
1

Texas Tech University Knowledge Representation Group

Modular Action Language ALM

Michael Gelfond and Daniela Inclezan

Computer Science Department

Texas Tech University

February 11, 2010



2

Texas Tech University Knowledge Representation Group

Specifying Dynamic Systems

• This talk discusses the problem of represent-

ing knowledge about discrete dynamic systems

modeled by transition diagrams.

〈s0, a, s1〉 ∈ T

iff the execution of action a in a state s0 may

move the system to state s1.

• Action languages are used for specifying such

diagrams.



3

Texas Tech University Knowledge Representation Group

Action Languages and ASP

We view representing dynamic systems in ac-

tion languages as part of ASP:

• Action theory A describing dynamic system

S can be viewed as a front-end for an ASP

program Π describing the same system.

• Π plays the major role in many applications

of ASP including planning and diagnostics.



4

Texas Tech University Knowledge Representation Group

Action Languages AL and C

The semantics of AL incorporates the inertia

axiom – “Things normally stay the same” and is

very close to ASP.

C incorporates the causality principle – “Every-

thing true in the world must be caused” and is based

on causal logic.

The addition of a state constraint

f if f

does not change a theory of AL but does change

a theory of C.



5

Texas Tech University Knowledge Representation Group

Need for Modules

Both languages lack the structure needed for

expressing the hierarchies of abstractions often

necessary for the design of larger knowledge

bases.

The addition of such a structure will facilitate

the reuse of knowledge and the organization of

libraries.



6

Texas Tech University Knowledge Representation Group

Example

• Often actions are defined in terms of other

actions, e.g.

move – “change position”

carry – “move while holding”

push – “carry by applying effort”.

• We should have a convenient way for repre-

senting this hierarchy.

• MAD – an extension of C aimed for this pur-

pose; ALM – does the same for AL.



7

Texas Tech University Knowledge Representation Group

Modules of ALM

Syntactically a module can be viewed as a col-

lection of declarations of sort, fluent and action

classes of the system.

module name

sort declarations

fluent declarations

action declarations



8

Texas Tech University Knowledge Representation Group

Example: move between areas

module move between areas

sort declarations

things : sort

movers : things

areas : sort

fluent declarations

loc in(things, areas) : inertial fluent

axioms

¬loc in(T,A2) if disjoint(A1, A2),

loc in(T,A1).

end of loc in



9

Texas Tech University Knowledge Representation Group

action declarations

move : action

attributes

actor : movers

origin, dest : areas

axioms

move causes loc in(O, A) if actor = O,

dest = A.

impossible move if actor = O,

origin = A,

¬loc in(O, A).

impossible move if origin = A1,

dest = A2,

¬disjoint(A1, A2).

end of move



10

Texas Tech University Knowledge Representation Group

Comments

• The actions of a module are action classes.

• The sorts, fluents, actions, and axioms of the

module are uninterpreted.

• Semantically, a collection of modules can be

viewed as a mapping of possible interpretations

of the symbols of the domain into the transi-

tion diagram describing a dynamic system.

• A system description is a set of modules fol-

lowed by an interpretation of its symbols.

• Modules can be combined into libraries and

imported from there using import statements.



11

Texas Tech University Knowledge Representation Group

Interpreting the Symbols

structure of basic travel

sorts

michael, bob in movers

london, paris, rome in areas

actions

instance move(O, A1, A2) : move

actor := O

origin := A1

dest := A2

statics

disjoint(london, paris).

disjoint(paris, rome).

disjoint(rome, london).



12

Texas Tech University Knowledge Representation Group

Actions as Special Cases

module carrying things

sort declarations

areas, things : sort

movers, carriables : things

fluent declarations

holding(things, things) : inertial fluent

loc in(things, areas) : inertial fluent

axioms

loc in(T,A) ≡ loc in(O, A) if holding(O, T ).

end of loc in



13

Texas Tech University Knowledge Representation Group

action declarations

carry : move

attributes

carried thing : carriables

axioms

impossible carry if actor = O,

carried thing = T,

¬holding(O, T ).

