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History

• Situation calculus was first introduced in 1963 by
John McCarthy as a way of logically specifying
dynamical systems in AI.

• A dynamical system that we want to control, simu-
late, analyze, can be axiomatized in situation cal-
culus.

• Through logical entailment, all else will follow, in-
cluding system control, simulation, and analysis.

• Once we get the logical specification right, the ax-
ioms are translated into Prolog code.
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Definitions

• Situation calculus is a second-order language specif-
ically designed for representing dynamically chang-
ing worlds.

• All changes in the world are result of named ac-
tions.

• A possible world history, which is simply a se-
quence of actions is represented by a first order
term called situation.
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Syntax

• The language Lsitcalc has three disjoint sorts: ac-
tion for actions, situation for situations, and ob-
jects for everything else that depends on the do-
main.

• Full set of connectives and quantifiers - ∧,¬,∃,∨.

• Countably infinite individual variable symbols of
each sort. For variables of sort situation and ac-
tion, s and a (with superscripts and subscripts)
are used respectively.
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Syntax (contd)

• Two function symbols of sort situation
• Constant symbol,S0 denoting the initial situa-

tion is an empty sequence of actions.
• Binary function symbol,

do: action × situation → situation.
do(a,s) denotes the successor situation to s
resulting from performing action a.

• Binary Predicate symbol < : situation × situation.
This defines an ordering relation on situations.
s < s

′
means that s is proper subsequence of s

′
.
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Syntax (contd)

• Binary Predicate symbol poss: action × situation.
poss(a,s) denotes that it is possible to perform ac-
tion a in situation s.

• Situation independent relations:
For n≥0, finite or countably infinite number of pred-
icate symbols with arity n of sort (action∪ object)n

Example:
human(joe), oddnumber(n), movingAction(run(L1,L2)).
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Syntax (contd)

• Situation independent functions:
For n≥0, finite or countably infinite number of func-
tion symbols with arity n of sort
(action ∪ object)n → object

Example:
height(mount everest), cost(pickup(person,object)).

• Action functions:
For n≥0, finite or countably infinite number of func-
tion symbols of sort (action ∪ object)n → action.
Example:
pickup(X), move(A,B).
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Syntax (contd)

• Relational fluents are relations whose truth val-
ues vary from situation to situation. For n≥0, fi-
nite or countably infinite number of predicate sym-
bols with arity n+1 and sorts (action ∪ object)n×

situation.
Example : ontable(x,s) , husband(x,y,s).

• Functional fluents are functions whose values vary
from situation to situation. For n≥0, finite or count-
ably infinite number of function symbols with arity
n+1 and sorts (action ∪ object)n×situation →

action ∪ object.
Example: age(mary,s), water level(tank,s).
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Foundational Axioms for situation

calculus

The following axioms help us capture that situations
are finite sequences of actions, and a certain sequence
of actions precedes another.

• Unique names axiom for situations.
do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2.

• Second order induction axiom.
(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃

(∀s) P (s).

• ¬s < S0.

• s < do(a, s
′
) ≡ s v s

′
.

All these axioms are domain independent and repre-
sented by Σ.
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Axiomatizing actions in situation

calculus

To represent the effects of actions the following ax-
ioms are proposed.

• Action precondition axioms

• Successor state Axioms

• Unique Names axioms for actions
For distinct action names A and B,
A(~x) 6= B(~y).

Identical actions have identical arguments:
A(x1, ..., xn) = A(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧

xn = yn
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Action precondition axioms

• These axioms specify conditions that must be sat-
isfied in order for an action to be executed in any
situation.

• For each action A(~x) there is an axiom
poss(A(~x), s) ≡ πA(~x, s).

πA(~x, s) is a first order formula with free variables
~x, s.
Example:
poss(pickup(r, x), s) ≡ [(∀z)¬holding(r, z, s)]

∧¬heavy(x) ∧ nextTo(r, x, s).
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Successor state axioms

• These axioms define the value of a relational or
functional fluent in the successor situation result-
ing from performing an action in the current situ-
ation.

