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Abstract. We give a logic programming based account of probability and de-
scribe a declarative language P-log capable of reasoning which combines both
logical and probabilistic arguments. Several non-trivial examples illustrate the
use of P-log for knowledge representation.

1 Introduction

A man is sitting at a blackjack table, where cards are being dealt from a single
deck. What is the probability he is dealt a blackjack (two cards, one of which
is an ace, and the other of which is a 10 or a face card)? The standard answer
is 4 ∗ 16/C(52, 2). Now suppose that on the previous hand, cards removed
from the deck were a king, two 3’s, an 8 and a 5. This changes the resulting
calculation – but only for someone who saw the cards dealt, and takes them into
account. Considering more information could change the result even further. In
fact, the probability the player receives a blackjack will be either 1 or 0 if we
take into account the arrangement of the already-shuffled cards lying in the
shoe.

This simple example illustrates an important point: In order to be well posed, questions
about probabilities must be asked and answered with respect to a body of knowledge.
In this paper we introduce P-log, a language for representing such knowledge. P-log
allows the user to represent both logical knowledge and basic probabilistic information
about a domain; and its semantics provides a mechanism for systematically deriving
conditional and unconditional probabilities from the knowledge represented. P-log uses
A-Prolog3 or its dialects to express logical knowledge. Basic probabilistic information
is expressed by probability atoms, saypr(a|c B) = v, which is read intuitively as
sayinga is caused by factors determined byB with probability v. As noted in [15],
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causal probabilities differ from ordinary conditional probabilities in two respects. First,
a causal probability statement implicitly represents a set of conditional independence
assumptions: given its causeC, an effectE is probabilistically independent of all factors
except the (direct or indirect) effects ofE. Second, causal probabilities can be used to
determine the effects of actions which interrupt the normal mechanisms of a model,
while conditional probabilities cannot do this in general (see Example 4). Both of these
differences are captured in the semantics of P-log.

2 The P-log Language

2.1 Syntax of P-log

Let L be a dialect of A-Prolog (e.g. [12, 13, 3, 2]). Aprobabilistic logic program(P-
log program),Π, overL consists ofsorted signature, declarations, regular rulesof L,
probabilistic information, observations, andactions.

Signature: The sorted signatureΣ of Π contains setsO, F, andR of object, function,
and relation names respectively. We assumeF is the disjoint union of setsFr andFa.
Members ofFa will be calledattributes. Terms will be formed as usual fromO and
Fr, and atoms as usual fromR and the set of terms. In addition, we allow atoms of
the forma(t) = t0, wheret0 is a term,t a vector of terms, anda ∈ Fa. Terms and
literals are normally denoted by (possibly indexed) letterst andl respectively;t stands
for a vector of terms. Lettersc’s, a’s, andr’s will be used as generic names for sorts,
attributes and relations respectively. Other lower case letters will denote objects; capital
letters will stand for variables. A rule with variables will be viewed as a shorthand for
the collection of its ground instances (with variables replaced by properly sorted ground
terms).

The declaration of a P-log program is a collection of definitions of sorts, and typing
information for attributes and relations.

A sort c can be defined by explicitly listing its elements,c = {x1, . . . , xn}, or by a
logic program with a unique answer setA. In the latter casex ∈ c iff c(x) ∈ A. A
statement

rel r : c1 × . . .× cn (1)

specifies sorts for parameters ofn-ary relationr. The domain and range of an attribute
a are given by a statement

a : c1 × . . .× cn → c0 (2)

If n = 0 we simply writerel r anda : c0 respectively.

The following example will be used throughout this section.

Example 1.Consider a domain containing two dice. A P-log programΠ0 modeling
the domain will have a signatureΣ containing the names of the two dice,d1 and
d2, an attributeroll mapping each die into its value, an integer from1 to 6, relations
owns(D, P ), even(D), andeven whereP andD range over the sortsperson and



dice respectively, and “imported” arithmetic functions+ andmod. The corresponding
declarations,D1, will be as follows:

dice = {d1, d2}. score = {1, 2, 3, 4, 5, 6}. person = {mike, john}.
roll : dice→ score.
rel owns : dice× person, even : dice, even.

