
The Symbolic Model
Checking Algorithm

Gregory Gelfond

Knowledge Representation Lab
Texas Tech University

Overview

• Modeling Domains (Kripke Structures)

• Specifying Properties (Temporal Logic CTL)

• Syntax

• Semantics

• CTL Model Checking

• Ordered Binary Decision Diagrams

• Quantified Boolean Formulas

• CTL Model Checking Algorithm

• In model checking, domains are represented
by Kripke structures.

• Intuitively, a Kripke structure specifies the
states of the world, and transitions from
one state to another.

Kripke Structures

Let AP be a set of atomic propositions. A
Kripke structure, M, over AP is a 4-tuple
(S, S0, R, L) where:

• S is a finite set of states

• S0 ⊆ S is the set of initial states

• R ⊆ S × S is a total transition relation

• L : S → 2AP is a function that labels each
state with the set of atomic propositions
true in that state

Definition

• Each state is
labeled with the
set of literals true
in that state.

• S = {(a,b), (a,¬b),
(¬a,b)}

• R = {((a,b),(a,¬b)),
((a,b),(¬a,b)),
((a,¬b),(a,b)),
((¬a,b),(a,¬b))}

Example

a,b a,¬b

¬a,b

Synchronous Modulo-8
Counter

XOR

XOR

A
N
D

NOT

V0

V1

V2

A Kripke structure, M, that represents our
counter consists of:

• AP = {vi = x : x ∈ {0,1} and i ∈ [0..2]}

• S = { (x,y,z) : x, y, z ∈ {0,1} }.

• L(s) = {v2 = x, v1 = y, v0 = z}

• A transition relation, R, defined as follows:

First we define the transitions for each state
variable:

• R0(V, V’) = (v’0 ≡ ¬v0)

• R1(V, V’) = (v’1 ≡ v0 ⊕ v1)

• R2(V, V’) = (v’2 ≡ (v0 ∧ v1) ⊕ v2)

where v’i are new variables.

Since our circuit is
synchronous, the
formula describing the
transition relation for
the entire circuit is:

R0(V, V’) ∧ R1(V, V’) ∧
R2(V, V’)

The corresponding
Kripke structure is
shown on the right:

¬v2,

¬v1, ¬v0

v2, v1,

¬v0

¬v2, v1,

v0

v2, ¬v1,

¬v0

v2, ¬v1,

v0

v2, v1,

v0

¬v2,

¬v1, v0

¬v2, v1,

¬v0

• In model checking, properties of paths are
specified using a temporal logic.

• The particular temporal logic we will
introduce is called CTL.

The Temporal Logic
CTL

CTL formulas are composed with path
quantifiers, and temporal operators.

Path quantifiers are used to describe the
branching structure of trees. There are two
path quantifiers:

A - universal path quantifier

E - existential path quantifier

Syntax

Temporal operators are used to specify
properties of a path. There are five temporal
operators:

• X - the “next time” operator (Xp specifies
that p holds in the second state of the path)

• F - the “future time” operator (Fp specifies
that p holds at some state in the path)

• G - the “always” operator (Gp specifies
that p holds at every state in the path)

• U - the “until” operator (p U g specifies
that g holds at some state in the path, and p
is guaranteed to hold along the path up to
the first state in which g holds)

• R - the “release” operator (p R g specifies
that g holds along the path up to and
including the first state where p holds)

Let AP be the set of atomic propositions.

• If p ∈ AP, then p is a formula

• If f and g are formulas, then: ¬f, f ∨ g, and f ∧
g, are formulas

• EXf, EFf, EGf, E[f U g], E[f R g] are
formulas

• AXf, AFf, AGf, A[f U g], A[f R g] are also
formulas

• The following are examples of valid CTL
formulas (p and q ∈ AP):

p, p ∧ q, AGp, EXp ∨ AGq

• The following are not valid formulas:

Ap, Xq ∨ Gr

Examples

The semantics of CTL will be given with
respect to a Kripke structure M. A path in M,
is an infinite sequence of states, π = s0, s1, ...
such that for every i ≥ 0, (si, si + 1) ∈ R.

πi will be used to denote the suffix of π
starting at si.

If f is a CTL formula, then M,s ⇒ f means that
f holds in state s in the Kripke structure M.

