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• In model checking, domains are represented 
by Kripke structures.

• Intuitively, a Kripke structure specifies the 
states of the world, and transitions from 
one state to another.

Kripke Structures



Let AP be a set of atomic propositions.  A 
Kripke structure, M, over AP is a 4-tuple        
(S, S0, R, L) where:

• S is a finite set of states

• S0 ⊆ S is the set of initial states

• R ⊆ S × S is a total transition relation

• L : S → 2AP is a function that labels each 
state with the set of atomic propositions 
true in that state

Definition



• Each state is 
labeled with the 
set of literals true 
in that state.

• S = {(a,b), (a,¬b), 
(¬a,b)}

• R = {((a,b),(a,¬b)), 
((a,b),(¬a,b)), 
((a,¬b),(a,b)), 
((¬a,b),(a,¬b))}

Example
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A Kripke structure, M, that represents our 
counter consists of:

• AP = {vi = x : x ∈ {0,1} and i ∈ [0..2]}

• S = { (x,y,z) : x, y, z ∈ {0,1} }.

• L(s) = {v2 = x, v1 = y, v0 = z}

• A transition relation, R, defined as follows:



First we define the transitions for each state 
variable:

• R0(V, V’) = (v’0 ≡ ¬v0)

• R1(V, V’) = (v’1 ≡ v0 ⊕ v1)

• R2(V, V’) = (v’2 ≡ (v0 ∧ v1) ⊕ v2)

where v’i are new variables.



Since our circuit is 
synchronous, the 
formula describing the 
transition relation for 
the entire circuit is:

R0(V, V’) ∧ R1(V, V’) ∧ 
R2(V, V’)

The corresponding 
Kripke structure is 
shown on the right:
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• In model checking, properties of paths are 
specified using a temporal logic.

• The particular temporal logic we will 
introduce is called CTL.

The Temporal Logic 
CTL



CTL formulas are composed with path 
quantifiers, and temporal operators.

Path quantifiers are used to describe the 
branching structure of trees.  There are two 
path quantifiers:

A - universal path quantifier

E - existential path quantifier

Syntax



Temporal operators are used to specify 
properties of a path.  There are five temporal 
operators:

• X - the “next time” operator (Xp specifies 
that p holds in the second state of the path)

• F - the “future time” operator (Fp specifies 
that p holds at some state in the path)



• G - the “always”  operator (Gp specifies 
that p holds at every state in the path)

• U - the “until” operator (p U g specifies 
that g holds at some state in the path, and p 
is guaranteed to hold along the path up to 
the first state in which g holds)

• R - the “release” operator (p R g specifies 
that g holds along the path up to and 
including the first state where p holds)



Let AP be the set of atomic propositions.

• If p ∈ AP, then p is a formula

• If f and g are formulas, then: ¬f, f ∨ g, and f ∧ 
g, are formulas

• EXf, EFf, EGf, E[f U g], E[f R g] are 
formulas

• AXf, AFf, AGf, A[f U g], A[f R g] are also 
formulas



• The following are examples of valid CTL 
formulas (p and q ∈ AP):

p, p ∧ q, AGp, EXp ∨ AGq

• The following are not valid formulas:

Ap, Xq ∨ Gr

Examples



The semantics of CTL will be given with 
respect to a Kripke structure M.  A path in M, 
is an infinite sequence of states, π = s0, s1, ... 
such that for every i ≥ 0, (si, si + 1) ∈ R.

πi will be used to denote the suffix of π 
starting at si.

If f is a CTL formula, then M,s ⇒ f means that 
f holds in state s in the Kripke structure M.

Semantics



The relation ⇒ is defined as follows:

• M,s0 ⇒ p ≡ p ∈ L(s0)

• M,s0 ⇒ ¬p ≡ ¬(M,s0 ⇒ p)

• M,s0 ⇒ p ∧ q ≡ M,s0 ⇒ p and M,s0 ⇒ q

• M,s0 ⇒ p ∨ q ≡ M,s0 ⇒ p or M,s0 ⇒ q



• M,s0 ⇒ EXp ≡ ∃s1 : (s0,s1) ∈ R, and M,s1 ⇒ p

• M,s0 ⇒ EGp ≡ ∃ path π starting at s0 such 
that ∀si ∈ π M,si ⇒ p

• M,s0 ⇒ E[p U g] ≡ ∃ path π starting at s0,   
∃i ≥ 0 such that M,si ⇒ g, and ∀j : 0 ≤ j < i,    
M,sj ⇒ p



