
Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University

Mathematical Foundations of Answer Set

Programming

Authors: Paolo Ferraris and Vladimir Lifschitz

Presenter: Yana Maximova Todorova

September 26th, 2008

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 1

Talk Outline

• Introduction

• Stable Models

• Programming

• Proofs of Theorems

• Conclusion

• Appendix A: Propositional Logic

• Appendix B: Traditional Definition of a Stable Model

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 2

Introduction of ASP

• Form of declarative logic programming

• Oriented towards difficult combinatorial search problems

• Examples of applications:
1) developing a decision support system for the Space Shuttle
2) graph-theoretic problems arising in zoology and linguistics

• Syntax of ASP programs: similar to Prolog programs

• Computational mechanisms used in ASP: based on ideas that have
led to the creation of satisfiability solvers for propositional logic

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 3

History of ASP

• Emerged from interaction between research on:
1) semantics of negation in logic programming
2) applications of satisfiability solvers to search problems

• Identified as a new programming paradigm in 1999

• Main definition of ASP: tells under what conditions a model of a propo-
sitional formula F is called stable

• Idea of ASP:
1) represent the search problem of interest as the problem of finding a
stable model of a formula
2) find a solution using an answer set solver (SMODELS, DLV, etc.)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 4

Stable Models: Motivation

• Two equivalent formulas do not necessarily have the same stable mod-
els:
(1) ¬p→ q has {q} as the only stable model
(2) ¬q → p has {p} as the only stable model

• Formulas (1) and (2) are equivalent classically, but not intuitionistically

• Intuitionistically equivalent formulas always have the same stable mod-
els

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 5

Stable models (ctd)

• A conjunction F∧G may have a stable model that is not a stable model
of F :
(3) (¬p→ q) ∧ p has one stable model {p}, which is 6= {q}

• Appending an additional conjunctive term to a formula may give it a
new stable model

• The concept of a stable model is nonmonotonic

• Early work on stable models was outgrowth of:
1) Research on formal nonmonotonic reasoning
2) Study of the relationship between autoepistemic logic and the se-
mantics of negation in logic programming

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 6

Stable Models: Definition

• The reduct FX of a formula F relative to a set X of atoms is the
formula obtained from F by replacing each maximal subformula that
is not satisfied by X with ⊥ [Ferraris, 2005]

• X is a stable model (or an answer set) of F if X is minimal among
the sets satisfying FX .

• Steps to verify that X is a stable model of F :
(i) mark in F the maximal subformulas that are not satisfied by X;
(ii) replace each of these subformulas with ⊥ (after that, equivalent
transformations of classical propositional logic can be used to simplify
the result);
(iii) check that the resulting formula is satisfied by X;
(iv) check that it is not satisfied by any proper subset of X.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 7

Stable Models: Examples
Check that {q} is an answer set of:

(1) ¬p→ q

(i)mark the only subformula of (1) that is not satisfied by {q}:

¬p→ q;

(ii) replace that subformula with ⊥:

¬⊥ → q;

simplify:

q;

(iii) check that the last formula is satisfied by {q};

(iv) check that it is not satisfied by ∅.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 8

Theorem 1

• An occurrence of an atom A in a formula F is strictly positive if it
does not belong to the antecedent of any implication in F

• An atom A is a head atom of a formula F if at least one occurrence of
A in F is strictly positive

• THEOREM 1 ([Ferraris, 2005]). Any stable model of F is a subset

of the set of head atoms of F .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 9

Recursive definition of the reduct

For any X

⊥X = ⊥;

AX =

{

A, if X |= A,
⊥, otherwise

(A is an atom);

(F
⊙

G)X =

{

F X
⊙

GX, if X |= F
⊙

G,
⊥, otherwise

(
⊙

is ∧, ∨ or→).

(¬F)X =

{

⊥, if X |= F,
⊤, otherwise.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 10

Horn Formulas

• A Horn formula is a conjunction of several (0 or more) implications
of the form F → A, where F is a conjunction of several (0 or more)
atoms, and A is an atom.

• For any Horn formula F , the intersection of all models of F is a model
of F also; it is called the minimal model of F .

• THEOREM 2. For any Horn formula F , the minimal model of F

is the only stable model of F .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 11

Horn Formulas: Examples

• The formula

(5) p ∧ (p→ q) ∧ (q ∧ r → s)

has one stable model: its minimal model {p, q}.

• The only model of the empty conjunction ⊤ is the empty set.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 12

Choice Formulas

For any finite set Z of atoms, by Zc we denote the formula

∧

A∈Z
(A ∨ ¬A).

• PROPOSITION 3. For any finite set Z of atoms, a set X of atoms

is a stable model of Zc iff X ⊆ Z.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 13

Proof of Proposition 3

• For any subset X of Z, the reduct of Zc relative to X is
∧

A∈X
(A ∨ ⊥) ∧

∧

A∈Z\X
(⊥ ∨ ¬⊥),

• which is equivalent to
∧

A∈X A.

• This formula is satisfied by X, but is not satisfied by any proper subset
of X.

• Therefore, if X is a subset of Z then X is a stable model of Zc.

• The converse is immediate from Theorem 1.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 14

Choice formula: Example

• Choice formula {p, q}c is

(p ∨ ¬p) ∧ (q ∨ ¬q).

• It has 4 answer sets: arbitrary subsets of {p, q}.

• Generally, if Z consists of n atoms, then Zc has 2n stable models.

• To form a model, we choose for every element of Z arbitrarily whether
to include it in the model.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 15

Constraints

• Art of ASP: based on possibility of representing the collection of sets
that we are interested in as the collection of stable models of a formula

• Conjoin a choice formula (which provides approximation from above
for the collection of sets that we want to describe) with constraints
(that eliminate the unsuitable stable models)

• A constraint is simply a formula beginning with negation.

• PROPOSITION 4. A set of atoms is a stable model of F ∧ ¬G iff

it is a stable model of F that satisfies ¬G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 16

Proof of Proposition 4

• Case 1: X satisfies F ∧ ¬G.
Then X does not satisfy G, and
(F ∧ ¬G)X is FX ∧ ¬⊥,
which is equivalent to FX .
Therefore, X is minimal among the sets satisfying FX iff it is minimal
among the sets satisfying (F ∧ ¬G)X .

• Case 2: X does not satisfy F ∧ ¬G.
Then X cannot be a model of F that satisfies ¬G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 17

Constraint: Example

• Recall that the stable model of
(1) ¬p→ q is {q}.

• If we conjoin (1) with the constraint ¬p, we get formula
(2) (¬p→ q) ∧ ¬p.

• Since the only stable model {q} of (1) satisfies the constraint, the con-
junction (2) has {q} as the only stable model as well.

• If we conjoin (1) with the constraint ¬¬p, then we get formula
(3) (¬p→ q) ∧ ¬¬p.

• Since the only stable model {q} of (1) does not satisfy this constraint,
conjunction (3) has no stable models.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 18

LPARSE and SMODELS

• SMODELS is one of the widely used answer set solvers.

• Its frontend LPARSE serves also as the frontend of 3 other systems
for computing stable models: GnT, ASSAT, and CMODELS.

• LPARSE requires that the input formula be represented in a special
format, as a conjunction of ”rules”, similar to Prolog rules.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 19

Representing Horn formulas in LPARSE

• Formula
(1) p ∧ (p→ q) ∧ (q ∧ r → s)

would be represented in LPARSE input file as:
p.
q :- p.
s :- q, r.

• To instruct SMODELS to find stable model of (1), we invoke LPARSE
and SMODELS as:
% lparse input | smodels

• The corresponding output is:
Answer: 1
Stable Model: q p

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 20

Representing negation in LPARSE

• Formula
(1) (¬p→ q) ∧ (¬q → p)
would be written in file input as:
q :- not p.
p :- not q.

• The command line that instructs SMODELS to find the stable models
is:
% lparse input | smodels 0

• The produced output is:
Answer: 1
Stable Model: q
Answer: 2
Stable Model: p

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 21

Representing choice formulas and constraints

in LPARSE

• To represent a choice formula {A1, . . . , An}c in LPARSE, we simply
drop the superscript c.

• A constraint ¬F , where F is a conjunction of literals, is written as

:- F.

• Formula {p, q, r}c ∧ ¬¬p ∧ ¬(q ∧ ¬r) can be written as

{p,q,r}.

:- not p.

:- q, not r.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 22

Search process of SMODELS

• Search process is sophisticated; it guarantees that every stable model
of the given input will be found.

• It can be viewed as a modification of the Davis-Putman-Logemann-
Loveland procedure for the propositional satisfiability problem (SAT).

• Finding a stable model of a formula is more difficult than SAT: the
existence of a stable model is a ΣP

2 -complete property.

• However, most uses of ASP involve formulas of special syntactic forms
for which this property is known to be in class NP.

• Systems ASSAT and CMODELS reduce the problem of computing sta-
ble models of a given formula to an instance of SAT and then invoke
SAT solvers to do the search.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 23

Strong Equivalence

• A formula F is strongly equivalent to a formula G if any formula F
′

that contains an occurrence of F has the same stable models as the
formula G

′
obtained from F

′
by replacing that occurrence with G.

• For example, p → q has the same stable model as p → r: the empty
set. But these two formulas are not strongly equivalent.