Theregular part of a P-log program consists of a collection of rules ofL. A rule can
contain atoms of the forma(t) = y which are viewed as shorthand for anL atom
a(t, y)). For instance, regular partD2 of programΠ0 may contain rules of A-Prolog

even(D)← roll(D) = Y, Y mod 2 = 0.
¬even(D)← not even(D).
even← roll(d1) = Y1, roll(d2) = Y2, (Y1 + Y2) mod 2 = 0.
owns(d1, mike). owns(d2, john).

Probabilistic information consist of statements of the form:

random a(t) : B (3)

pr(a(t) = y |c B) = v (4)

wherev ∈ [0, 1], B is a collection ofΣ-literals, andpr is a special symbol not belonging
to Σ. By pr(a(t) = y |c B) we denote the probability ofa(t) = y being caused by
factors determined byB. If B is empty we simply writepr(a(t) = y). (3) says that,
givenB, the value ofa(t) is normally selected at random; (4) gives a causal probability
of a particular selection. For instance, the dice domain may include probabilistic part,
D3:

random roll(D).
pr(roll(D) = Y |c owns(D, john)) = 1/6.
pr(roll(D) = 6 |c owns(D, mike)) = 1/4.
pr(roll(D) = Y |c Y �= 6, owns(D, mike)) = 3/20.

This says that the die owned by John is fair, while the die owned by Mike is biased to
roll 6 at a probability of.25. Statements of type (4) will be sometimes referred to as
probabilistic atoms.

We will have a special agreement for boolean attributes. First,pr(a(t) = true) and
pr(a(t) = false) will be written aspr(a(t)) andpr(¬a(t)). Second, for each proba-
bilistic atompr(a(t)) = v from the program we will automatically generate the atom
pr(¬a(t)) = 1− v. This will allow the user to write fewer probabilistic atoms.

Observations andactions are statements of the respective forms

obs(l). do(l).

Observations are used to record the outcomes of random events. The dice domain may,
for instance, contain{obs(roll(d1) = 4)} recording the outcome of rolling diced1.
do(l) indicates thatl is made true as a result of a deliberate (non-random) action. For
instance,{do(roll(d1) = 4)} may indicate thatd1 was simply put on the table in the



described position. The meaning ofdo is briefly discussed in the definition of the seman-
tics and in Examples 3 and 5. For more detailed discussion of the difference between
actions and observations see [15]. The programΠ0 obtained fromΠ by removing ob-
servations and actions will be referred to as thebaseof Π.

2.2 Semantics of P-log

The semantics of a probabilistic programΠ (over dialectL of A-Prolog) is given by the
sets of beliefs of a rational agent associated withΠ, together with their probabilities.
Sometimes we refer to these sets as possible worlds ofΠ. Formulasof Π are con-
structed from atoms and the symboltrue using∧, or , and¬. The semantics of P-log
is based on the following steps:

1. The P-log programΠ is mapped to a programΠ ′ of L (see below).
2. The set,W , of Σ-literals from an answer set ofΠ ′ is viewed as apossible world

(answer set) ofΠ. W can be viewed as a partial interpretation of a formulaF which
can be true, false, or undefined inW .

3. Theunnormalized probability, P̂Π(W ), of a possible worldW is

P̂Π(W ) =
∏

pr(l,v)∈W

v

4. Theprobability of a formulaA, PΠ(A), is defined as the sum of the unnormal-
ized probabilities of the possible worlds ofΠ satisfyingA divided by the sum of
the unnormalized probabilities of all possible worlds ofΠ. We refer toPΠ as the
probability measuredefined byΠ.

5. Theconditional probability, PΠ(A|B), is defined as the probabilityPR(A) where
R = Π ∪ {obs(B)}. (See Proposition 2 for the relationship between this notion
and the usual definition).

Π ′ is a program ofL consisting of sort declarations ofΠ (with c = {x1, . . . , xn} inter-
preted asc(x1), . . . , c(xn)), its regular part, actions and observations, and the collection
of rules (5)-(12).

• For each non-boolean attributea with range{y1, . . . , ym}:
a(X, y1) or . . . or a(X, ym)← random(a(X)) (5)

• For each boolean attributea:

a(X) or ¬a(X)← random(a(X)) (6)

(Note that in both casesX will not be present for attributes of arity0).