There are seven CTL operators:

• AX and AF 

• EF and AG

• AU, AR and ER



Each of these operators can be viewed as 
shorthand for the following:

• AXf ≡ ¬EX(¬f)

• EFf ≡ E[True U f]

• AGf ≡ ¬EF(¬f)

• AFf ≡ ¬EG(¬f)



• A[f U g] ≡ ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG(¬g)

• A[f R g] ≡ ¬E[¬f U ¬g]

• E[f R g] ≡ ¬A[¬f U ¬g]



Ordered Binary 
Decision Diagrams

Consider the following 
Kripke structure M:

• Each state is labeled with 
the set of literals true in 
that state.

• S = {(a,b), (a,¬b), (¬a,b)}

• R = {((a,b),(a,¬b)), 
((a,b),(¬a,b)), 
((a,¬b),(a,b)), 
((¬a,b),(a,¬b))}

a,b a,¬b

¬a,b



• One method of representing M would be to 
specify the transition relation as a table.

• Unfortunately, for complex structures the 
table becomes too large.

• Consequently, a more efficient data 
structure is needed.



R = {((a,b),(a,¬b)), ((a,b),(¬a,b)), ((a,¬b),(a,b)), ((¬a,b),(a,¬b))}

By introducing a pair of next-state variables,    
a’ and b’, we can obtain the formula F(R):

(a ∧ b ∧ a’ ∧ ¬b’) ∨ (a ∧ b ∧ ¬a’ ∧ b’) ∨ (a ∧ ¬b ∧ a’ ∧ b’) ∨ 

(¬a ∧ b ∧ a’ ∧ b’)

Valid transitions of M are models of F(R).

F(R) can be represented by a binary decision 
tree:



a

b b

a' a'a'a'

b' b' b' b' b' b' b' b'

0 1

0 1 0 1

0
1

0
1 0

1
0

1

1 0

000000

0 0

0 1 0 1 1 0

0 1 0 1 0 1 101010

100 1



There is a drawback to the binary decision 
tree in that it stores a great deal of redundant 
information in the form of equivalent 
subtrees.

The following algorithm, implemented by a 
function Reduce, takes a binary decision tree 
as input and removes the redundant subtrees, 
giving us an ordered binary decision diagram:



• Remove duplicate terminals - we eliminate all 
but one leaf with a given label, and redirect 
all arcs to the eliminated vertices to their 
counterpart.

• Remove duplicate nonterminals - if two 
nonterminals u and v are roots of identical 
subtrees, then remove u and redirect its 
incoming arcs to v.

• Remove redundant checks - if the children of 
a nonterminal v are roots of identical 
subtrees, then we remove v, and redirect 
incoming arcs to one of it’s children
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Redundant Checks
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Given an OBDD for a boolean function F, we 
can construct an OBDD for the function that 
restricts the value of an argument x of F to a 
boolean value b (denoted by F|x=b) as follows:

• For any node v that has an arc to a node w 
labeled by x, redirect the arc to low(w) if     
b = 0, and to high(w) otherwise.

• We then reduce the OBDD as described 
previously



Example
Let F = a ∧ b. The OBDD 
for F is shown below:

Applying F|b=1 yields the 

following OBDD:
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• Let f1 and f2 denote boolean functions

• Let v1 and v2 denote the roots of the 
OBDDs representing f1 and f2

• Let x1 and x2 denote the variables labeling v1 
and v2

• Let * denote ∧ or ∨



Given the OBDD’s for f1 and f2, we can obtain 
the OBDD representing F = f1 * f2 as follows:

• If v1 and v2 are terminal nodes then            
f1 * f2 = value(v1) * value(v2)

• If v1 and v2 are both labeled by x then we 
construct a new OBDD whose root is a 
new node w labeled by x

• low(w) = the OBDD for f1|x=0 * f2|x=0

• high(w) = the OBDD for f1|x=1 * f2|x=1



• If x1 < x2 then we construct a new OBDD 
whose root is a new node w labeled by x1