• Take F
′
to be (p→ q)∧p. Then G

′
is (p→ r)∧p. These two formulas

have different stable models: {p, q} and {p, r} respectively.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 24

Role of strong equivalence in ASP

• Strong equivalence allow us to simplify a part of a program without
looking at the rest of it.

• For example, formula p∧(p→ q) is intuitionistically equivalent to p∧q.

• Therefore, in any program containing the rules

p.

q :- p.

replacing the second rule by

q.

will have no effect on the set of stable models.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 25

Choosing a counterexample

• If formulas F and G are not strongly equivalent to each other, then
this can be always demonstrated using a counterexample F

′
that is

not much more complicated than F .

• Take F
′
to be a formula of the form F ∧H, where H is a Horn formula.

• A formula H is unary if it is a conjunction of several atoms and impli-
cations of the from A1 → A2, where A1 and A2 are atoms.

• Formulas F and G are strongly equivalent iff, for every unary H, F ∧H

and G ∧H have the same stable models.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 26

Theorem 5

For any formulas F and G, the following conditions are equivalent:

(i) F is strongly equivalent to G,

(ii) for every unary formula H, F ∧ H and G ∧ H have the same stable
models,

(iii) F is equivalent to G in the logic of here-and-there.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 27

Examples of the use of Theorem 5

• Formulas ¬¬p and ¬p → p are intuituionistically equivalent. There-
fore, the result of replacing the subformula ¬p → p in any formula
with ¬¬p does not change its stable models. That is, any program
containing the rule
p :- not p.
can be simplified by replacing that rule with
:- not p.

• Formulas p ∨ ¬p and ¬¬p → p are equivalent to each other in the
logic of here-and-there. Therefore, they are strongly equivalent. The
first one can be written in LPARSE as
{p}.
The second formula can be written as
p :- {not p} 0.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 28

Another use of Theorem 5

• PROPOSITION 6. Let Z be the set of atoms occurring in a formula F .
A subset X of Z satisfies F iff X is a stable model of Zc ∧ F .

• Proof.
From Propositions 3 and 4, a subset X of Z satisfies F iff X is a
stable model of Zc ∧ ¬¬F . It remains to observe that ¬¬F ↔ F can
be intuitionistically derived from Zc, because Zc is the conjunction of
the excluded middle formulas A ∨ ¬A for all atoms A occurring in this
equivalence.

• Proposition 6 provides a reduction of the propositional satisfiability
problem to ASP: to find a model of F , look for a stable model of the
conjunction of F with the excluded middle formulas A ∨ ¬A for all
atoms A occurring in F .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 29

Theorem 7 ([Ferraris, 2005])

• For any formulas F and G, F is strongly equivalent to G iff, for every
set X of atoms, FX is equivalent to GX in classical logic.

• Example: the fact that ¬p → p is strongly equivalent to ¬¬p can be
established by:

(¬p→ p){p} = ⊥ → p ↔ ⊤,
(¬¬p){p} = ¬⊥ = ⊤;

(¬p→ p)∅ = ⊥.
(¬¬p)∅ = ⊥.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 30

Splitting

• Consider the following example:

(6) {p, q}c ∧ (p→ r) ∧ (q ∧ r → s).

The first conjunctive term has 4 stable models:

(7) ∅, {p}, {q}, {p, q}.

• The rest of the conjunction: a ”definition”, characterizing r and s in terms of p and
q. Appending this definition to the choice formula {p, q}c does not affect the total
number of its stable models, but it can change each of the models (7) by adding to it
some of the atoms r, s.

• Based on p→ r, atom r is added to each model containing p.

• Based on q ∧ r → s, atom s is added to each model containing both q and r.

• Thus (6) have the following stable models:
(8) ∅, {p, r}, {q}, {p, q, r, s}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 31

Theorem 8

• Let F and G be formulas such that F does not contain any head atoms
of G. A set X of atoms is a stable model of F ∧ G iff there exists
a stable model {A1, . . . , An} of F such that X is a stable model of
A1 ∧ . . . ∧An ∧G.

• In application to {p, q}c ∧ (p→ r) ∧ (q ∧ r → s),
we take {p, q}c to be F and (p→ r) ∧ (q ∧ r → s) to be G.

• Since F does not containt any of the head atoms r, s of G, the stable models of F∧G
can be generated by taking each of the stable models of F (∅, {p}, {q}, {p, q}),
conjoining its elements with G, and listing all stable models of each of the resulting
formulas

(p→ r) ∧ (q ∧ r → s),
p ∧ (p→ r) ∧ (q ∧ r → s),
q ∧ (p→ r) ∧ (q ∧ r → s),

p ∧ q ∧ (p→ r) ∧ (q ∧ r → s).

• Since these are Horn formulas, each of them has one stable model: its minimal
model.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 32

Example of the use of Theorem 8

• Find the stable models of the conjunction

(9) (¬p→ q) ∧ (q → r).

• The only stable model of the first conjunctive term is {q}. According to
Theorem 8, it follows that (9) has the same stable models as

q ∧ (q → r).

• This is a Horn formula, and its minimal model {q, r} is its only stable
model.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 33

Proposition 9

• For any atom A that is not a head atom of F , F has the same stable
models as FA

⊥ .

• Notation: FA
G stands for the formula obtained from a formula F by

substituting a formula G for all occurrences of an atom A.

• Proof.
Since A is not a head atom of F , A does not belong to any of the stable models of
F (Theorem 1).

Therefore, F has the same stable models as F ∧ ¬A (Proposition 4).

Similarly, F A
⊥ has the same stable model as F A

⊥ ∧ ¬A.

It remains to observe that F ∧ ¬A and F A
⊥ ∧ ¬A are intuitionistically equivalent to

each other by the replacement property of intuitionistic logic.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 34

Example of the use of Proposition 9

• Find the stable model of ¬p→ q.

• Since p is not a head atom of ¬p → q, this formula has the same
stable models as ¬⊥ → q, which is intuitionistically equivalent to the
Horn formula q.

• Consequently, the only stable model of ¬p→ q is q.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 35

Proposition 10

• For any atom A, a set X of atoms is a stable model of F ∧ A iff there
exists a stable model Y of FA

⊤ such that X = Y ∪ {A}.

• Proof.
By the replacement property of intuitionistic logic, F ∧A is intuitionistically equivalent

to F A
⊤ , so that the two formulas have the same stable models.

By Theorem 8, X is a stable model of F A
⊤ ∧ A iff there exists a stable model

{A1, . . . , An} of F A
⊤ such that X is a stable model of A1 ∧ . . . ∧An ∧A.

The only stable model of this Horn formula is {A1, . . . , An, A}, which can be written

as {A1, . . . , An} ∪ {A}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 36

Example of the use of Proposition 10

• Find the stable models of (¬p→ q) ∧ p.

• We need to add p to each stable model of ¬⊤ → q.

• Since this formula is intuitionistically equivalent to ⊤, its only stable
model is the empty set.

• Therefore, the only stable model of (¬p→ q) ∧ p is {p}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 37

Example of the use of Proposition 9, 10 and

Splitting

• Find the stable models of
(1) {p, q}c ∧ (¬p→ r).

• By Theorem 8, this can be done by computing the stable models of each of
¬p→ r,

p ∧ (¬p→ r),
q ∧ (¬p→ r),

p ∧ q ∧ (¬p→ r).

• Proposition 9 shows that the only stable model of the first of these formulas is {r}.

• Proposition 10 shows that the only stable model of the second formula is {p}.

• Proposition 9 shows that the only stable model of the third formula is {q, r}.

• Proposition 10 shows that the only stable model of the last formula is {p, q}.

• Therefore, (1) has 4 stable models:
{p}, {r}, {q, r}, {p, q}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 38

Proposition 11

• Let F and G be formulas such that F does not contain head atoms of G, and G does
not contain head atoms of F . A set of atoms is a stable model of F ∧G iff it can be
represented as the union of a stable model of F and a stable model of G.

• Proof.
By Theorem 8, X is a stable model of F∧G iff there exists a stable model {A1, . . . , An}
of F such that X is a stable model of

(11) G ∧ (A1 ∧ . . . ∧An).

By Theorem 1, for any stable model {A1, . . . , An} of F , atoms A1, . . . , An are head
atoms of F . Therefore, they are different from the head atoms of G, so that the head
atoms of G do not occur in the second conjunctive term of (11).

By Theorem 8, X is a stable model of (11) iff there exists a stable model {B1, . . . , Bm}
of G such that X is a stable model of

B1 ∧ . . . ∧Bm ∧A1 ∧ . . . ∧An,
that is to say, such that

X = {A1, . . . , An} ∪ {B1, . . . , Bm}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 39

Cardinality Expressions

• For any nonnegative integer l (lower bound) and formulas F1, . . . , Fn,

(12) l ≤ {F1, . . . , Fn}

stands for the disjunction
∨

I⊆{1,...,n}, |I|=l

∧

i∈I

Fi.

• For instance,
2 ≤ {F1, F2, F3}

stands for
(F1 ∧ F2) ∨ (F1 ∧ F3) ∨ (F2 ∧ F3).