Semantics

The relation ⇒ is defined as follows:

• M,s0 ⇒ p ≡ p ∈ L(s0)

• M,s0 ⇒ ¬p ≡ ¬(M,s0 ⇒ p)

• M,s0 ⇒ p ∧ q ≡ M,s0 ⇒ p and M,s0 ⇒ q

• M,s0 ⇒ p ∨ q ≡ M,s0 ⇒ p or M,s0 ⇒ q

• M,s0 ⇒ EXp ≡ ∃s1 : (s0,s1) ∈ R, and M,s1 ⇒ p

• M,s0 ⇒ EGp ≡ ∃ path π starting at s0 such
that ∀si ∈ π M,si ⇒ p

• M,s0 ⇒ E[p U g] ≡ ∃ path π starting at s0,
∃i ≥ 0 such that M,si ⇒ g, and ∀j : 0 ≤ j < i,
M,sj ⇒ p

There are seven CTL operators:

• AX and AF

• EF and AG

• AU, AR and ER

Each of these operators can be viewed as
shorthand for the following:

• AXf ≡ ¬EX(¬f)

• EFf ≡ E[True U f]

• AGf ≡ ¬EF(¬f)

• AFf ≡ ¬EG(¬f)

• A[f U g] ≡ ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG(¬g)

• A[f R g] ≡ ¬E[¬f U ¬g]

• E[f R g] ≡ ¬A[¬f U ¬g]

Ordered Binary
Decision Diagrams

Consider the following
Kripke structure M:

• Each state is labeled with
the set of literals true in
that state.

• S = {(a,b), (a,¬b), (¬a,b)}

• R = {((a,b),(a,¬b)),
((a,b),(¬a,b)),
((a,¬b),(a,b)),
((¬a,b),(a,¬b))}

a,b a,¬b

¬a,b

• One method of representing M would be to
specify the transition relation as a table.

• Unfortunately, for complex structures the
table becomes too large.

• Consequently, a more efficient data
structure is needed.

R = {((a,b),(a,¬b)), ((a,b),(¬a,b)), ((a,¬b),(a,b)), ((¬a,b),(a,¬b))}

By introducing a pair of next-state variables,
a’ and b’, we can obtain the formula F(R):

(a ∧ b ∧ a’ ∧ ¬b’) ∨ (a ∧ b ∧ ¬a’ ∧ b’) ∨ (a ∧ ¬b ∧ a’ ∧ b’) ∨

(¬a ∧ b ∧ a’ ∧ b’)

Valid transitions of M are models of F(R).

F(R) can be represented by a binary decision
tree:

a

b b

a' a'a'a'

b' b' b' b' b' b' b' b'

0 1

0 1 0 1

0
1

0
1 0

1
0

1

1 0

000000

0 0

0 1 0 1 1 0

0 1 0 1 0 1 101010

100 1

There is a drawback to the binary decision
tree in that it stores a great deal of redundant
information in the form of equivalent
subtrees.

The following algorithm, implemented by a
function Reduce, takes a binary decision tree
as input and removes the redundant subtrees,
giving us an ordered binary decision diagram:

• Remove duplicate terminals - we eliminate all
but one leaf with a given label, and redirect
all arcs to the eliminated vertices to their
counterpart.

• Remove duplicate nonterminals - if two
nonterminals u and v are roots of identical
subtrees, then remove u and redirect its
incoming arcs to v.

• Remove redundant checks - if the children of
a nonterminal v are roots of identical
subtrees, then we remove v, and redirect
incoming arcs to one of it’s children

a

b b

a' a'a'a'

b' b' b' b' b' b' b' b'

0 1

0 1 0 1

0
1

0
1 0

1
0

1

1 0

000000

0 0

0 1 0 1 1 0

0 1 0 1 0 1 101010

100 1

Redundant Checks

a

b b

a' a'a'a'

b' b' b' b'

0 1

0 1 0 1

1 1
0

1

1 0

000 0

0 1 0 1 1 0

1010100 1

0 1
0 0

Redundant Checks

a

b b

a' a'a'

b' b' b' b'

0 1

1 0 1

1 1
0

1

1 0

0

0

0

0 1 0 1 1 0

1010100 1

0 0

0

Subtrees Whose Roots are Redundant Nonterminals

a

b b

a' a'a'

b' b' b'

0 1

1 0 1

1 1 1

1 0

0

0

0

0 1 1 0

10100 1

0 0

0

0

Subtrees Whose Roots are Redundant Nonterminals

a

b b

a' a'a'

b' b'

0 1

1 1 0

1
0

1 0

0

0

0

0 1

100 1

0 0

0

11

Redundant Terminals

a

b b

a' a'a'

b' b'

0 1

1 1 0

1 0

10

0

0

110

1

1 0

0

Given an OBDD for a boolean function F, we
can construct an OBDD for the function that
restricts the value of an argument x of F to a
boolean value b (denoted by F|x=b) as follows:

• For any node v that has an arc to a node w
labeled by x, redirect the arc to low(w) if
b = 0, and to high(w) otherwise.