• For each attributea:

¬a(X, Y1)← a(X, Y2), Y1 �= Y2, (7)

The rules (5),(6),(7) imitate random selection of the values ofa.



• For each declaration (3):

random(a(t))← B, not ¬random(a(t)) (8)

This rule captures the meaning of “normally” in the informal interpretation of (3).

• Cancellation axiom for (8) for every attributea:

¬random(a(X))← do(a(X) = Y ) (9)

This axiom (along with (11)) captures the meaning of thedo statement: the value of
a(X) is not random if it is selected by a deliberate action.

• For each probability atom (4):

pr(a(t, y), v)← B, a(t, y), random(a(t)). (10)

This rule assigns probabilityv to a(t) = y in every possible world in whicha(t) = y is
caused byB.

• Observations and deliberate actions: For every attributea,

← obs(a(X, Y )), not a(X, Y )). a(X, Y ))← do(a(X, Y )). (11)

These rules are used to make sure that the program’s beliefs match the reality. Note
that the latter establishes the truth ofl while the former only eliminates models not
containingl.

• Eliminating impossible worlds:

← pr(a(X, Y ), 0). (12)

This rule ensures that every possible world of the program is truly possible, i.e., has a
non-zero probability. This completes the construction ofΠ ′.

Definition 1. A probabilistic programΠ is said to beconsistentif

1. Π ′ is consistent (i.e., has a consistent answer set).
2. Let Π0 be the base ofΠ. Then, for any probability atompr(l|cB) = y from Π0,

the conditional probabilityPΠ0(l|B) = y whenever the latter is defined.
3. Wheneverpr(l|B1) = y1 andpr(l|B2) = y2 belong toΠ, no possible world ofΠ

satisfiesB1 andB2.

The first requirement ensures the consistency of the program rules. The second guar-
antees thatPΠ satisfies the probabilistic statements fromΠ. The third requirement en-
forces the independence assumptions embodied in causal probabilities: given its cause
B, an effectl has a fixed probability, independent of all other factors (except for effects
of l).

The following proposition says thatPΠ satisfies axioms of probability.

Proposition 1. For consistent P-log programΠ:



1. For every formulaA, 0 ≤ PΠ(A) ≤ 1,
2. PΠ( true ) = 1, and
3. PΠ(A or B) = PΠ(A) + PΠ(B), for any mutually exclusive formulasA andB.

(Note that, sinceA or¬A may be undefined in a possible worldW, PΠ(A or¬A) is
not necessarily equal to1).

To illustrate these definitions let us further elaborate the “dice” example.

Example 2.Let T0 consist of first three sectionsD1, D2, D3, of the “dice” program
from Example 1. ThenT ′

0 consists of rules ofD2 and the rules:

dice(d1). dice(d2). person(mike). person(john).
score(1). score(2). score(3). score(4). score(5). score(6).
roll(D, 1) or roll(D, 2) or . . . or roll(D, 5) or roll(D, 6)← random(roll(D)).
¬roll(D, Y2)← roll(D, Y1), Y1 �= Y2.
random(roll(D))← not ¬random(roll(D)).
¬random(roll(D))← do(roll(D) = Y ).
pr(roll(D, Y ), 1/6)← owns(D, john), roll(D, Y ), random(roll(D)).
pr(roll(D, 6), 1/4)← owns(D, mike), roll(D, 6), random(roll(D)).
pr(roll(D, Y ), 3/20)← Y �= 6, owns(D, mike), roll(D, Y ), random(roll(D)).
← obs(a(X, Y )), not a(X, Y ).
a(X, Y )← do(a(X, Y ).
← pr(a(X, Y ), 0).

It is easy to check thatT ′
0 has 36 answer sets containing different pairs of atoms

roll(d1, i1) androll(d2, i2). Each answer set ofT ′
0 containingroll(d1, 6) will contain a

probability atompr(roll(d1, 6), 1/4), as well as a probability atompr(roll(d2, i), 1/6)
for somei, and hence have the probability1/24. Any other answer set has probability
1/40. It is easy to check that the program is consistent.