• By

(13) {F1, . . . , Fn} ≤ u

where u is a nonnegative integer (upper bound) we denote the formula

¬(u + 1 ≤ {F1, . . . , Fn}).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 40

Cardinality Expressions (ctd)

• Finally,

(14) l ≤ {F1, . . . , Fn} ≤ u

stands for

(l ≤ {F1, . . . , Fn}) ∧ ({F1, . . . , Fn} ≤ u).

• It is clear that any set of atoms
• satisfies (12) iff it satisfies at least l of the formulas F1, . . . , Fn;
• satisfies (13) iff it satisfies at most u of the formulas F1, . . . , Fn;
• satisfies (14) iff it satisfies at least l and at most u of the formulas F1, . . . , Fn.

• The input language of LPARSE allows us to use expressions (12)-(14) in the bodies
of rules, with the symbol ≤ dropped, if all formulas F1, . . . , Fn are literals.

• For example, the implication ¬¬p→ p can be represented in LPARSE as
p :- {not p} 0.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 41

Some useful abbreviations

• If A1, . . . , An are pairwise distinct atoms then we will write

l ≤ {A1, . . . , An}c for {A1, . . . , An}c ∧ (l ≤ {A1, . . . , An}),
{A1, . . . , An}c ≤ u for {A1, . . . , An}c ∧ ({A1, . . . , An} ≤ u),

l ≤ {A1, . . . , An}c ≤ u for {A1, . . . , An}c ∧ (l ≤ {A1, . . . , An} ≤ u).

• PROPOSITION 12. For any pairwise distinct atoms A1, . . . , An, nonnegative inte-
gers l and u, and a set X of atoms,

(i) X is a stable model of l ≤ {A1, . . . , An}c iff X ⊆ {A1, . . . , An} and l ≤ |X|;

(ii) X is a stable model of {A1, . . . , An}c ≤ u iff X ⊆ {A1, . . . , An} and |X| ≤ u;

(iii) X is a stable model of l ≤ {A1, . . . , An}c ≤ u iff X ⊆ {A1, . . . , An} and
l ≤ |X| ≤ u.

• Proof: Immediate from Proposition 6.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 42

Examples

• The stable models of

2 ≤ {p, q, r}c ≤ 2
are

{p, q}, {p, r}, {q, r}.

• Expressions of the forms

l ≤ {. . .}c, {. . .}c ≤ u, l ≤ {. . .}c ≤ u

can be used in LPARSE code in the head of a rule, with both ≤ and the superscript
c dropped:

l {. . .}, {. . .} u, l {. . .} u.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 43

LPARSE treatment of cardinality expressions

• LPARSE understands expressions of these types in different ways depending on
whether they occur in the body or in the head of a rule.

• For example, LPARSE rules

r :- 1 {p,q}.
1 {p,q} :- r.

stand for
1 ≤ {p, q} → r

and
r → 1 ≤ {p, q}c

respectively.

• A choice formula is included in the second case, but not in the first.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 44

Variables in LPARSE

• A group of rules that follow a pattern can be often described concisely in LPARSE
using schematic variables, for example, consider file var:
p(1..4).
#domain p(I).
q(I) :- not q(I-1).

• The first line is abbreviation for a group of 4 rules:
p(1). p(2). p(3). p(4).
It defines the auxiliary domain predicate p, which is used in the second line to declare
I to be a variable with the domain {1, . . . ,4}.

• The last line of var is interpreted as schematic representation of 4 rules (example of
grounding):
q(1) :- not q(0).
q(2) :- not q(1).
q(3) :- not q(2).
q(4) :- not q(3).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 45

Variables (ctd)

• LPARSE interprets var as the conjunction of formulas (15)
p(i),
¬q(i− 1)→ q(i)

(1 ≤ i ≤ 4).

• In response to the command
% lparse var | smodels 0

SMODELS will compute the only stable model of this conjunction:
Stable Model: q(1) q(3) p(1) p(2) p(3) p(4)

• The auxiliary atoms p(1), . . . , p(4) in the output can be suppressed
by including the declaration
hide p(_).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 46

Grounding

• Domain predicates can be included directly in the bodies of the rules:

p(1..4).

q(I) :- p(I), not q(I-1).

• These two lines represent the conjunction of formulas (16)
p(i)

p(i) ∧ ¬q(i− 1)→ q(i)

(1 ≤ i ≤ 4)

• Since the conjunction of formulas (16) is intuitionistically equivalent
to the conjunction of formulas (15), these two conjunctions have the
same stable models.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 47

Another use of variables

• Variables can be used to describe a list of literals that is formed ac-
cording to a pattern. For example,

p(1..4).

2 {q(I) : p(I)} 3.

is shorthand for

p(1). p(2). p(3). p(4).

2 {q(1), q(2), q(3), q(4)} 3.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 48

Graph Coloring

• An n-coloring of a graph G is a function f from its set of vertices to
{1, . . . , n} such that f(x) 6= f(y) for every pair of adjacent vertices
x, y.

• Task: use ASP to find an n-coloring of a given graph or to determine
that it does not exist.

• Approach: Write a program whose answer sets are in a 1-1 correspon-
dence with the n-colorings of G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 49

The program

• Let V be the set of vertices of the graph, and E the set of its edges. The program
consists of the rules

(17) 1 ≤ {color(x,1), . . . , color(x, n)}c ≤ 1 (x ∈ V),

(18)← color(x, i), color(y, i) ({x, y} ∈ E; 1 ≤ i ≤ n).

• PROPOSITION 13.

A set X of atoms is a stable model of the conjunction of (17) and (18) iff X is

(19) {color(x, f(x)) : x ∈ V }

for some n-coloring f of 〈V, E〉.

• (17) describes a superset of the set of n-colorings of G that we are trying to capture

(18) consists of the constraints that weed out the bad elements of that superset

• This generate-and-test organization is typical for simple ASP programs.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 50

Proof of Proposition 13

• By Proposition 12(iii), each of the formulas (17) has n stable models {color(x, i)}
(i = 1, . . . , n).

• By Proposition 11, it follows that arbitrary stable models of the conjunction of these
formulas are unions of such singletons, one per each x ∈ V .

• Stable models of (17) can be characterized as sets of the form (19), where f is a
function from V to {1, . . . , n}.

• By Proposition 4, it follows that the stable models of the conjunction of (17) with the
constraints (18) can be characterized as the sets of the form (19) that do not satisfy
the bodies of the constraints.

• The last condition can be expressed by saying that the equalities f(x) = i and
f(y) = i cannot hold simultaneously when {x, y} ∈ E, which means that f(x) 6=
f(y) whenever {x, y} ∈ E.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 51

The program in LPARSE

• Program (17), (18) can be encoded in LPARSE as

c(1..n).
1 {color(X,I) : c(I)} 1 :- v(X).
:- color(X,I), color(Y,I), e(X,Y), c(I).

• The domain predicates v and e are defined in a separate file, for instance

v(0..7).

e(0,1). e(1,2). e(2,3). e(3,0).
e(4,5). e(5,6). e(6,7). e(7,4).
e(0,4). e(1,5). e(2,6). e(3,7).

• If n= 2, SMODELS produces the set of atoms describing a 2-coloring

Stable Model: color(0,1) color(1,2) color(2,1) color(3,2)
color(4,2) color(5,1) color(6,2) color(7,1)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 52

Cliques

• A clique in a graph G is a set of pairwise adjacent vertices of G.

• Task: use ASP to find a clique of cardinality ≥ n in a given graph or to
determine that it does not exist.

• Approach: write a program whose answer sets are in a 1-1 correspon-
dence with cliques of cardinalities ≥ n.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 53

The Program

• Let V be the set of vertices of the graph, and E the set of its edges. The program
consists of the rules

(20) n ≤ {in(x) : x ∈ V }c,

(21)← in(x), in(y) (x, y ∈ V ;x 6= y; {x, y} /∈ E).

• PROPOSITION 14.

A set X of atoms is a stable model of the conjunction of (20) and (21) iff X is

(22) {in(x) : x ∈ C}

for some clique C in G such that |C| ≥ n.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 54

Proof of Proposition 14

• By Proposition 12(i), the stable models of (20) can be characterized as
sets of the form (22), where C is a set of vertices of a cardinality ≥ n.

• By Proposition 4, it follows that the stable models of the conjunction of
(20) with the constraints (21) can be characterized as the sets of the
form (22) that do not satisfy the bodies of the constraints.

• The last condition can be expressed by saying that the conditions x ∈

C and y ∈ C cannot hold simultaneously for two different non-adjacent
vertices x, y, which means that C is a clique.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 55

The program in LPARSE

• Program (20), (21) can be encoded in LPARSE as

n {in(X) : v(X)}.

:- in(X), in(Y), v(X;Y), X!=Y, not e(X,Y), not e(Y,X).

• The domain predicates v and e are assumed to characterize the ver-
tices and edges of G.

• v(X;Y) is an LPARSE abbreviation for v(X), v(Y), and ! = repre-
sents 6=.

• Condition not e(X, Y), not e(Y, X) expresses that X and Y are non-
adjacent.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 56

Schur Numbers

• A set S of integers is called sum-free, if there are no numbers x, y in
S such that x+y is in S.

• Example: {1,3,5} is sum-free, and {2,3,5} and {2,4} are not.