• This axiom is logically constructed from the fol-
lowing axioms:
• Effect Axioms
• Explanation closure axioms



Natural actions, concurrency, and time in situation calculus

Knowledge Representation Lab – Texas Tech University 13

Effect Axioms

• These axioms specify how actions effect the val-
ues of fluents.

• Positive Normal form effect axiom for relational
fluent F
γ+
F (~x, a, s) ⊃ F (~x, do(a, s))

• Negative Normal form effect axiom for relational
fluent F
γ−
F (~x, a, s) ⊃ ¬F (~x, do(a, s))

• Effect axioms for functional fluents
γf(~x, y, a, s) ⊃ f(~x, do(a, s)) = y

Examples :
fragile(x, s) ⊃ broken(x, do(drop(r, x), s)).

(∃b
′
)[a = move(b, b

′
) ∧ y = height(b

′
, s) + 1]

⊃ height(b, do(a, s)) = y.
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Explanation closure axiom

This axiom captures the assumption that if F’s truth
value changes from false in current situation s to true
in the next situation do(a,s) resulting from doing a then
γ+
F (~x, a, s) must have been true. Similarly F’s truth

value from true to false.

• F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ−
F (~x, a, s)

• ¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ+
F (~x, a, s)

• For functional fluents,
f(~x, do(a, s)) 6= f(~x, s) ⊃ ∃y γf(~x, y, a, s)

Example:
broken(x, s) ∧ ¬broken(x, do(a, s)) ⊃

(∃r)a = repair(r, x).
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Successor state axiom for fluent F

Suppose that T is a first order theory that entails
¬(∃~x, a, s).γ+

F (~x, a, s) ∧ γ−
F (~x, a, s)

then T entails that - effect axioms along with explana-
tion closure axioms are logically equivalent to

• F (~x, do(a, s)) ≡ γ+
F (~x, a, s)∨F (~x, s)∧¬γ−

F (~x, a, s)

This is the successor state axiom for relational flu-
ent F.

• For Functional fluents,
f(~x, do(a, s)) = y ≡ γf(~x, y, a, s)∨y = f(~x, s)∧

¬(∃y
′
)γf(~x, y

′
, a, s)

Example:
broken(x, do(a, s)) ≡ (∃r)(a = drop(r, x)) ∧

fragile(x, s)∨broken(x, s)∧¬(∃r)a = repair(r, x)
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Executable situation

• Executable situations are those action histories in
which it is actually possible to perform the actions
one after the other.

• This definition allows us to know whether each
action leading upto the current situation does not
violate its precondition.

executable(s)
def
= (∀a, s∗).do(a, s∗) v s ⊃ poss(a, s∗).
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Introducing concurrency and

continuous time in situation

calculus

We now expand Situation calculus to include actions
that occur in continuous time and also actions that oc-
cur simultaneously.
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Dealing with concurrency

• A concurrent action is a collection of simple ac-
tions that occur at the same time.

• Modeling the possibility of concurrent action exe-
cution involves many formal and conceptual prob-
lems.

• If actions have duration, then what is a concurrent
action
• Do all actions have the same duration ?.
• Is it that only their time segments overlap ?.
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Overcoming problems

• Actions with duration are conceived as processes
represented by relational fluents and

• Durationless (instantaneous) actions that initiate
and terminate these processes are introduced.

Example:
The action walk(x,y) can be replaced by instantaneous
actions startWalk(x,y) and endWalk(x,y) and process
of walking from x to y by walking(x,y,s).

• With this device of instantaneous start and end
actions, arbitrarily complex concurrency can be
represented.

Example:
{startWalk(A,B), startChewgum}, {endChew,startSinging},
{endWalk(A,B)}
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Sequential Temporal Situation

Calculus

• Sequential temporal situation calculus is a result
of adding explicit representation of time to sequen-
tial situation calculus.

• This addition helps us specify the exact times or
range of times at which actions must occur.

• This is achieved by adding new temporal argu-
ment to all instantaneous actions.