Now letT1 = T0 ∪ {obs(roll(d1, 4))}. By definition,
PT0(even|roll(d1, 4)) = PT1(even) = 1/2. The same result can be obtained by using
classical definition of conditional probability,

P (A|B) = P (A ∧B)/P (B) (13)

The following proposition shows that this is not a coincidence. A dialectL of A-Prolog
is calledmonotonic with respect to constraintsif for every programΠ and constraint
← B of L any answer set ofΠ ∪ {← B} is also an answer set ofΠ.

Proposition 2. Let L be a dialect of A-Prolog monotonic with respect to constraints
and letΠ be a consistent P-log program overL. Then for everyA and everyB with
PΠ(B) �= 0, PΠ satisfies condition (13) above.

Example 3.Consider a program,P0

random a : boolean.
pr(a) = 1.



Recall thatP0 will be (automatically) expanded to include a new probability atom,
pr(¬a) = 0. It is easy to see thatP ′

0 has one answer set, which containsa (the possible
answer set containing¬a is eliminated by constraint (12)). Obviously,PP0(a) = 1 and
hence the program is consistent. Now we compareP0 with the following programP1:

random a : boolean.
a.

The programs have the same possible worlds and the same probability measures. How-
ever, they express different information. To see that, consider programsP2 andP3 ob-
tained by adding the statementdo(¬a) to P0 andP1 respectively.P2 remains consistent
— it has one possible world{¬a} — while P3 becomes inconsistent (see rule (11)).
The statementpr(a) = 1 is defeasible while the statementa is not. This does not mean
however that the former can be simply replaced by the corresponding default.

ConsiderΠ4

random a : boolean.
a← not ¬a.

Π4 has two possible worlds,{a} and{¬a} (note the interplay between the default and
rule 6 ofΠ ′

4). In other words “randomness” undermines the default.

Finally considerP5:

random a : boolean.
a.
pr(a) = 1/2.

andP6:

random a : {0, 1, 2}.
pr(a = 0) = pr(a = 1) = pr(a = 2) = 1/2.

Both programs are inconsistent.P5 has one possible worldW = {a}. P̂P5(W ) = 1/2,
PP5(a) = 1 instead of1/2.

P6 has three possible worlds,{a(0),¬a(1),¬a(2)}, {¬a(0), a(1),¬a(2)},
and{¬a(0),¬a(1), a(2)} each with unnormalized probability1/2. HencePP6(a(0)) =
1/3 instead of1/2. (Let V (B, t) be a multiset ofv such thatpr(a(t = y) = v ∈ Π for
somey ∈ range(a). Then it can be shown that ifΠ is consistent then for everyB and
t the sum of the values inV (B, t) is 1).

3 Representing knowledge in P-log

Now we give several examples of non-trivial probabilistic knowledge representation
and reasoning performed in P-log.

Example 4.(Monty Hall Problem)
We start with solving the Monty Hall Problem, which gets its name from the TV game
show hosted by Monty Hall (we follow the description from



http://www.io.com/∼kmellis/monty.html): A player is given the opportunity to select
one of three closed doors, behind one of which there is a prize. The other two rooms
are empty. Once the player has made a selection, Monty is obligated to open one of the
remaining closed doors, revealing that it does not contain the prize. He then asks the
player if he would like to switch his selection to the other unopened door, or stay with
his original choice. Here is the problem: Does it matter if he switches?

The answer is YES. In fact switching doubles the player’s chance to win. This problem
is quite interesting, because the answer is felt by most people — including mathe-
maticians — to be counter-intuitive. Most people almost immediately come up with a
(wrong) negative answer and not easily persuaded that they made a mistake. We be-
lieve that part of the reason for the difficulty is some disconnect between modeling
probabilistic and non-probabilistic knowledge about the problem. In P-log this discon-
nect disappears which leads to a natural correct solution. In other words, the standard
probability formalisms lack the ability to formally represent certain non-probabilistic
knowledge that is needed in solving this problem. In the absence of this knowledge,
wrong conclusions are made. We will show that the use of P-log avoids this, as P-log
allows us to specify this knowledge explicitly.

The domain contains the set of three doors and three 0-arity attributes,selected, open
andprize. This will be represented by the following P-log declarations:

doors = {1, 2, 3}.
open, selected, prize : doors.
varD, D1, D2, N : doors.