• low(w) = the OBDD for f1|x1=0 * f2

• high(w) = the OBDD for f1|x1=1 * f2

• Similarly if x1 > x2

The preceding algorithm is implemented by 
the function Apply



• Consider f1 = a ∧ b and f2 = a ∧ c
• Let a < b < c

• The OBDDs for f1 and f2 are as follows:

Example
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• The OBDDs have the same root, therefore 
we apply the second case of the algorithm:

• We obtain the following OBDD for      
f1|a=0 ∧ f2|a=0:

0



• Similarly we obtain the following OBDDs 
for f1|a=1 and f2|a=1:

b

0 1
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• Combining the OBDDs for f1|a=1 and f2|a=1 
yields the following:
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• Combing the OBDDs for f1|a=0 ∧ f2|a=0 and 
f1|a=1 ∧ f2|a=1 gives us the following:

b

0

c

1

0

1

0 1

a

0

01



• Reducing the graph gives us the final 
OBDD:
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Given a boolean formula F, we can construct 
the OBDD representing F using the following 
recursive algorithm that is based on the 
construction of F:



• If F = True, then the OBDD is a single 
terminal node labeled by 1.

• If F = a, then the OBDD is as follows:

a

0 1

10



• If F = ¬g, we compute the OBDD for g, and 
invert the terminal nodes.

• Lastly, if F = f1 * f2 we compute the OBDDs 
for f1 and f2 and then obtain the OBDD for 
f1 * f2 as was previously discussed. 



• Given a set V = {v0 ... vN-1 } of propositional 
variables, QBF(V) is the smallest set of 
formulas such that:

• every variable in V is a formula

• if f and g are formulas, then ¬f, f ∨ g, and   
f ∧ g are formulas

• if f is a formula, and v ∈ V, then ∃vf and 
∀vf are formulas

Quantified Boolean 
Formulas



• A function σ: V → {0,1} is a truth assignment 
for QBF(V).

• If a ∈ {0,1}, then σ[v ← a](w) is defined as 
follows:

• a if v = w

• σ(w) otherwise



If f ∈ QBF(V), and σ is a truth assignment, σ ⇒ f is 
defined as follows:

• σ ⇒ v ≡ σ(v) = 1

• σ ⇒ ¬f ≡ ¬(σ ⇒ f)

• σ ⇒ f ∧ g ≡ σ ⇒ f and σ ⇒ g

• σ ⇒ f ∨ g ≡ σ ⇒ f or σ ⇒ g

• σ ⇒ ∃vf ≡ σ[v ← 0] ⇒ f or σ[v ← 1] ⇒ f

• σ ⇒ ∀vf ≡ σ[v ← 0] ⇒ f and σ[v ← 1] ⇒ f



We have already seen how to represent non-
quantified formulas as OBDDs.  We can also 
compute the OBDDs for quantified formulas 
using the following identities:

• ∃xf = f |x=0 ∨ f |x=1

• ∀xf = f |x=0 ∧ f |x=1



The CTL model checking algorithm is 
implemented by a function Check that takes a 
Kripke structure M and a CTL formula f as 
parameters, and returns an OBDD 
representing the set S = {s : M,s ⇒ f}.

M satisfies F if the set of initial states belongs 
to S.

The CTL Model 
Checking Algorithm



The function Check operates as follows:

• If F is an atom, Check(F) = the OBDD 
representing the set of states containing F.

• If F = ¬f, Check(F) = Apply(¬,Check(f))

• If F = f * g, Check(F) = Apply(*, Check(f), Check(g)) 



• Check(EX f) = CheckEX(Check(f))

• Check(E[f U g]) = CheckEU(Check(f), Check(g))

• Check(EG f) = CheckEG(Check(f))



The function CheckEX takes as a parameter an 
OBDD representing the set of states satisfying 
a formula f, and returns the OBDD for the 
quantified boolean formula ∃v’[f(v’) ∧ R(v,v’)]



The function CheckEU takes as parameters 
the OBDDs representing the sets of states 
satisfying the formulas f and g, and returns the 
OBDD corresponding to 

μZ. g ∨ (f ∧ EX Z)

where μZ. g ∨ (f ∧ EX Z) is the least fixpoint 
characterization of E[f U g]



The function CheckEG takes as parameters 
the OBDDs representing the set of states 
satisfying the formula f, and returns the 
OBDD corresponding to 

υZ. f ∧ EX Z

where υZ. f ∧ EX Z is the greatest fixpoint 
characterization of EG