end of carry



14

Texas Tech University Knowledge Representation Group

More on Formal Semantics of ALM

A system description S of ALM is mapped into

ground statements of the non-modular language

AL which uniquely define the transition dia-

gram of S. For example, the action instance

move(bob, london, paris) and the ALM causal law

move causes loc in(O, A) if actor = O,

dest = A.

are turned into the AL causal law

move(bob, london, paris) causes loc in(bob, paris)



15

Texas Tech University Knowledge Representation Group

Describing a System’s History

A system description S of ALM is normally

used in conjunction with the description of the

system’s history, H – a collection of facts of the

form:

happened(a, i)

observed(f, true/false, i)

intend([a1, . . . , an], i)

Together S and H define the collection of possi-

ble trajectories of the system up to the current

step n.

These trajectories can be extracted from an-

swer sets of the translation Π of S together

with axioms for happened, observed, and intend.



16

Texas Tech University Knowledge Representation Group

Axioms for Intentions

Chitta Baral and Michael Gelfond.

Reasoning about intended actions.

In AAAI’05, pages 689-694, 2005.

Michael Gelfond.

Going places - notes on a modular development

of knowledge about travel.

In AAAI Spring 2006 Symposium, pages 56-

66, 2006.



17

Texas Tech University Knowledge Representation Group

Axioms for Intentions

1. Normally intended actions are executed the

moment that such an execution becomes pos-

sible.

occurs(A, I) ← intend(A, I),

not ¬occurs(A, I).

2. Unfulfilled intentions persist:

intend(A, I + 1) ← intend(A, I),

¬occurs(A, I),

not ¬intend(A, I + 1).



18

Texas Tech University Knowledge Representation Group

Axioms for Intentions

Axioms

intend(V, I) ← intend(S, I),

component(V, 1, S).

intend(V2, I2) ← intend(S, I1),

component(V2, K + 1, S),

component(V1, K, S),

ends(V1, I2).

ends(S, I) ← length(S,N),

component(V, N, S),

ends(V, I).

ends(A, I + 1) ← occurs(A, I).

together with some auxiliary axioms initiate a

sequence S of actions and sustain it until com-

pletion.



19

Texas Tech University Knowledge Representation Group

Testing the Theory: Project Halo

Project Halo is a research effort by Vulcan Inc.

towards the development of a Digital Aristotle:

a reasoning system capable of answering novel

questions and solving advanced problems in a

broad range of scientific disciplines and related

human affairs.

The project focuses on creating two primary

functions: a tutor capable of instructing and

assessing students in those subjects, and a re-

search assistant with broad, interdisciplinary

skills to help scientists and others in their work.



20

Texas Tech University Knowledge Representation Group

Example: Cell Cycle

We assume that

(a) Cell Cycle consists of three consecutive steps:

interphase, mitosis and cytokinesis

(b) We are given a hierarchy of classes of parts,

e.g. nucleus is a part of a cell, chromosome is

a part of nucleus, etc.

We’ll be interested in the number of different

parts present in the environment during differ-

ent stages of the cell cycle.



21

Texas Tech University Knowledge Representation Group

Basic Cell Cycle in ALM

module basic cell cycle

sort declarations

classes of parts % c o p : sort

numbers : sort

fluent declarations

father(c o p, c o p) : static fluent

root(c o p) : static fluent

num(c o p, c o p, numbers) : inertial fluent

% num(C1, C2, N)−N is the number of

% parts of class C1 in one part of class C2.



22

Texas Tech University Knowledge Representation Group

Basic Cell Cycle in ALM

axioms

¬num(C1, C2, N2) if num(C1, C2, N1),

N1 6= N2.

num(C3, C1, N) if father(C1, C2),

num(C2, C1, N1),

num(C3, C2, N2),

C3 6= C2,

N = N1 ∗N2.

end of num

prevented dupl(c o p) : inertial fluent



23

Texas Tech University Knowledge Representation Group

Basic Cell Cycle in ALM

action declarations

duplicate : action

attributes

class : classes of parts

axioms

duplicate causes num(C1, C2, N2)

if class = C1,

father(C2, C1),

num(C1, C2, N1),

N2 = 2 ∗N1.

impossible duplicate if class = C,

prevented dupl(C).