The regular rule section states that Monty can only open a door to a room which is not
selected and which does not contain the prize.

¬can open(D)← selected(D).
¬can open(D)← prize(D).
can open(D)← not ¬can open(D).
← open(D),¬can open(D).

This knowledge (which can be extracted from the specification of the problem) is often
not explicitly represented in probabilistic formalisms leading to reasoners (who usually
do not realize this) to insist that their wrong answer is actually correct.

We also need an auxiliary relation

num free doors(Y )← Y = |{X : can open(X)}|
An expression|{X : can open(X)}| stands for the cardinality of the set of doors
Monty can open. This can be directly encoded in SMODELS, DLV, ASET, and other
systems with aggregates. (A slightly longer encoding will be needed if aggregates are
not available in the language.)

The probabilistic information about the three attributes of doors can be now expressed
as follows:

random prize(D), selected(D), open(D).
pr(prize(D)) = 1/3.



pr(selected(D)) = 1/3.
pr(open(D) |c num free doors(N), can open(D)) = 1/N.

The last rule is where most reasoners make a mistake. They assume that the probability
that Monty opens one of the remaining doors is 1/2. That is not the case. Monty knows
which door has a prize. If the prize is behind one of the unopened doors, he is not going
to open that one. In that case the probability of opening the door which has the prize
is 0 and the probability for the other one is 1. On the other hand if both unselected
doors do not have the prize, then and only then can Monty open either of the door
with probability 1/2. The above information is elegantly expressible in P-log and most
standard probabilistic reasoning language can not express it, without falling back on a
natural language such as English.

To eliminate an orthogonal problem of modeling time we assume that the player has
already selected door1, and Monty opened door2.

obs(selected(1)). obs(open(2)). obs(¬prize(2)).

Let us refer to the above P-log program asM . Because of the observationsM has two
answer setsA1, andA2: one in whichprize(1) is true and another whereprize(3) is
true.

BothA1 andA2 contain the probabilistic atompr(selected(1)) = 1/3). In addition,A1

containspr(prize(3)) = 1/3 andpr(open(2) = 1 — with the prize being behind door
3 Monty is forced to open door2. P̂ (A1) = 1/9. Similarly,A2 containspr(prize(1)) =
1/3 andpr(open(2) = 1/2. P̂ (A2) = 1/18. This time the prize is behind door1, i.e.
Monty had a choice. ThusPM (prize(3)) = 2/3, andPM (prize(1)) = 1/3. Changing
the door doubles the player’s chance to win.

Now if the player assumes (either consciously or without consciously realizing it) that
Monty could have opened any one of the unopened doors (including one which contains
the prize) then his regular rule section will have a different constraint,

← open(D), selected(D).

and the third and fourth rules in his probabilistic part will instead be:

pr(open(D) |c ¬selected(D)) = 1/2.

In this case the resulting programN will also have two answer sets containingprize(1)
andprize(3), each with unnormalized probability of 1/18, and thereforePN (prize(1)) =
1/2 andPN (prize(3)) = 1/2.

The next example illustrates the ability of P-log to represent and reason with Bayesian
networks and to properly distinguish between observations and actions.

Example 5.(Simpson’s Paradox)
Let us consider the following story from [15]: A patient is thinking about trying an
experimental drug and decides to consult a doctor. The doctor has tables of the recovery
rates that have been observed among males and females, taking and not taking the drug.



Males: recover -recover num_of_people recovery_rate
drug 18 12 30 60%

-drug 7 3 10 70%

Females: recover -recover num_of_people recovery_rate
drug 2 8 10 20%

-drug 9 21 30 30%

What should the doctor’s advice be? Assuming that the patient is a male, the doctor
may attempt to reduce the problem to checking the following inequality

P (recover|male, drug) > P (recover|male,¬drug) (14)

The corresponding probabilities, given by the tables, are0.6 and0.7. The inequality
fails, and hence the advice is not to take the drug. This, indeed, is the correct advice. A
similar argument shows that a female patient should not take the drug.