• We then reduce the OBDD as described
previously

Example
Let F = a ∧ b. The OBDD
for F is shown below:

Applying F|b=1 yields the

following OBDD:

a

0 1

10

a

0

b

1

0

1

0 1

• Let f1 and f2 denote boolean functions

• Let v1 and v2 denote the roots of the
OBDDs representing f1 and f2

• Let x1 and x2 denote the variables labeling v1
and v2

• Let * denote ∧ or ∨

Given the OBDD’s for f1 and f2, we can obtain
the OBDD representing F = f1 * f2 as follows:

• If v1 and v2 are terminal nodes then
f1 * f2 = value(v1) * value(v2)

• If v1 and v2 are both labeled by x then we
construct a new OBDD whose root is a
new node w labeled by x

• low(w) = the OBDD for f1|x=0 * f2|x=0

• high(w) = the OBDD for f1|x=1 * f2|x=1

• If x1 < x2 then we construct a new OBDD
whose root is a new node w labeled by x1

• low(w) = the OBDD for f1|x1=0 * f2

• high(w) = the OBDD for f1|x1=1 * f2

• Similarly if x1 > x2

The preceding algorithm is implemented by
the function Apply

• Consider f1 = a ∧ b and f2 = a ∧ c
• Let a < b < c

• The OBDDs for f1 and f2 are as follows:

Example

a

0

b

1

0

1

0 1

a

0

c

1

0

1

0 1

• The OBDDs have the same root, therefore
we apply the second case of the algorithm:

• We obtain the following OBDD for
f1|a=0 ∧ f2|a=0:

0

• Similarly we obtain the following OBDDs
for f1|a=1 and f2|a=1:

b

0 1

10

c

0 1

10

• Combining the OBDDs for f1|a=1 and f2|a=1
yields the following:

b

0

c

1

0

1

0 1

• Combing the OBDDs for f1|a=0 ∧ f2|a=0 and
f1|a=1 ∧ f2|a=1 gives us the following:

b

0

c

1

0

1

0 1

a

0

01

• Reducing the graph gives us the final
OBDD:

b

0

c

1

0

1

0
1

a

0

1

Given a boolean formula F, we can construct
the OBDD representing F using the following
recursive algorithm that is based on the
construction of F:

• If F = True, then the OBDD is a single
terminal node labeled by 1.

• If F = a, then the OBDD is as follows:

a

0 1

10

• If F = ¬g, we compute the OBDD for g, and
invert the terminal nodes.

• Lastly, if F = f1 * f2 we compute the OBDDs
for f1 and f2 and then obtain the OBDD for
f1 * f2 as was previously discussed.

• Given a set V = {v0 ... vN-1 } of propositional
variables, QBF(V) is the smallest set of
formulas such that:

• every variable in V is a formula

• if f and g are formulas, then ¬f, f ∨ g, and
f ∧ g are formulas

• if f is a formula, and v ∈ V, then ∃vf and
∀vf are formulas

Quantified Boolean
Formulas

• A function σ: V → {0,1} is a truth assignment
for QBF(V).

• If a ∈ {0,1}, then σ[v ← a](w) is defined as
follows:

• a if v = w

• σ(w) otherwise

If f ∈ QBF(V), and σ is a truth assignment, σ ⇒ f is
defined as follows:

• σ ⇒ v ≡ σ(v) = 1

• σ ⇒ ¬f ≡ ¬(σ ⇒ f)

• σ ⇒ f ∧ g ≡ σ ⇒ f and σ ⇒ g

• σ ⇒ f ∨ g ≡ σ ⇒ f or σ ⇒ g

• σ ⇒ ∃vf ≡ σ[v ← 0] ⇒ f or σ[v ← 1] ⇒ f

• σ ⇒ ∀vf ≡ σ[v ← 0] ⇒ f and σ[v ← 1] ⇒ f

We have already seen how to represent non-
quantified formulas as OBDDs. We can also
compute the OBDDs for quantified formulas
using the following identities:

• ∃xf = f |x=0 ∨ f |x=1

• ∀xf = f |x=0 ∧ f |x=1

The CTL model checking algorithm is
implemented by a function Check that takes a
Kripke structure M and a CTL formula f as
parameters, and returns an OBDD
representing the set S = {s : M,s ⇒ f}.

M satisfies F if the set of initial states belongs
to S.

The CTL Model
Checking Algorithm

The function Check operates as follows:

• If F is an atom, Check(F) = the OBDD
representing the set of states containing F.

• If F = ¬f, Check(F) = Apply(¬,Check(f))

• If F = f * g, Check(F) = Apply(*, Check(f), Check(g))

• Check(EX f) = CheckEX(Check(f))

• Check(E[f U g]) = CheckEU(Check(f), Check(g))

• Check(EG f) = CheckEG(Check(f))

The function CheckEX takes as a parameter an
OBDD representing the set of states satisfying
a formula f, and returns the OBDD for the
quantified boolean formula ∃v’[f(v’) ∧ R(v,v’)]

The function CheckEU takes as parameters
the OBDDs representing the sets of states
satisfying the formulas f and g, and returns the
OBDD corresponding to

μZ. g ∨ (f ∧ EX Z)

where μZ. g ∨ (f ∧ EX Z) is the least fixpoint
characterization of E[f U g]

The function CheckEG takes as parameters
the OBDDs representing the set of states
satisfying the formula f, and returns the
OBDD corresponding to

υZ. f ∧ EX Z

where υZ. f ∧ EX Z is the greatest fixpoint
characterization of EG