• Task: use ASP to find, for given k and n, a partition of the interval
{1, . . . , n} into at most k sum-free sets or to determine that such a
partition does not exist.

• The largest n such that {1, . . . , n} can be partitioned into k sum-free
set is called the k-th Schur number and denoted by S(k).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 57

The program

• The atoms si(x) (1 ≤ i ≤ k, 1 ≤ x ≤ n) are used to express that x belongs to the
i-th set Si in a partition of {1, . . . , n} into sum-free sets S1, . . . , Sk:

(23) 1 ≤ {s1(x), . . . , sk(x)}
c ≤ 1 (1 ≤ x ≤ n),

(24)← si(x), si(y), si(x + y) (1 ≤ i ≤ k; x, y ≥ 1;x + y ≤ n).

• PROPOSITION 15.

A set X of atoms is a stable model of the conjunction of (23) and (24) iff X is

(25) {si(x) : 1 ≤ i ≤ k;x ∈ Si}

for sum-free pairwise disjoint sets S1, . . . , Sk such that

(26) S1 ∪ . . . ∪ Sk = {1, . . . , n}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 58

Proof of Proposition 15

• By Proposition 12(iii), each of the formulas (23) has k stable models {si(x)} (i = 1, . . . , k).

• By Proposition 11, it follows that arbitrary stable models of the conjunction of these
formulas are unions of such singletons, one per each x ∈ {1, . . . , n}.

• That is, the stable models of (23) can be characterized as sets of the form (25),
where the sets Si are pairwise disjoint and satisfy (26).

• By Proposition 4, it follows that the stable models of the conjunction of (23) with the
constraints (24) can be characterized as sets of the form (25), where Si are pairwise
disjoint, satisfy (26), and do not satisfy the bodies of the constraints.

• The last condition can be expressed by saying that each Si is sum-free.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 59

The program in LPARSE

• The rules (23) and (24) can be written in LPARSE as:

subset(1..k).
number(1..n).
#domain number(X;Y).

1 {s(I,X) : subset(I)} 1.
:- s(I,X), s(I,Y), s(I,X+Y), subset(I), X+Y<=n.

• The output produced by SMODELS is:

Stable Model: s(3,1) s(1,2) s(1,3) s(3,4) s(2,5) s(2,6) s(2,7)
s(2,8) s(2,9) s(3,10) s(1,11) s(1,12) s(3,13)

which represents a partition of {1, . . . ,13} into 3 sum-free sets:

{2,3,11,12} ∪ {5,6,7,8,9} ∪ {1,4,10,13}

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 60

Tiling

• Task: use ASP to find a way to cover an 8 x 8 chessboard by twenty-
one 3 x 1 tiles and one 1 x 1 tile.

• Problem reformulated: place twenty-one 3 x 1 tiles on an 8 x 8 chess-
board without overlaps.

• Horizontally placed tile: h(x, y) (0 ≤ x ≤ 5,0 ≤ y ≤ 7) , where x and y

are the coordinates of the tile’s southwest corner.

• Vertically placed tile: v(x, y) (0 ≤ x ≤ 7,0 ≤ y ≤ 5) , where x and y are
the coordinates of the tile’s southwest corner.

• Call these 96 atoms A1, . . . , A96

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 61

The program

• The stable models of the rule

(27) 21 ≤ {A1, . . . , A96}c ≤ 21

correspond to all possible ways to place 21 tiles on the chessboard.

• Overlaps between two horizontal tiles are eliminated by the rules

(28)← h(x, y), h(x + i, y) (0 ≤ x, y ≤ 7; i = 1,2).

• Overlaps between two vertical tiles are eliminated by the rules

(29)← v(x, y), v(x, y + i) (0 ≤ x, y ≤ 7; i = 1,2).

• Overlaps between a horizontal tile and a vertical tile are eliminated by

(30)← h(x, y), v(x + i, y - j) (0 ≤ x, y ≤ 7; 0 ≤ i, j ≤ 2).

• The stable models of program (27)-(30) correspond to the solutions to the tiling prob-
lem we are interested in.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 62

The program in LPARSE

• The program (27)-(30) can be represented in the language of LPARSE as:

number(0..7).
#domain number(X;Y;I;J).

hpos(X,Y) :- X<=5.
vpos(X,Y) :- Y<=5.

21 {h(XX,YY) : hpos(XX,YY), v(XX,YY) : vpos(XX,YY)} 21.

:- h(X,Y), h(X+I,Y), 0<I, I<=2.
:- v(X,Y), v(X,Y+I), 0<I, I<=2.
:- h(X,Y), v(X+I,Y-J), I<=2, J<=2.

• The output of SMODELS is:

Stable Model: h(5,1) h(5,0) h(3,7) h(3,6) h(3,5) h(3,4) h(3,3)
h(3,2) h(2,1) h(2,0) h(0,7) h(0,6) v(7,5) v(7,2) v(6,5) v(6,2)
v(2,3) v(1,3) v(1,0) v(0,3) v(0,0)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 63

Hamiltonian Cycles

• A Hamiltoanian cycle in a directed graph G is a closed path that
passes through each vertex of G exactly once.

• Task: use ASP to find a Hamiltonian cycle in a given directed graph or
to determine that it does not exist.

• Atoms in(x, y) for all edges 〈x, y〉 of G are used to express that 〈x, y〉

belongs to the path.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 64

The program

• The generate part of the program consists of the choice rules

(31) {in(x, y)}c (〈x, y〉 ∈ E)

• The constraints that eliminate all subsets of E other than Hamiltonian cycles are

(32)← 2 ≤ {in(x, y} : y ∈ Ax} (x ∈ V),

where Ax stands for {y : 〈x, y〉 ∈ E}, and

(33)← 2 ≤ {in(x, y) : x ∈ By} (y ∈ V),

where By stands for {x : 〈x, y〉 ∈ E}.

• Every vertex of G should be reachable by a sequence of in-edges from some fixed
vertex v0.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 65

The program (ctd)

• Auxiliary atom r(x) (”x is reachable from x0”) is defined as

(34) r(x)← in(x0, x) (x ∈ V),

(35) r(y)← r(x), in(x, y) (〈x, y〉 ∈ E)

• The reachability constraints are:

(36)← not r(x) (x ∈ V).

• Program has generate part (31), test part (32), (33), (36), and define
part (34), (35). This ”generate-define-test” structure is typical for more
advanced ASP programs.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 66

Proposition 16

• A set X of atoms is the essential part of a stable model of (31)-(36) iff X has the
form

(37) {in(x, y) : 〈x, y〉 ∈ H}

where H is the set of edges of a Hamiltonian cycle in G. Furthermore, different
stable models of this program have different essential parts.

• For any set H ⊆ R, by RH we denote the set of atoms r(x) for all vertices x to
which there is a path of nonzero length from x0 over edges in H.

• LEMMA 17.
A set X of atoms is a stable model of the conjunction of formulas (31), (34) and (35)
iff X is

(38) {in(x, y) : 〈x, y〉 ∈ H} ∪RH

for some subset H of E.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 67

Proof of Lemma 17

• Denote the conjunction of formulas (31) by F , and the conjunction of formulas (34),
(35) by G.

• By Theorem 8, X is a stable model of F∧G iff there exists a stable model {A1, . . . , An}
of F such that X is a stable model of A1 ∧ . . . ∧ An ∧G.

• By Proposition 3, it follows that the stable models of F ∧G can be characterized as
the stable models of formulas of the form

(39)
∧

〈x,y〉∈H

in(x, y) ∧G.

for arbitrary subsets H of E.

• Formula (39) is a Horn formula, and its minimal model is its only stable model (by
Theorem 2).

• It remains to observe that the minimal model of (39) is (38).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 68

Proof of Proposition 16

• A set H ⊆ E is the set of edges of a Hamiltonian cycle in G iff it satisfies the following
conditions:

(i) H does not contain two different edges leaving the same vertex.
(ii) H does not contain two different edges ending at the same vertex.
(iii) For every vertex x of G, there exists a path of nonzero length from x0 to x over
edges in H.

• By Lemma 17 and Proposition 4, a set X of atoms is a stable model of program
(31)-(36) iff X has the form (38), where H ⊆ E, and does not satisfy the bodies of
the constrains (32), (33), (36).

• It is clear that
• (i) holds iff (38) does not satisfy the bodies of constraints (32);
• (ii) holds iff (38) does not satisfy the bodies of constraints (33);
• (iii) holds iff (38) does not satisfy the bodies of constraints (36).

• Therefore, X is a stable model of (31)-(36) iff X has the form (38) for a subset H
of E satisfying conditions (i)-(iii). Both parts of the statement of Proposition 16 now
follow, because the essential part of (38) is (37).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 69

The program in LPARSE

• Assuming that x0 is 0, program (31)-(36) can be represented in the
language of LPARSE as

{in(X,Y)} :- e(X,Y).

:- 2 {in(X,Y) : e(X,Y)}, v(X).
:- 2 {in(X,Y) : e(X,Y)}, v(Y).

r(X) :- in(0,X), v(X).
r(Y) :- r(X), in(X,Y), e(X,Y).

:- not r(X), v(X).

hide r(_).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 70

The Blocks World

• The blocks world consists of several blocks 1, . . . , n, placed on the
table so that they form a tower or several towers. Blocks can be moved
around.