end of duplicate



24

Texas Tech University Knowledge Representation Group

Basic Cell Cycle in ALM

split : duplicate

axioms

split causes num(C1, C2, N2)

if class = C2,

father(C2, C1),

num(C1, C2, N1),

N1 6= 0,

N2 = N1/2.

end of split



25

Texas Tech University Knowledge Representation Group

prevent duplication : action

attributes

class : classes of parts

axioms

prevent duplication causes prevented dupl(C)

if class = C.

end of prevent duplication



26

Texas Tech University Knowledge Representation Group

Representing Sequences of Actions

module sequences

sort declarations

elements : sort

sequences : sort

numbers : sort

fluent declarations

component(elements, numbers, sequences)

: static fluent

length(numbers, sequences) : static fluent

with axioms specifying the functional charac-

ter of these relations.



27

Texas Tech University Knowledge Representation Group

Reasoning About Cell Cycle

Various system descriptions of ALM specify-

ing this process on different levels of granular-

ity will contain the basic cell cycle and sequence

modules and will differ from each other only

by their structure.

First, we consider a model in which cell cycle

is viewed as a sequence of three elementary

actions: interphase, mitosis, and cytokinesis.

We also limit our domain to cells contained in

an experimental environment that we will call

sample.



28

Texas Tech University Knowledge Representation Group

Cell Cycle 1

The first refinement of Cell Cycle will include

modules basic cell cycle and sequences, and:

structure of cell cycle(1)

sorts

sample, cell, nucleus in classes of parts

cell cycle in sequences

interphase, mitosis, cytokinesis in elements

actions

instance interphase : action

instance mitosis : duplicate

class := nucleus

instance cytokinesis : split

class := cell



29

Texas Tech University Knowledge Representation Group

Cell Cycle(1)

statics

father(sample, cell).

father(cell, nucleus).

component(interphase, 1, cell cycle).

component(mitosis, 2, cell cycle).

component(cytokinesis, 3, cell cycle).

length(3, cell cycle).



30

Texas Tech University Knowledge Representation Group

Reasoning about Cell Cycle

Suppose now that our initial sample consists

of one cell with one nucleus.

We would like to know the number of cells and

nuclei in the sample after the end of cell cycle.

The answer can be obtained from the answer

set of a program consisting of the ASP transla-

tion of the cell cycle(1) system description and

the domain history.



31

Texas Tech University Knowledge Representation Group

Reasoning about Cell Cycle

The history, H1, is written as:

observed(num(cell, sample, 1), true, 0).

observed(num(nucleus, cell, 1), true, 0).

intend(cell cycle, 0).

The answer set will contain the last step, 3,

and facts

holds(num(cell, sample, 2), 3)

holds(num(nucleus, cell, 1), 3)

holds(num(nucleus, sample, 2), 3)

At the end the sample contains two cells with

one nucleus each.



32

Texas Tech University Knowledge Representation Group

Reasoning about Cell Cycle

Suppose now we learned that:

In some organisms mitosis occurs without cytokinesis

occurring.

and want to know how many nuclei are con-

tained in a cell from the sample at the end of

the cell cycle.

To answer the question we simply expand the

history by

¬happened(cytokinesis, I)

for every step I. The corresponding answer set

will now contain:

holds(num(cell, sample, 1), 2)

holds(num(nucleus, cell, 2), 2)

holds(num(nucleus, sample, 2), 2)



33

Texas Tech University Knowledge Representation Group

Second Refinement of Cell Cycle

Let us now consider the following question Q12.15:

A researcher treats cells with a chemical that pre-

vents DNA synthesis. This treatment traps the cells

in which part of the cell cycle?

To answer this question the system will need

to know more about the structure of the cell

and that of the interphase and mitosis.

The second refinement of Cell Cycle provides

this additional knowledge.



34

Texas Tech University Knowledge Representation Group

Knowledge for Second Refinement

Additional cell components: the chromosomes in-

side the nucleus, the chromatids that are part of the

chromosomes, and the DNA inside the chromatids.

The interphase is a sequence [g1, s, g2] where g1

and g2 are elementary actions and s is a se-

quence of two elementary actions: DNA synthe-

sis, and the creation of sister chromatids.