Example:
startPushing(x,t) is the instantaneous action of push-
ing object x at time t.
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Foundational Axioms for

Sequential Temporal Situation

calculus

• The foundational axioms are obtained by adding
a new axiom to the existing foundational axioms
of sequential situation calculus.

• To define this new axiom the function symbol,
time: action → reals is introduced.
time(a) denotes the time of occurrence of action
a.

• Therefore, for every action A(~x, t),
time(A(~x, t)) = t, is the axiom for specifying
time of occurrence of action A.
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Foundational Axioms contd..

• A second function symbol, start: situation → reals
is introduced. start(s) denotes the start time of
situation s.

• Therefore, start(do(a,s)) = time(a) 3

denotes that the start time of a situation result-
ing from performing a in situation s is the time of
occurrence of action a.

• 3 along with Σ are foundational axioms of se-
quential temporal situation calculus.
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Executable Situation

• Since time is introduced , there is an addition to
the definition of executable situation.

• This new definition ensures that the actions in the
sequence do not have decreasing times of occur-
rences.

• executable(s)
def
= (∀a, s∗).do(a, s∗) v s ⊃

poss(a, s∗) ∧ start(s∗) ≤ time(a)

• start(s∗) ≤ time(a) permits action sequences
in which time of an action is same as time of pre-
ceding action. This condition is useful when we
have enabling actions.
Example:
do(startFalling(t), do(cutstring(t),S0)).
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Concurrent,Non-Temporal

Situation Calculus

• The focus is on representing concurrent actions in
situation calculus ignoring time for the moment.

• A concurrent action is a set of possibly infinite
number of simple actions all having equal but un-
specified duration.

• The variables c, c
′
,... are used to represent con-

current actions.

• The notation a ε c means that simple action a is
one of the actions of concurrent action c.

• A situation represents sequence of concurrent ac-
tions.
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Foundational Axioms for

concurrent non-temporal situation

calculus

The first four are similar to those of sequential non-
temporal situation calculus.The a is replaced by c here.

1. do(c1, s1) = do(c2, s2) ⊃ c1 = c2 ∧ s1 = s2.

2. Second order induction axiom.
(∀P ).P (S0) ∧ (∀c, s)[P (s) ⊃ P (do(c, s))] ⊃

(∀s) P (s).

3. ¬s < S0.

4. s < do(c, s
′
) ≡ s v s

′
.
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Foundational axioms contd..

5. In addition we have two more axioms,

poss(a, s) ⊃ poss({a}, s).

6. poss(c, s) ⊃ (∃a)aεc ∧ (∀a)[aεc ⊃ poss(a, s)].

This axiom implies that a concurrent action is possi-
ble if it contains atleast one action and all its simple
actions are possible.
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Precondition Interaction problem

• The converse of 6 does not hold and therefore it
is not biconditional.
Example:
poss(startMoveLeft, s) ≡ ¬movingLeft(s).

poss(startMoveRight, s) ≡ ¬movingRight(s).

But, poss({startMoveLeft, startMoveRight}, s)

is false.

• Therefore two actions may each be possible, ac-
tion preconditions jointly consistent, but they can-
not occur concurrently.

• This problem is also called Precondition interac-
tion problem.
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Some more definitions

• The definition of executable situation is now ex-
tended for concurrent actions.
executable(s)

def
= (∀c, s∗).do(c, s∗) v s ⊃ poss(c, s∗)

• Consider two people shooting at each other. shoot(x,y)
is the instantaneous action of person x shooting
at person y.
The following successor state axiom:
dead(x, do(c, s)) ≡ (∃y)a = shoot(y, x)ε c

∨ dead(x, s).
entails the following:
dead(Tom, do({shoot(Tom, Harry),

shoot(Harry, Tom)}, S0)).

dead(Harry, do({shoot(Tom, Harry),

shoot(Harry, Tom)}, S0))
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Concurrent Temporal situation

calculus

• The focus is to accomodate time into concurrent
non-temporal situation calculus

• The axiom for defining time of occurrence of an
action is used again here.
time(A(~x, t)) = t.