• Task: use ASP to find a sequence of actions that takes the blocks
world from a given initial state to a given goal state.

• Approach: write ASP program that represents the set of all possible
configurations of n blocks.

• Positions of the blocks are described by the atoms on(x, y), where
x ∈ {1, . . . , n}, y ∈ {1, . . . , n, table}, x 6= y.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 71

The program
• Choose arbitrarily, for each block x, a unique location:

(40) 1 ≤ {on(x, y) : y ∈ {1, . . . , n, table} \ {x}}c ≤ 1

(1 ≤ x ≤ n).

• Do not allow two blocks to be on top of the same block:

(41)← 2 ≤ {on(x, y) : x ∈ {1, . . . , n} \ {y}}

(1 ≤ y ≤ n).

• Atoms s(x), where 1 ≤ x ≤ n will express that x is supported by the table:

(42) s(x)← on(x, table) (1 ≤ x ≤ n),

(43) s(x)← s(y), on(x, y) (1 ≤ x, y ≤ n;x 6= y).

• The absence of blocks floating in space is expressed by the constraints:

(44)← not s(x) (1 ≤ x ≤ n).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 72

The program in LPARSE

• Program (40)-(44) can be expressed in LPARSE by:

block(1..n).

1 {on(X,Y) : block(Y) : X != Y, on(X,table)} 1 :- block(X).

:- 2 {on(X,Y) : block(X) : X != Y}, block(Y).

s(X) :- on(X,table), block(X).
s(X) :- s(Y), on(X,Y), block(X;Y), X != Y.

:- not s(X), block(X).

hide s(_).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 73

Strong Negation

• Assume two kinds of atoms: positive and negative. Each negative atom is an
expression of the form ∼ A, where A is a positive atom.

• The symbol ∼ is called strong negation (or ”classical”, or ”true”).

• A set of atoms is coherent if it does not contain ”complementary” pairs of atoms A,
∼ A.

• Consider the program

(45) {p}c,
q,
∼ q ← ¬p.

• It has two positive atoms p, q and one negative atom ∼ q.

• The stable models are {p, q} and {q,∼ q}. The first one is coherent, and the second
is not.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 74

Proposition 18

• A set X of atoms is a coherent stable model of a formula F iff X is a stable model
of the formula

(46) F ∧
∧

A

¬(A∧ ∼ A),

where the big conjunction extends over all positive atoms A such that both A and
∼ A are head atoms of F .

• PROOF.

By proposition 4, X is a stable model of (46) iff X is a stable model of F which does
not have subsets of the form {A,∼ A} such that A,∼ A are head atoms of F .

By Theorem 1, this condition on X is equivalent to saying that X is a coherent stable
model of F .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 75

Strong negation in LPARSE

• In LPARSE, strong negation is written as − and LPARSE should be
called with the option - -true-negation.

• SMODELS generate only coherent answer sets. For example,

{p}.

q.

-q :- not p.

will have only one model:

Stable Model: p q

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 76

The purpose of Strong negation in ASP
• Strong negation allows us to distinguish between the assertions

(1) ”A is false”
(2) ”A is not known to be true”

• Statement (1) is expressed by the presence of the negative atom ∼ A in a coherent
stable model. Statement (2) is expressed by the absence of the positive atom A,
which is a weaker condition.

• The rule

∼ A← not A

(”A is false if there is no evidence to the contrary”) is an ASP representation of the
closed world assumption for the positive atom A.

• The rule

A← not ∼ A

expresses the inverse closed world assumption: A is true if there is no evidence to
the contrary.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 77

Proposition 19

• Let F be a formula and A a positive atom such that ∼ A does not
occur in F . For any set X of atoms, X is a coherent stable model of

(48) F ∧ (¬A→∼ A)

iff

(i) X is a stable model of F and A ∈ X, or

(ii) X = Y ∪{∼ A}, where Y is a stable model of F such that A /∈ Y .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 78

Proof of Proposition 19

• By Theorem 8, X is a stable model of (48) iff X is a stable model of a formula of the
form

(49) A1 ∧ . . . ∧An ∧ (¬A→∼ A),

where {A1, . . . , An} is a stable model of F .

• Case 1: A equals one of the atoms Ai.

Then (49) is intuitionistically equivalent to A1 ∧ . . . ∧An, and X is a stable model of
(49) iff X = {A1, . . . , An}.

• Case 2: A is different from all atoms Ai.

Then A is not a head atom of (49). By Proposition 9, it follows that X is a stable
model of (49) iff X is a stable model of the formula

A1 ∧ . . . ∧An ∧ (¬⊥ →∼ A),
which is intuitionistically equivalent to

A1 ∧ . . . ∧An∧ ∼ A.
So X is a stable model of (48) iff X = Y ∪{∼ A}, where Y stands for {A1, . . . , An}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 79

Planning in The Blocks World

• Task: use ASP to find a sequence of sets of actions that takes the
blocks world from a given initial state to a state satisfying a given goal
condition.

• There are n2 possible actions, where n is the number of blocks: any
block x ∈ {1, . . . , n} can be moved to any location l ∈ {1, . . . , n, table}

different from x.

• Assumptions:
• a block can be moved only when there are no blocks on top of it;
• at most k actions can be executed concurrently;
• a block x can be moved onto a block y only if y is not being moved

at the same time.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 80

Histories

• A history is a finite sequence

s0, e0, s1, e1, . . . , em−1, sm

where s0, s1, . . . , sm are states of the blocks world, and each ei (0 ≤ i ≤ m) is a
set of actions, which, when executed concurrently in state si lead to state si+1.

• Histories will be described by:

• the atoms on(x, l, i) (x ∈ {1, . . . , n}, l ∈ {1, . . . , n, table}, x 6= l, i ∈ {0, . . . , m}),
expressing that x is on l in state si, and

• the atoms move(x, l, i) (x ∈ {1, . . . , n}, l ∈ {1, . . . , n, table}, x 6= l, i ∈
{0, . . . , m− 1}), expressing that x is moved onto l as part of event ei.

• Approach: Write a program whose stable models represent the histories with a given
initial state s0 and a given length m such that their final state sm satisfies a given
goal condition.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 81

The program

• Each event ei can be composed of up to k actions, chosen arbitrarily:

(51) {move(x, l, i) : 1 ≤ x ≤ n, l ∈ {1, . . . , n, table}, x 6= l}c ≤ k

(1 ≤ i < m)

• A block can be moved only if it is clear:

(52)← move(x, l, i), on(y, x, i)

(1 ≤ x, y ≤ n, l ∈ {1, . . . , n, table}, x 6= l, x 6= y, 0 ≤ i < m)

• A block can be moved if the destination is not a block that is being moved also:

(53)← move(x, y, i), move(y, l, i)

(1 ≤ x, y ≤ n, l ∈ {1, . . . , n, table}, x 6= y, y 6= l, 0 ≤ i < m)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 82

The program (ctd)

• The following rules define the locations of blocks in state si in terms of their initial
locations and the events e0, . . . , ei−1

(54) on(x, init(x),0)

(1 ≤ x ≤ n), where init(x) stands for the initial location of x

(55) on(x, l, i + 1)← move(x, l, i)

(1 ≤ x ≤ n), l ∈ {1, . . . , n, table}, x 6= l, 0 ≤ i < m)

• The next rule expresses the uniqueness of the location of a block using strong nega-
tion:

(56) ∼ on(x, l, i)← on(x, l′, i)

(1 ≤ x ≤ n), l, l′ ∈ {1, . . . , n, table}, x 6= l, x 6= l′, l 6= l′, 0 ≤ i ≤ m)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 83

The program (ctd)

• The commonsense law of inertia for the blocks world:

(57) on(x, l, i + 1)← on(x, l, i), not ∼ on(x, l, i + 1)

(1 ≤ x ≤ n, l ∈ {1, . . . , n, table}, x 6= l, 0 ≤ i < m)

• The following constraints express that s1, . . . , sm are valid states of the blocks world,
and that sm satisfies the goal condition G:

(58)← 2 ≤ {on(x, y, i) : x ∈ {1, . . . , n}\{y}}

(0 ≤ y ≤ n,0 ≤ i < m);

(59)← not G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 84

The program in LPARSE

step(0..m).
block(1..n).
location(1..n;table).

#domain step(I).
#domain block(X;Y;Z).
#domain location(L;L1).

{move(XX,LL,I) : block(XX) : location(LL) : XX !=LL} k :- I < m.

:- move(X,L,I), on(Y,X,I), X != L, X != Y, I < m.
:- move(X,Y,I), move(Y,L,I), X != Y, Y != L, I < m.

on(X,L,0) :- init(X,L).
on(X,L,I+1) :- move(X,L,I), X != L, I < m.
-on(X,L,I) :- on(X,L1,I), X != L, X != L1, L != L1.
on(X,L,I+1) :- on(X,L,I), not -on(X,L,I+1), X != L, I < m.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 85

The program in LPARSE (ctd)

:- 2 {on(XX,Y,I) : block(XX) : XX != Y}.
:- not goal.

hide.
show move(_,_,_).