Mitosis is a sequence of five actions:

prophase, prometaphase, metaphase, anaphase, and

telophase.

The treatment of the cells with the chemical is

represented by exogenous action that prevents

the duplication of the DNA.



35

Texas Tech University Knowledge Representation Group

Cell Cycle(2)

structure of cell cycle(2)

sorts

sample, cell, nucleus in classes of parts

chromosome, chromatid, dna in classes of parts

cell cycle, interphase, s, mitosis in sequences

interphase, mitosis, cytokinesis in elements

g1, s, g2, dna synthesis, prophase in elements

sister chromatids,prometaphase in elements

metaphase, anaphase, telophase in elements



36

Texas Tech University Knowledge Representation Group

Cell Cycle(2)

actions

instance g1 : action

instance dna synthesis : duplicate

class := dna

instance sister chromatids : split

class := chromatid

instance g2 : action

instance prophase : action

instance prometaphase : action

instance metaphase : action

instance anaphase : split

class := chromosome

instance telophase : split

class := nucleus



37

Texas Tech University Knowledge Representation Group

Cell Cycle(2)

% actions continued

instance cytokinesis : split

class := cell

instance treatment : prevent duplication

class := dna

statics

father(sample, cell).

father(cell, nucleus).

father(nucleus, chromosome).

father(chromosome, chromatid).

father(chromatid, dna).

component(interphase, 1, cell cycle).

component(mitosis, 2, cell cycle).

component(cytokinesis, 3, cell cycle).

length(3, cell cycle).



38

Texas Tech University Knowledge Representation Group

Cell Cycle(2)

component(g1, 1, interphase).

component(s, 2, interphase).

component(g2, 3, interphase).

length(3, interphase).

component(dna synthesis, 1, s).

component(sister chromatids, 2, s).

length(2, s).

component(prophase, 1, mitosis).

component(prometaphase, 2, mitosis).

component(metaphase, 3, mitosis).

component(anaphase, 4, mitosis).

component(telophase, 4, mitosis).

length(5, mitosis).



39

Texas Tech University Knowledge Representation Group

Reasoning about Cell Cycle(2)

We can now capture the scenario in question

Q12.15 via the following history H2

observed(num(cell,sample,1), true, 0).

observed(num(nucleus,cell,1), true, 0).

observed(num(chromosome,nucleus,46), true, 0).

observed(num(chromatid,chromosome,1), true, 0).

observed(num(dna,chromatid,1), true, 0).

intend(cell_cycle, 0).

happened(treatment, 0).



40

Texas Tech University Knowledge Representation Group

Reasoning about Cell Cycle(2)

To answer our question we define a relation

trapped:

ended(V) :- ends(V, I), step(I).

trapped(V1) :- component(V1, K, S),

component(V2, K+1, S),

ended(V1),

not ended(V2).

and add this definition to the ASP encoding.

The answer set of the resulting program will

contain trapped(g1), where g1 is the answer to

question Q12.15.



41

Texas Tech University Knowledge Representation Group

Conclusions

• The characteristic features of ALM are its

closeness to logic programming and the functional

character of its modules. This is achieved by the

use of AL and the separation between general

uninterpreted declarations and their domain

dependent interpretations.

• System descriptions of ALM can be used to-

gether with fairly sophisticated histories of the

domain to allow non-trivial reasoning about

past and future.

This includes planning, diagnostics, and hypo-

thetical reasoning.



42

Texas Tech University Knowledge Representation Group

Conclusions

• This reasoning is reduced to computing an-

swer sets of logic programs. This allows the

use of efficient answer set solvers and other

inference engines sound w.r.t. answer set se-

mantics.

• Reasoning can be proven correct w.r.t. an

ALM based model of a dynamic system.

• The use of ALM facilitates the creation of li-

brary modules and supports the reuse of knowl-

edge. In particular, ALM allows definitions of

fluents and actions in terms of other fluents

and actions.



43

Texas Tech University Knowledge Representation Group

Future Work

• ALM is work in progress. More experience

of its use is needed to fix some details.

We also plan to

• automate the translation of ALM into logic

programs.

• study the mathematical properties of ALM.

• use an ALM based system to build KR li-

braries.


