized answer set of H_{Π} that dominates A.

Definition 9 A is a **Pareto-optimal answer set** of Π if A is set-theroretic minimal among the Pareto-optimal candidate answer sets of Π .

- This alternative semantics yields the same results in the previous examples.
- Differences arise with programs where there is no clear reason to prefer one generalized answer set to another.

Pareto Optimality (cont.)

Example 13

$$\begin{cases} r_1 : q & \stackrel{+}{\leftarrow} \\ r_2 : p & \stackrel{+}{\leftarrow} \\ r_3 : a & \stackrel{+}{\leftarrow} \\ r_4 : b & \stackrel{+}{\leftarrow} \\ \end{cases}$$

$$T_4 : b & \stackrel{+}{\leftarrow} \\ \end{cases}$$

$$prefer(a,b).$$

$$prefer(p,q).$$

$$ok & \leftarrow a,q.$$

$$ok & \leftarrow b,p.$$

$$ch & \leftarrow b,p.$$

- Original semantics: Π_4 has no answer set- Π_4 has two candidate answer sets, $A = \{a, q\}$ and $B = \{b, p\}$, but $A \prec B$ and $B \prec A$.
- Pareto optimality: A and B are Paretooptimal answer sets none dominates the
 other; both are Pareto optimal candidate answer sets, and they are also minimal.