The initial state and the goal condition are assumed to be defined in a separate file, for
example:

init(1,2). init(2,table). init(3,4).
init(4,table). init(5,6). init(6,table).

goal :- on(2,1,m), on(3,2,m), on(6,5,m), on(5,4,m).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 86

Proofs of Theorems

• LEMMA 20.
If X |= F and a set Y contains all head atoms of F then X ∩ Y |= F X.

• PROOF (by structural induction on F).
Assume that X |= F . Clearly F is not ⊥.

• Case 1: F is an atom A. Since X |= F , F X is A and A ∈ X. Since A is a head
atom, we can conclude that A ∈ X ∩ Y .

• Case 2: F is G ∧ H. Since X |= F , we know that F X is GX ∧ HX , X |= G
and X |= H. Since all head atoms of G and H belong to Y , from the induction
hypothesis we conclude that X ∩Y |= GX and X ∩Y |= HX . Therefore, X ∩Y |=
F X.

• Case 3: F is G ∨H. Similar to case 2.

• Case 4: F is G→ H. Since X |= F, F X is GX → HX .
Case 4.1: X |= G. Then X |= H. Since all head atoms of H belong to Y , from the
induction hypothesis X ∩ Y |= HX . Therefore X ∩ Y |= F X .
Case 4.2: X 6|= G. Then GX is ⊥, so that F X is tautology.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 87

Proof of Theorem 1

• THEOREM 1.

Any stable model of F is a subset of the set of head atoms of F .

• Let X be a stable model of F , and Y the set of head atoms of F .

• By Lemma 20, X ∩ Y |= FX .

• Since X is minimal among the sets satisfying FX ,

it follows that X ∩ Y = X.

Therefore X ⊆ Y .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 88

LEMMA 21 and its proof

• LEMMA 21.
For any Horn formula F and any two sets X and Y of atoms, if X ⊆ Y and Y |= F
then X |= F iff X |= F Y .

• PROOF.
1) Assume that F is a single implication

(60) A1 ∧ . . . ∧An → A.

Case 1: A1, . . . , An belong to Y . Under the assumption Y |= F , the consequent A
of F belongs to Y also, so that F Y = F .

Case 2: For some i, Ai /∈ Y . Under the assumption X ⊆ Y , Ai /∈ X, so that X
satisfies F . On the other hand, F Y is the tautology ⊥ → AY , so that X satisfies F Y

as well.

2) If F is a conjunction F1 ∧ . . .∧Fm of several implications of the form (60), then X
satisfies F iff X satisfies each Fj. Under the assumption Y |= F , F Y is F Y

1 ∧ . . . ∧
F Y

m . Therefore, X satisfies F Y iff X satisfies each of the conjunctive terms F Y
j . The

assertion of the lemma follows from the special case proved above.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 89

Proof of Theorem 2

• THEOREM 2.
For any Horn formula F , the minimal model of F is the only stable model of F .

• PROOF.
Let M be the minimal model of a Horn formula F .

• Lemma 21, applied to M as Y , shows that F M is satisfied by M but is not satisfied
by any proper subset of M .

• Therefore, M is a stable model of F .

• Now take any stable model Y of F . By the choice of M , M ⊆ Y .

• Lemma 21, applied to M as X shows that M |= F Y .

• By definition of stable model, Y is minimal among the sets satisfying F Y .

• Therefore, Y ⊆M .

• We have proved that Y = M .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 90

Lemma 22, Lemma 23 and their proofs
• LEMMA 22.

For any formula F and any set X of atoms, X |= F X iff X |= F .

• PROOF.
Reduct F X is obtained from F by replacing some subformulas that are not satisfied
by X with ⊥.

• LEMMA 23.

For any two formulas F and G and any set X of atoms,

(a) (F ∧G)X is equivalent to F X ∧GX in classical logic, and

(b) (F ∨G)X is equivalent to F X ∨GX in classical logic.

• PROOF.
Part (a): consider two cases, depending on whether X satisfies F ∧G.
If it does, then the two formulas are equal to each other;
if not, then each of them is equivalent to ⊥.

Part(b): the proof is similar.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 91

Lemma 24 and its proof

• LEMMA 24.
For any formula F and any two sets X and Y of atoms, X |= F Y iff 〈X∩Y, Y 〉 |= F .

• PROOF: (by structural induction on F)

• If F is ⊥, then the assertion of the lemma is trivial.
• If F is an atom A,

X |= AY iff A ∈ Y and A ∈ X
iff A ∈ X ∩ Y
iff 〈X ∩ Y, Y 〉 |= A.

• If F is G ∧H, then, using Lemma 23(a),

X |= (G ∧H)Y iff X |= GY ∧HY

iff X |= GY and X |= HY

iff 〈X ∩Y, Y 〉 |= G and 〈X ∩Y, Y 〉 |= H
iff 〈X ∩ Y, Y 〉 |= G ∧H.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 92

Proof of Lemma 24 (ctd)

• If F is G ∨H, then the reasoning is similar, using Lemma 23(b).

• If F is G→ H,

X |= (G→ H)Y

iff Y |= G→ H and X |= GY → HY

iff Y |= G→ H and X 6|= GY or X |= HY

iff Y |= G→ H and 〈X ∩ Y, Y 〉 6|= G or 〈X ∩ Y, Y 〉 |= H

iff 〈X ∩ Y, Y 〉 |= G→ H.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 93

Lemma 25 and its proof
• LEMMA 25.

Let F , G, F ′, G′ be formulas such that G′ is obtained from F ′ by replacing some
(zero or more) occurrences of F with G. For any set X of atoms, if F X is equivalent
to GX , then (F ′)X is equivalent to (G′)X .

• PROOF:
Assume that F X is equivalent to GX . By Lemma 22, it follows that
(62) X |= F ↔ G.

• We will prove that (F ′)X is equivalent to (G′)X by structural induction on F ′.

• This assertion is trivial when F ′ equals F and also when the number of occurrences
of F in F ′ that are being replaced is 0. In particular, the cases when F ′ is ⊥ or an
atom are trivial (BASE CASE).

• Assume that F ′ has the form F ′1⊙ F ′2 and G′ is G′1⊙G′2, where G′i is obtained from
F ′i by replacing some occurrences of F with G.

• Case 1: X 6|= F ′. In view of (61), X 6|= G′, so that (F ′)X = ⊥ and (G′)X = ⊥.

• Case 2: X |= F ′. In view of (61), X |= G′, so that (F ′)X = (F ′1)
X ⊙ (F ′2)

X and
(G′)X = (G′1)

X ⊙ (G′2)
X , and the claim follows by the induction hypothesis.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 94

Combined statement of Theorems 5 and 7

For any formula F and G, the following conditions are equivalent:

(i) F is strongly equivalent to G,

(ii) for every unary formula H, F ∧ H and G ∧ H have the same stable
models,

(iii) F is equivalent to G in the logic of here-and-there,

(iv) for any set X of atoms, FX is equivalent to GX in classical logic.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 95

Proof of Theorems 5 and 7

• From (i) to (ii): obvious.

• From (ii) to (iii): assume that F is not equivalent to G in the logic of
here-and-there, and let 〈X, Y 〉 be an HT-interpretation that satisfies
F , but not G. Then X ⊆ Y , and by Lemma 24, X |= FY , X 6|= GY .
Since X |= FY , FY is not ⊥, which implies that Y |= F . By Lemma
22, it follows that Y |= FY .
• Case 1: Y 6|= GY . By Lemma 22, Y 6|= G, so that Y is not a stable

model of G ∧H for any H. But if we take H to be
∧

A∈Y
A then Y

is a stable model of F ∧ H. Indeed, by Lemma 23(a), (F ∧ H)Y

is equivalent to FY ∧ HY , which is the same as FY ∧ H; both
conjunctive terms of this formula are satisfied by Y , but the second
term is not satisfied by any proper subset of Y .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 96

Proof of theorems 5 and 7 (ctd)

• Case 2: Y |= GY . Since X 6|= GY , X is different from Y ; therefore,
X is a proper subset of Y . Let H be the unary formula

∧

A∈X
A ∧

∧

A,A′∈Y \X
(A→ A′).

Set Y is not a stable model of F ∧ H. As in Case 1, (F ∧ H)Y is
equivalent to FY ∧ H; X is proper subset of Y that satisfies both
conjunctive terms. We will show, on the other hand, that Y is a stable
model of G ∧ H, which contradics condition (ii). In view of Lemma
23(a), (G ∧ H)Y is equivalent to GY ∧ H. Clearly Y satisfies both
conjunctive terms; the only proper subset of Y that satisfies H is X,
and X does not satisfy GY .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 97

Proof of theorems 5 and 7 (ctd)

• From (iii) to (iv): if F and G are satisfied by the same HT-interpretations
then, by Lemma 24, for any set Y of atoms, FY and GY are satisfied
by the same sets of atoms.

• From (iv) to (i): immediate from Lemma 25.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 98

Lemma 26 and its proof

• LEMMA 26.
If X is a stable model of F then FX is equivalent to

∧

A∈X
A.

• PROOF:
Since all atoms occurring in these two formulas belong to X, it is suf-
ficient to show that the formulas are satisfied by the same subsets of
X. By the definition of a stable model, the only subset of X satisfying
FX is X.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 99

Lemma 27 and its proof

• LEMMA 27.
Let S be a set of atoms that contains all atoms occurring in a formula
F but does not contain any head atoms of a formula G. For any set X

of atoms, if X is a stable model of F ∧G then X ∩S is a stable model
of F .

