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Structure

The talk is structured as follows:

• introduce difference constraints

• problem description

• a simple algorithm

• an improved algorithm



Veena S. Mellarkod Difference Constraints

Knowledge Representation Lab – Texas Tech University 2

Introduction

A system of difference constraints < V, C >

• set V of variables

• set C of inequalities of the form v − u ≤ b,

where v, u ∈ V and b is a real

A feasible solution for a system of difference

constraints is an assignment of real values to

the variables that satisfies all the constraints

{x− y ≤ 5} and {x− y ≤ 0, y − x ≤ −1}

A system is feasible iff it has a feasible solution
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Constraint Graph

The constraint graph of a system of difference

constraints < V, C > is a directed, weighted

graph G =< V, E, length > where

E = {u → v | v − u ≤ b ∈ C}

length(u → v) = b iff v − u ≤ b ∈ C

Example : {x− y ≤ 3, y − z ≤ −1, x− z ≤ 4}

For convenience, we will assume that a system

of constraints contains at most one inequality

per ordered pair of variables.
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Augumented Constraint

Graph

The augumented constraint graph of a system

of difference constraints < V, C > is a directed,

weighted graph G′ =< V ′, E′, length′ > where

• V ′ = V ∪ {src} where src 6∈ V

• E′ = E ∪ {src → v | v ∈ V }

• length′(u → v) = b if v − u ≤ b ∈ C

• length′(src → v) = 0 for v ∈ V
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Theorems

Theorem: A system of difference constraints

is consistent if and only if its augumented con-

straint graph has no negative cycle if and only

if its constraint graph has no negative cycles

Theorem: Let G be the augumented constraint

graph of a consistent system of constraints

< V, C >. Then D is a feasible solution for

< V, C >, where D(u) = distG(src, u)

distG(u, v) is the length of a shortest path from

u to v in graph G
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Shortest Path Algorithms

We can compute lengths of shortest paths from

src to all vertices using Dijkstra’s single source

shortest path algorithm in O(m + nlogn) time.

The algorithm works only for positive edge

weights in the graph

If there are negative edges we can use Bellman-

Ford algorithm, which has a complexity of O(mn)

m is the number of constraints and n is the

number of variables
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Dijkstra’s Algorithm

function shortestPath (G, w, s)

[a] Initialize-Single-Source(G,s)

[b] S := ∅
[c] Q := V [G]

[d] while Q 6= ∅
[e] u := Extract-Min(Q)

[f ] S := S ∪ {u}
[g] for each vertex v ∈ Adj[u]

[h] do Relax(u,v,w)

function Relax (u,v,w)

[a] if d[v] > d[u] + w(u, v) then

[b] d[v] := d[u] + w(u, v)

[c] pred[v] := u
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Problem

To maintain a feasible solution to a system of

constraints as it undergoes changes

• addition or deletion of a constraint

• modification of a existing constraint

• addition or deletion of a variable
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Variable addition or deletion

The addition or deletion of a variable can be

handled easily.

• We update the constraint graph

• If adding a new variable: initialize its value

to be zero

The system continues to be feasible

Such changes are processed in constant time
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Constraint deletion or

relaxation

Deletion of a constraint does not introduce in-

feasibility since the system becomes less con-

strained

Relaxation of a constraint corresponds to in-

crease in length of the corresponding edge in

the graph and it does not affect the solution

• deletion: remove edge from constraint graph

• relaxation: change length of the edge

• the values of variables remain the same

Such changes are processed in constant time
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Constraint addition

Addition of a new constraint v − u ≤ b corre-

sponds to addition of an edge from u → v of

length b

This can affect the feasibility of a system

Tightening an existing constraint also may af-

fect the system

We will look at an incremental algorithm for

solving the system when a constraint is added
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A basic algorithm

basic solver (< V, E, length > , v − u ≤ b )

constraint graph G =< V, E, length >
new constraint to add : v − u ≤ b

{
E′ = E ∪ {u → v}
length(u → v) = b
G′ =< V, E′, length >
return Bellman Ford(G′, src)

}

The basic algorithm uses Bellman Ford algo-

rithm and therefore it is O(mn) complexity
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Comments

Let G be the old graph and G′ be the new

graph obtained from G by adding a new edge

We know that G′ is not feasible iff there exists

negative cycles in G′

We also know that G is feasible and therefore

has no negative cycles

Therefore, if G′ has negative cycle then it must

involve the new edge u → v

Hence, the problem can be reduced to com-

puting if distG(v, u) + b < 0
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Comments

In general, the graph G will contain edges of

negative length

Computing distG(v, u) using the standard algo-

rithm can take O(mn)

We can do better by using the feasible solution

for the original set of constraints

Theorem: Let G =< V, E, length >, let f be a

real valued function on V , the set of vertices.

