On semantics of STRIPS By Vladimir Lifschitz

Presented by Forrest Sheng Bao

KR Seminar, Dept. of Computer Science, Texas Tech University

Oct. 7, 2011

Outline

Introduction to STRIPS

Semantics of STRIPS

The STRIPS

- STRIPS: n. 1) An automated planner by Fikes and Nilsson in 1971 2) The input language of the planner.
- It operates on world models, represented by sets of formulas of first-order logic.
- World model are changed by operators.

The STRIPS

- STRIPS: n. 1) An automated planner by Fikes and Nilsson in 1971 2) The input language of the planner.
- It operates on world models, represented by sets of formulas of first-order logic.
- World model are changed by operators.

The STRIPS

- STRIPS: n. 1) An automated planner by Fikes and Nilsson in 1971 2) The input language of the planner.
- It operates on world models, represented by sets of formulas of first-order logic.
- World model are changed by operators.

Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A world model is any set of sentences of L.
- An operator description is a triple of sentences of L, $\langle P, D, A \rangle$
 - ▶ P: precondition
 - ► D: delete lis
 - ► A: add list

Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A world model is any set of sentences of L.
- An operator description is a triple of sentences of L, $\langle P, D, A \rangle$
 - P: precondition
 - D: delete list
 - ► A: add list

Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A world model is any set of sentences of L.
- An operator description is a triple of sentences of L, $\langle P, D, A \rangle$
 - ► *P*: precondition
 - ► D: delete list
 - ► A: add list

STRIPS system

A STRIPS system Σ consists of

- ullet an initial world model M_0
- a set *Op* of symbols called operators
- a family of operator descriptions $\{P_{\alpha}, D_{\alpha}, A_{\alpha}\}_{\alpha \in Op}$

STRIPS system

A STRIPS system Σ consists of

- \bullet an initial world model M_0
- a set *Op* of symbols called operators
- a family of operator descriptions $\{P_{\alpha}, D_{\alpha}, A_{\alpha}\}_{\alpha \in Op}$

STRIPS system

A STRIPS system Σ consists of

- ullet an initial world model M_0
- a set *Op* of symbols called operators
- a family of operator descriptions $\{P_{\alpha}, D_{\alpha}, A_{\alpha}\}_{\alpha \in Op}$

An example

modified from original STRIPS paper

operator pushto(X, Y): robot pushes object X next to Y

- Precondition: $pushable(X) \land next to(robot, X)$
- Delete list: atrobot(\$), nextto(robot,\$), nextto(\$, X), at(X,\$), nextto(X,\$)
- Add list: nextto(X, Y), nextto(Y, X), nextto(robot, X)

An example

modified from original STRIPS paper

operator pushto(X, Y): robot pushes object X next to Y

- Precondition: $pushable(X) \land nextto(robot, X)$
- Delete list: atrobot(\$), nextto(robot,\$), nextto(\$, X), at(X,\$), nextto(X,\$)
- Add list: nextto(X, Y), nextto(Y, X), nextto(robot, X)

An example

modified from original STRIPS paper

operator pushto(X, Y): robot pushes object X next to Y

- Precondition: $pushable(X) \land nextto(robot, X)$
- Delete list: atrobot(\$), nextto(robot,\$), nextto(\$, X), at(X,\$), nextto(X,\$)
- Add list: nextto(X, Y), nextto(Y, X), nextto(robot, X)

- For a STRIPS system Σ , a *plan* is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.
- A plan defines a sequence of world models M_0, M_1, \ldots, M_N , where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.
- $\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.
- We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.

- For a STRIPS system Σ , a *plan* is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.
- A plan defines a sequence of world models M_0, M_1, \ldots, M_N , where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.
- $\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.
- We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.

- For a STRIPS system Σ , a *plan* is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.
- A plan defines a sequence of world models M_0, M_1, \ldots, M_N , where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.
- $\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.
- We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.

- For a STRIPS system Σ , a *plan* is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.
- A plan defines a sequence of world models M_0, M_1, \ldots, M_N , where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.
- $\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.
- We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

- The world described by language L at any instant is in a *state*.
- An action is a partial function from from states to states.
- If f(s) is defined, we say that f is applicable in state s and f(s) is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_{α} .
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha}=(\alpha_1,\ldots,\alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}_N}$ to be the composite action $f_{\alpha_N}\ldots f_{\alpha_1}$.

How sound is STRIPS in describing a world?

Definition A

An operator description (P, D, A) is sound relative to an action f if for every state s such that P is satisfied in s,

- f is applicable in state s,
- every sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s).