But what should the doctor do if he has forgotten to ask the patient’s sex? Following the
same reasoning, the doctor might check whether

P (recover|drug) > P (recover|¬drug) (15)

This will lead to an unexpected result.P (recovery|drug) = 0.5 while
P (recovery|¬drug) = 0.4. The drug seems to be beneficial to patients of unknown
sex — though similar reasoning has shown that the drug is harmful to the patients of
known sex, whether they are male or female!

This phenomenon is known as Simpson’s Paradox: conditioning onA may increase the
probability ofB among the general population, while decreasing the probability ofB in
every subpopulation (or vice-versa). In the current context, the important and perhaps
surprising lesson is that conditional probabilities do not faithfully formalize what we re-
ally want to know:what will happen if we do X?In [15] Pearl suggests a solution to this
problem in which the effect of actionA on conditionC is represented byP (C|do(A))
— a quantity defined in terms of graphs describing causal relations between variables.
Correct reasoning therefore should be based on evaluating the inequality

P (recover|do(drug)) > P (recover|do(¬drug)) (16)

instead of (15) (similarly for (14)). In Pearl’s calculus the first value equals.4, the
second,.5. The drug is harmful for the general population as well.

Note that in our formalismPΠ(C|do(A)) is defined simply asPR(C) whereR =
Π ∪{do(A)} and hence P-log allows us to directly represent this type of reasoning. We
follow [15] and assume that the tables, together with our intuition about the direction
of causality between the variables, provide us with the values of the following causal
probabilities:

pr(male) = 0.5, pr(recover|cmale, drug) = 0.6,
pr(recover|cmale,¬drug) = 0.7, pr(recover|c¬male, drug) = 0.2,



pr(recover|c¬male,¬drug) = 0.3, pr(drug|cmale) = 0.75,
pr(drug|c¬male) = .25.

These statements, together with declarations:

random male, recover, drug : boolean

constitute a probabilistic logic program,Π, formalizing the story. The program de-
scribes eight possible worlds containing various values of the attributes. Each world
is assigned a proper probability value, e.g.PΠ({male, recover, drug}) = .5 ∗ .6 ∗
.75 = 0.225. It is not difficult to check that the program is consistent. The values
of PΠ(recover|cdo(drug)) = .4 andPΠ(recover|cdo(¬drug)) = .5 can be com-
puted by findingPΠ1(recover) andPΠ2(recover), whereΠ1 = Π ∪{do(drug).} and
Π2 = Π ∪ {do(¬drug).}.
Now we consider several reasoning problems associated with the behavior of a mal-
functioning robot. The original version, not containing probabilistic reasoning, first
appeared in [6] where the authors discuss the difficulties of solving the problem in
Situation Calculus.

Example 6.(A malfunctioning robot)

There are rooms,r0, r1, andr2, reachable from the current position of a robot. The
robot navigation is usually successful. However, a malfunction can cause the robot to
go off course and enter any one of the rooms. The doors to the rooms can be open or
closed. The robot cannot open the doors.

The authors want to be able to use the corresponding formalization for correctly an-
swering simple questions about the robot’s behavior including the following “typical”
scenario: The robot moved toward open roomr1 but found itself in some other room.
What room can this be?

The initial story contains no probabilistic information so we start with formalizing this
knowledge in A-Prolog. First we need sorts for time-steps and rooms. (Initial and final
moments of time suffice for our purpose).

time = {0, 1}. rooms = {r0, r1, r2}.
In what follows we use variableT for time andR for rooms. There will be two actions:

enter(T, R) - the robotattemptsto enter the roomR at time stepT .

break(T ) - an exogenous breaking action which may alter the outcome of this attempt.

A state of the domain is modeled by two time-dependent relationsopen(R, T ) (room
R is opened at momentT ), broken(T ) (robot is malfunctioning atT ), and the attribute,
in(T ) : time→ rooms, which gives the location of the robot atT .

The description of dynamic behavior of the system is given by A-Prolog rules:

Dynamic causal laws describe direct effects of the actions (note that the last law is
non-deterministic):

broken(T + 1)← break(T ).



in(T + 1, R)← enter(T, R),¬broken(T + 1).

in(T + 1, r0) or in(T + 1, r1) or in(T + 1, r2)← broken(T ), enter(T, R).

To specify that the robot cannot go through the closed doors we use a constraint:

← ¬in(T, R), in(T + 1, R),¬open(R, T ).