Define a new graph Gf , the graph scaled by

f as follows: Gf =< V, E, lengthf >, where

lengthf(x, y) = f(x) + length(x → y) − f(y).

A path P from x to y is a shortest path in

G iff it is a shortest path in Gf . Further,

distGf
(x, y) = f(x) + distG(x, y)− f(y)
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A Simple Algorithm

We can scale the original graph G by any fea-

sible solution D.

The new length of an edge x → y will be D(x)+

length(x → y)−D(y), and is non-negative

This implies that we can use Dijkstra’s algo-

rithm in O(m+nlogn) time

We can compute dist(v, u) in O(m+nlogn) time

and determine if the new system is feasible

dG′(src, x) =

min(dG(src, x), dG(src, u)+len(u → v)+dG(v, x))
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An Improved Algorithm

The simple algorithm does not fully utilize the

original solution in computing a new one

Let < V, C > denote original system of con-

straints, and D a feasible solution. Let C′ =

C ∪ {v − u ≤ c}, and

D′(x) = min(D(x), D(u)+len(u → v)+distG(v, x))

Call vertex x is affected if D′(x) 6= D(x)

Theorem: < V, C′ > is feasible iff u is not

affected

Theorem: If < V, C′ > is feasible then D′ is

feasible solution for < V, C′ >
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Computing D’

Theorem: Let x be the parent of y in some

shortest path tree for v in the original graph.

If x is unaffected, then y is also unaffected

Call an edge x → y affected iff vertex x is af-

fected. Let H denote the subgraph of G con-

sisting only of affected edges.

Thus, H =< V, Ea, length|Ea >

D′(x) = min(D(x), D(u)+len(u → v)+distH(v, x))
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Improved Algorithm
function AddToFeasible (G, v − u ≤ b, D)

[a] Add edge u → v to E

[b] len(u → v) := b

[c] D′ := D

[d] priorityQ := ∅
[e] insertHeap(priorityQ,v,0)

[f ] while priorityQ 6= ∅ do

[g] (x, dx) := find&DeleteMin(priorityQ)

[h] if D(u) + len(u → v) + dx < D(x) then

[i] if x = u then

[j] remove edge u → v from E

[k] return false

[l] D′(x) := D(u) + len(u → v) + dx

[m] for every vertex y in Succ(x) do

[n] sl := dx + (D(x) + len(x → y)−D(y))

[o] if (sl < keyOf(priorityQ, y)) then

[p] adjustHeap(priorityQ, y, sl)

[q] D := D′

[r] return true
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Handling Infeasible Systems

So far, we modified feasible constraint systems

and rejected any constraint that introduced in-

feasibility

Sometimes, it will be useful to allow addition of

constraints that cause the system to become

infeasible

They present AddConstraint and DeleteCon-

straint algorithms to add/delete constraints to

such systems

The complexity of algorithms is O(m + nlogn)
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Handling Infeasible Systems

The algorithm partitions the set of constraints

into two sets: a feasible set and an unpro-

cessed set

The feasible set is represented by a constraint

graph and a feasible solution is maintained

The unprocessed consists of the remaining con-

straints that make the system infeasible

If the whole system is feasible then the unpro-

cessed set is empty
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Add Constraint

When a new constraint c is added to a feasible

system, the algorithm checks if the system is

still feasible

If so, c is added to feasible set and constraint

graph extended else c is added to unprocessed

set and the system becomes infeasible

If the system is infeasible then adding new con-

straints does not make it feasible, so they are

added directly to set unprocessed
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Delete Constraint

When a constraint c is deleted, the algorithm

checks if c is in feasible set or unprocessed set

If c is in unprocessed set, it simply removes it

from the set, if unprocessed becomes empty

then we know the system is feasible

If c is from feasible set then removing it might

make an infeasible system to become feasible

So when c is removed from the constraint graph,

all the constraints in unprocessed are processed

one by one till either all are added to the graph

or one of constraints cannot be added
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Extensions

The algorithm does not identify the smallest

change necessary to the current solution to

produce a feasible solution

One reason is that, the algorithm attempts

to propagate the effects of the added con-

straint forward along the edges of the con-

straint graph.

It will be worth exploring the possibility of prop-

agating the effects of the added constraint

along both directions of the edges