• Since X is a stable model of F ∧ G, X |= F , so that X ∩ S |= F ,
and by Lemma 22, X ∩S |= FX∩S. It remains to show that no proper
subset Y of X ∩ S satisfies FX∩S.

• Let S′ be the set of head atoms of G, and let Z be X ∩ (S′ ∪ Y).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 100

Proof of Lemma 27 (ctd)

• CLAIM: Set Z has the following properties:

(i) Z ∩ S = Y ;

(ii) Z ⊂ X;

(iii) Z |= GX .

• To prove (i), note that since S′ is disjoint from S, and Y is a subset of X ∩ S,

Z ∩ S = X ∩ (S′ ∪ Y) ∩ S = X ∩ Y ∩ S = (X ∩ S) ∩ Y = Y .

• To prove (ii), note that set Z is clearly a subset of X. It cannot be equal to X,
because otherwise we would have, by (i),

Y = Z ∩ S = X ∩ S;

this is impossible, because Y is a proper subset of X ∩ S.

• Property (iii) follows from Lemma 20, because X |= G, and S′∪Y contains all head
atoms of G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 101

Proof of Lemma 27 (ctd)

• Since X is a stable model of F ∧G, from property (ii), we can conclude
that Z 6|= (F ∧G)X .

• Therefore, by Lemma 23(a) and property (iii), Z 6|= FX . Since all
atoms occurring in F belong to S, FX = FX∩S, so that we can rewrite
this formula as Z 6|= FX∩S.

• By property (i), we conclude that Y 6|= FX∩S.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 102

Proof of Theorem 8

• THEOREM 8.
Let F and G be formulas such that F does not contain any head atoms of G. A set
X of atoms is a stable model of F ∧ G iff there exists a stable model {A1, . . . , An}
of F such that X is a stable model of

(62) A1 ∧ . . . ∧An ∧G.

• PROOF:
Take formulas F and G such that F does not contain any head atoms of G, and let
S be the set of atoms occurring in F .

• Observe that if a set X of atoms is a stable model of a formula of the form (62),
where A1, . . . , An ∈ S, then X ∩ S = {A1, . . . , An}. Indeed, by Lemma 27 with
A1 ∧ . . . ∧ An as F , X ∩ S is a stable model of A1 ∧ . . . ∧ An, and the only stable
model of this formula is {A1, . . . , An}.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 103

Proof of Theorem 8 (ctd)
• Therefore, the assertion to be proved can be reformulated as follows: a set X of

atoms is a stable model of F ∧G iff

(i) X ∩ S is a stable model of F , and

(ii) X is a stable model of
∧

A∈X∩S

A ∧G.

• If X ∩S is not a stable model of F then X is not a stable model of F ∧G by Lemma
27.

• Suppose that X ∩S is a stable model of F . Then, by Lemma 26, F X∩S is equivalent
to

∧

A∈X∩S

A. Therefore, by Lemma 23(a),

(F ∧G)X ↔ F X ∧GX = F X∩S ∧GX ↔
∧

A∈X∩S

A ∧GX

= (
∧

A∈X∩S

A)X ∧GX ↔ (
∧

A∈X∩S

A ∧G)X.

• We can conclude that X is a stable model of F ∧ G iff X is a stable model of
∧

A∈X∩S

A ∧G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 104

Conclusion

• Many publications in the area of ASP are directed toward practical applications.

• The areas of science and technology where ASP may be useful are remarkably
diverse.

• Success would have been impossible without efficient, reliable, carefully crafted an-
swer set solvers.

• The main topic of this paper is theoretical.

• ASP is based on interesting mathematics, including some ideas developed in the
early days of modern logic.

• Intuitionistic logic plays an important role in this theory.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 105

Appendix A: Propositional Logic

• (Propositional) formulas are formed from propositional atoms and the 0-place
connective ⊥ using the binary connectives ∧, ∨, and→.

• We use
⊤ as shorthand for ⊥ → ⊥,
¬F as shorthand for F → ⊥,

F ↔ G as shorthand for (F → G) ∧ (G→ F).

• Atoms and negated atoms are called literals.

• The relation X |= F between a set X of atoms and a formula F is defined recur-
sively:

• for an atom A, X |= A if A ∈ X;
• X 6|= ⊥;
• X |= F ∧G if X |= F and X |= G;
• X |= F ∨G if X |= F or X |= G;
• X |= F → G if X 6|= F or X |= G.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 106

Syntax and Semantics (ctd)

• If X |= F , then we way that X satisfies F , or is a model of F .

• A formula is tautology, if it is satisfied by every set of atoms.

• A formula F is equivalent to a formula G if F ↔ G is a tautology (or, equivalently, if
F and G have the same models).

• An occurrence of an atom A in a formula F is positive if the number of implications
containing that occurrence in the antecedent is even, and negative otherwise.

• For example, both occurrences of p in (63) are positive, and q, r are negative:

(63) ((p→ q) ∧ r)→ p.

• An occurrence of an atom A in a formula F is strictly positive if it does not belong
to the antecedent of any implication in F . For example, the second occurrence of p
in (63) is strictly positive, and the first is not.

• Since ¬F is shorthand for F → ⊥, no occurrence of an atom in a formula of the
form ¬F can be strictly positive.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 107

Logic of Here-and-There

• A 3-valued logic; originally proposed by Arend Heyting (inventor of intuitionistic logic)
as a technical tool for the purpose of proving that intuitionistic logic is weaker than
classical.

• His truth values can be interpreted as follows:

• 0 denotes a correct proposition
• 1 denotes a false proposition
• 2 denotes a proposition that cannot be false but whose correctness is not proved

• We will identify a function from the set of atoms to the extended set of truth values
{0,1,2} with the ordered pair consisting of the set X of atoms that are mapped to
0 and the set Y of atoms that are mapped to 0 or 2.

• If an atom belongs to X then it is true here; if an atom belongs to Y then it is true
there.

• An HT -interpretation is an ordered pair 〈X, Y 〉 of sets of atoms such that X ⊆ Y .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 108

Logic of Here-and-There (ctd)

• The satisfaction relation |= between an HT-interpretation 〈X, Y 〉 and a formula F
is defined recursively:

• for an atom A, 〈X, Y 〉 |= A if A ∈ X;
• 〈X, Y 〉 6|= ⊥;
• 〈X, Y 〉 |= F ∧G if 〈X, Y 〉 |= F and 〈X, Y 〉 |= G;
• 〈X, Y 〉 |= F ∨G if 〈X, Y 〉 |= F or 〈X, Y 〉 |= G;
• 〈X, Y 〉 |= F → G if

(i) 〈X, Y 〉 6|= F or 〈X, Y 〉 |= G, and
(ii) Y |= F → G.

• A formula is valid in the logic of here-and-there if it is satisfied by every HT-
interpretation.

• A formula F is equivalent to a formula G in the logic of here-and-there if F ↔ G
is valid in the logic of here-and-there (or, equivalently, if F and G are satisfied by the
same HT-interpretations).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 109

Logic of Here-and-There

• Facts that relate the satisfaction relation of the logic of here-and-there to the satis-
faction relation of classical logic:

(64) 〈X, X〉 |= F iff X |= F .

(65) If 〈X, Y 〉 |= F then Y |= F .

(66) 〈X, Y 〉 |= ¬F iff Y |= ¬F .

• From (64): a formula can be valid in the logic of here-and-there only if it is a tautology.

• Two formulas can be equivalent to each other in the logic of here-and-there only if
they are classically equivalent.

• Difference: ¬¬p is not equivalent to p in the logic of here-and-there. Indeed, by (66),
the HT-interpretation 〈∅, {p}〉 satisfies ¬¬p, but it does not satisfy p.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 110

Natural Deduction

• In the natural deduction system for propositional logic, the derivable
objects are sequents- expressions of the form Γ ⇒ F , where F is a
formula and Γ is a finite set of formulas.

• The axiom schemas are

(67) F ⇒ F

and

(68)⇒ F ∨ ¬F .

• The latter is called the law of excluded middle.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 111

Inference rules

• The introduction rules are:

(∧I) Γ⇒F ∆⇒G
Γ,∆⇒F∧G

(∨I) Γ⇒F
Γ⇒F∨G

Γ⇒G
Γ⇒F∨G

(→ I) Γ,F⇒G
Γ⇒F→G

• The elimination rules are:

(∧E) Γ⇒F∧G
Γ⇒F

Γ⇒F∧G
Γ⇒G

(∨E) Γ⇒F∨G ∆1,F⇒H ∆2,G⇒H
Γ,∆1,∆2⇒H

(→ E) Γ⇒F ∆⇒F→G
Γ,∆⇒G

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 112

Inference rules (ctd)
• The contradiction rule is:

(C) Γ⇒⊥
Γ⇒F

• The weakening rule is:

(W) Γ⇒F
Γ′⇒F

if Γ ⊆ Γ′

• The negation introduction and negation elimination are:

Γ,F⇒⊥
Γ⇒¬F

Γ⇒F ∆⇒¬F
Γ,∆⇒⊥

• The introduction and elimination rules for equivalence are:

Γ⇒F→G ∆⇒G→F
Γ,∆⇒F↔G

Γ⇒F↔G
Γ⇒F→G

Γ⇒F↔G
Γ⇒G→F

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 113

Proof of a formula

• To prove a formula F in this system means to prove the sequent ⇒ F . Example:
proof of the equivalence

(69) (¬p→ p)↔ ¬¬p.