Moreover, the robot will not even attempt to enter the room if its door is closed.

← enter(T, R),¬open(R, T ).

To indicate thatin is a function we use static causal law:

¬in(T, R2)← in(T, R1), R1 �= R2.

We also need the inertia axiom:

in(T + 1, R)← in(T, R), not ¬in(T + 1, R).
broken(T + 1)← broken(T ), not ¬broken(T + 1).
¬broken(T + 1)← ¬broken(T ), not broken(T + 1).
(Similarly for open).

Finally, we describe the initial situation:

open(R, 0)← not ¬open(R, 0).
in(0, r1).
¬in(0, R)← not in(0, R).
¬broken(T )← not broken(T ).

The resulting program,Π0, completes the first stage of our formalization.

It is easy to check thatΠ0 ∪ {enter(0, r0)} has one answer set,A, and thatin(1, r0) ∈
A. ProgramΠ0 ∪ {enter(0, r0), break(0)} has three answer sets containingin(1, r0),
in(1, r1), andin(1, r2) respectively. If, in addition, we are given¬open(r2, 0) the third
possibility will disappear.

Now we show how this program can be extended by probabilistic information and how
this information can be used together with regular A-Prolog reasoning.

ConsiderΠ1 obtained fromΠ0 by adding

randomin(T + 1) : enter(T, R), broken(T + 1).
pr(in(T + 1, R)|c enter(T, R), broken(T + 1)) = 1/2.
pr(in(T + 1, R1)|c R1 �= R2, enter(T, R2), broken(T + 1)) = 1/4.

together with the corresponding declarations, e.g.

in : time→ rooms.

It is not difficult to check that probabilistic programT1 = Π1 ∪ {enter(0, r0)} has the
unique possible world which containsin(1, r0). Hence,PT1(in(1, r0)) = 1. It is easy
to show thatΠ1 is consistent. (Note that the conditional probabilities corresponding to
the probability atoms ofΠ1, e.g.,PT1(in(1, r0)|broken(1)), are undefined and hence
(2) of the definition of consistency is satisfied.)



The programT2 = T1 ∪ {break(0)} has three possible worlds —A0 containing
in(1, r0), andA1, A2 containingin(1, r1) andin(1, r2) respectively;PT2(A0) = 1/2
while PT2(A1) = PT2(A2) = 1/4. It is easy to see thatT2 is consistent. Note that
PT1(in(1, r0)) = 1 while PT2(in(1, r0)) = 1/2 and hence theadditional information
changed the degree of reasoner’s belief.

So far our probabilistic programs were based on A-Prolog. The next example shows the
use of P-log programs over CR-Prolog [2] — an extension of A-Prolog which combines
regular answer set reasoning with abduction. In addition to regular rules of A-Prolog
the new language allows so calledconsistency-restoringrules, i.e., rules of the form

l
+← B.

which say that, givenB, l may be true but this is a rare event which can be ignored
unlessl is needed to restore consistency of the program. The next example elaborates
the initial formalization of the robot story in CR-Prolog.

Example 7.(Probabilistic programs over CR-Prolog)
Let us expand the programT1 from Example 6 by a CR-rule

break(T ) +← (17)

The rule says that even though the malfunctioning is rare it may happen. Denote the
new program byT3.

The semantics of CR-Prolog guarantees that for any collectionI of atoms such that
T1 ∪ I is consistent, programsT1 ∪ I andT3 ∪ I have the same answer sets; i.e., the
conclusions we made so far about the domain will not change if we useT3 instead ofT1.
The added power ofT3 will be seen when the use ofT1 leads to inconsistency. Consider
for instance the scenarioI0 = {obs(¬in(1, r0))}. The first formalization could not deal
with this situation — the corresponding program would be inconsistent.

The programT4 = T3∪I0 will use the CR-rule (17) to concludebreak(0), which can be
viewed as a diagnosis for an unexpected observation.T4 has two answer sets containing
in(1, r1) andin(1, r2) respectively. It is not difficult to check thatPT3(in(1, r0)) = 1
while PT3(in(1, r0)|I0) = PT4(in(1, r0)) = 0. Interestingly,this phenomenon can-
not be modeled using classical conditional probabilities, since classically whenever
P (A) = 1, the value ofP (A|B) is either1 or undefined.