How sound is STRIPS in describing a world?

Definition A

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s).

How sound is STRIPS in describing a world?

Definition A

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- \bullet f is applicable in state s,
- every sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s).

How sound is STRIPS in describing a world?

Definition A

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- \bullet f is applicable in state s,
- every sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s).

How sound is STRIPS in describing a world?

Definition A

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- \bullet f is applicable in state s,
- every sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s).

Soundness cond.

Is this semantics good?

Problems

- Atoms in the delete list of pushto(X, Y) are obviously not the only sentences that may become false after action execution.
- Their conjunction or disjunction, e.g, atrobot(\$) ∧ nextto(X,\$), or any sentence of the form A ∧ F (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.
- Can we limit sentences in delete list as atoms only?

Problems

- Atoms in the delete list of pushto(X, Y) are obviously not the only sentences that may become false after action execution.
- Their conjunction or disjunction, e.g, $atrobot(\$) \land nextto(X,\$)$, or any sentence of the form $A \land F$ (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.
- Can we limit sentences in delete list as atoms only?

Problems

- Atoms in the delete list of pushto(X, Y) are obviously not the only sentences that may become false after action execution.
- Their conjunction or disjunction, e.g, atrobot(\$) ∧ nextto(X,\$), or any sentence of the form A ∧ F (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.
- Can we limit sentences in delete list as atoms only?

Non-atomic sentences in world model

- Non-atomic sentences in world model will never be removed!
- Thus, they have to be satisfied in all states.

Non-atomic sentences in world model

- Non-atomic sentences in world model will never be removed!
- Thus, they have to be satisfied in all states.

Second try on semantics

Definition B

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every atomic sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s) and every non-atomic sentence in A is satisfied in all states of the (future) world.

 Σ is sound if M_0 is satisfied in the initial state s_0 , each operator description $(P_{\alpha}, D_{\alpha}, A_{\alpha})$ is sound relative to f_{α} , and every non-atomic sentence in M_0 is satisfied in all states of the world.

Second try on semantics

Definition B

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every atomic sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s) and every non-atomic sentence in A is satisfied in all states of the (future) world.

 Σ is sound if M_0 is satisfied in the initial state s_0 , each operator description $(P_\alpha, D_\alpha, A_\alpha)$ is sound relative to f_α , and every non-atomic sentence in M_0 is satisfied in all states of the world.

- The delete list of push(X, Y) includes nextto(robot,\$) but not nextto(\$, robot).
- This is "a trick carefully planned by the authors."
- nextto(\$,robot) never appears in initial model or add list of any operator.
- We need to slightly modify Definition B.

- The delete list of push(X, Y) includes nextto(robot,\$) but not nextto(\$, robot).
- This is "a trick carefully planned by the authors."
- nextto(\$,robot) never appears in initial model or add list of any operator.
- We need to slightly modify Definition B.

- The delete list of push(X, Y) includes nextto(robot,\$) but not nextto(\$, robot).
- This is "a trick carefully planned by the authors."
- nextto(\$, robot) never appears in initial model or add list of any operator.
- We need to slightly modify Definition B.

- The delete list of push(X, Y) includes nextto(robot,\$) but not nextto(\$, robot).
- This is "a trick carefully planned by the authors."
- nextto(\$, robot) never appears in initial model or add list of any operator.
- We need to slightly modify Definition B.

The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from E is called *essential*.

Definition (

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every essential sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s) and every non-essential sentence in A is satisfied in all states of the world.

 Σ is sound if M_0 is satisfied in the initial state s_0 , each operator description $(P_{\alpha}, D_{\alpha}, A_{\alpha})$ is sound relative to f_{α} , and every non-essential sentence in M_0 is satisfied in all states of the world.

The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from E is called *essential*.

Definition C

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every essential sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s) and every non-essential sentence in A is satisfied in all states of the world.

 Σ is sound if M_0 is satisfied in the initial state s_0 , each operator description $(P_{\alpha}, D_{\alpha}, A_{\alpha})$ is sound relative to f_{α} , and every non-essential sentence in M_0 is satisfied in all states of the world.

The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from Eis called essential

Definition C

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every essential sentence that is satisfied in s and does not belong to D is satisfied in f(s),
- A is satisfied in f(s) and every non-essential sentence in A is satisfied in all states of the world.

 Σ is sound if M_0 is satisfied in the initial state s_0 , each operator description $(P_{\alpha}, D_{\alpha}, A_{\alpha})$ is sound relative to f_{α} , and every non-essential sentence in M_0 is satisfied in all states of the world.

In memory of