1. [axiom 67] ¬p→ p⇒ ¬p→ p
2. [axiom 67] ¬p⇒ ¬p
3. [by (→ E) from 2, 1] ¬p,¬p→ p⇒ p
4. [by (→ E) from 3, 2] ¬p,¬p→ p⇒ ⊥
5. [by (→ I) from 4] ¬p→ p⇒ ¬¬p
6. [by (→ I) from 5]⇒ (¬p→ p)→ ¬¬p
7. [axiom 67] ¬¬p⇒ ¬¬p
8. [by (→ E) from 2, 7] ¬p,¬¬p⇒ ⊥
9. [by (C) from 8] ¬p,¬¬p⇒ p
10. [by (→ I) from 9] ¬¬p⇒ ¬p→ p
11. [by (→ I) from 10]⇒ ¬¬p→ (¬p→ p)
12. [by (∧ I) from 6, 11]⇒ (¬p→ p)↔ ¬¬p

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 114

Properties of the deductive system

• The deductive system is sound and complete: a formula F is provable
in the system iff F is tautology.

• A formula is intuitionistically provable if it can be proved in the de-
ductive system without references to axiom schema (68).

• A formula F is intuitionistically equivalent to a formula G if F ↔ G

is intuitionistically provable.

• Example: ¬p → p is intuitionistically equivalent to ¬¬p, because the
proof of (69) contains no references to the law of excluded middle.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 115

Assertions

• According to the replacement property of intuitionistic logic, if F is a subformula of a
formula F ′, and G′ is obtained from F ′ by replacing an occurrence of F with another
formula G, then F ′ ↔ G′ is intuitionistically derivable from F ↔ G.

• Example: from the fact that ¬p → p is intuitionistically equivalent to ¬¬p we can
conclude that (¬p→ p) ∧ q is intuitionistically equivalent to ¬¬p ∧ q.

• Every intuitionistically provable formula is valid in the logic of here-and-there.

• If two formulas are intuitionistically equivalent then they are equivalent in the logic of
here-and-there.

• Assertions remain true if, instead of intuitionistic logic, we talk about the stronger
deductive system, obtained from classical by replacing (68) with the axiom schema
expressing the weak law of excluded middle:

(70)⇒ ¬F ∨ ¬¬F .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 116

Proof of equivalence

• The formulas p ∨ ¬p and ¬¬p→ p are equivalent to each other in the
logic of here-and-there:

1. [axiom 67] p ∨ ¬p⇒ p ∨ ¬p

2. [axiom 67] p⇒ p

3. [axiom 67] ¬p⇒ ¬p

4. [axiom 67] ¬¬p⇒ ¬¬p

5. [by (→ E) from 3, 4] ¬p,¬¬p⇒ ⊥

6. [by (C) from 5] ¬p,¬¬p⇒ p

7. [by (∨ E) from 1, 2, 6] p ∨ ¬p,¬¬p⇒ p

8. [by (→ I) from 7] p ∨ ¬p⇒ ¬¬p→ p

9. [by (→ I) from 8]⇒ (p ∨ ¬p)→ (¬¬p→ p)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 117

Proof of equivalence (ctd)

10. [axiom 67] ¬¬p→ p⇒ ¬¬p→ p

11. [axiom 70]⇒ ¬p ∨ ¬¬p

12. [by (∨ I) from 3] ¬p⇒ p ∨ ¬p

13. [by (→ E) from 4, 10] ¬¬p,¬¬p→ p⇒ p

14. [by (∨ I) from 13] ¬¬p,¬¬p→ p⇒ p ∨ ¬p

15. [by (∨ E) from 11, 12, 14] ¬¬p→ p⇒ p ∨ ¬p

16. [by (→ I) from 15]⇒ (¬¬p→ p)→ (p ∨ ¬p)

17. [by (∧ I) from 9, 16]⇒ (p ∨ ¬p)↔ (¬¬p→ p)

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 118

Stronger axiom schema

• This axiom schema is stronger than (70) and can be used for estab-
lishing the validity of formulas in the logic of here-and-there as well:

(71)⇒ F ∨ (F → G) ∨ ¬G.

• Nothing stronger would be acceptable.

• A propositional formula is valid in the logic of here-and-there iff it is
provable in the deductive system obtained from intuitionistic logic by
adding axiom schema (71).

• The theorem is due to Lex Hendriks.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 119

Appendix B: Traditional definition of a Stable

Model

• In [Gelfond and Lifschitz, 1988], a logic program is assumed to consist of rules of the
form

(72) A0 ← A1, . . . , Am, not Am+1, . . . , not An

where n ≥ m ≥ 0 and A0, . . . , An are atoms; we will call such expressions traditional
rules.

• A finite set of traditional rules with m = n, that is, rules of the form

(73) A0 ← A1, . . . , Am

is essentially a Horn formula.

• The traditional reduct of a traditional program Π relative to a set X of atoms is the
set of rules (73) for all rules (72) in Π such that

Am+1, . . . , An 6∈ X.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 120

Traditional stable model

• According to the 1988 definition, the stable model of a traditional pro-
gram Π is a set X of atoms with the following property: X is the

minimal model of the traditional reduct of Π relative to X.

• PROPOSITION 28.
For any traditional program Π, a set X of atoms is the minimal model
of the traditional reduct of Π relative to X iff X is a stable model of Π.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 121

Proof of Proposition 28

Let ΠX denote the traditional reduct of Π relative to X.

• Case 1: X 6|= Π. Set X is not a stable model of Π.

On the other hand, Π contains a rule (72) such that
A1, . . . , Am ∈ X and A0, Am+1, . . . , An 6∈ X.

The corresponding rule (73) in ΠX is not satisfied by X, so that X is not the minimal
model of ΠX.

• Case 2: X |= Π. We will show that ΠX and ΠX are satisfied by the same subsets
of X.

Since ΠX is the conjunction of the formulas RX for all rules R of Π, and ΠX is the
union of the programs {R}X for all rules R of Π, it is sufficient to verify this claim for
the case when Π is a single rule (72).

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 122

Proof of Proposition 28 (ctd)

If X contains at least one of the atoms Am+1, . . . , An, then ΠX is empty and ΠX is the
tautology ⊥ → AX

0 .

Otherwise ΠX is (73). If A1, . . . , Am ∈ X, then A0 ∈ X, because X |= Π; consequently
ΠX is the result of replacing Am+1, . . . , An in (72) with ⊥, which is equivalent to (73).

It remains to consider the case when Am+1, . . . , An 6∈ X and at least one of the atoms
A1, . . . , Am, say A1, does not belong to X. In this case ΠX is the tautology ⊥ → AX

0 .

On the other hand, ΠX is the rule (73) whose body contains A1 and consequently is not
satisfied by any subset of X. It follows that every subset of X satisfies ΠX .

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 123

Intuitive meaning

• Rule (73) can be viewed as a rule for generating atoms: we are allowed to generate
its head A0 as soon as all atoms A1, . . . Am in the body have been generated.

• The minimal model of a set of rules of the form (73) is the set of all atoms that can
be generated by this process, starting from the empty set.

• The traditional definition of a stable model can be thought of as an extension of this
idea to rules containing negative literals in the body.

• A rule (72) allows us to generate A0 as soon as we generated the atoms A1, . . . , Am

provided that non of the atoms Am+1, . . . , An can be generated using the rules
of the program.

• There is a vicious circle in this sentence: to decide whether a rule of Π can be used
to generate a new atom, we need to know which atoms can be generated using the
rules of Π.

• The traditional definition of a stable model overcomes this difficulty using a fixpoint
construction.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 124

Fixpoint construction

• Take a set X that you suspect may be exactly the set of atoms that
can be generated using the rules of Π.

• Under this assumption, Π has the same meaning as the traditional
reduct of Π relative to X, which is a set of rules of the form (73).

• Consider the minimal model of the traditional reduct.

• If this model is exactly identical to the set X that we started with, then
X was a good guess; it is indeed a stable model of Π.

Mathematical Foundations of Answer Set Programming

Knowledge Representation Lab – Texas Tech University 125

Relation with Prolog

• The definition of a stable model for traditional programs can be viewed as a possible
definition of a correct answer to a query in Prolog.

• Let Π be a Prolog program without variables: the set of ground rules obtained from
a Prolog program with variables by replacing each rule with all its ground instances.

• If Π is a traditional program with a unique stable model then the correct answer to a
ground query A is yes or no depending on whether A belongs to that model.

• From this perspective, a program with several stable models is bad: it does not
provide an unambiguous specificaiton for the behavior of a Prolog system. Programs
without answer sets are bad also.

• In ASP, on the other hand, programs without a unique answer set are quite useful:
they correspond to computational problems with many solutions, or with no solutions.

• The concept of stable model is only one of several available definitions of the seman-
tics of negation as failure. Two other definitions are based on program completion
and the well-founded model.

• These three definitions are not equivalent to each other, but each provides an ade-
quate description of the behavior of Prolog.