Our last example will show howΠ1 can be modified to introduce some additional prob-
abilistic information and used to obtain most likely diagnoses.

Example 8.(Doing the diagnostics)
Suppose we are given a list of mutually exclusive faults which could be caused by the
breaking action, together with the probabilities of these faults. This information can be
incorporated in our program,Π1, by adding

faults = {f0, f1}. fault : time→ faults.
random fault(T + 1) : break(T ).
pr(fault(T, f0)|cbroken(T )) = .4 pr(fault(T, f1)|cbroken(T )) = .6



Let us also assume that chances of the malfunctioning robot to get to roomR are deter-
mined by the type of the faults, e.g.

pr(in(1, r0)|cfault(1, f0)) = .2 pr(in(1, r0)|cfault(1, f1)) = .1
pr(in(1, r1)|cfault(1, f0)) = .6 pr(in(1, r1)|cfault(1, f1)) = .5,
pr(in(1, r2)|cfault(1, f0)) = .2 pr(in(1, r2)|cfault(1, f1)) = .4

Note that this information supersedes our previous knowledge about the probabilities
of in and hence should replace the probabilistic atoms ofΠ1. The resulting program,
Π2, used together with{enter(0, r0), obs(¬in(0, r0))} has four answer sets weighted
by probabilities. Simple computation shows at moment1 the robot is most likely to be
in roomr1.

4 Relationship to Existing Work

Our work was greatly influenced by J. Pearl’s view on causality and probability. It can
be shown that the Bayesian Networks and Probabilistic Causal Models of Pearl can be
mapped into P-log programs of similar size. (Proofs of the corresponding theorems will
be given in the full version of this paper.) The examples discussed above show that,
in addition, P-log allows natural combination of logical and probabilistic information.
We were influenced to a lesser degree, by various work incorporating probability in
logic programming [11, 9, 7, 10, 8]. In part this is due to our use of answer set seman-
tics, which introduces unique challenges (as well as benefits, in our opinion) for the
integration of probabilities.
The closest to our approach is that of Poole [18, 17]. We note three major differences be-
tween our work and the work of Poole [18, 17]. First, A-Prolog provides a richer logical
framework than does choice logic, including default and classical negation and disjunc-
tion. Moreover, our approach works, without modification, with various extensions of
A-Prolog including the use of CR-rules. Second, in contrast to Poole’s system, the logi-
cal aspects of P-log do not ”ride on top” of the mechanism for generating probabilities:
we bring to bear the power of answer set programming, not only in describing the con-
sequences of random events, but also in the description of the underlying probabilistic
mechanisms. Third, our formalization allows the distinction between observations and
actions (i.e., doing) to be expressed in a natural way, which is not addressed in choice
logic.
There are three elements which, to our knowledge, are new to this work. First, rather
than using classical probability spaces in the semantics of P-log, we define probabil-
ities of formulas directly in terms of the answer set semantics. In this way, A P-log
programinducesa classical probability measure on possible worlds by its construction,
rather than relying on the existence of a classical measure compatible with it. We see
several advantages to our re-definition of probabilities. Most notably, the definition of
conditional probability becomes more natural, as well as more general (see Example
7). Also, possible worlds and events correspond more intuitively to answer sets and for-
mulas than to the sample points and random events (i.e., sets of sample points) of the
classical theory.
Second, P-log allows us toelaborate on defaults by adding probabilitiesas in Exam-
ples 7-8. Preferences among explanations, in the form of defaults, are often more easily



available from domain experts than are numerical probabilities. In some cases, we may
want to move from the former to the latter as we acquire more information. P-log allows
us to represent defaults, and later integrate numerical probabilities by adding to our ex-
isting program rather than modifying it. Finally, the semantics of P-log over CR-Prolog
gives rise to a unique phenomenon: we can move from one classical probability mea-
sure to another merely by adding observations to our knowledge base, as in Example 7.
This implies that P-log probability measures are more general than classical ones, since
the measure associated with a single P-log program can, through conditioning, address
situations that would require multiple distinct probability spaces in the classical setup.
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