• Some new definitions are introduced.
coherent(c)

def
= (∃a)aεc ∧ (∃t)∀a

′
[a

′
εc ⊃

time(a
′
) = t]

A coherent concurrent action is one in which there
is atleast one action in the collection, and for which
all of the instantaneous actions in the collection
occur at the same time.
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Foundational axioms for
concurrent temporal situation

calculus
1. The time for concurrent action is defined as

coherent(c) ⊃ [time(c) = t ≡ (∃a)(aεc∧
time(a) = t)]

2. The start time of a situation is defined as
start(do(c, s)) = time(c)

3. poss(a, s) ⊃ poss({a}, s)

4. poss(c, s) ⊃ coherent(c)∧(∀a)[aεc ⊃ poss(a, s)].
The converse of 4 does not hold.

The above four axioms along with foundational ax-
ioms 1 through 4 for concurrent non-temporal situa-
tion calculus are the foundational axioms for concur-
rent temporal situation calculus.
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Executable situation

• Executable situation is defined as follows:
executable(s)

def
= (∀c, s∗).do(c, s∗) v s ⊃

poss(c, s∗) ∧ start(s∗) ≤ time(c)

• The definition means that all concurrent actions
in s are possible and times of action occurrences
are non-decreasing.
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Natural Actions

• Natural actions occur in response to known laws
of physics like a ball bouncing at times predicted
by Newtonian laws of motion.

• Fundamental property : They must occur at their
predicted times, provided no earlier action(agent
or natural) prevents them from occurring.
Example: A catch action before the bounce pre-
vents the bounce action.



Natural actions, concurrency, and time in situation calculus

Knowledge Representation Lab – Texas Tech University 33

What is needed ?

• Since several natural actions may occur simulta-
neously, a theory of concurrency is needed.

• Actions are modeled by equations of motion, there-
fore continuous time must be represented.

• Since concurrent temporal situation calculus has
these properties, it provides the foundations for
representing natural actions.
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Representing physical laws

• Laws of physics are embodied in action precondi-
tion axioms.
Example:
poss(bounce(t), s) ≡ isFalling(s) ∧

{height(s) + vel(s)[t − start(s)] −
1
2G[t − start(s)]2 = 0}.

• height(s) and vel(s) are the height and velocity of
the ball at start of situation s.

• poss(bounce(t),s) means that bounce is physically
possible at time t during situation s.
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Properties of natural actions

• Nature does not have free will to withhold her ac-
tions; if time and circumstances are right, the ac-
tion must occur.

• Natural World Assumption.
∀a natural(a).

restricts the domain of discourse of actions to nat-
ural actions only.

• executable(do(c, s)) ∧ executable(do(c
′
, s)) ∧

NWA ⊃ c = c
′

This lemma tells us that natural worlds are deter-
ministic: if there is a executable successor situa-
tion, it is unique.
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Least Natural Time Points

• Least natural time point is the earliest time during
situation s at which a natural action can occur.

• This definition plays a central role in theorizing
about natural actions.

• lntp(s, t)
def
= (∃a)[natural(a) ∧ poss(a, s)

∧ time(a) = t] ∧
(∀a)[natural(a) ∧ poss(a, s)
⊃ time(a) ≥ t].

• Least natural time point is unique.
lntp(s, t) ∧ lntp(s, t

′
) ⊃ t = t

′
.
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Least Natural Time Point

Condition

• In some cases, least natural time point may not
exist
Example:
(∀a).natural(a) ≡ (∃x, t)a = B(x, t),

where x is non-zero natural number
poss(B(x, t), s) ≡ t = start(s) + 1/x.

• The following sentence called LNTPC is introduced
for such cases:
(∀s).(∃a)[natural(a)∧poss(a, s)] ⊃ (∃t)lntp(s, t).



Natural actions, concurrency, and time in situation calculus

Knowledge Representation Lab – Texas Tech University 38

Why is LNTPC important?

• When LNTPC holds, the following theorem pro-
vides a complete characterization of executable
situtations.

• Theorem: The foundational axioms for the con-
current, temporal situation calculus together with
definitions of LNTPC and NWA entail:
LNTPC ∧ NWA ⊃

executable(do(c, s)) ≡ {executable(s) ∧ poss(c, s)
∧ start(s) ≤ time(c) ∧
(∀a)[aεc ≡ poss(a, s)
∧ lntp(s, time(a))]}
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Example of a Natural world

• Consider two elastic balls B1 and B2 rolling along
x-axis, between two walls W1 and W2 that are
parallel to y-axis.

• The balls bounce indefinitely between the walls
and occasionally collide with each other.

• The bounces and collisions change the velocities
of the ball.

• Let wallLocation(w) denote the distance of wall w
from y-axis.
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Primitive actions and their

precondition axioms

• collide(b1, b2, t).

Balls b1 and b2 collide at time t.

• bounce(b, w, t).

Ball b bounces against wall w at time t.

• poss(collide(b1, b2, t), s) ≡ vel(b1, s) 6= vel(b2, s)
∧ t > start(s) ∧
t = start(s)−
pos(b1,s)−pos(b2,s)
vel(b1,s)−vel(b2,s)

• poss(bounce(b, w, t), s) ≡ vel(b, s) 6= 0
∧ t > start(s) ∧
t = start(s)+
wallLocation(w)−pos(b,s)

vel(b,s)
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Fluents and their successor state

axioms

• pos(b,s). A functional fluent denoting the position
of ball b in situation s.
pos(b, do(c, s)) = pos(b, s)+vel(b, s)∗(time(c)−

start(s)).

• vel(b,s). A functional fluent denoting the velocity
of ball b in situation s.
vel(b, do(c, s)) = v ≡

(∃w, t)bounce(b, w, t) ε c ∧ v = −vel(b, s) ∨

¬(∃w, t)bounce(b, w, t) ε c∧(∃b
′
, t)[v = vel(b

′
, s)∧

(collide(b, b
′
, t) ε c ∨ collide(b

′
, b, t) ε c)] ∨

v = vel(b, s) ∧ ¬(∃b
′
, t)[collide(b, b

′
, t) ε c ∨

collide(b, b
′
, t) ε c]∧¬(∃w, t)bounce(b, w, t) ε c.
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Initial situation

• B1 6= B2, W1 6= W2,

• pos(B1, S0) = 0, pos(B2, S0) = 120,

• vel(B1, S0) = 10, vel(B2, S0) = −5,

• wallLocation(W1) = 0, wallLocation(W2) =

120.

• Domain closure axiom for natural actions:
natural(a) ≡ (∃b1, b2, t)[b1 = B1 ∧ b2 = B2

∧ a = collide(b1, b2, t)] ∨
(∃b, w, t)[(b = B1 ∨ b = B2)
∧ (w = W1 ∨ w = W2) ∧
a = bounce(b, w, t)].
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Results

The following is output received under ECLIPSE Pro-
log for simulating the first 10 concurrent actions for the
previous natural world example.

• [[collide(b1, b2,8.0)], [bounce(b2, w2,12.0)],

[bounce(b1, w1,24.0), bounce(b2, w1,24.0),

collide(b1, b2,24.0)],

[bounce(b2, w2,36.0)], [collide(b1, b2,40.0)],

[bounce(b1, w1,48.0), bounce(b2, w2,48.0)],

[collide(b1, b2,56.0)], [bounce(b2, w2,60.0)],

[bounce(b1, w1,72.0), bounce(b2, w1,72.0),

collide(b1, b2,72.0)]

[bounce(b2, w2,84.0)]]
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Comments

• Unlike actions, the time argument is not added to
the fluents. Therefore, the values of fluents are
known only at the start of a situation.

• In some Dynamical systems, the values of func-
tions such as temperature must be monitored con-
tinuously with time because they may trigger some
events. The approach of situation calculus will not
be useful to represent such functions.

• Situation calculus does not encourage the use of
state constraints, therefore the language is less
expressive.

• The axioms of situation calculus are applicable
only for deterministic actions.


